snappy 3.2__cp313-cp313-macosx_11_0_arm64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-313-darwin.so +0 -0
- snappy/SnapPy.cpython-313-darwin.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-313-darwin.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-313-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +5 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,426 @@
|
|
1
|
+
"""
|
2
|
+
We have two representations of a point in the boundary of the upper half space model
|
3
|
+
**H**\\ :sup:`3`:
|
4
|
+
|
5
|
+
- :class:`ProjectivePoint` encapsulate it as an element in **CP**\\ :sup:`1`. It uses intervals
|
6
|
+
and can thus represent a neighborhood of infinity.
|
7
|
+
- as a one point compactification of **C**.
|
8
|
+
|
9
|
+
This module contains functions dealing with the latter representation. They all take as
|
10
|
+
input ``z`` which can be a complex interval or the sentinel ``Infinity``. We refer to ``z``
|
11
|
+
as ideal point.
|
12
|
+
|
13
|
+
Note: The sentinel ``Infinity`` the functions expect must be imported from ``idealPoint``
|
14
|
+
and is different from the ``Infinity`` that comes from ``sage.all``.
|
15
|
+
"""
|
16
|
+
|
17
|
+
from ...sage_helper import _within_sage
|
18
|
+
|
19
|
+
if _within_sage:
|
20
|
+
from ...sage_helper import I, matrix
|
21
|
+
from ...sage_helper import Infinity as sage_Infinity
|
22
|
+
|
23
|
+
from .finite_point import *
|
24
|
+
from .extended_matrix import *
|
25
|
+
|
26
|
+
__all__ = [
|
27
|
+
'Infinity',
|
28
|
+
'apply_Moebius',
|
29
|
+
'cross_ratio',
|
30
|
+
'compute_midpoint_two_horospheres_from_triangle',
|
31
|
+
'compute_midpoint_of_triangle_edge_with_offset',
|
32
|
+
'compute_incenter_of_triangle',
|
33
|
+
'compute_inradius_and_incenter',
|
34
|
+
'Euclidean_height_of_hyperbolic_triangle'
|
35
|
+
]
|
36
|
+
|
37
|
+
# This should come from snappy.snap.transferKernelStructuresEngine.
|
38
|
+
Infinity = 'Infinity'
|
39
|
+
|
40
|
+
|
41
|
+
def apply_Moebius(m, z):
|
42
|
+
"""
|
43
|
+
Applies the matrix m to the ideal point z::
|
44
|
+
|
45
|
+
sage: from sage.all import matrix, CIF, RIF
|
46
|
+
sage: m = matrix([[CIF(2,1), CIF(4,2)], [CIF(2,3), CIF(4,2)]])
|
47
|
+
sage: apply_Moebius(m, CIF(3,4)) # doctest: +NUMERIC12
|
48
|
+
0.643835616438356? - 0.383561643835617?*I
|
49
|
+
sage: apply_Moebius(m, Infinity) # doctest: +NUMERIC12
|
50
|
+
0.5384615384615385? - 0.3076923076923078?*I
|
51
|
+
|
52
|
+
"""
|
53
|
+
|
54
|
+
if isinstance(m, ExtendedMatrix):
|
55
|
+
if m.isOrientationReversing and z != Infinity:
|
56
|
+
z = z.conjugate()
|
57
|
+
m = m.matrix
|
58
|
+
|
59
|
+
if m[0,0] == 1 and m[1,1] == 1 and m[0,1] == 0 and m[1,0] == 0:
|
60
|
+
return z
|
61
|
+
if z == Infinity:
|
62
|
+
return m[0,0] / m[1,0]
|
63
|
+
return (m[0,0] * z + m[0,1]) / (m[1,0] * z + m[1,1])
|
64
|
+
|
65
|
+
|
66
|
+
def cross_ratio(z0, z1, z2, z3):
|
67
|
+
"""
|
68
|
+
Computes the cross ratio (according to SnapPea conventions) of
|
69
|
+
four ideal points::
|
70
|
+
|
71
|
+
sage: from sage.all import CIF
|
72
|
+
sage: cross_ratio(Infinity, CIF(0), CIF(1), CIF(1.2, 1.3)) # doctest: +NUMERIC12
|
73
|
+
1.2000000000000000? + 1.300000000000000?*I
|
74
|
+
|
75
|
+
"""
|
76
|
+
|
77
|
+
return ((_diff_1_if_inf(z2, z0) * _diff_1_if_inf(z3, z1)) /
|
78
|
+
(_diff_1_if_inf(z2, z1) * _diff_1_if_inf(z3, z0)))
|
79
|
+
|
80
|
+
|
81
|
+
def compute_midpoint_of_triangle_edge_with_offset(idealPoints, offset):
|
82
|
+
"""
|
83
|
+
The inputs are a list of three IdealPoint's [a, b, c] and an element
|
84
|
+
offset in RealIntervalField.
|
85
|
+
|
86
|
+
Consider the triangle spanned by the three ideal points. There is a line
|
87
|
+
from c perpendicular to the side a b. Call the intersection of the line
|
88
|
+
with the side a b the midpoint. This function returns this point moved
|
89
|
+
towards a by hyperbolic distance log(offset)::
|
90
|
+
|
91
|
+
sage: from sage.all import CIF, RIF
|
92
|
+
sage: compute_midpoint_of_triangle_edge_with_offset( # doctest: +NUMERIC12
|
93
|
+
... [ CIF(0), Infinity, CIF(1) ], RIF(5.0))
|
94
|
+
FinitePoint(0, 0.2000000000000000?)
|
95
|
+
|
96
|
+
"""
|
97
|
+
|
98
|
+
a, b, c = idealPoints
|
99
|
+
|
100
|
+
if a == Infinity:
|
101
|
+
return _compute_midpoint_helper(
|
102
|
+
b, c, offset)
|
103
|
+
if b == Infinity:
|
104
|
+
return _compute_midpoint_helper(
|
105
|
+
a, c, 1 / offset)
|
106
|
+
|
107
|
+
(b, c), inv_sl_matrix = (
|
108
|
+
_transform_points_to_make_first_one_infinity_and_inv_sl_matrix(
|
109
|
+
idealPoints))
|
110
|
+
|
111
|
+
transformedMidpoint = _compute_midpoint_helper(
|
112
|
+
b, c, offset)
|
113
|
+
|
114
|
+
return _translate(transformedMidpoint, inv_sl_matrix)
|
115
|
+
|
116
|
+
|
117
|
+
def compute_midpoint_two_horospheres_from_triangle(
|
118
|
+
idealPoints, intersectionLengths):
|
119
|
+
|
120
|
+
a, b, c = idealPoints
|
121
|
+
la, lb = intersectionLengths
|
122
|
+
|
123
|
+
if a == Infinity:
|
124
|
+
return _compute_midpoint_helper(b, c, (lb / la).sqrt())
|
125
|
+
if b == Infinity:
|
126
|
+
return _compute_midpoint_helper(a, c, (la / lb).sqrt())
|
127
|
+
|
128
|
+
(b, c), inv_sl_matrix = (
|
129
|
+
_transform_points_to_make_first_one_infinity_and_inv_sl_matrix(
|
130
|
+
idealPoints))
|
131
|
+
|
132
|
+
transformedMidpoint = _compute_midpoint_helper(b, c, (lb / la).sqrt())
|
133
|
+
|
134
|
+
return _translate(transformedMidpoint, inv_sl_matrix)
|
135
|
+
|
136
|
+
|
137
|
+
def compute_incenter_of_triangle(idealPoints):
|
138
|
+
"""
|
139
|
+
Computes incenter of the triangle spanned by three ideal points::
|
140
|
+
|
141
|
+
sage: from sage.all import CIF
|
142
|
+
sage: z0 = Infinity
|
143
|
+
sage: z1 = CIF(0)
|
144
|
+
sage: z2 = CIF(1)
|
145
|
+
sage: compute_incenter_of_triangle([z0, z1, z2]) # doctest: +NUMERIC12
|
146
|
+
FinitePoint(0.50000000000000000?, 0.866025403784439?)
|
147
|
+
"""
|
148
|
+
|
149
|
+
if not len(idealPoints) == 3:
|
150
|
+
raise Exception("Expected 3 ideal points.")
|
151
|
+
|
152
|
+
transformedIdealPoints, inv_sl_matrix = (
|
153
|
+
_transform_points_to_make_one_infinity_and_inv_sl_matrix(idealPoints))
|
154
|
+
|
155
|
+
transformedInCenter = (
|
156
|
+
_compute_incenter_of_triangle_with_one_point_at_infinity(
|
157
|
+
transformedIdealPoints))
|
158
|
+
|
159
|
+
return _translate(transformedInCenter, inv_sl_matrix)
|
160
|
+
|
161
|
+
|
162
|
+
def compute_inradius_and_incenter(idealPoints):
|
163
|
+
"""
|
164
|
+
Computes inradius and incenter of the tetrahedron spanned by four
|
165
|
+
ideal points::
|
166
|
+
|
167
|
+
sage: from sage.all import CIF
|
168
|
+
sage: z0 = Infinity
|
169
|
+
sage: z1 = CIF(0)
|
170
|
+
sage: z2 = CIF(1)
|
171
|
+
sage: z3 = CIF(1.2, 1.0)
|
172
|
+
sage: compute_inradius_and_incenter([z0, z1, z2, z3]) # doctest: +NUMERIC12
|
173
|
+
(0.29186158033099?, FinitePoint(0.771123016231387? + 0.2791850380434060?*I, 0.94311979279000?))
|
174
|
+
"""
|
175
|
+
|
176
|
+
if not len(idealPoints) == 4:
|
177
|
+
raise Exception("Expected 4 ideal points.")
|
178
|
+
|
179
|
+
transformedIdealPoints, inv_sl_matrix = (
|
180
|
+
_transform_points_to_make_one_infinity_and_inv_sl_matrix(idealPoints))
|
181
|
+
|
182
|
+
inradius, transformedInCenter = (
|
183
|
+
_compute_inradius_and_incenter_with_one_point_at_infinity(
|
184
|
+
transformedIdealPoints))
|
185
|
+
|
186
|
+
return inradius, _translate(transformedInCenter, inv_sl_matrix)
|
187
|
+
|
188
|
+
|
189
|
+
def Euclidean_height_of_hyperbolic_triangle(idealPoints):
|
190
|
+
"""
|
191
|
+
Computes the Euclidean height of the hyperbolic triangle spanned by three
|
192
|
+
ideal points. The height is the Euclidean radius of the hyperbolic plane
|
193
|
+
containing the triangle or the Euclidean radius of one of its hyperbolic
|
194
|
+
sides (if the projection onto the boundary is an obtuse triangle)::
|
195
|
+
|
196
|
+
sage: from sage.all import CIF
|
197
|
+
sage: z0 = CIF(0)
|
198
|
+
sage: z1 = CIF(1)
|
199
|
+
sage: Euclidean_height_of_hyperbolic_triangle([z0, z1, Infinity])
|
200
|
+
[+infinity .. +infinity]
|
201
|
+
|
202
|
+
sage: Euclidean_height_of_hyperbolic_triangle([z0, z1, CIF(0.5, 0.8)]) # doctest: +NUMERIC12
|
203
|
+
0.556250000000000?
|
204
|
+
|
205
|
+
sage: Euclidean_height_of_hyperbolic_triangle([z0, z1, CIF(10, 0.001)]) # doctest: +NUMERIC12
|
206
|
+
5.000000025000000?
|
207
|
+
|
208
|
+
"""
|
209
|
+
|
210
|
+
if Infinity in idealPoints:
|
211
|
+
for idealPoint in idealPoints:
|
212
|
+
if idealPoint != Infinity:
|
213
|
+
RIF = idealPoint.real().parent()
|
214
|
+
return RIF(sage_Infinity)
|
215
|
+
|
216
|
+
raise Exception("What?")
|
217
|
+
|
218
|
+
lengths = [ abs(idealPoints[(i+2) % 3] - idealPoints[(i+1) % 3])
|
219
|
+
for i in range(3) ]
|
220
|
+
|
221
|
+
for i in range(3):
|
222
|
+
# The triangle is obtuse with i being its longest side. Return
|
223
|
+
# half of it.
|
224
|
+
if lengths[i] ** 2 > lengths[(i+1) % 3] ** 2 + lengths[(i+2) % 3] ** 2:
|
225
|
+
return lengths[i] / 2
|
226
|
+
|
227
|
+
# a + b + c
|
228
|
+
length_total = sum(lengths)
|
229
|
+
# a * b * c
|
230
|
+
length_product = lengths[0] * lengths[1] * lengths[2]
|
231
|
+
|
232
|
+
# (-a + b + c) * (a - b + c) * (a + b - c)
|
233
|
+
terms_product = (
|
234
|
+
(- lengths[0] + lengths[1] + lengths[2]) *
|
235
|
+
( lengths[0] - lengths[1] + lengths[2]) *
|
236
|
+
( lengths[0] + lengths[1] - lengths[2]))
|
237
|
+
|
238
|
+
# Compute circumradius R of Euclidean triangle using
|
239
|
+
# a * b * c / (4 * A) and Heron's formula.
|
240
|
+
return length_product / (terms_product * length_total).sqrt()
|
241
|
+
|
242
|
+
################################################################################
|
243
|
+
#
|
244
|
+
# Various helper functions
|
245
|
+
|
246
|
+
|
247
|
+
def _transform_points_to_make_one_infinity_and_inv_sl_matrix(idealPoints):
|
248
|
+
"""
|
249
|
+
Returns a pair (transformedIdealPoints, matrix) where matrix has determinant
|
250
|
+
one and sends infinity to one of the idealPoints. The matrix sends the
|
251
|
+
transformedIdealPoints to the remaining idealPoints.
|
252
|
+
|
253
|
+
If one of the idealPoints is already at infinity, matrix is None and
|
254
|
+
transformedPoints simply the non-infinite points.
|
255
|
+
"""
|
256
|
+
|
257
|
+
if Infinity in idealPoints:
|
258
|
+
return ([ pt for pt in idealPoints if pt != Infinity ], None)
|
259
|
+
return _transform_points_to_make_first_one_infinity_and_inv_sl_matrix(
|
260
|
+
idealPoints)
|
261
|
+
|
262
|
+
|
263
|
+
def _transform_points_to_make_first_one_infinity_and_inv_sl_matrix(idealPoints):
|
264
|
+
|
265
|
+
# Determine the matrix
|
266
|
+
z = idealPoints[0]
|
267
|
+
CIF = z.parent()
|
268
|
+
gl_matrix = matrix(CIF, [[ 0, 1], [ 1, -z]])
|
269
|
+
sl_matrix = CIF(I) * gl_matrix
|
270
|
+
inv_sl_matrix = _adjoint2(sl_matrix)
|
271
|
+
|
272
|
+
# Apply it
|
273
|
+
return (
|
274
|
+
[ apply_Moebius(gl_matrix, u) for u in idealPoints[1:] ],
|
275
|
+
inv_sl_matrix)
|
276
|
+
|
277
|
+
|
278
|
+
def _translate(finitePoint, sl_matrix):
|
279
|
+
"""
|
280
|
+
Apply translation if matrix is not None.
|
281
|
+
"""
|
282
|
+
|
283
|
+
if sl_matrix:
|
284
|
+
return finitePoint.translate_PSL(sl_matrix)
|
285
|
+
return finitePoint
|
286
|
+
|
287
|
+
|
288
|
+
def _compute_midpoint_helper(b, c, offset):
|
289
|
+
height = abs(c - b) * offset
|
290
|
+
return FinitePoint(b, height)
|
291
|
+
|
292
|
+
|
293
|
+
def _compute_incenter_of_triangle_with_one_point_at_infinity(nonInfPoints):
|
294
|
+
a, b = nonInfPoints
|
295
|
+
RIF = a.real().parent()
|
296
|
+
return FinitePoint((a + b) / 2, abs(a - b) * RIF(3).sqrt() / 2)
|
297
|
+
|
298
|
+
|
299
|
+
def _compute_inradius_and_incenter_with_one_point_at_infinity(nonInfPoints):
|
300
|
+
"""
|
301
|
+
Computes inradius and incenter for a tetrahedron spanned by infinity and
|
302
|
+
the given three ideal points.
|
303
|
+
"""
|
304
|
+
|
305
|
+
if not len(nonInfPoints) == 3:
|
306
|
+
raise Exception("Expects three non-infinite points.")
|
307
|
+
|
308
|
+
# Pts contains three complex numbers spanning the ideal tetrahedron
|
309
|
+
# together with infinity.
|
310
|
+
|
311
|
+
# The lengths a, b, c of the Euclidean triangle spanned by the three complex
|
312
|
+
# numbers
|
313
|
+
lengths = [ abs(nonInfPoints[(i+2) % 3] - nonInfPoints[(i+1) % 3])
|
314
|
+
for i in range(3) ]
|
315
|
+
# a + b + c
|
316
|
+
length_total = sum(lengths)
|
317
|
+
# a * b * c
|
318
|
+
length_product = lengths[0] * lengths[1] * lengths[2]
|
319
|
+
|
320
|
+
# (-a + b + c) * (a - b + c) * (a + b - c)
|
321
|
+
terms_product = (
|
322
|
+
( - lengths[0] + lengths[1] + lengths[2]) *
|
323
|
+
( lengths[0] - lengths[1] + lengths[2]) *
|
324
|
+
( lengths[0] + lengths[1] - lengths[2]))
|
325
|
+
|
326
|
+
# Heron's formula gives us the area as of the Euclidean triangle as
|
327
|
+
# A = sqrt(length_total * terms_product / 16) = r * length_total / 2
|
328
|
+
# Thus, we can compute the inradius r as:
|
329
|
+
inRadiusSqr = terms_product / length_total / 4
|
330
|
+
inRadius = inRadiusSqr.sqrt()
|
331
|
+
|
332
|
+
# The circumradius R of the Euclidean triangle is given by
|
333
|
+
# a * b * c / (4 * A), so we can compute it as:
|
334
|
+
circumRadius = length_product / (terms_product * length_total).sqrt()
|
335
|
+
|
336
|
+
# Euler's formula gives us the distance d between the incenter and the
|
337
|
+
# circumcenter is given d^2 = R^2 - 2 * r * R.
|
338
|
+
# We obtain a Euclidean right triangle formed by the in- and circumcenter
|
339
|
+
# of the Euclidean triangle and the Euclidean center of the inscribed
|
340
|
+
# sphere which sits above the incenter. One leg of this right triangle has
|
341
|
+
# length d. The hypotenuse is r + R since it intersects the inscribed
|
342
|
+
# sphere of radius r in the point where the sphere is touching the bottom
|
343
|
+
# face of the tetrahedron and that face is part of a semi-sphere of radius
|
344
|
+
# R. The other leg of the right triangle which is the Euclidean height h
|
345
|
+
# of the Euclidean center of the inscribed sphere is given by Pythagoras
|
346
|
+
# h^2 + d^2 = (r + R)^2, so h = r^2 + 4 * r * R
|
347
|
+
eHeightSqr = inRadiusSqr + 4 * inRadius * circumRadius
|
348
|
+
eHeight = eHeightSqr.sqrt()
|
349
|
+
|
350
|
+
# Next, we compute the Euclidean height of hyperbolic center of the
|
351
|
+
# inscribed sphere
|
352
|
+
# We use the geometric mean of the Euclidean heights of the lowest and
|
353
|
+
# highest point of the inscribed sphere
|
354
|
+
# sqrt( (h + r) * (h - r))
|
355
|
+
#
|
356
|
+
# height is also equal to (2 * length_product / length_total).sqrt()
|
357
|
+
height = ( eHeightSqr - inRadiusSqr ).sqrt()
|
358
|
+
|
359
|
+
# Taking the logarithm of the ratio of these two highest gives the
|
360
|
+
# hyperbolic diameter of the inscribed sphere.
|
361
|
+
radius = ( (eHeight + inRadius) / (eHeight - inRadius) ).log() / 2
|
362
|
+
|
363
|
+
# The barycentric coordinates of the circumcenter are simply a : b : c.
|
364
|
+
incenter = sum([ pt * l
|
365
|
+
for pt, l in zip(nonInfPoints, lengths)]) / length_total
|
366
|
+
|
367
|
+
return radius, FinitePoint(incenter, height)
|
368
|
+
|
369
|
+
|
370
|
+
def _adjoint2(m):
|
371
|
+
"""
|
372
|
+
Sage matrix.adjoint() produces an unnecessary large interval for
|
373
|
+
ComplexIntervalField entries.
|
374
|
+
"""
|
375
|
+
|
376
|
+
return matrix([[m[1,1], -m[0, 1]], [-m[1, 0], m[0, 0]]])
|
377
|
+
|
378
|
+
|
379
|
+
def _diff_1_if_inf(a, b):
|
380
|
+
if a == Infinity or b == Infinity:
|
381
|
+
return 1
|
382
|
+
return a - b
|
383
|
+
|
384
|
+
################################################################################
|
385
|
+
#
|
386
|
+
# TESTING
|
387
|
+
|
388
|
+
|
389
|
+
class _IdealPointTester():
|
390
|
+
|
391
|
+
"""
|
392
|
+
A test rig for idealPoint
|
393
|
+
|
394
|
+
Run the test rig::
|
395
|
+
|
396
|
+
sage: _IdealPointTester().run_tests()
|
397
|
+
|
398
|
+
"""
|
399
|
+
|
400
|
+
def matrices(self):
|
401
|
+
from ...sage_helper import RIF, CIF
|
402
|
+
return [
|
403
|
+
matrix.identity(CIF, 2),
|
404
|
+
matrix(
|
405
|
+
[[CIF(RIF(1.3),RIF(-0.4)), CIF(RIF(5.6),RIF(2.3))],
|
406
|
+
[CIF(RIF(-0.3), RIF(0.1)), CIF(1)]]),
|
407
|
+
matrix(
|
408
|
+
[[CIF(RIF(0.3),RIF(-1.4)), CIF(RIF(3.6),RIF(6.3))],
|
409
|
+
[CIF(RIF(-0.3), RIF(1.1)), CIF(1)]]) ]
|
410
|
+
|
411
|
+
def run_tests(self):
|
412
|
+
from ...sage_helper import RIF, CIF
|
413
|
+
bias = RIF(1.5)
|
414
|
+
|
415
|
+
triangle = [ CIF(0), Infinity, CIF(1) ]
|
416
|
+
|
417
|
+
p = FinitePoint(CIF(0), 1 / bias)
|
418
|
+
|
419
|
+
for m in self.matrices():
|
420
|
+
pt = compute_midpoint_of_triangle_edge_with_offset(
|
421
|
+
[ apply_Moebius(m, t) for t in triangle ], bias)
|
422
|
+
|
423
|
+
d = p.translate_PGL(m).dist(pt)
|
424
|
+
|
425
|
+
if not d < RIF(1e-6):
|
426
|
+
raise Exception("Points differ %s" % d)
|
snappy/verify/volume.py
ADDED
@@ -0,0 +1,128 @@
|
|
1
|
+
from ..sage_helper import sage_method, _within_sage
|
2
|
+
from ..number import Number
|
3
|
+
|
4
|
+
if _within_sage:
|
5
|
+
from sage.rings.complex_interval_field import ComplexIntervalField
|
6
|
+
try:
|
7
|
+
import sage.rings.abc
|
8
|
+
|
9
|
+
def is_ComplexIntervalField(z):
|
10
|
+
return isinstance(z, sage.rings.abc.ComplexIntervalField)
|
11
|
+
except ImportError:
|
12
|
+
from sage.rings.complex_interval_field import is_ComplexIntervalField
|
13
|
+
from sage.rings.complex_arb import ComplexBallField
|
14
|
+
from sage.rings.real_mpfi import RealIntervalField
|
15
|
+
|
16
|
+
__all__ = ['compute_volume']
|
17
|
+
|
18
|
+
from . import hyperbolicity
|
19
|
+
|
20
|
+
# Sage's handling of pari has a bug when it comes to precision and the dilog.
|
21
|
+
# It computes the dilogarithm only to low precision even though higher precision
|
22
|
+
# is demanded, for example:
|
23
|
+
# >>> ComplexField(600)(1/2+sqrt(-3)/2).dilog()
|
24
|
+
# 0.274155677808037739629767534643711712760705268010497093200683593750000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 + 1.01494160640965362502224633965050127985270614620051806369642217221943674062982124585777232717020979180233553051948547363281250000000000000000000000000000000000000000000000000000000*I
|
25
|
+
#
|
26
|
+
# Also see: https://groups.google.com/forum/#!topic/sage-devel/NmBp4usk2_Q
|
27
|
+
#
|
28
|
+
# We work around this by converting to snappy.Number where a work-around for this was
|
29
|
+
# implemented.
|
30
|
+
|
31
|
+
|
32
|
+
def _unprotected_volume_from_shape(z):
|
33
|
+
"""
|
34
|
+
Computes the Bloch-Wigner dilogarithm for z assuming z is of a type that
|
35
|
+
properly supports polylog.
|
36
|
+
"""
|
37
|
+
|
38
|
+
# Note: For this to be correct the branch cut policy applied to
|
39
|
+
# (1-z).arg() and dilog must be the same. Do not cast to a different
|
40
|
+
# z or 1-z to a different number types when applying (1-z).arg() and
|
41
|
+
# z.polylog(2).
|
42
|
+
#
|
43
|
+
# What is meant by branch cut policy?
|
44
|
+
# For values -1 + epsilon * I, z.arg() will be close to +pi.
|
45
|
+
# For values -1 - epsilon * I, z.arg() will be close to -pi.
|
46
|
+
# For exactly -1, the convention is to return +pi.
|
47
|
+
#
|
48
|
+
# But what about -1 + small interval close to 0?
|
49
|
+
# Different number types give different results.
|
50
|
+
# ComplexIntervalField, for example, decided whether to return an interval
|
51
|
+
# close to +pi or close to -pi based on whether the interval contains 0 -
|
52
|
+
# in other words, it is picking a lift.
|
53
|
+
# It is picking this lift deterministically, but it might pick a different
|
54
|
+
# lift if the precision is changed.
|
55
|
+
#
|
56
|
+
# Since we just flip the sign of the imaginary part when computing 1-z,
|
57
|
+
# the interval for the imaginary part of z contains zero if and only if
|
58
|
+
# the imaginary part of 1-z contains zero, so the same branch cut is chosen
|
59
|
+
# for (1-z).arg() and z.polylog(2).
|
60
|
+
|
61
|
+
return (1-z).arg() * z.abs().log() + z.polylog(2).imag()
|
62
|
+
|
63
|
+
|
64
|
+
def _volume_from_shape(z):
|
65
|
+
"""
|
66
|
+
Computes the Bloch-Wigner dilogarithm for z which gives the volume of a
|
67
|
+
tetrahedron of the given shape.
|
68
|
+
"""
|
69
|
+
|
70
|
+
if _within_sage:
|
71
|
+
CIF = z.parent()
|
72
|
+
if is_ComplexIntervalField(CIF):
|
73
|
+
# A different bug in sage:
|
74
|
+
# Depending on the sage version, an element in a
|
75
|
+
# ComplexIntervalField wouldn't support dilog/polylog, or, even
|
76
|
+
# worse, would convert the element to ComplexField first!!!
|
77
|
+
#
|
78
|
+
# Thus, we convert to ComplexBallField here since the arblib
|
79
|
+
# supports a verified interval polylog (albeit giving an interval
|
80
|
+
# that seems to be 300 times larger than necessary).
|
81
|
+
|
82
|
+
CBF = ComplexBallField(CIF.precision())
|
83
|
+
RIF = RealIntervalField(CIF.precision())
|
84
|
+
|
85
|
+
return RIF(_unprotected_volume_from_shape(CBF(z)))
|
86
|
+
else:
|
87
|
+
z = Number(z)
|
88
|
+
|
89
|
+
# Use implementation in number.py that overcomes the cypari bug that you
|
90
|
+
# have to explicitly give a precision to dilog, otherwise you lose
|
91
|
+
# precision.
|
92
|
+
return z.volume()
|
93
|
+
|
94
|
+
|
95
|
+
def compute_volume(manifold, verified, bits_prec=None):
|
96
|
+
"""
|
97
|
+
Computes the volume of the given manifold. If verified is used,
|
98
|
+
the hyperbolicity is checked rigorously and the volume is given as
|
99
|
+
verified interval.
|
100
|
+
|
101
|
+
>>> M = Manifold('m004')
|
102
|
+
>>> vol = M.volume(bits_prec=100)
|
103
|
+
>>> vol # doctest: +ELLIPSIS
|
104
|
+
2.029883212819307250042405108...
|
105
|
+
|
106
|
+
sage: ver_vol = M.volume(verified=True)
|
107
|
+
sage: vol in ver_vol
|
108
|
+
True
|
109
|
+
sage: 2.02988321283 in ver_vol
|
110
|
+
False
|
111
|
+
"""
|
112
|
+
# Compute tetrahedra shapes to arbitrary precision. If requested,
|
113
|
+
# verify that this is indeed a solution to the polynomial gluing
|
114
|
+
# equations.
|
115
|
+
shape_intervals = manifold.tetrahedra_shapes(
|
116
|
+
'rect', bits_prec=bits_prec, intervals=verified)
|
117
|
+
|
118
|
+
if verified:
|
119
|
+
# If requested, check it is a valid hyperbolic structure
|
120
|
+
hyperbolicity.check_logarithmic_gluing_equations_and_positively_oriented_tets(
|
121
|
+
manifold, shape_intervals)
|
122
|
+
|
123
|
+
# Sum up the volumes of all the tetrahedra
|
124
|
+
volume = sum([ _volume_from_shape(shape_interval)
|
125
|
+
for shape_interval in shape_intervals])
|
126
|
+
if isinstance(volume, Number):
|
127
|
+
volume = manifold._number_(volume)
|
128
|
+
return volume
|
snappy/version.py
ADDED
@@ -0,0 +1,58 @@
|
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: snappy
|
3
|
+
Version: 3.2
|
4
|
+
Summary: Studying the topology and geometry of 3-manifolds, with a focus on hyperbolic structures.
|
5
|
+
Home-page: http://snappy.computop.org
|
6
|
+
Author: Marc Culler and Nathan M. Dunfield
|
7
|
+
Author-email: culler@uic.edu, nathan@dunfield.info
|
8
|
+
License: GPLv2+
|
9
|
+
Keywords: 3-manifolds,topology,hyperbolic geometry
|
10
|
+
Classifier: Development Status :: 5 - Production/Stable
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
12
|
+
Classifier: License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+)
|
13
|
+
Classifier: Operating System :: OS Independent
|
14
|
+
Classifier: Programming Language :: C
|
15
|
+
Classifier: Programming Language :: C++
|
16
|
+
Classifier: Programming Language :: Python
|
17
|
+
Classifier: Programming Language :: Cython
|
18
|
+
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
19
|
+
Requires-Python: >=3.8
|
20
|
+
Description-Content-Type: text/x-rst
|
21
|
+
Requires-Dist: FXrays>=1.3
|
22
|
+
Requires-Dist: plink>=2.4.3
|
23
|
+
Requires-Dist: spherogram>=2.3
|
24
|
+
Requires-Dist: snappy_manifolds>=1.2.1
|
25
|
+
Requires-Dist: low_index>=1.2.1
|
26
|
+
Requires-Dist: tkinter-gl>=1.0
|
27
|
+
Requires-Dist: decorator
|
28
|
+
Requires-Dist: packaging
|
29
|
+
Requires-Dist: pypng
|
30
|
+
Requires-Dist: PyX
|
31
|
+
Requires-Dist: pickleshare
|
32
|
+
Requires-Dist: cypari>=2.3
|
33
|
+
Requires-Dist: ipython>=5.0
|
34
|
+
Dynamic: author
|
35
|
+
Dynamic: author-email
|
36
|
+
Dynamic: classifier
|
37
|
+
Dynamic: description
|
38
|
+
Dynamic: description-content-type
|
39
|
+
Dynamic: home-page
|
40
|
+
Dynamic: keywords
|
41
|
+
Dynamic: license
|
42
|
+
Dynamic: requires-dist
|
43
|
+
Dynamic: requires-python
|
44
|
+
Dynamic: summary
|
45
|
+
|
46
|
+
SnapPy
|
47
|
+
======
|
48
|
+
|
49
|
+
SnapPy is a package for studying the topology and geometry of
|
50
|
+
3-manifolds, with a focus on hyperbolic structures. It is based on
|
51
|
+
the SnapPea kernel written by `Jeff Weeks
|
52
|
+
<http://www.geometrygames.org>`_.
|
53
|
+
|
54
|
+
Complete documentation is available on the web including the `main
|
55
|
+
page <http://snappy.computop.org>`_ and an `installation guide
|
56
|
+
<http://snappy.computop.org/installing.html>`_. You can also browse
|
57
|
+
the `source code <https://github.com/3-manifolds/SnapPy>`_.
|
58
|
+
|