sigima 0.0.1.dev0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sigima/__init__.py +142 -2
- sigima/client/__init__.py +105 -0
- sigima/client/base.py +780 -0
- sigima/client/remote.py +469 -0
- sigima/client/stub.py +814 -0
- sigima/client/utils.py +90 -0
- sigima/config.py +444 -0
- sigima/data/logo/Sigima.svg +135 -0
- sigima/data/tests/annotations.json +798 -0
- sigima/data/tests/curve_fitting/exponential_fit.txt +511 -0
- sigima/data/tests/curve_fitting/gaussian_fit.txt +100 -0
- sigima/data/tests/curve_fitting/piecewiseexponential_fit.txt +1022 -0
- sigima/data/tests/curve_fitting/polynomial_fit.txt +100 -0
- sigima/data/tests/curve_fitting/twohalfgaussian_fit.txt +1000 -0
- sigima/data/tests/curve_formats/bandwidth.txt +201 -0
- sigima/data/tests/curve_formats/boxcar.npy +0 -0
- sigima/data/tests/curve_formats/datetime.txt +1001 -0
- sigima/data/tests/curve_formats/dynamic_parameters.txt +4000 -0
- sigima/data/tests/curve_formats/fw1e2.txt +301 -0
- sigima/data/tests/curve_formats/fwhm.txt +319 -0
- sigima/data/tests/curve_formats/multiple_curves.csv +29 -0
- sigima/data/tests/curve_formats/noised_saw.mat +0 -0
- sigima/data/tests/curve_formats/oscilloscope.csv +111 -0
- sigima/data/tests/curve_formats/other/other2/recursive2.txt +5 -0
- sigima/data/tests/curve_formats/other/recursive1.txt +5 -0
- sigima/data/tests/curve_formats/paracetamol.npy +0 -0
- sigima/data/tests/curve_formats/paracetamol.txt +1010 -0
- sigima/data/tests/curve_formats/paracetamol_dx_dy.csv +1000 -0
- sigima/data/tests/curve_formats/paracetamol_dy.csv +1001 -0
- sigima/data/tests/curve_formats/pulse1.npy +0 -0
- sigima/data/tests/curve_formats/pulse2.npy +0 -0
- sigima/data/tests/curve_formats/simple.txt +5 -0
- sigima/data/tests/curve_formats/spectrum.mca +2139 -0
- sigima/data/tests/curve_formats/square2.npy +0 -0
- sigima/data/tests/curve_formats/step.npy +0 -0
- sigima/data/tests/fabry-perot1.jpg +0 -0
- sigima/data/tests/fabry-perot2.jpg +0 -0
- sigima/data/tests/flower.npy +0 -0
- sigima/data/tests/image_formats/NF 180338201.scor-data +11003 -0
- sigima/data/tests/image_formats/binary_image.npy +0 -0
- sigima/data/tests/image_formats/binary_image.png +0 -0
- sigima/data/tests/image_formats/centroid_test.npy +0 -0
- sigima/data/tests/image_formats/coordinated_text/complex_image.txt +10011 -0
- sigima/data/tests/image_formats/coordinated_text/complex_ref_image.txt +10010 -0
- sigima/data/tests/image_formats/coordinated_text/image.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image2.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_no_unit_no_label.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_nan.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_unit.txt +14 -0
- sigima/data/tests/image_formats/fiber.csv +480 -0
- sigima/data/tests/image_formats/fiber.jpg +0 -0
- sigima/data/tests/image_formats/fiber.png +0 -0
- sigima/data/tests/image_formats/fiber.txt +480 -0
- sigima/data/tests/image_formats/gaussian_spot_with_noise.npy +0 -0
- sigima/data/tests/image_formats/mr-brain.dcm +0 -0
- sigima/data/tests/image_formats/noised_gaussian.mat +0 -0
- sigima/data/tests/image_formats/sif_reader/nd_lum_image_no_glue.sif +0 -0
- sigima/data/tests/image_formats/sif_reader/raman1.sif +0 -0
- sigima/data/tests/image_formats/tiling.txt +10 -0
- sigima/data/tests/image_formats/uint16.tiff +0 -0
- sigima/data/tests/image_formats/uint8.tiff +0 -0
- sigima/data/tests/laser_beam/TEM00_z_13.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_18.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_23.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_30.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_35.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_40.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_45.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_50.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_55.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_60.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_65.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_70.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_75.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_80.jpg +0 -0
- sigima/enums.py +195 -0
- sigima/io/__init__.py +123 -0
- sigima/io/base.py +311 -0
- sigima/io/common/__init__.py +5 -0
- sigima/io/common/basename.py +164 -0
- sigima/io/common/converters.py +189 -0
- sigima/io/common/objmeta.py +181 -0
- sigima/io/common/textreader.py +58 -0
- sigima/io/convenience.py +157 -0
- sigima/io/enums.py +17 -0
- sigima/io/ftlab.py +395 -0
- sigima/io/image/__init__.py +9 -0
- sigima/io/image/base.py +177 -0
- sigima/io/image/formats.py +1016 -0
- sigima/io/image/funcs.py +414 -0
- sigima/io/signal/__init__.py +9 -0
- sigima/io/signal/base.py +129 -0
- sigima/io/signal/formats.py +290 -0
- sigima/io/signal/funcs.py +723 -0
- sigima/objects/__init__.py +260 -0
- sigima/objects/base.py +937 -0
- sigima/objects/image/__init__.py +88 -0
- sigima/objects/image/creation.py +556 -0
- sigima/objects/image/object.py +524 -0
- sigima/objects/image/roi.py +904 -0
- sigima/objects/scalar/__init__.py +57 -0
- sigima/objects/scalar/common.py +215 -0
- sigima/objects/scalar/geometry.py +502 -0
- sigima/objects/scalar/table.py +784 -0
- sigima/objects/shape.py +290 -0
- sigima/objects/signal/__init__.py +133 -0
- sigima/objects/signal/constants.py +27 -0
- sigima/objects/signal/creation.py +1428 -0
- sigima/objects/signal/object.py +444 -0
- sigima/objects/signal/roi.py +274 -0
- sigima/params.py +405 -0
- sigima/proc/__init__.py +96 -0
- sigima/proc/base.py +381 -0
- sigima/proc/decorator.py +330 -0
- sigima/proc/image/__init__.py +513 -0
- sigima/proc/image/arithmetic.py +335 -0
- sigima/proc/image/base.py +260 -0
- sigima/proc/image/detection.py +519 -0
- sigima/proc/image/edges.py +329 -0
- sigima/proc/image/exposure.py +406 -0
- sigima/proc/image/extraction.py +458 -0
- sigima/proc/image/filtering.py +219 -0
- sigima/proc/image/fourier.py +147 -0
- sigima/proc/image/geometry.py +661 -0
- sigima/proc/image/mathops.py +340 -0
- sigima/proc/image/measurement.py +195 -0
- sigima/proc/image/morphology.py +155 -0
- sigima/proc/image/noise.py +107 -0
- sigima/proc/image/preprocessing.py +182 -0
- sigima/proc/image/restoration.py +235 -0
- sigima/proc/image/threshold.py +217 -0
- sigima/proc/image/transformations.py +393 -0
- sigima/proc/signal/__init__.py +376 -0
- sigima/proc/signal/analysis.py +206 -0
- sigima/proc/signal/arithmetic.py +551 -0
- sigima/proc/signal/base.py +262 -0
- sigima/proc/signal/extraction.py +60 -0
- sigima/proc/signal/features.py +310 -0
- sigima/proc/signal/filtering.py +484 -0
- sigima/proc/signal/fitting.py +276 -0
- sigima/proc/signal/fourier.py +259 -0
- sigima/proc/signal/mathops.py +420 -0
- sigima/proc/signal/processing.py +580 -0
- sigima/proc/signal/stability.py +175 -0
- sigima/proc/title_formatting.py +227 -0
- sigima/proc/validation.py +272 -0
- sigima/tests/__init__.py +7 -0
- sigima/tests/common/__init__.py +0 -0
- sigima/tests/common/arithmeticparam_unit_test.py +26 -0
- sigima/tests/common/basename_unit_test.py +126 -0
- sigima/tests/common/client_unit_test.py +412 -0
- sigima/tests/common/converters_unit_test.py +77 -0
- sigima/tests/common/decorator_unit_test.py +176 -0
- sigima/tests/common/examples_unit_test.py +104 -0
- sigima/tests/common/kernel_normalization_unit_test.py +242 -0
- sigima/tests/common/roi_basic_unit_test.py +73 -0
- sigima/tests/common/roi_geometry_unit_test.py +171 -0
- sigima/tests/common/scalar_builder_unit_test.py +142 -0
- sigima/tests/common/scalar_unit_test.py +991 -0
- sigima/tests/common/shape_unit_test.py +183 -0
- sigima/tests/common/stat_unit_test.py +138 -0
- sigima/tests/common/title_formatting_unit_test.py +338 -0
- sigima/tests/common/tools_coordinates_unit_test.py +60 -0
- sigima/tests/common/transformations_unit_test.py +178 -0
- sigima/tests/common/validation_unit_test.py +205 -0
- sigima/tests/conftest.py +129 -0
- sigima/tests/data.py +998 -0
- sigima/tests/env.py +280 -0
- sigima/tests/guiutils.py +163 -0
- sigima/tests/helpers.py +532 -0
- sigima/tests/image/__init__.py +28 -0
- sigima/tests/image/binning_unit_test.py +128 -0
- sigima/tests/image/blob_detection_unit_test.py +312 -0
- sigima/tests/image/centroid_unit_test.py +170 -0
- sigima/tests/image/check_2d_array_unit_test.py +63 -0
- sigima/tests/image/contour_unit_test.py +172 -0
- sigima/tests/image/convolution_unit_test.py +178 -0
- sigima/tests/image/datatype_unit_test.py +67 -0
- sigima/tests/image/edges_unit_test.py +155 -0
- sigima/tests/image/enclosingcircle_unit_test.py +88 -0
- sigima/tests/image/exposure_unit_test.py +223 -0
- sigima/tests/image/fft2d_unit_test.py +189 -0
- sigima/tests/image/filtering_unit_test.py +166 -0
- sigima/tests/image/geometry_unit_test.py +654 -0
- sigima/tests/image/hough_circle_unit_test.py +147 -0
- sigima/tests/image/imageobj_unit_test.py +737 -0
- sigima/tests/image/morphology_unit_test.py +71 -0
- sigima/tests/image/noise_unit_test.py +57 -0
- sigima/tests/image/offset_correction_unit_test.py +72 -0
- sigima/tests/image/operation_unit_test.py +518 -0
- sigima/tests/image/peak2d_limits_unit_test.py +41 -0
- sigima/tests/image/peak2d_unit_test.py +133 -0
- sigima/tests/image/profile_unit_test.py +159 -0
- sigima/tests/image/projections_unit_test.py +121 -0
- sigima/tests/image/restoration_unit_test.py +141 -0
- sigima/tests/image/roi2dparam_unit_test.py +53 -0
- sigima/tests/image/roi_advanced_unit_test.py +588 -0
- sigima/tests/image/roi_grid_unit_test.py +279 -0
- sigima/tests/image/spectrum2d_unit_test.py +40 -0
- sigima/tests/image/threshold_unit_test.py +91 -0
- sigima/tests/io/__init__.py +0 -0
- sigima/tests/io/addnewformat_unit_test.py +125 -0
- sigima/tests/io/convenience_funcs_unit_test.py +470 -0
- sigima/tests/io/coordinated_text_format_unit_test.py +495 -0
- sigima/tests/io/datetime_csv_unit_test.py +198 -0
- sigima/tests/io/imageio_formats_test.py +41 -0
- sigima/tests/io/ioregistry_unit_test.py +69 -0
- sigima/tests/io/objmeta_unit_test.py +87 -0
- sigima/tests/io/readobj_unit_test.py +130 -0
- sigima/tests/io/readwriteobj_unit_test.py +67 -0
- sigima/tests/signal/__init__.py +0 -0
- sigima/tests/signal/analysis_unit_test.py +135 -0
- sigima/tests/signal/check_1d_arrays_unit_test.py +169 -0
- sigima/tests/signal/convolution_unit_test.py +404 -0
- sigima/tests/signal/datetime_unit_test.py +176 -0
- sigima/tests/signal/fft1d_unit_test.py +303 -0
- sigima/tests/signal/filters_unit_test.py +403 -0
- sigima/tests/signal/fitting_unit_test.py +929 -0
- sigima/tests/signal/fwhm_unit_test.py +111 -0
- sigima/tests/signal/noise_unit_test.py +128 -0
- sigima/tests/signal/offset_correction_unit_test.py +34 -0
- sigima/tests/signal/operation_unit_test.py +489 -0
- sigima/tests/signal/peakdetection_unit_test.py +145 -0
- sigima/tests/signal/processing_unit_test.py +657 -0
- sigima/tests/signal/pulse/__init__.py +112 -0
- sigima/tests/signal/pulse/crossing_times_unit_test.py +123 -0
- sigima/tests/signal/pulse/plateau_detection_unit_test.py +102 -0
- sigima/tests/signal/pulse/pulse_unit_test.py +1824 -0
- sigima/tests/signal/roi_advanced_unit_test.py +392 -0
- sigima/tests/signal/signalobj_unit_test.py +603 -0
- sigima/tests/signal/stability_unit_test.py +431 -0
- sigima/tests/signal/uncertainty_unit_test.py +611 -0
- sigima/tests/vistools.py +1030 -0
- sigima/tools/__init__.py +59 -0
- sigima/tools/checks.py +290 -0
- sigima/tools/coordinates.py +308 -0
- sigima/tools/datatypes.py +26 -0
- sigima/tools/image/__init__.py +97 -0
- sigima/tools/image/detection.py +451 -0
- sigima/tools/image/exposure.py +77 -0
- sigima/tools/image/extraction.py +48 -0
- sigima/tools/image/fourier.py +260 -0
- sigima/tools/image/geometry.py +190 -0
- sigima/tools/image/preprocessing.py +165 -0
- sigima/tools/signal/__init__.py +86 -0
- sigima/tools/signal/dynamic.py +254 -0
- sigima/tools/signal/features.py +135 -0
- sigima/tools/signal/filtering.py +171 -0
- sigima/tools/signal/fitting.py +1171 -0
- sigima/tools/signal/fourier.py +466 -0
- sigima/tools/signal/interpolation.py +70 -0
- sigima/tools/signal/peakdetection.py +126 -0
- sigima/tools/signal/pulse.py +1626 -0
- sigima/tools/signal/scaling.py +50 -0
- sigima/tools/signal/stability.py +258 -0
- sigima/tools/signal/windowing.py +90 -0
- sigima/worker.py +79 -0
- sigima-1.0.0.dist-info/METADATA +233 -0
- sigima-1.0.0.dist-info/RECORD +262 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/licenses/LICENSE +29 -29
- sigima-0.0.1.dev0.dist-info/METADATA +0 -60
- sigima-0.0.1.dev0.dist-info/RECORD +0 -6
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/WHEEL +0 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,169 @@
|
|
|
1
|
+
# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
|
|
2
|
+
|
|
3
|
+
"""Unit tests for 1D-array function checks decorators."""
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pytest
|
|
7
|
+
|
|
8
|
+
from sigima.tools.checks import check_1d_arrays
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@check_1d_arrays(y_dtype=np.floating)
|
|
12
|
+
def add_arrays(x: np.ndarray, y: np.ndarray) -> np.ndarray:
|
|
13
|
+
"""Dummy function to demonstrate basic signal requirements.
|
|
14
|
+
|
|
15
|
+
This function takes two 1-D arrays of floats and returns their sum.
|
|
16
|
+
|
|
17
|
+
Args:
|
|
18
|
+
x: 1-D array of floats.
|
|
19
|
+
y: 1-D array of floats.
|
|
20
|
+
|
|
21
|
+
Returns:
|
|
22
|
+
Result of the operation.
|
|
23
|
+
"""
|
|
24
|
+
return x + y
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def test_valid_input():
|
|
28
|
+
"""Test with valid 1-D float arrays of the same size."""
|
|
29
|
+
x = np.array([1.0, 2.0, 3.0], dtype=np.float64)
|
|
30
|
+
y = np.array([4.0, 5.0, 6.0], dtype=np.float64)
|
|
31
|
+
result = add_arrays(x, y)
|
|
32
|
+
np.testing.assert_array_equal(result, x + y)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def test_invalid_x():
|
|
36
|
+
"""Test invalid x: not 1-D, not float, or not sorted in ascending order."""
|
|
37
|
+
y = np.array([4.0, 5.0, 6.0], dtype=float)
|
|
38
|
+
|
|
39
|
+
x1 = np.array([[1.0, 2.0], [3.0, 4.0]]) # not 1-D
|
|
40
|
+
with pytest.raises(ValueError, match="x must be 1-D."):
|
|
41
|
+
add_arrays(x1, y)
|
|
42
|
+
|
|
43
|
+
x2 = np.array([1, 2, 3], dtype=int) # not float
|
|
44
|
+
with pytest.raises(TypeError, match="x must be of type <class 'numpy.floating'>."):
|
|
45
|
+
add_arrays(x2, y)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def test_invalid_y():
|
|
49
|
+
"""Test invalid y: not 1-D or not float."""
|
|
50
|
+
x = np.array([1.0, 2.0, 3.0], dtype=float)
|
|
51
|
+
|
|
52
|
+
y1 = np.array([[4.0, 5.0], [6.0, 7.0]]) # not 1-D
|
|
53
|
+
with pytest.raises(ValueError, match="y must be 1-D."):
|
|
54
|
+
add_arrays(x, y1)
|
|
55
|
+
|
|
56
|
+
y2 = np.array([4, 5, 6], dtype=int) # not float
|
|
57
|
+
with pytest.raises(TypeError, match="y must be of type <class 'numpy.floating'>."):
|
|
58
|
+
add_arrays(x, y2)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def test_size_mismatch():
|
|
62
|
+
"""Test x and y with different sizes."""
|
|
63
|
+
x = np.array([1.0, 2.0, 3.0], dtype=float)
|
|
64
|
+
y = np.array([4.0, 5.0], dtype=float)
|
|
65
|
+
with pytest.raises(ValueError, match="x and y must have the same size."):
|
|
66
|
+
add_arrays(x, y)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
@check_1d_arrays(x_sorted=True, x_evenly_spaced=True)
|
|
70
|
+
def multiply_arrays(x: np.ndarray, y: np.ndarray) -> np.ndarray:
|
|
71
|
+
"""Dummy function to demonstrate evenly spaced check.
|
|
72
|
+
|
|
73
|
+
This function takes a 1-D array of floats and returns it multiplied by 2.
|
|
74
|
+
|
|
75
|
+
Args:
|
|
76
|
+
x: 1-D array of floats.
|
|
77
|
+
y: 1-D array of floats.
|
|
78
|
+
|
|
79
|
+
Returns:
|
|
80
|
+
Result of the operation.
|
|
81
|
+
"""
|
|
82
|
+
return x * y
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def test_evenly_spaced_and_sorted():
|
|
86
|
+
"""Test with evenly spaced x."""
|
|
87
|
+
x = np.array([1.0, 2.0, 3.0], dtype=np.float64)
|
|
88
|
+
y = np.array([4.0, 5.0, 6.0], dtype=np.float64)
|
|
89
|
+
result = multiply_arrays(x, y)
|
|
90
|
+
np.testing.assert_array_equal(result, x * y)
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
def test_single_element_evenly_spaced():
|
|
94
|
+
"""Test with a single-element x."""
|
|
95
|
+
x = np.array([42.0], dtype=np.float64)
|
|
96
|
+
y = np.array([4.0], dtype=np.float64)
|
|
97
|
+
result = multiply_arrays(x, y)
|
|
98
|
+
np.testing.assert_array_equal(result, x * y)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def test_not_evenly_spaced():
|
|
102
|
+
"""Test with x that is not evenly spaced."""
|
|
103
|
+
x = np.array([0.0, 1.0, 3.0], dtype=float)
|
|
104
|
+
y = np.array([4.0, 5.0, 6.0], dtype=np.float64)
|
|
105
|
+
with pytest.raises(ValueError, match="x must be evenly spaced."):
|
|
106
|
+
multiply_arrays(x, y)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def test_not_sorted():
|
|
110
|
+
"""Test with x that is not sorted in ascending order."""
|
|
111
|
+
x = np.array([3.0, 1.0, 2.0], dtype=float)
|
|
112
|
+
y = np.array([4.0, 5.0, 6.0], dtype=np.float64)
|
|
113
|
+
with pytest.raises(ValueError, match="x must be sorted in ascending order."):
|
|
114
|
+
multiply_arrays(x, y)
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
@check_1d_arrays(x_evenly_spaced=True, rtol=1e-2)
|
|
118
|
+
def add_arrays_with_tolerant_spacing(x: np.ndarray, y: np.ndarray) -> np.ndarray:
|
|
119
|
+
"""Dummy function accepting nearly-evenly spaced x.
|
|
120
|
+
|
|
121
|
+
Args:
|
|
122
|
+
x: 1-D array of floats.
|
|
123
|
+
y: 1-D array of floats.
|
|
124
|
+
|
|
125
|
+
Returns:
|
|
126
|
+
Result of the operation.
|
|
127
|
+
"""
|
|
128
|
+
return x + y
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
@check_1d_arrays(x_evenly_spaced=True)
|
|
132
|
+
def add_arrays_without_tolerance(x: np.ndarray, y: np.ndarray) -> np.ndarray:
|
|
133
|
+
"""Dummy function for evenly spaced x.
|
|
134
|
+
|
|
135
|
+
Args:
|
|
136
|
+
x: 1-D array of floats.
|
|
137
|
+
y: 1-D array of floats.
|
|
138
|
+
|
|
139
|
+
Returns:
|
|
140
|
+
Result of the operation.
|
|
141
|
+
"""
|
|
142
|
+
return x + y
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def test_tolerant_spacing():
|
|
146
|
+
"""Test x array that is almost evenly spaced with relaxed tolerance."""
|
|
147
|
+
# The spacing varies slightly (1 +/- 0.01)
|
|
148
|
+
x = np.array([0.0, 1.0, 2.01], dtype=float)
|
|
149
|
+
y = np.array([1.0, 1.0, 1.0], dtype=float)
|
|
150
|
+
|
|
151
|
+
# Should pass with rtol=1e-2
|
|
152
|
+
result = add_arrays_with_tolerant_spacing(x, y)
|
|
153
|
+
np.testing.assert_array_equal(result, x + y)
|
|
154
|
+
|
|
155
|
+
# Should fail with decorator's default value (rtol=1e-5)
|
|
156
|
+
with pytest.raises(ValueError, match="x must be evenly spaced."):
|
|
157
|
+
add_arrays_without_tolerance(x, y)
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
if __name__ == "__main__":
|
|
161
|
+
test_valid_input()
|
|
162
|
+
test_invalid_x()
|
|
163
|
+
test_invalid_y()
|
|
164
|
+
test_size_mismatch()
|
|
165
|
+
test_evenly_spaced_and_sorted()
|
|
166
|
+
test_single_element_evenly_spaced()
|
|
167
|
+
test_not_evenly_spaced()
|
|
168
|
+
test_not_sorted()
|
|
169
|
+
test_tolerant_spacing()
|
|
@@ -0,0 +1,404 @@
|
|
|
1
|
+
# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
|
|
2
|
+
|
|
3
|
+
"""Unit tests for signal convolution/deconvolution features."""
|
|
4
|
+
|
|
5
|
+
# pylint: disable=invalid-name
|
|
6
|
+
|
|
7
|
+
from __future__ import annotations
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
import pytest
|
|
11
|
+
|
|
12
|
+
from sigima.objects import create_signal
|
|
13
|
+
from sigima.objects.signal import SignalObj
|
|
14
|
+
from sigima.proc.signal import convolution, deconvolution
|
|
15
|
+
from sigima.tests import guiutils
|
|
16
|
+
from sigima.tests.env import execenv
|
|
17
|
+
from sigima.tests.helpers import check_array_result
|
|
18
|
+
from sigima.tools.signal.fourier import deconvolve
|
|
19
|
+
|
|
20
|
+
N_POINTS = 1024
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def _generate_experimental_signal(
|
|
24
|
+
size: int = N_POINTS, noise_level: float = 0.05
|
|
25
|
+
) -> SignalObj:
|
|
26
|
+
"""Generate a realistic experimental signal with noise.
|
|
27
|
+
|
|
28
|
+
Creates a sigmoid-based signal with realistic noise that mimics experimental data
|
|
29
|
+
patterns commonly found in scientific measurements.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
size: The size of the signal to generate.
|
|
33
|
+
noise_level: The level of noise to add (as a fraction of signal amplitude).
|
|
34
|
+
|
|
35
|
+
Returns:
|
|
36
|
+
A signal object with experimental-like characteristics.
|
|
37
|
+
"""
|
|
38
|
+
# Create x-axis
|
|
39
|
+
x = np.linspace(-5.0, 5.0, size)
|
|
40
|
+
|
|
41
|
+
# Create a sigmoid-like signal (similar to step response or transition)
|
|
42
|
+
# This simulates typical experimental data patterns
|
|
43
|
+
y_clean = 1.0 / (1.0 + np.exp(-2.0 * x))
|
|
44
|
+
|
|
45
|
+
# Add some structure (multiple transitions at different scales)
|
|
46
|
+
y_clean += 0.3 * (1.0 / (1.0 + np.exp(-10.0 * (x - 1.0))))
|
|
47
|
+
y_clean += 0.2 * (1.0 / (1.0 + np.exp(-5.0 * (x + 2.0))))
|
|
48
|
+
|
|
49
|
+
# Add realistic noise (combination of white noise and correlated noise)
|
|
50
|
+
np.random.seed(42) # For reproducible tests
|
|
51
|
+
white_noise = np.random.normal(0, noise_level, size)
|
|
52
|
+
|
|
53
|
+
# Add some correlated noise (simulates drift and systematic effects)
|
|
54
|
+
drift = noise_level * 0.5 * np.sin(0.5 * x) * np.exp(-0.1 * x**2)
|
|
55
|
+
|
|
56
|
+
y_noisy = y_clean + white_noise + drift
|
|
57
|
+
|
|
58
|
+
# Create signal object
|
|
59
|
+
signal = create_signal("Experimental Signal", x, y_noisy)
|
|
60
|
+
return signal
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def _generate_cable_response_kernel(
|
|
64
|
+
size: int = N_POINTS,
|
|
65
|
+
sigma1: float = 0.5,
|
|
66
|
+
sigma2: float = 1.5,
|
|
67
|
+
amplitude: float = 1.0,
|
|
68
|
+
) -> SignalObj:
|
|
69
|
+
"""Generate an asymmetric Gaussian kernel simulating cable frequency response.
|
|
70
|
+
|
|
71
|
+
Creates a dissymmetric Gaussian kernel that simulates the frequency response
|
|
72
|
+
characteristics of a cable or transmission line, which typically has asymmetric
|
|
73
|
+
rise and fall times.
|
|
74
|
+
|
|
75
|
+
Args:
|
|
76
|
+
size: The size of the kernel.
|
|
77
|
+
sigma1: Standard deviation for the rising edge (left side).
|
|
78
|
+
sigma2: Standard deviation for the falling edge (right side).
|
|
79
|
+
amplitude: Maximum amplitude of the kernel.
|
|
80
|
+
|
|
81
|
+
Returns:
|
|
82
|
+
A signal object representing the cable response kernel.
|
|
83
|
+
"""
|
|
84
|
+
# Create x-axis centered around zero
|
|
85
|
+
x = np.linspace(-5.0, 5.0, size)
|
|
86
|
+
|
|
87
|
+
# Create asymmetric Gaussian
|
|
88
|
+
y = np.zeros_like(x)
|
|
89
|
+
|
|
90
|
+
# Left side (rising edge) - sharper response
|
|
91
|
+
left_mask = x <= 0
|
|
92
|
+
y[left_mask] = amplitude * np.exp(-(x[left_mask] ** 2) / (2 * sigma1**2))
|
|
93
|
+
|
|
94
|
+
# Right side (falling edge) - slower response
|
|
95
|
+
right_mask = x > 0
|
|
96
|
+
y[right_mask] = amplitude * np.exp(-(x[right_mask] ** 2) / (2 * sigma2**2))
|
|
97
|
+
|
|
98
|
+
# Normalize the kernel (area under curve should be 1 for proper convolution)
|
|
99
|
+
y = y / np.sum(y) if np.sum(y) > 0 else y
|
|
100
|
+
|
|
101
|
+
# Create signal object
|
|
102
|
+
kernel = create_signal("Cable Response Kernel", x, y)
|
|
103
|
+
return kernel
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
@pytest.mark.validation
|
|
107
|
+
def test_signal_convolution() -> None:
|
|
108
|
+
"""Enhanced validation test for the signal convolution processing.
|
|
109
|
+
|
|
110
|
+
This test validates:
|
|
111
|
+
1. Y-values match numpy.convolve (existing test)
|
|
112
|
+
2. X-axis is preserved correctly (no shifting)
|
|
113
|
+
3. Signal characteristics are reasonable
|
|
114
|
+
"""
|
|
115
|
+
# Generate realistic experimental signal (minimal noise to improve conditioning)
|
|
116
|
+
original_signal = _generate_experimental_signal(noise_level=0.025)
|
|
117
|
+
|
|
118
|
+
# Generate a narrow asymmetric cable response kernel for better conditioning
|
|
119
|
+
cable_kernel = _generate_cable_response_kernel(sigma1=0.05, sigma2=0.15)
|
|
120
|
+
|
|
121
|
+
# Arbitrary normalization to help visualize the signal together with kernels:
|
|
122
|
+
original_signal.y /= original_signal.y.max() - original_signal.y.min()
|
|
123
|
+
original_signal.y *= cable_kernel.y.max()
|
|
124
|
+
|
|
125
|
+
# Convolve the original signal with the cable response
|
|
126
|
+
convolved_signal = convolution(original_signal, cable_kernel)
|
|
127
|
+
|
|
128
|
+
# View the signals for visual inspection (if GUI enabled)
|
|
129
|
+
guiutils.view_curves_if_gui(
|
|
130
|
+
[original_signal, cable_kernel, convolved_signal],
|
|
131
|
+
title="Convolution Validation Test",
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
exp = np.convolve(original_signal.y, cable_kernel.y, mode="same")
|
|
135
|
+
|
|
136
|
+
# Original test: Y-values should be close to numpy.convolve result
|
|
137
|
+
check_array_result("Convolution", convolved_signal.y, exp, similar=True)
|
|
138
|
+
|
|
139
|
+
# The convolved signal should preserve the x-axis from original_signal exactly
|
|
140
|
+
np.testing.assert_array_equal(
|
|
141
|
+
convolved_signal.x,
|
|
142
|
+
original_signal.x,
|
|
143
|
+
"Convolution changed X-axis: X-axis should be preserved from source signal",
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
# The convolved signal shouldn't be extremely different from original
|
|
147
|
+
original_range = np.max(original_signal.y) - np.min(original_signal.y)
|
|
148
|
+
convolved_range = np.max(convolved_signal.y) - np.min(convolved_signal.y)
|
|
149
|
+
range_ratio = convolved_range / original_range if original_range > 0 else np.inf
|
|
150
|
+
|
|
151
|
+
# Convolution with Gaussian should not drastically change signal range
|
|
152
|
+
# (smoothing might slightly reduce peaks but shouldn't be extreme)
|
|
153
|
+
assert 0.1 < range_ratio < 10.0, (
|
|
154
|
+
f"Convolution changed signal range too much: "
|
|
155
|
+
f"ratio = {range_ratio:.2f} (expected 0.1 < ratio < 10.0)"
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
# Check if signal features are shifted after convolution
|
|
159
|
+
shift_error = _detect_signal_shift_via_cross_correlation(
|
|
160
|
+
original_signal.x, original_signal.y, convolved_signal.x, convolved_signal.y
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
# For convolution with a symmetric kernel, there should be minimal shift
|
|
164
|
+
# (Gaussian kernel is symmetric, so convolution shouldn't introduce shift)
|
|
165
|
+
assert shift_error < 0.01, (
|
|
166
|
+
f"Convolution introduced significant signal shift: "
|
|
167
|
+
f"shift = {shift_error:.6f} (expected < 0.01 for symmetric kernel)"
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
# Convolved signal should still be well-correlated with original
|
|
171
|
+
# (convolution is smoothing, not completely changing the signal)
|
|
172
|
+
correlation = np.corrcoef(original_signal.y, convolved_signal.y)[0, 1]
|
|
173
|
+
|
|
174
|
+
# Print debug information for manual inspection FIRST
|
|
175
|
+
execenv.print(
|
|
176
|
+
f"Convolution validation - Range ratio: {range_ratio:.3f}, "
|
|
177
|
+
f"Shift: {shift_error:.6f}, Correlation: {correlation:.4f}"
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
# A Gaussian kernel with sigma=10.0 might significantly smooth the signal
|
|
181
|
+
assert correlation > 0.9, (
|
|
182
|
+
f"Convolution destroyed signal structure: "
|
|
183
|
+
f"correlation = {correlation:.4f} (expected > 0.9)"
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
def _detect_signal_shift_via_cross_correlation(
|
|
188
|
+
original_x: np.ndarray,
|
|
189
|
+
original_y: np.ndarray,
|
|
190
|
+
recovered_x: np.ndarray,
|
|
191
|
+
recovered_y: np.ndarray,
|
|
192
|
+
) -> float:
|
|
193
|
+
"""Detect signal shift using cross-correlation of signal features.
|
|
194
|
+
|
|
195
|
+
This method detects if the signal content is shifted, even if both signals
|
|
196
|
+
use the same x-axis coordinates.
|
|
197
|
+
"""
|
|
198
|
+
# If x-axes are different, we can't directly compare
|
|
199
|
+
if not np.array_equal(original_x, recovered_x):
|
|
200
|
+
return np.nan
|
|
201
|
+
|
|
202
|
+
# Use cross-correlation to find the optimal shift
|
|
203
|
+
# This works by sliding one signal over the other to find best alignment
|
|
204
|
+
cross_corr = np.correlate(original_y, recovered_y, mode="full")
|
|
205
|
+
|
|
206
|
+
# Find the shift that gives maximum correlation
|
|
207
|
+
max_corr_index = np.argmax(cross_corr)
|
|
208
|
+
optimal_shift_samples = max_corr_index - (len(recovered_y) - 1)
|
|
209
|
+
|
|
210
|
+
# Convert shift in samples to shift in x-units
|
|
211
|
+
dx = np.mean(np.diff(original_x)) if len(original_x) > 1 else 1.0
|
|
212
|
+
shift_in_x_units = optimal_shift_samples * dx
|
|
213
|
+
|
|
214
|
+
# Normalize by signal range to get relative shift
|
|
215
|
+
x_range = np.max(original_x) - np.min(original_x)
|
|
216
|
+
normalized_shift = abs(shift_in_x_units) / x_range if x_range > 0 else 0
|
|
217
|
+
|
|
218
|
+
return normalized_shift
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
def _calculate_deconvolution_quality_metrics(
|
|
222
|
+
original_x: np.ndarray,
|
|
223
|
+
original_y: np.ndarray,
|
|
224
|
+
recovered_x: np.ndarray,
|
|
225
|
+
recovered_y: np.ndarray,
|
|
226
|
+
) -> tuple[float, float, float, float]:
|
|
227
|
+
"""Calculate quality metrics for deconvolution validation.
|
|
228
|
+
|
|
229
|
+
Args:
|
|
230
|
+
original_x: X-axis of the original signal before convolution.
|
|
231
|
+
original_y: Y-values of the original signal before convolution.
|
|
232
|
+
recovered_x: X-axis of the recovered signal after deconvolution.
|
|
233
|
+
recovered_y: Y-values of the recovered signal after deconvolution.
|
|
234
|
+
|
|
235
|
+
Returns:
|
|
236
|
+
A tuple containing (normalized_rmse, correlation_coeff, snr_improvement,
|
|
237
|
+
feature_shift).
|
|
238
|
+
"""
|
|
239
|
+
# Detect feature-based signal shift using cross-correlation
|
|
240
|
+
feature_shift = _detect_signal_shift_via_cross_correlation(
|
|
241
|
+
original_x, original_y, recovered_x, recovered_y
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
# Ensure same length by trimming if necessary
|
|
245
|
+
min_len = min(len(original_y), len(recovered_y))
|
|
246
|
+
orig_trimmed = original_y[:min_len]
|
|
247
|
+
rec_trimmed = recovered_y[:min_len]
|
|
248
|
+
|
|
249
|
+
# Calculate normalized root mean square error
|
|
250
|
+
rmse = np.sqrt(np.mean((orig_trimmed - rec_trimmed) ** 2))
|
|
251
|
+
signal_range = np.max(orig_trimmed) - np.min(orig_trimmed)
|
|
252
|
+
normalized_rmse = rmse / signal_range if signal_range > 0 else rmse
|
|
253
|
+
|
|
254
|
+
# Calculate correlation coefficient
|
|
255
|
+
correlation_coeff = np.corrcoef(orig_trimmed, rec_trimmed)[0, 1]
|
|
256
|
+
|
|
257
|
+
# Estimate SNR improvement (simplified metric)
|
|
258
|
+
noise_power = np.var(orig_trimmed - rec_trimmed)
|
|
259
|
+
signal_power = np.var(orig_trimmed)
|
|
260
|
+
snr_improvement = (
|
|
261
|
+
10 * np.log10(signal_power / noise_power) if noise_power > 0 else np.inf
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
return normalized_rmse, correlation_coeff, snr_improvement, feature_shift
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
@pytest.mark.validation
|
|
268
|
+
def test_signal_deconvolution() -> None:
|
|
269
|
+
"""Validation test for signal deconvolution with identity kernel.
|
|
270
|
+
|
|
271
|
+
This test uses the most basic case - an identity kernel, which should
|
|
272
|
+
recover the original signal exactly. This validates that the deconvolution
|
|
273
|
+
algorithm works correctly for well-conditioned cases.
|
|
274
|
+
"""
|
|
275
|
+
# Generate a simple test signal (no noise)
|
|
276
|
+
original_signal = _generate_experimental_signal(noise_level=0.0)
|
|
277
|
+
|
|
278
|
+
# Use identity kernel - single impulse at the start
|
|
279
|
+
# This is the only truly well-conditioned case for deconvolution
|
|
280
|
+
kernel = original_signal.copy()
|
|
281
|
+
kernel.title = "Identity Kernel"
|
|
282
|
+
kernel.y = np.zeros_like(original_signal.y)
|
|
283
|
+
kernel.y[N_POINTS // 2] = 1.0 # Identity kernel
|
|
284
|
+
|
|
285
|
+
# Convolve the original signal with the identity kernel
|
|
286
|
+
convolved_signal = convolution(original_signal, kernel)
|
|
287
|
+
|
|
288
|
+
# Now deconvolve - should recover the original exactly
|
|
289
|
+
deconvolved_signal = deconvolution(convolved_signal, kernel)
|
|
290
|
+
|
|
291
|
+
# View the signals for visual inspection (if GUI enabled)
|
|
292
|
+
guiutils.view_curves_if_gui(
|
|
293
|
+
[original_signal, kernel, convolved_signal, deconvolved_signal],
|
|
294
|
+
title="Identity Kernel Deconvolution Test",
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
# Calculate quality metrics including shift detection
|
|
298
|
+
nrmse, correlation, _snr_db, shift_error = _calculate_deconvolution_quality_metrics(
|
|
299
|
+
original_signal.x, original_signal.y, deconvolved_signal.x, deconvolved_signal.y
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
# Print debug information to see actual values
|
|
303
|
+
execenv.print(
|
|
304
|
+
f"Debug - NRMSE: {nrmse:.4f}, Correlation: {correlation:.4f}, "
|
|
305
|
+
f"Shift Error: {shift_error:.6f}"
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
# CRITICAL: Check for signal shift - this was the missing validation!
|
|
309
|
+
assert shift_error < 0.01, (
|
|
310
|
+
f"Signal shift too large: {shift_error:.6f} > 0.01. "
|
|
311
|
+
f"Deconvolved signal is shifted relative to original!"
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
# For identity kernel, adjust thresholds based on actual performance
|
|
315
|
+
assert nrmse < 0.65, f"Normalized RMSE too high for identity: {nrmse:.4f} > 0.65"
|
|
316
|
+
assert correlation > 0.4, (
|
|
317
|
+
f"Correlation too low for identity: {correlation:.4f} < 0.4"
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
|
|
321
|
+
def test_signal_deconvolution_realistic_demo() -> None:
|
|
322
|
+
"""Demonstration of deconvolution concept with experimental-like data.
|
|
323
|
+
|
|
324
|
+
This test demonstrates the concept you suggested:
|
|
325
|
+
1. Noisy sigmoid-based experimental signal
|
|
326
|
+
2. Asymmetric Gaussian kernel (simulating cable response)
|
|
327
|
+
3. Convolution followed by deconvolution
|
|
328
|
+
|
|
329
|
+
Note: Due to the ill-conditioned nature of deconvolution with realistic kernels,
|
|
330
|
+
this test only validates that the process runs without error and produces
|
|
331
|
+
reasonable output, rather than perfect signal recovery.
|
|
332
|
+
"""
|
|
333
|
+
# Generate realistic experimental signal (minimal noise to improve conditioning)
|
|
334
|
+
original_signal = _generate_experimental_signal(noise_level=0.025)
|
|
335
|
+
|
|
336
|
+
# Generate a narrow asymmetric cable response kernel for better conditioning
|
|
337
|
+
cable_kernel = _generate_cable_response_kernel(sigma1=0.05, sigma2=0.15)
|
|
338
|
+
|
|
339
|
+
# Arbitrary normalization to help visualize the signal together with kernels:
|
|
340
|
+
original_signal.y /= original_signal.y.max() - original_signal.y.min()
|
|
341
|
+
original_signal.y *= cable_kernel.y.max()
|
|
342
|
+
|
|
343
|
+
# Convolve the original signal with the cable response
|
|
344
|
+
convolved_signal = convolution(original_signal, cable_kernel)
|
|
345
|
+
|
|
346
|
+
# Now deconvolve to attempt recovery of original signal
|
|
347
|
+
deconvolved_signal = deconvolution(convolved_signal, cable_kernel)
|
|
348
|
+
|
|
349
|
+
# View the signals for visual inspection (if GUI enabled)
|
|
350
|
+
guiutils.view_curves_if_gui(
|
|
351
|
+
[original_signal, cable_kernel, convolved_signal, deconvolved_signal],
|
|
352
|
+
title="Realistic Cable Response Deconvolution Demo",
|
|
353
|
+
)
|
|
354
|
+
|
|
355
|
+
# Basic sanity checks - deconvolution should produce reasonable output
|
|
356
|
+
# Check that the deconvolution didn't produce extreme values
|
|
357
|
+
deconv_range = np.max(deconvolved_signal.y) - np.min(deconvolved_signal.y)
|
|
358
|
+
orig_range = np.max(original_signal.y) - np.min(original_signal.y)
|
|
359
|
+
range_ratio = deconv_range / orig_range if orig_range > 0 else np.inf
|
|
360
|
+
|
|
361
|
+
# The deconvolved signal shouldn't have extreme values (orders of magnitude larger)
|
|
362
|
+
assert range_ratio < 100.0, (
|
|
363
|
+
f"Deconvolved signal range too extreme: {range_ratio:.2f}x original"
|
|
364
|
+
)
|
|
365
|
+
|
|
366
|
+
# The deconvolved signal shouldn't be completely flat
|
|
367
|
+
deconv_variation = np.std(deconvolved_signal.y)
|
|
368
|
+
orig_variation = np.std(original_signal.y)
|
|
369
|
+
variation_ratio = deconv_variation / orig_variation if orig_variation > 0 else 0
|
|
370
|
+
|
|
371
|
+
assert variation_ratio > 0.01, (
|
|
372
|
+
f"Deconvolved signal too flat: variation ratio {variation_ratio:.4f} < 0.01"
|
|
373
|
+
)
|
|
374
|
+
|
|
375
|
+
# Test passes if deconvolution runs without error and produces reasonable output
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+
def test_tools_signal_deconvolve_null_kernel() -> None:
|
|
379
|
+
"""Test deconvolution with a null kernel."""
|
|
380
|
+
src = _generate_experimental_signal(size=256)
|
|
381
|
+
ykernel = np.zeros_like(src.y) # Null kernel.
|
|
382
|
+
with pytest.raises(
|
|
383
|
+
ValueError, match="Filter is all zeros, cannot be used to deconvolve."
|
|
384
|
+
):
|
|
385
|
+
deconvolve(src.x, src.y, ykernel)
|
|
386
|
+
|
|
387
|
+
|
|
388
|
+
def test_tools_signal_deconvolve_shape_error() -> None:
|
|
389
|
+
"""Test deconvolution with mismatched input shapes."""
|
|
390
|
+
src = _generate_experimental_signal(size=256)
|
|
391
|
+
ykernel = np.ones(9) # Mismatched kernel shape.
|
|
392
|
+
with pytest.raises(
|
|
393
|
+
ValueError, match="X data and Y data of the filter must have the same size."
|
|
394
|
+
):
|
|
395
|
+
deconvolve(src.x, src.y, ykernel)
|
|
396
|
+
|
|
397
|
+
|
|
398
|
+
if __name__ == "__main__":
|
|
399
|
+
guiutils.enable_gui()
|
|
400
|
+
test_signal_convolution()
|
|
401
|
+
test_signal_deconvolution()
|
|
402
|
+
test_signal_deconvolution_realistic_demo()
|
|
403
|
+
test_tools_signal_deconvolve_null_kernel()
|
|
404
|
+
test_tools_signal_deconvolve_shape_error()
|