sigima 0.0.1.dev0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sigima/__init__.py +142 -2
- sigima/client/__init__.py +105 -0
- sigima/client/base.py +780 -0
- sigima/client/remote.py +469 -0
- sigima/client/stub.py +814 -0
- sigima/client/utils.py +90 -0
- sigima/config.py +444 -0
- sigima/data/logo/Sigima.svg +135 -0
- sigima/data/tests/annotations.json +798 -0
- sigima/data/tests/curve_fitting/exponential_fit.txt +511 -0
- sigima/data/tests/curve_fitting/gaussian_fit.txt +100 -0
- sigima/data/tests/curve_fitting/piecewiseexponential_fit.txt +1022 -0
- sigima/data/tests/curve_fitting/polynomial_fit.txt +100 -0
- sigima/data/tests/curve_fitting/twohalfgaussian_fit.txt +1000 -0
- sigima/data/tests/curve_formats/bandwidth.txt +201 -0
- sigima/data/tests/curve_formats/boxcar.npy +0 -0
- sigima/data/tests/curve_formats/datetime.txt +1001 -0
- sigima/data/tests/curve_formats/dynamic_parameters.txt +4000 -0
- sigima/data/tests/curve_formats/fw1e2.txt +301 -0
- sigima/data/tests/curve_formats/fwhm.txt +319 -0
- sigima/data/tests/curve_formats/multiple_curves.csv +29 -0
- sigima/data/tests/curve_formats/noised_saw.mat +0 -0
- sigima/data/tests/curve_formats/oscilloscope.csv +111 -0
- sigima/data/tests/curve_formats/other/other2/recursive2.txt +5 -0
- sigima/data/tests/curve_formats/other/recursive1.txt +5 -0
- sigima/data/tests/curve_formats/paracetamol.npy +0 -0
- sigima/data/tests/curve_formats/paracetamol.txt +1010 -0
- sigima/data/tests/curve_formats/paracetamol_dx_dy.csv +1000 -0
- sigima/data/tests/curve_formats/paracetamol_dy.csv +1001 -0
- sigima/data/tests/curve_formats/pulse1.npy +0 -0
- sigima/data/tests/curve_formats/pulse2.npy +0 -0
- sigima/data/tests/curve_formats/simple.txt +5 -0
- sigima/data/tests/curve_formats/spectrum.mca +2139 -0
- sigima/data/tests/curve_formats/square2.npy +0 -0
- sigima/data/tests/curve_formats/step.npy +0 -0
- sigima/data/tests/fabry-perot1.jpg +0 -0
- sigima/data/tests/fabry-perot2.jpg +0 -0
- sigima/data/tests/flower.npy +0 -0
- sigima/data/tests/image_formats/NF 180338201.scor-data +11003 -0
- sigima/data/tests/image_formats/binary_image.npy +0 -0
- sigima/data/tests/image_formats/binary_image.png +0 -0
- sigima/data/tests/image_formats/centroid_test.npy +0 -0
- sigima/data/tests/image_formats/coordinated_text/complex_image.txt +10011 -0
- sigima/data/tests/image_formats/coordinated_text/complex_ref_image.txt +10010 -0
- sigima/data/tests/image_formats/coordinated_text/image.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image2.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_no_unit_no_label.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_nan.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_unit.txt +14 -0
- sigima/data/tests/image_formats/fiber.csv +480 -0
- sigima/data/tests/image_formats/fiber.jpg +0 -0
- sigima/data/tests/image_formats/fiber.png +0 -0
- sigima/data/tests/image_formats/fiber.txt +480 -0
- sigima/data/tests/image_formats/gaussian_spot_with_noise.npy +0 -0
- sigima/data/tests/image_formats/mr-brain.dcm +0 -0
- sigima/data/tests/image_formats/noised_gaussian.mat +0 -0
- sigima/data/tests/image_formats/sif_reader/nd_lum_image_no_glue.sif +0 -0
- sigima/data/tests/image_formats/sif_reader/raman1.sif +0 -0
- sigima/data/tests/image_formats/tiling.txt +10 -0
- sigima/data/tests/image_formats/uint16.tiff +0 -0
- sigima/data/tests/image_formats/uint8.tiff +0 -0
- sigima/data/tests/laser_beam/TEM00_z_13.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_18.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_23.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_30.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_35.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_40.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_45.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_50.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_55.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_60.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_65.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_70.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_75.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_80.jpg +0 -0
- sigima/enums.py +195 -0
- sigima/io/__init__.py +123 -0
- sigima/io/base.py +311 -0
- sigima/io/common/__init__.py +5 -0
- sigima/io/common/basename.py +164 -0
- sigima/io/common/converters.py +189 -0
- sigima/io/common/objmeta.py +181 -0
- sigima/io/common/textreader.py +58 -0
- sigima/io/convenience.py +157 -0
- sigima/io/enums.py +17 -0
- sigima/io/ftlab.py +395 -0
- sigima/io/image/__init__.py +9 -0
- sigima/io/image/base.py +177 -0
- sigima/io/image/formats.py +1016 -0
- sigima/io/image/funcs.py +414 -0
- sigima/io/signal/__init__.py +9 -0
- sigima/io/signal/base.py +129 -0
- sigima/io/signal/formats.py +290 -0
- sigima/io/signal/funcs.py +723 -0
- sigima/objects/__init__.py +260 -0
- sigima/objects/base.py +937 -0
- sigima/objects/image/__init__.py +88 -0
- sigima/objects/image/creation.py +556 -0
- sigima/objects/image/object.py +524 -0
- sigima/objects/image/roi.py +904 -0
- sigima/objects/scalar/__init__.py +57 -0
- sigima/objects/scalar/common.py +215 -0
- sigima/objects/scalar/geometry.py +502 -0
- sigima/objects/scalar/table.py +784 -0
- sigima/objects/shape.py +290 -0
- sigima/objects/signal/__init__.py +133 -0
- sigima/objects/signal/constants.py +27 -0
- sigima/objects/signal/creation.py +1428 -0
- sigima/objects/signal/object.py +444 -0
- sigima/objects/signal/roi.py +274 -0
- sigima/params.py +405 -0
- sigima/proc/__init__.py +96 -0
- sigima/proc/base.py +381 -0
- sigima/proc/decorator.py +330 -0
- sigima/proc/image/__init__.py +513 -0
- sigima/proc/image/arithmetic.py +335 -0
- sigima/proc/image/base.py +260 -0
- sigima/proc/image/detection.py +519 -0
- sigima/proc/image/edges.py +329 -0
- sigima/proc/image/exposure.py +406 -0
- sigima/proc/image/extraction.py +458 -0
- sigima/proc/image/filtering.py +219 -0
- sigima/proc/image/fourier.py +147 -0
- sigima/proc/image/geometry.py +661 -0
- sigima/proc/image/mathops.py +340 -0
- sigima/proc/image/measurement.py +195 -0
- sigima/proc/image/morphology.py +155 -0
- sigima/proc/image/noise.py +107 -0
- sigima/proc/image/preprocessing.py +182 -0
- sigima/proc/image/restoration.py +235 -0
- sigima/proc/image/threshold.py +217 -0
- sigima/proc/image/transformations.py +393 -0
- sigima/proc/signal/__init__.py +376 -0
- sigima/proc/signal/analysis.py +206 -0
- sigima/proc/signal/arithmetic.py +551 -0
- sigima/proc/signal/base.py +262 -0
- sigima/proc/signal/extraction.py +60 -0
- sigima/proc/signal/features.py +310 -0
- sigima/proc/signal/filtering.py +484 -0
- sigima/proc/signal/fitting.py +276 -0
- sigima/proc/signal/fourier.py +259 -0
- sigima/proc/signal/mathops.py +420 -0
- sigima/proc/signal/processing.py +580 -0
- sigima/proc/signal/stability.py +175 -0
- sigima/proc/title_formatting.py +227 -0
- sigima/proc/validation.py +272 -0
- sigima/tests/__init__.py +7 -0
- sigima/tests/common/__init__.py +0 -0
- sigima/tests/common/arithmeticparam_unit_test.py +26 -0
- sigima/tests/common/basename_unit_test.py +126 -0
- sigima/tests/common/client_unit_test.py +412 -0
- sigima/tests/common/converters_unit_test.py +77 -0
- sigima/tests/common/decorator_unit_test.py +176 -0
- sigima/tests/common/examples_unit_test.py +104 -0
- sigima/tests/common/kernel_normalization_unit_test.py +242 -0
- sigima/tests/common/roi_basic_unit_test.py +73 -0
- sigima/tests/common/roi_geometry_unit_test.py +171 -0
- sigima/tests/common/scalar_builder_unit_test.py +142 -0
- sigima/tests/common/scalar_unit_test.py +991 -0
- sigima/tests/common/shape_unit_test.py +183 -0
- sigima/tests/common/stat_unit_test.py +138 -0
- sigima/tests/common/title_formatting_unit_test.py +338 -0
- sigima/tests/common/tools_coordinates_unit_test.py +60 -0
- sigima/tests/common/transformations_unit_test.py +178 -0
- sigima/tests/common/validation_unit_test.py +205 -0
- sigima/tests/conftest.py +129 -0
- sigima/tests/data.py +998 -0
- sigima/tests/env.py +280 -0
- sigima/tests/guiutils.py +163 -0
- sigima/tests/helpers.py +532 -0
- sigima/tests/image/__init__.py +28 -0
- sigima/tests/image/binning_unit_test.py +128 -0
- sigima/tests/image/blob_detection_unit_test.py +312 -0
- sigima/tests/image/centroid_unit_test.py +170 -0
- sigima/tests/image/check_2d_array_unit_test.py +63 -0
- sigima/tests/image/contour_unit_test.py +172 -0
- sigima/tests/image/convolution_unit_test.py +178 -0
- sigima/tests/image/datatype_unit_test.py +67 -0
- sigima/tests/image/edges_unit_test.py +155 -0
- sigima/tests/image/enclosingcircle_unit_test.py +88 -0
- sigima/tests/image/exposure_unit_test.py +223 -0
- sigima/tests/image/fft2d_unit_test.py +189 -0
- sigima/tests/image/filtering_unit_test.py +166 -0
- sigima/tests/image/geometry_unit_test.py +654 -0
- sigima/tests/image/hough_circle_unit_test.py +147 -0
- sigima/tests/image/imageobj_unit_test.py +737 -0
- sigima/tests/image/morphology_unit_test.py +71 -0
- sigima/tests/image/noise_unit_test.py +57 -0
- sigima/tests/image/offset_correction_unit_test.py +72 -0
- sigima/tests/image/operation_unit_test.py +518 -0
- sigima/tests/image/peak2d_limits_unit_test.py +41 -0
- sigima/tests/image/peak2d_unit_test.py +133 -0
- sigima/tests/image/profile_unit_test.py +159 -0
- sigima/tests/image/projections_unit_test.py +121 -0
- sigima/tests/image/restoration_unit_test.py +141 -0
- sigima/tests/image/roi2dparam_unit_test.py +53 -0
- sigima/tests/image/roi_advanced_unit_test.py +588 -0
- sigima/tests/image/roi_grid_unit_test.py +279 -0
- sigima/tests/image/spectrum2d_unit_test.py +40 -0
- sigima/tests/image/threshold_unit_test.py +91 -0
- sigima/tests/io/__init__.py +0 -0
- sigima/tests/io/addnewformat_unit_test.py +125 -0
- sigima/tests/io/convenience_funcs_unit_test.py +470 -0
- sigima/tests/io/coordinated_text_format_unit_test.py +495 -0
- sigima/tests/io/datetime_csv_unit_test.py +198 -0
- sigima/tests/io/imageio_formats_test.py +41 -0
- sigima/tests/io/ioregistry_unit_test.py +69 -0
- sigima/tests/io/objmeta_unit_test.py +87 -0
- sigima/tests/io/readobj_unit_test.py +130 -0
- sigima/tests/io/readwriteobj_unit_test.py +67 -0
- sigima/tests/signal/__init__.py +0 -0
- sigima/tests/signal/analysis_unit_test.py +135 -0
- sigima/tests/signal/check_1d_arrays_unit_test.py +169 -0
- sigima/tests/signal/convolution_unit_test.py +404 -0
- sigima/tests/signal/datetime_unit_test.py +176 -0
- sigima/tests/signal/fft1d_unit_test.py +303 -0
- sigima/tests/signal/filters_unit_test.py +403 -0
- sigima/tests/signal/fitting_unit_test.py +929 -0
- sigima/tests/signal/fwhm_unit_test.py +111 -0
- sigima/tests/signal/noise_unit_test.py +128 -0
- sigima/tests/signal/offset_correction_unit_test.py +34 -0
- sigima/tests/signal/operation_unit_test.py +489 -0
- sigima/tests/signal/peakdetection_unit_test.py +145 -0
- sigima/tests/signal/processing_unit_test.py +657 -0
- sigima/tests/signal/pulse/__init__.py +112 -0
- sigima/tests/signal/pulse/crossing_times_unit_test.py +123 -0
- sigima/tests/signal/pulse/plateau_detection_unit_test.py +102 -0
- sigima/tests/signal/pulse/pulse_unit_test.py +1824 -0
- sigima/tests/signal/roi_advanced_unit_test.py +392 -0
- sigima/tests/signal/signalobj_unit_test.py +603 -0
- sigima/tests/signal/stability_unit_test.py +431 -0
- sigima/tests/signal/uncertainty_unit_test.py +611 -0
- sigima/tests/vistools.py +1030 -0
- sigima/tools/__init__.py +59 -0
- sigima/tools/checks.py +290 -0
- sigima/tools/coordinates.py +308 -0
- sigima/tools/datatypes.py +26 -0
- sigima/tools/image/__init__.py +97 -0
- sigima/tools/image/detection.py +451 -0
- sigima/tools/image/exposure.py +77 -0
- sigima/tools/image/extraction.py +48 -0
- sigima/tools/image/fourier.py +260 -0
- sigima/tools/image/geometry.py +190 -0
- sigima/tools/image/preprocessing.py +165 -0
- sigima/tools/signal/__init__.py +86 -0
- sigima/tools/signal/dynamic.py +254 -0
- sigima/tools/signal/features.py +135 -0
- sigima/tools/signal/filtering.py +171 -0
- sigima/tools/signal/fitting.py +1171 -0
- sigima/tools/signal/fourier.py +466 -0
- sigima/tools/signal/interpolation.py +70 -0
- sigima/tools/signal/peakdetection.py +126 -0
- sigima/tools/signal/pulse.py +1626 -0
- sigima/tools/signal/scaling.py +50 -0
- sigima/tools/signal/stability.py +258 -0
- sigima/tools/signal/windowing.py +90 -0
- sigima/worker.py +79 -0
- sigima-1.0.0.dist-info/METADATA +233 -0
- sigima-1.0.0.dist-info/RECORD +262 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/licenses/LICENSE +29 -29
- sigima-0.0.1.dev0.dist-info/METADATA +0 -60
- sigima-0.0.1.dev0.dist-info/RECORD +0 -6
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/WHEEL +0 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1626 @@
|
|
|
1
|
+
# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
.. Pulse analysis (see parent package :mod:`sigima.tools.signal`)
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
# pylint: disable=invalid-name # Allows short reference names like x, y, ...
|
|
8
|
+
|
|
9
|
+
from __future__ import annotations
|
|
10
|
+
|
|
11
|
+
import abc
|
|
12
|
+
import warnings
|
|
13
|
+
from dataclasses import dataclass
|
|
14
|
+
from typing import Literal
|
|
15
|
+
|
|
16
|
+
import numpy as np
|
|
17
|
+
import scipy.ndimage
|
|
18
|
+
import scipy.optimize # type: ignore
|
|
19
|
+
import scipy.special
|
|
20
|
+
|
|
21
|
+
from sigima.enums import SignalShape
|
|
22
|
+
from sigima.tools.checks import check_1d_arrays
|
|
23
|
+
from sigima.tools.signal import features, filtering, peakdetection
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class PulseFitModel(abc.ABC):
|
|
27
|
+
"""Base class for 1D pulse fit models"""
|
|
28
|
+
|
|
29
|
+
@classmethod
|
|
30
|
+
@abc.abstractmethod
|
|
31
|
+
def func(cls, x, amp, sigma, x0, y0):
|
|
32
|
+
"""Return fitting function"""
|
|
33
|
+
|
|
34
|
+
# pylint: disable=unused-argument
|
|
35
|
+
@classmethod
|
|
36
|
+
def get_amp_from_amplitude(cls, amplitude, sigma):
|
|
37
|
+
"""Return amp from function amplitude and sigma"""
|
|
38
|
+
return amplitude
|
|
39
|
+
|
|
40
|
+
@classmethod
|
|
41
|
+
def amplitude(cls, amp, sigma):
|
|
42
|
+
"""Return function amplitude"""
|
|
43
|
+
return cls.func(0, amp, sigma, 0, 0)
|
|
44
|
+
|
|
45
|
+
@classmethod
|
|
46
|
+
@abc.abstractmethod
|
|
47
|
+
def fwhm(cls, amp, sigma):
|
|
48
|
+
"""Return function FWHM"""
|
|
49
|
+
|
|
50
|
+
@classmethod
|
|
51
|
+
def half_max_segment(cls, amp, sigma, x0, y0):
|
|
52
|
+
"""Return segment coordinates for y=half-maximum intersection"""
|
|
53
|
+
hwhm = 0.5 * cls.fwhm(amp, sigma)
|
|
54
|
+
yhm = 0.5 * cls.amplitude(amp, sigma) + y0
|
|
55
|
+
return x0 - hwhm, yhm, x0 + hwhm, yhm
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class GaussianModel(PulseFitModel):
|
|
59
|
+
"""1-dimensional Gaussian fit model"""
|
|
60
|
+
|
|
61
|
+
@classmethod
|
|
62
|
+
def func(cls, x, amp, sigma, x0, y0):
|
|
63
|
+
"""Return fitting function"""
|
|
64
|
+
return (
|
|
65
|
+
amp / (sigma * np.sqrt(2 * np.pi)) * np.exp(-0.5 * ((x - x0) / sigma) ** 2)
|
|
66
|
+
+ y0
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
@classmethod
|
|
70
|
+
def get_amp_from_amplitude(cls, amplitude, sigma):
|
|
71
|
+
"""Return amp from function amplitude and sigma"""
|
|
72
|
+
return amplitude * (sigma * np.sqrt(2 * np.pi))
|
|
73
|
+
|
|
74
|
+
@classmethod
|
|
75
|
+
def amplitude(cls, amp, sigma):
|
|
76
|
+
"""Return function amplitude"""
|
|
77
|
+
return amp / (sigma * np.sqrt(2 * np.pi))
|
|
78
|
+
|
|
79
|
+
@classmethod
|
|
80
|
+
def fwhm(cls, amp, sigma):
|
|
81
|
+
"""Return function FWHM"""
|
|
82
|
+
return 2 * sigma * np.sqrt(2 * np.log(2))
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
class LorentzianModel(PulseFitModel):
|
|
86
|
+
"""1-dimensional Lorentzian fit model"""
|
|
87
|
+
|
|
88
|
+
@classmethod
|
|
89
|
+
def func(cls, x, amp, sigma, x0, y0):
|
|
90
|
+
"""Return fitting function"""
|
|
91
|
+
return (amp / (sigma * np.pi)) / (1 + ((x - x0) / sigma) ** 2) + y0
|
|
92
|
+
|
|
93
|
+
@classmethod
|
|
94
|
+
def get_amp_from_amplitude(cls, amplitude, sigma):
|
|
95
|
+
"""Return amp from function amplitude and sigma"""
|
|
96
|
+
return amplitude * (sigma * np.pi)
|
|
97
|
+
|
|
98
|
+
@classmethod
|
|
99
|
+
def amplitude(cls, amp, sigma):
|
|
100
|
+
"""Return function amplitude"""
|
|
101
|
+
return amp / (sigma * np.pi)
|
|
102
|
+
|
|
103
|
+
@classmethod
|
|
104
|
+
def fwhm(cls, amp, sigma):
|
|
105
|
+
"""Return function FWHM"""
|
|
106
|
+
return 2 * sigma
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
class VoigtModel(PulseFitModel):
|
|
110
|
+
"""1-dimensional Voigt fit model"""
|
|
111
|
+
|
|
112
|
+
@classmethod
|
|
113
|
+
def func(cls, x, amp, sigma, x0, y0):
|
|
114
|
+
"""Return fitting function"""
|
|
115
|
+
# pylint: disable=no-member
|
|
116
|
+
z = (x - x0 + 1j * sigma) / (sigma * np.sqrt(2.0))
|
|
117
|
+
return y0 + amp * scipy.special.wofz(z).real / (sigma * np.sqrt(2 * np.pi))
|
|
118
|
+
|
|
119
|
+
@classmethod
|
|
120
|
+
def fwhm(cls, amp, sigma):
|
|
121
|
+
"""Return function FWHM"""
|
|
122
|
+
wg = GaussianModel.fwhm(amp, sigma)
|
|
123
|
+
wl = LorentzianModel.fwhm(amp, sigma)
|
|
124
|
+
return 0.5346 * wl + np.sqrt(0.2166 * wl**2 + wg**2)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
# MARK: Pulse analysis -----------------------------------------------------------------
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
class PulseAnalysisError(Exception):
|
|
131
|
+
"""Base exception for pulse analysis errors."""
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
class InvalidSignalError(PulseAnalysisError):
|
|
135
|
+
"""Raised when signal data is invalid or insufficient."""
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
class PolarityDetectionError(PulseAnalysisError):
|
|
139
|
+
"""Raised when polarity cannot be determined."""
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def heuristically_recognize_shape(
|
|
143
|
+
x: np.ndarray,
|
|
144
|
+
y: np.ndarray,
|
|
145
|
+
start_range: tuple[float, float] | None = None,
|
|
146
|
+
end_range: tuple[float, float] | None = None,
|
|
147
|
+
step_threshold_ratio: float = 0.5,
|
|
148
|
+
) -> SignalShape:
|
|
149
|
+
"""
|
|
150
|
+
Heuristically determine the shape of the signal: 'step' or 'square'.
|
|
151
|
+
|
|
152
|
+
Args:
|
|
153
|
+
x: 1D array of x values (e.g., time or position).
|
|
154
|
+
y: 1D array of y values corresponding to x.
|
|
155
|
+
start_range: Range for the start baseline.
|
|
156
|
+
end_range: Range for the end baseline.
|
|
157
|
+
step_threshold_ratio: Threshold ratio to distinguish step from square pulse.
|
|
158
|
+
If step amplitude > threshold_ratio * total_amplitude, classify as step.
|
|
159
|
+
|
|
160
|
+
Returns:
|
|
161
|
+
Signal shape, either SignalShape.STEP or SignalShape.SQUARE.
|
|
162
|
+
|
|
163
|
+
Raises:
|
|
164
|
+
InvalidSignalError: If signal data is invalid.
|
|
165
|
+
"""
|
|
166
|
+
if x.size != y.size:
|
|
167
|
+
raise InvalidSignalError("x and y arrays must have the same length")
|
|
168
|
+
if x.size < 3:
|
|
169
|
+
raise InvalidSignalError("Signal must have at least 3 data points")
|
|
170
|
+
|
|
171
|
+
# if ranges are None, use the first and last points
|
|
172
|
+
if start_range is None:
|
|
173
|
+
start_range = (x[0], x[0])
|
|
174
|
+
if end_range is None:
|
|
175
|
+
end_range = (x[-1], x[-1])
|
|
176
|
+
|
|
177
|
+
step_amplitude = get_amplitude(
|
|
178
|
+
x, y, start_range, end_range, signal_shape=SignalShape.STEP
|
|
179
|
+
)
|
|
180
|
+
total_amplitude = np.max(y) - np.min(y)
|
|
181
|
+
|
|
182
|
+
if total_amplitude == 0:
|
|
183
|
+
raise InvalidSignalError("Signal has zero amplitude")
|
|
184
|
+
|
|
185
|
+
if np.abs(step_amplitude) > np.abs(step_threshold_ratio * total_amplitude):
|
|
186
|
+
signal_shape = SignalShape.STEP
|
|
187
|
+
else:
|
|
188
|
+
signal_shape = SignalShape.SQUARE
|
|
189
|
+
|
|
190
|
+
return signal_shape
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
def _detect_square_polarity(
|
|
194
|
+
x: np.ndarray,
|
|
195
|
+
y: np.ndarray,
|
|
196
|
+
start_range: tuple[float, float] | None = None,
|
|
197
|
+
end_range: tuple[float, float] | None = None,
|
|
198
|
+
plateau_range: tuple[float, float] | None = None,
|
|
199
|
+
y_start: float | None = None,
|
|
200
|
+
y_end: float | None = None,
|
|
201
|
+
) -> int:
|
|
202
|
+
"""Detect the polarity of a square pulse in a signal based on baseline regions.
|
|
203
|
+
|
|
204
|
+
Args:
|
|
205
|
+
x: The array of x-values (typically time or sample indices).
|
|
206
|
+
y: The array of y-values (signal amplitudes) corresponding to `x`.
|
|
207
|
+
start_range: The x range for the initial baseline (before the pulse).
|
|
208
|
+
end_range: The x range for the final baseline (after the pulse).
|
|
209
|
+
plateau_range: The x range for the plateau region, if applicable.
|
|
210
|
+
If None, uses the reduced y-values.
|
|
211
|
+
y_start: The y value of the baseline at the start of the pulse.
|
|
212
|
+
y_end: The y value of the baseline at the end of the pulse.
|
|
213
|
+
|
|
214
|
+
Returns:
|
|
215
|
+
1 if the pulse is positive, -1 if negative, or 0 if indeterminate.
|
|
216
|
+
"""
|
|
217
|
+
if start_range is None:
|
|
218
|
+
start_range = (x[0], x[0])
|
|
219
|
+
if end_range is None:
|
|
220
|
+
end_range = (x[-1], x[-1])
|
|
221
|
+
|
|
222
|
+
# reduce x and y outside the base level
|
|
223
|
+
y_red = y[np.logical_and(x >= start_range[1], x <= end_range[0])]
|
|
224
|
+
if len(y_red) == 0:
|
|
225
|
+
return 0
|
|
226
|
+
|
|
227
|
+
if plateau_range is None:
|
|
228
|
+
max_y = np.max(y_red)
|
|
229
|
+
min_y = np.min(y_red)
|
|
230
|
+
else:
|
|
231
|
+
max_y = min_y = get_range_mean_y(x, y, plateau_range)
|
|
232
|
+
positive_score = negative_score = 0
|
|
233
|
+
|
|
234
|
+
y_start = get_range_mean_y(x, y, start_range) if y_start is None else y_start
|
|
235
|
+
y_end = get_range_mean_y(x, y, end_range) if y_end is None else y_end
|
|
236
|
+
|
|
237
|
+
if max_y > y_start and max_y > y_end:
|
|
238
|
+
positive_score = (max_y - y_start) ** 2 + (max_y - y_end) ** 2
|
|
239
|
+
if min_y < y_start and min_y < y_end:
|
|
240
|
+
negative_score = (min_y - y_start) ** 2 + (min_y - y_end) ** 2
|
|
241
|
+
return int(np.sign(positive_score - negative_score))
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
def detect_polarity(
|
|
245
|
+
x: np.ndarray,
|
|
246
|
+
y: np.ndarray,
|
|
247
|
+
start_range: tuple[float, float] | None = None,
|
|
248
|
+
end_range: tuple[float, float] | None = None,
|
|
249
|
+
plateau_range: tuple[float, float] | None = None,
|
|
250
|
+
signal_shape: SignalShape | None = None,
|
|
251
|
+
fraction: float = 0.05,
|
|
252
|
+
) -> int:
|
|
253
|
+
"""Get step curve polarity.
|
|
254
|
+
|
|
255
|
+
Args:
|
|
256
|
+
x: Array of x-values (abscisse).
|
|
257
|
+
y: Array of y-values (ordinate).
|
|
258
|
+
start_range: Range for the start baseline.
|
|
259
|
+
end_range: Range for the end baseline.
|
|
260
|
+
plateau_range: Range for the plateau.
|
|
261
|
+
signal_shape: Shape of the signal.
|
|
262
|
+
fraction: Fraction of the x-range to use for baseline and plateau calculations.
|
|
263
|
+
|
|
264
|
+
Returns:
|
|
265
|
+
Polarity of the step (1 for positive, -1 for negative).
|
|
266
|
+
|
|
267
|
+
Raises:
|
|
268
|
+
PolarityDetectionError: If polarity cannot be determined.
|
|
269
|
+
ValueError: If signal shape is unknown.
|
|
270
|
+
"""
|
|
271
|
+
if start_range is None:
|
|
272
|
+
start_range = get_start_range(x, fraction)
|
|
273
|
+
if end_range is None:
|
|
274
|
+
end_range = get_end_range(x, fraction)
|
|
275
|
+
|
|
276
|
+
if signal_shape is None:
|
|
277
|
+
signal_shape = heuristically_recognize_shape(x, y, start_range, end_range)
|
|
278
|
+
|
|
279
|
+
y_start = get_range_mean_y(x, y, start_range)
|
|
280
|
+
y_end = get_range_mean_y(x, y, end_range)
|
|
281
|
+
|
|
282
|
+
if signal_shape == SignalShape.STEP:
|
|
283
|
+
if y_start < y_end:
|
|
284
|
+
return 1
|
|
285
|
+
if y_start > y_end:
|
|
286
|
+
return -1
|
|
287
|
+
|
|
288
|
+
raise PolarityDetectionError(
|
|
289
|
+
"Polarity could not be determined. Check signal data and baseline ranges."
|
|
290
|
+
)
|
|
291
|
+
if signal_shape == SignalShape.SQUARE:
|
|
292
|
+
# Try square polarity detection first
|
|
293
|
+
try:
|
|
294
|
+
return _detect_square_polarity(
|
|
295
|
+
x,
|
|
296
|
+
y,
|
|
297
|
+
start_range,
|
|
298
|
+
end_range,
|
|
299
|
+
plateau_range,
|
|
300
|
+
y_start,
|
|
301
|
+
y_end,
|
|
302
|
+
)
|
|
303
|
+
except (PolarityDetectionError, IndexError, ValueError) as exc:
|
|
304
|
+
# If square detection fails, try Gaussian-like approach
|
|
305
|
+
# This handles Gaussian signals that are misclassified as SQUARE
|
|
306
|
+
baseline_mean = (y_start + y_end) / 2
|
|
307
|
+
max_y = np.max(y)
|
|
308
|
+
min_y = np.min(y)
|
|
309
|
+
peak_value = (
|
|
310
|
+
max_y if max_y - baseline_mean > baseline_mean - min_y else min_y
|
|
311
|
+
)
|
|
312
|
+
|
|
313
|
+
if peak_value > baseline_mean:
|
|
314
|
+
return 1
|
|
315
|
+
if peak_value < baseline_mean:
|
|
316
|
+
return -1
|
|
317
|
+
raise PolarityDetectionError(
|
|
318
|
+
"Polarity could not be determined. Check signal data and "
|
|
319
|
+
"baseline ranges."
|
|
320
|
+
) from exc
|
|
321
|
+
|
|
322
|
+
raise ValueError(
|
|
323
|
+
f"\nUnknown signal shape '{signal_shape}'. Use 'step' or 'square'."
|
|
324
|
+
)
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
def get_start_range(x: np.ndarray, fraction: float = 0.05) -> tuple[float, float]:
|
|
328
|
+
"""Get start range based on fraction of x-range.
|
|
329
|
+
|
|
330
|
+
Args:
|
|
331
|
+
x: 1D array of x values.
|
|
332
|
+
fraction: Fraction of the x-range to use for the start range.
|
|
333
|
+
|
|
334
|
+
Returns:
|
|
335
|
+
Tuple representing the start range (min, max).
|
|
336
|
+
"""
|
|
337
|
+
x_fraction = fraction * (x[-1] - x[0])
|
|
338
|
+
return (x[0], x[0] + x_fraction)
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
def get_end_range(x: np.ndarray, fraction: float = 0.05) -> tuple[float, float]:
|
|
342
|
+
"""Get end range based on fraction of x-range.
|
|
343
|
+
|
|
344
|
+
Args:
|
|
345
|
+
x: 1D array of x values.
|
|
346
|
+
fraction: Fraction of the x-range to use for the end range.
|
|
347
|
+
|
|
348
|
+
Returns:
|
|
349
|
+
Tuple representing the end range (min, max).
|
|
350
|
+
"""
|
|
351
|
+
x_fraction = fraction * (x[-1] - x[0])
|
|
352
|
+
return (x[-1] - x_fraction, x[-1])
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+
def get_plateau_range(
|
|
356
|
+
x: np.ndarray,
|
|
357
|
+
y: np.ndarray,
|
|
358
|
+
polarity: int,
|
|
359
|
+
fraction: float = 0.05,
|
|
360
|
+
start_range: tuple[float, float] | None = None,
|
|
361
|
+
end_range: tuple[float, float] | None = None,
|
|
362
|
+
) -> tuple[float, float]:
|
|
363
|
+
"""Get plateau range around the max y-value based on fraction of x-range.
|
|
364
|
+
|
|
365
|
+
The plateau is identified as the longest continuous region with values >= 90% of
|
|
366
|
+
the maximum, constrained to be after the start baseline and before the end baseline.
|
|
367
|
+
This ensures the plateau is detected in the correct temporal region of the signal,
|
|
368
|
+
avoiding isolated spikes.
|
|
369
|
+
|
|
370
|
+
Args:
|
|
371
|
+
x: 1D array of x values.
|
|
372
|
+
y: 1D array of y values.
|
|
373
|
+
polarity: Polarity of the signal (1 for positive, -1 for negative).
|
|
374
|
+
fraction: Fraction of the x-range to use for the plateau range.
|
|
375
|
+
start_range: Start baseline range (optional, for constraining search).
|
|
376
|
+
end_range: End baseline range (optional, for constraining search).
|
|
377
|
+
|
|
378
|
+
Returns:
|
|
379
|
+
Tuple representing the plateau range (min, max).
|
|
380
|
+
"""
|
|
381
|
+
# Get baseline ranges if not provided
|
|
382
|
+
if start_range is None:
|
|
383
|
+
start_range = get_start_range(x, fraction)
|
|
384
|
+
if end_range is None:
|
|
385
|
+
end_range = get_end_range(x, fraction)
|
|
386
|
+
|
|
387
|
+
# Constrain search to region between end of start baseline and start of end baseline
|
|
388
|
+
# This avoids the circular dependency with find_crossing_at_ratio
|
|
389
|
+
mask = (x > start_range[1]) & (x < end_range[0])
|
|
390
|
+
|
|
391
|
+
# Apply polarity correction
|
|
392
|
+
y_polarity_corrected = y if polarity == 1 else np.max(y) - y
|
|
393
|
+
|
|
394
|
+
# Find points >= 90% of maximum within the constrained region
|
|
395
|
+
# (lower threshold for plateau)
|
|
396
|
+
y_masked = y_polarity_corrected[mask]
|
|
397
|
+
if len(y_masked) == 0:
|
|
398
|
+
# Fallback: use full signal if constrained region is empty
|
|
399
|
+
y_masked = y_polarity_corrected
|
|
400
|
+
mask = np.ones_like(x, dtype=bool)
|
|
401
|
+
|
|
402
|
+
# Use 90% threshold to capture the full plateau, not just the peak
|
|
403
|
+
threshold = 0.9 * np.max(y_masked)
|
|
404
|
+
above_threshold = y_masked >= threshold
|
|
405
|
+
|
|
406
|
+
# Find the longest continuous region above threshold
|
|
407
|
+
# This identifies the plateau, not isolated spikes
|
|
408
|
+
changes = np.diff(np.concatenate(([False], above_threshold, [False])).astype(int))
|
|
409
|
+
start_indices = np.where(changes == 1)[0]
|
|
410
|
+
end_indices = np.where(changes == -1)[0]
|
|
411
|
+
|
|
412
|
+
if len(start_indices) == 0:
|
|
413
|
+
# Fallback: if no regions found, use the maximum point
|
|
414
|
+
max_idx = np.argmax(y_masked)
|
|
415
|
+
x_fraction = fraction * (x[-1] - x[0])
|
|
416
|
+
x_masked = x[mask]
|
|
417
|
+
x_center = x_masked[max_idx]
|
|
418
|
+
return (x_center - 0.5 * x_fraction, x_center + 0.5 * x_fraction)
|
|
419
|
+
|
|
420
|
+
# Find the longest continuous region
|
|
421
|
+
region_lengths = end_indices - start_indices
|
|
422
|
+
longest_region_idx = np.argmax(region_lengths)
|
|
423
|
+
plateau_start_idx = start_indices[longest_region_idx]
|
|
424
|
+
plateau_end_idx = end_indices[longest_region_idx] - 1 # -1 because end is exclusive
|
|
425
|
+
|
|
426
|
+
x_masked = x[mask]
|
|
427
|
+
return (x_masked[plateau_start_idx], x_masked[plateau_end_idx])
|
|
428
|
+
|
|
429
|
+
|
|
430
|
+
def get_range_mean_y(
|
|
431
|
+
x: np.ndarray,
|
|
432
|
+
y: np.ndarray,
|
|
433
|
+
value_range: tuple[float, float],
|
|
434
|
+
) -> float:
|
|
435
|
+
"""Get mean y-value in a given x-range.
|
|
436
|
+
|
|
437
|
+
Args:
|
|
438
|
+
x: 1D array of x values.
|
|
439
|
+
y: 1D array of y values.
|
|
440
|
+
value_range: Tuple representing the x-range (min, max).
|
|
441
|
+
|
|
442
|
+
Returns:
|
|
443
|
+
Mean y-value in the specified x-range, or NaN if no points in range.
|
|
444
|
+
"""
|
|
445
|
+
y_range = y[np.logical_and(x >= value_range[0], x <= value_range[1])]
|
|
446
|
+
if len(y_range) == 0:
|
|
447
|
+
return np.nan
|
|
448
|
+
return float(np.mean(y_range))
|
|
449
|
+
|
|
450
|
+
|
|
451
|
+
@check_1d_arrays(x_sorted=True)
|
|
452
|
+
def get_amplitude(
|
|
453
|
+
x: np.ndarray,
|
|
454
|
+
y: np.ndarray,
|
|
455
|
+
start_range: tuple[float, float] | None = None,
|
|
456
|
+
end_range: tuple[float, float] | None = None,
|
|
457
|
+
plateau_range: tuple[float, float] | None = None,
|
|
458
|
+
signal_shape: SignalShape | str | None = None,
|
|
459
|
+
fraction: float = 0.05,
|
|
460
|
+
) -> float:
|
|
461
|
+
"""Get curve amplitude.
|
|
462
|
+
|
|
463
|
+
Args:
|
|
464
|
+
x: 1D array of x values.
|
|
465
|
+
y: 1D array of y values.
|
|
466
|
+
start_range: Range for the start baseline.
|
|
467
|
+
end_range: Range for the end baseline.
|
|
468
|
+
plateau_range: Range for the plateau.
|
|
469
|
+
signal_shape: Shape of the signal.
|
|
470
|
+
fraction: Fraction of the x-range to use for baseline and plateau calculations
|
|
471
|
+
if start, end, or plateau are None.
|
|
472
|
+
|
|
473
|
+
Returns:
|
|
474
|
+
Amplitude of the step.
|
|
475
|
+
"""
|
|
476
|
+
if signal_shape is None:
|
|
477
|
+
signal_shape = heuristically_recognize_shape(x, y, start_range, end_range)
|
|
478
|
+
|
|
479
|
+
if start_range is None:
|
|
480
|
+
start_range = get_start_range(x, fraction)
|
|
481
|
+
if end_range is None:
|
|
482
|
+
end_range = get_end_range(x, fraction)
|
|
483
|
+
|
|
484
|
+
if signal_shape == SignalShape.STEP:
|
|
485
|
+
min_level = get_range_mean_y(x, y, start_range)
|
|
486
|
+
max_level = get_range_mean_y(x, y, end_range)
|
|
487
|
+
elif signal_shape == SignalShape.SQUARE:
|
|
488
|
+
try:
|
|
489
|
+
polarity = detect_polarity(
|
|
490
|
+
x, y, start_range, end_range, signal_shape=signal_shape
|
|
491
|
+
)
|
|
492
|
+
except PolarityDetectionError:
|
|
493
|
+
# If polarity cannot be determined, use total amplitude
|
|
494
|
+
return np.max(y) - np.min(y)
|
|
495
|
+
|
|
496
|
+
if plateau_range is None:
|
|
497
|
+
plateau_range = get_plateau_range(
|
|
498
|
+
x, y, polarity, fraction, start_range, end_range
|
|
499
|
+
)
|
|
500
|
+
|
|
501
|
+
# reverse y if polarity is negative
|
|
502
|
+
y_positive = y * polarity
|
|
503
|
+
# compute base level
|
|
504
|
+
min_level = get_range_mean_y(x, y_positive, start_range)
|
|
505
|
+
max_level = get_range_mean_y(x, y_positive, plateau_range)
|
|
506
|
+
else:
|
|
507
|
+
raise ValueError("Unknown signal type. Use 'step' or 'square'.")
|
|
508
|
+
|
|
509
|
+
return np.abs(min_level - max_level)
|
|
510
|
+
|
|
511
|
+
|
|
512
|
+
@check_1d_arrays(x_sorted=True)
|
|
513
|
+
def find_crossing_at_ratio(
|
|
514
|
+
x: np.ndarray,
|
|
515
|
+
y: np.ndarray,
|
|
516
|
+
ratio: float = 0.1,
|
|
517
|
+
start_range: tuple[float, float] | None = None,
|
|
518
|
+
end_range: tuple[float, float] | None = None,
|
|
519
|
+
signal_shape: SignalShape | str | None = None,
|
|
520
|
+
fraction: float = 0.05,
|
|
521
|
+
warn_multiple_crossings: bool = False,
|
|
522
|
+
) -> float | None:
|
|
523
|
+
"""Find the x-value at which the signal crosses a specified fractional amplitude.
|
|
524
|
+
|
|
525
|
+
Calculates the x-value at which a normalized step signal crosses a specified
|
|
526
|
+
fractional amplitude.
|
|
527
|
+
|
|
528
|
+
This function normalizes the input signal `y` relative to the baseline level defined
|
|
529
|
+
by `start` and the amplitude between `start` and `end`. It accounts for the
|
|
530
|
+
polarity of the step (rising or falling) and then finds the x-position where the
|
|
531
|
+
normalized signal crosses the specified `ratio` fraction of the step height.
|
|
532
|
+
|
|
533
|
+
Args:
|
|
534
|
+
x: 1D array of x values (e.g., time).
|
|
535
|
+
y: 1D array of y values corresponding to `x`.
|
|
536
|
+
ratio: The fractional amplitude (between 0 and 1) at which to find the
|
|
537
|
+
crossing time. For example, 0.5 corresponds to the half-maximum crossing.
|
|
538
|
+
start_range: Tuple defining the start baseline region (initial plateau).
|
|
539
|
+
end_range: Tuple defining the end baseline region (final plateau).
|
|
540
|
+
signal_shape: Shape of the signal. If None, it will be heuristically
|
|
541
|
+
determined.
|
|
542
|
+
fraction: Fraction of the x-range to use for baseline calculations if
|
|
543
|
+
start_range or end_range are None.
|
|
544
|
+
warn_multiple_crossings: If True, a warning is issued when multiple crossings
|
|
545
|
+
are found.
|
|
546
|
+
|
|
547
|
+
Returns:
|
|
548
|
+
The x-value where the normalized signal crosses the specified fractional
|
|
549
|
+
amplitude.
|
|
550
|
+
|
|
551
|
+
Raises:
|
|
552
|
+
ValueError: If `ratio` is not between 0 and 1.
|
|
553
|
+
InvalidSignalError: If the signal is invalid or if polarity cannot be
|
|
554
|
+
determined.
|
|
555
|
+
"""
|
|
556
|
+
# pylint: disable=too-many-return-statements
|
|
557
|
+
if not 0 <= ratio <= 1:
|
|
558
|
+
raise ValueError("ratio must be between 0 and 1")
|
|
559
|
+
if signal_shape is None:
|
|
560
|
+
signal_shape = heuristically_recognize_shape(x, y, start_range, end_range)
|
|
561
|
+
try:
|
|
562
|
+
polarity = detect_polarity(
|
|
563
|
+
x,
|
|
564
|
+
y,
|
|
565
|
+
start_range,
|
|
566
|
+
end_range,
|
|
567
|
+
signal_shape=signal_shape,
|
|
568
|
+
)
|
|
569
|
+
except PolarityDetectionError as exc:
|
|
570
|
+
raise InvalidSignalError(f"Cannot determine crossing time: {exc}") from exc
|
|
571
|
+
amplitude = get_amplitude(
|
|
572
|
+
x, y, start_range, end_range, signal_shape=signal_shape, fraction=fraction
|
|
573
|
+
)
|
|
574
|
+
y_positive = y * polarity
|
|
575
|
+
if start_range is None:
|
|
576
|
+
start_range = get_start_range(x, fraction)
|
|
577
|
+
if end_range is None:
|
|
578
|
+
end_range = get_end_range(x, fraction)
|
|
579
|
+
y_start = get_range_mean_y(x, y_positive, start_range)
|
|
580
|
+
if amplitude == 0.0:
|
|
581
|
+
return None
|
|
582
|
+
y_norm = (y_positive - y_start) / amplitude
|
|
583
|
+
|
|
584
|
+
# Constrain search to the rise/fall edge region (between baselines)
|
|
585
|
+
# This prevents finding spurious crossings in the baseline regions
|
|
586
|
+
mask = (x > start_range[1]) & (x < end_range[0])
|
|
587
|
+
x_search = x[mask]
|
|
588
|
+
y_norm_search = y_norm[mask]
|
|
589
|
+
|
|
590
|
+
if len(x_search) == 0:
|
|
591
|
+
return None
|
|
592
|
+
|
|
593
|
+
# Special handling for low ratios (0% to 10%):
|
|
594
|
+
# For these, we need to avoid finding crossings in the baseline noise.
|
|
595
|
+
# Strategy: Find the 10% crossing first, then search backwards to find
|
|
596
|
+
# the requested crossing point near the actual rise edge.
|
|
597
|
+
if ratio < 0.1:
|
|
598
|
+
try:
|
|
599
|
+
# First find the 10% crossing point as a reference
|
|
600
|
+
roots_10pct = features.find_x_values_at_y(x_search, y_norm_search, 0.1)
|
|
601
|
+
if len(roots_10pct) > 0:
|
|
602
|
+
x_10pct = roots_10pct[0]
|
|
603
|
+
# Now search for the requested ratio only in the region
|
|
604
|
+
# leading up to the 10% crossing
|
|
605
|
+
mask_near_edge = x_search <= x_10pct
|
|
606
|
+
x_near_edge = x_search[mask_near_edge]
|
|
607
|
+
y_norm_near_edge = y_norm_search[mask_near_edge]
|
|
608
|
+
roots = features.find_x_values_at_y(
|
|
609
|
+
x_near_edge, y_norm_near_edge, ratio
|
|
610
|
+
)
|
|
611
|
+
# Return the crossing closest to the 10% point
|
|
612
|
+
if len(roots) > 0:
|
|
613
|
+
return roots[-1] # Last crossing before 10% point
|
|
614
|
+
except ValueError:
|
|
615
|
+
pass
|
|
616
|
+
# Fallback to regular search if 10% crossing not found
|
|
617
|
+
try:
|
|
618
|
+
roots = features.find_x_values_at_y(x_search, y_norm_search, ratio)
|
|
619
|
+
except ValueError:
|
|
620
|
+
return None
|
|
621
|
+
else:
|
|
622
|
+
# For higher ratios, regular search works fine
|
|
623
|
+
try:
|
|
624
|
+
roots = features.find_x_values_at_y(x_search, y_norm_search, ratio)
|
|
625
|
+
except ValueError:
|
|
626
|
+
return None
|
|
627
|
+
|
|
628
|
+
if len(roots) == 0:
|
|
629
|
+
return None
|
|
630
|
+
if len(roots) > 1 and warn_multiple_crossings:
|
|
631
|
+
warnings.warn(
|
|
632
|
+
f"Multiple crossing points found at ratio {ratio}. "
|
|
633
|
+
f"Returning first at x={roots[0]:.6f}"
|
|
634
|
+
)
|
|
635
|
+
return roots[0]
|
|
636
|
+
|
|
637
|
+
|
|
638
|
+
def _find_gaussian_crossing_times(
|
|
639
|
+
x: np.ndarray,
|
|
640
|
+
y: np.ndarray,
|
|
641
|
+
start_ratio: float,
|
|
642
|
+
stop_ratio: float,
|
|
643
|
+
start_range: tuple[float, float],
|
|
644
|
+
end_range: tuple[float, float],
|
|
645
|
+
) -> tuple[float, float] | None:
|
|
646
|
+
"""Find crossing times for Gaussian signals with proper handling of multiple
|
|
647
|
+
crossings.
|
|
648
|
+
|
|
649
|
+
For Gaussian signals, we want:
|
|
650
|
+
- Left side crossing at start_ratio
|
|
651
|
+
- Right side crossing at stop_ratio
|
|
652
|
+
|
|
653
|
+
This gives a meaningful "rise time" across the Gaussian peak.
|
|
654
|
+
|
|
655
|
+
Returns:
|
|
656
|
+
Tuple of (start_time, stop_time) or None if calculation fails.
|
|
657
|
+
"""
|
|
658
|
+
try:
|
|
659
|
+
# Get signal properties
|
|
660
|
+
signal_shape = heuristically_recognize_shape(x, y, start_range, end_range)
|
|
661
|
+
polarity = detect_polarity(
|
|
662
|
+
x, y, start_range, end_range, signal_shape=signal_shape
|
|
663
|
+
)
|
|
664
|
+
amplitude = get_amplitude(
|
|
665
|
+
x, y, start_range, end_range, signal_shape=signal_shape
|
|
666
|
+
)
|
|
667
|
+
|
|
668
|
+
y_positive = y * polarity
|
|
669
|
+
y_start = get_range_mean_y(x, y_positive, start_range)
|
|
670
|
+
|
|
671
|
+
if amplitude == 0.0:
|
|
672
|
+
return None
|
|
673
|
+
|
|
674
|
+
y_norm = (y_positive - y_start) / amplitude
|
|
675
|
+
|
|
676
|
+
# Find all crossing points
|
|
677
|
+
start_roots = features.find_x_values_at_y(x, y_norm, start_ratio)
|
|
678
|
+
stop_roots = features.find_x_values_at_y(x, y_norm, stop_ratio)
|
|
679
|
+
|
|
680
|
+
# For true Gaussian signals, we expect exactly 2 crossings per ratio
|
|
681
|
+
# (left and right sides). However, for truncated signals (e.g., in
|
|
682
|
+
# extract_pulse_features), we might only see 1 crossing (left side only).
|
|
683
|
+
if len(start_roots) == 1 and len(stop_roots) == 1:
|
|
684
|
+
# Truncated Gaussian (left side only) - use these crossings directly
|
|
685
|
+
start_time = start_roots[0]
|
|
686
|
+
stop_time = stop_roots[0]
|
|
687
|
+
return (start_time, stop_time)
|
|
688
|
+
if len(start_roots) != 2 or len(stop_roots) != 2:
|
|
689
|
+
# Not a clean Gaussian-style signal
|
|
690
|
+
return None
|
|
691
|
+
|
|
692
|
+
# Additional check: Gaussian signals should be roughly symmetric
|
|
693
|
+
# Square signals often have asymmetric crossing patterns
|
|
694
|
+
center_x = (x[0] + x[-1]) / 2
|
|
695
|
+
start_center = (start_roots[0] + start_roots[1]) / 2
|
|
696
|
+
stop_center = (stop_roots[0] + stop_roots[1]) / 2
|
|
697
|
+
|
|
698
|
+
# If crossings are very asymmetric or far from signal center,
|
|
699
|
+
# it's likely a square signal, not Gaussian
|
|
700
|
+
max_center_offset = (x[-1] - x[0]) * 0.05 # 5% of signal range (stricter)
|
|
701
|
+
if (
|
|
702
|
+
abs(start_center - center_x) > max_center_offset
|
|
703
|
+
or abs(stop_center - center_x) > max_center_offset
|
|
704
|
+
):
|
|
705
|
+
# Too asymmetric for a Gaussian
|
|
706
|
+
return None
|
|
707
|
+
|
|
708
|
+
# For Gaussian signals, calculate rise/fall time on ONE side only
|
|
709
|
+
# start_roots[0] = left side, start_roots[1] = right side
|
|
710
|
+
# stop_roots[0] = left side, stop_roots[1] = right side
|
|
711
|
+
if stop_ratio > start_ratio:
|
|
712
|
+
# Rise time: use left side only (start_ratio to stop_ratio)
|
|
713
|
+
start_time = start_roots[0] # Left side at start_ratio
|
|
714
|
+
stop_time = stop_roots[0] # Left side at stop_ratio
|
|
715
|
+
else:
|
|
716
|
+
# Fall time: use right side only (start_ratio to stop_ratio)
|
|
717
|
+
start_time = start_roots[1] # Right side at start_ratio
|
|
718
|
+
stop_time = stop_roots[1] # Right side at stop_ratio
|
|
719
|
+
|
|
720
|
+
return (start_time, stop_time)
|
|
721
|
+
|
|
722
|
+
except (ValueError, PolarityDetectionError, InvalidSignalError):
|
|
723
|
+
return None
|
|
724
|
+
|
|
725
|
+
|
|
726
|
+
def _get_rise_time_traditional(
|
|
727
|
+
x: np.ndarray,
|
|
728
|
+
y: np.ndarray,
|
|
729
|
+
start_range: tuple[float, float],
|
|
730
|
+
end_range: tuple[float, float],
|
|
731
|
+
start_ratio: float,
|
|
732
|
+
stop_ratio: float,
|
|
733
|
+
) -> float | None:
|
|
734
|
+
"""Internal function for traditional ratio-based rise time calculation.
|
|
735
|
+
|
|
736
|
+
This avoids recursion by providing the core traditional implementation.
|
|
737
|
+
For Gaussian signals, it uses special multi-crossing logic.
|
|
738
|
+
"""
|
|
739
|
+
# Check if this might be a Gaussian signal by detecting signal shape
|
|
740
|
+
# Only try Gaussian method for signals that have clean symmetric crossings
|
|
741
|
+
try:
|
|
742
|
+
gaussian_result = _find_gaussian_crossing_times(
|
|
743
|
+
x, y, start_ratio, stop_ratio, start_range, end_range
|
|
744
|
+
)
|
|
745
|
+
if gaussian_result is not None:
|
|
746
|
+
start_time, stop_time = gaussian_result
|
|
747
|
+
return abs(stop_time - start_time)
|
|
748
|
+
except (InvalidSignalError, PolarityDetectionError):
|
|
749
|
+
pass # Fall back to traditional method
|
|
750
|
+
|
|
751
|
+
# Traditional method for step/square signals
|
|
752
|
+
# Find crossing times for both ratios
|
|
753
|
+
start_time = find_crossing_at_ratio(x, y, start_ratio, start_range, end_range)
|
|
754
|
+
stop_time = find_crossing_at_ratio(x, y, stop_ratio, start_range, end_range)
|
|
755
|
+
|
|
756
|
+
if start_time is None or stop_time is None:
|
|
757
|
+
return None
|
|
758
|
+
|
|
759
|
+
# Validate that start_time and stop_time are in correct order
|
|
760
|
+
if (stop_ratio > start_ratio and start_time >= stop_time) or (
|
|
761
|
+
stop_ratio < start_ratio and stop_time >= start_time
|
|
762
|
+
):
|
|
763
|
+
return None
|
|
764
|
+
|
|
765
|
+
return abs(stop_time - start_time)
|
|
766
|
+
|
|
767
|
+
|
|
768
|
+
def get_rise_time_estimated(
|
|
769
|
+
x: np.ndarray,
|
|
770
|
+
y: np.ndarray,
|
|
771
|
+
start_range: tuple[float, float] | None = None,
|
|
772
|
+
end_range: tuple[float, float] | None = None,
|
|
773
|
+
start_ratio: float = 0.1,
|
|
774
|
+
stop_ratio: float = 0.9,
|
|
775
|
+
) -> float | None:
|
|
776
|
+
"""Calculates rise time using heuristic foot detection and 50% crossing estimation.
|
|
777
|
+
|
|
778
|
+
This method uses a more robust approach:
|
|
779
|
+
1. Find the true start of the systematic rise (foot end time)
|
|
780
|
+
2. Find the 50% amplitude crossing
|
|
781
|
+
3. Estimate the full rise duration from these two points
|
|
782
|
+
4. Calculate the requested ratio-based rise time from the estimated parameters
|
|
783
|
+
|
|
784
|
+
Args:
|
|
785
|
+
x: 1D array of x values (e.g., time).
|
|
786
|
+
y: 1D array of y values corresponding to `x`.
|
|
787
|
+
start_range: Tuple defining the start plateau region (before the rise).
|
|
788
|
+
end_range: Tuple defining the end plateau region (after the rise).
|
|
789
|
+
start_ratio: Fraction of the step height at which the rise starts.
|
|
790
|
+
stop_ratio: Fraction of the step height at which the rise ends.
|
|
791
|
+
|
|
792
|
+
Returns:
|
|
793
|
+
The estimated rise time between the specified ratios.
|
|
794
|
+
"""
|
|
795
|
+
if start_range is None:
|
|
796
|
+
start_range = get_start_range(x)
|
|
797
|
+
if end_range is None:
|
|
798
|
+
end_range = get_end_range(x)
|
|
799
|
+
|
|
800
|
+
# Step 1: Find the true start of the rise (foot end)
|
|
801
|
+
try:
|
|
802
|
+
foot_end_time = heuristically_find_rise_start_time(x, y, start_range)
|
|
803
|
+
except InvalidSignalError:
|
|
804
|
+
foot_end_time = None
|
|
805
|
+
if foot_end_time is None:
|
|
806
|
+
# Fallback to traditional method if heuristic fails
|
|
807
|
+
return _get_rise_time_traditional(
|
|
808
|
+
x, y, start_range, end_range, start_ratio, stop_ratio
|
|
809
|
+
)
|
|
810
|
+
|
|
811
|
+
# Step 2: Find the 50% crossing point
|
|
812
|
+
t_50_percent = find_crossing_at_ratio(x, y, 0.5, start_range, end_range)
|
|
813
|
+
if t_50_percent is None:
|
|
814
|
+
# Fallback to traditional method if 50% crossing not found
|
|
815
|
+
return _get_rise_time_traditional(
|
|
816
|
+
x, y, start_range, end_range, start_ratio, stop_ratio
|
|
817
|
+
)
|
|
818
|
+
|
|
819
|
+
# Step 3: Estimate the full rise duration
|
|
820
|
+
# If we assume linear rise: t_50% = t_start + 0.5 * total_rise_time
|
|
821
|
+
# Therefore: total_rise_time = 2 * (t_50% - t_start)
|
|
822
|
+
estimated_total_rise_time = 2.0 * (t_50_percent - foot_end_time)
|
|
823
|
+
|
|
824
|
+
# Validate the estimation makes sense
|
|
825
|
+
if estimated_total_rise_time <= 0:
|
|
826
|
+
warnings.warn(
|
|
827
|
+
f"Invalid rise time estimation: foot_end ({foot_end_time:.3f}) >= "
|
|
828
|
+
f"50% crossing ({t_50_percent:.3f}). Using fallback method."
|
|
829
|
+
)
|
|
830
|
+
return _get_rise_time_traditional(
|
|
831
|
+
x, y, start_range, end_range, start_ratio, stop_ratio
|
|
832
|
+
)
|
|
833
|
+
|
|
834
|
+
# Step 4: Calculate ratio-based times from the estimated parameters
|
|
835
|
+
estimated_start_time = foot_end_time + start_ratio * estimated_total_rise_time
|
|
836
|
+
estimated_stop_time = foot_end_time + stop_ratio * estimated_total_rise_time
|
|
837
|
+
|
|
838
|
+
return estimated_stop_time - estimated_start_time
|
|
839
|
+
|
|
840
|
+
|
|
841
|
+
def get_rise_time(
|
|
842
|
+
x: np.ndarray,
|
|
843
|
+
y: np.ndarray,
|
|
844
|
+
start_ratio: float = 0.1,
|
|
845
|
+
stop_ratio: float = 0.9,
|
|
846
|
+
start_range: tuple[float, float] | None = None,
|
|
847
|
+
end_range: tuple[float, float] | None = None,
|
|
848
|
+
) -> float | None:
|
|
849
|
+
"""Calculates the rise time of a step-like signal between two defined plateaus.
|
|
850
|
+
|
|
851
|
+
The rise time is defined as the time it takes for the signal to increase from
|
|
852
|
+
start_ratio to stop_ratio of the total amplitude change.
|
|
853
|
+
|
|
854
|
+
For rise time calculations (stop_ratio > start_ratio), this function
|
|
855
|
+
automatically uses an improved estimation method that combines heuristic foot
|
|
856
|
+
detection with 50% crossing analysis for better accuracy in noisy signals.
|
|
857
|
+
|
|
858
|
+
For fall time calculations (stop_ratio < start_ratio), it uses the
|
|
859
|
+
traditional ratio-based method.
|
|
860
|
+
|
|
861
|
+
Args:
|
|
862
|
+
x: 1D array of x values (e.g., time).
|
|
863
|
+
y: 1D array of y values corresponding to `x`.
|
|
864
|
+
start_ratio: Fraction of the step height at which the rise starts.
|
|
865
|
+
Default is 0.1 (i.e., 10% of the step height).
|
|
866
|
+
stop_ratio: Fraction of the step height at which the rise ends.
|
|
867
|
+
Default is 0.9 (i.e., 90% of the step height).
|
|
868
|
+
start_range: Tuple defining the start plateau region (before the rise).
|
|
869
|
+
end_range: Tuple defining the end plateau region (after the rise).
|
|
870
|
+
|
|
871
|
+
Returns:
|
|
872
|
+
The rise time (difference between the stop and start ratio crossings).
|
|
873
|
+
|
|
874
|
+
Raises:
|
|
875
|
+
ValueError: If ratios are not between 0 and 1.
|
|
876
|
+
"""
|
|
877
|
+
if start_ratio < 0.0 or start_ratio > 1.0:
|
|
878
|
+
raise ValueError("start_ratio must be between 0 and 1")
|
|
879
|
+
if stop_ratio < 0.0 or stop_ratio > 1.0:
|
|
880
|
+
raise ValueError("stop_ratio must be between 0 and 1")
|
|
881
|
+
|
|
882
|
+
if start_range is None:
|
|
883
|
+
start_range = get_start_range(x)
|
|
884
|
+
if end_range is None:
|
|
885
|
+
end_range = get_end_range(x)
|
|
886
|
+
|
|
887
|
+
# For rise time calculations (stop > start), try traditional method first
|
|
888
|
+
# and use enhanced method only when needed for robustness
|
|
889
|
+
if stop_ratio > start_ratio:
|
|
890
|
+
# Check if we have a degenerate range (single point) - use traditional only
|
|
891
|
+
if start_range[0] == start_range[1]:
|
|
892
|
+
return _get_rise_time_traditional(
|
|
893
|
+
x, y, start_range, end_range, start_ratio, stop_ratio
|
|
894
|
+
)
|
|
895
|
+
|
|
896
|
+
# Try traditional method first (better for clean signals)
|
|
897
|
+
traditional_result = _get_rise_time_traditional(
|
|
898
|
+
x, y, start_range, end_range, start_ratio, stop_ratio
|
|
899
|
+
)
|
|
900
|
+
|
|
901
|
+
if traditional_result is not None:
|
|
902
|
+
# Check if this is a Gaussian signal - if so, trust the Gaussian result
|
|
903
|
+
gaussian_result = _find_gaussian_crossing_times(
|
|
904
|
+
x, y, start_ratio, stop_ratio, start_range, end_range
|
|
905
|
+
)
|
|
906
|
+
if gaussian_result is not None:
|
|
907
|
+
# Gaussian detection succeeded - trust this result
|
|
908
|
+
return traditional_result
|
|
909
|
+
|
|
910
|
+
# For non-Gaussian signals, check if enhanced method needed
|
|
911
|
+
# Estimate signal quality by checking foot end detection reliability
|
|
912
|
+
foot_end_time = heuristically_find_rise_start_time(x, y, start_range)
|
|
913
|
+
if foot_end_time is not None:
|
|
914
|
+
# Compare traditional result with enhanced method
|
|
915
|
+
enhanced_result = get_rise_time_estimated(
|
|
916
|
+
x, y, start_range, end_range, start_ratio, stop_ratio
|
|
917
|
+
)
|
|
918
|
+
|
|
919
|
+
if enhanced_result is not None:
|
|
920
|
+
# If results differ significantly, signal might be noisy
|
|
921
|
+
max_result = max(traditional_result, enhanced_result)
|
|
922
|
+
relative_diff = abs(traditional_result - enhanced_result)
|
|
923
|
+
relative_diff /= max_result
|
|
924
|
+
|
|
925
|
+
# Use enhanced method if significant discrepancy (indicating noise)
|
|
926
|
+
if relative_diff > 0.3: # 30% threshold
|
|
927
|
+
return enhanced_result
|
|
928
|
+
|
|
929
|
+
return traditional_result
|
|
930
|
+
|
|
931
|
+
# If traditional method fails, try enhanced method
|
|
932
|
+
enhanced_result = get_rise_time_estimated(
|
|
933
|
+
x, y, start_range, end_range, start_ratio, stop_ratio
|
|
934
|
+
)
|
|
935
|
+
if enhanced_result is not None:
|
|
936
|
+
return enhanced_result
|
|
937
|
+
|
|
938
|
+
# Traditional method for fall time calculations or as fallback
|
|
939
|
+
result = _get_rise_time_traditional(
|
|
940
|
+
x, y, start_range, end_range, start_ratio, stop_ratio
|
|
941
|
+
)
|
|
942
|
+
|
|
943
|
+
if result is None:
|
|
944
|
+
warnings.warn(
|
|
945
|
+
"Could not determine start or stop time for the step rise. Returning None."
|
|
946
|
+
)
|
|
947
|
+
|
|
948
|
+
return result
|
|
949
|
+
|
|
950
|
+
|
|
951
|
+
def get_fall_time(
|
|
952
|
+
x: np.ndarray,
|
|
953
|
+
y: np.ndarray,
|
|
954
|
+
start_ratio: float = 0.9,
|
|
955
|
+
stop_ratio: float = 0.1,
|
|
956
|
+
plateau_range: tuple[float, float] | None = None,
|
|
957
|
+
end_range: tuple[float, float] | None = None,
|
|
958
|
+
fraction: float = 0.05,
|
|
959
|
+
) -> float | None:
|
|
960
|
+
"""Calculates the fall time of a step-like signal between two defined plateaus.
|
|
961
|
+
|
|
962
|
+
The fall time is defined as the time it takes for the signal to decrease from
|
|
963
|
+
start_ratio to stop_ratio of the total amplitude change.
|
|
964
|
+
|
|
965
|
+
This function internally reverses the signal and applies the rise time calculation
|
|
966
|
+
to determine the fall time.
|
|
967
|
+
|
|
968
|
+
Args:
|
|
969
|
+
x: 1D array of x values (e.g., time).
|
|
970
|
+
y: 1D array of y values corresponding to `x`.
|
|
971
|
+
start_ratio: Fraction of the step height at which the fall starts.
|
|
972
|
+
Default is 0.9 (i.e., 90% of the step height).
|
|
973
|
+
stop_ratio: Fraction of the step height at which the fall ends.
|
|
974
|
+
Default is 0.1 (i.e., 10% of the step height).
|
|
975
|
+
plateau_range: Tuple defining the plateau region (top of the step).
|
|
976
|
+
If None, uses the peak y-value.
|
|
977
|
+
end_range: Tuple defining the end plateau region (after the fall).
|
|
978
|
+
fraction: Fraction of the x-range to use for baseline calculations if
|
|
979
|
+
plateau_range is None.
|
|
980
|
+
|
|
981
|
+
Returns:
|
|
982
|
+
The fall time (difference between the stop and start ratio crossings).
|
|
983
|
+
|
|
984
|
+
Raises:
|
|
985
|
+
ValueError: If start_ratio is not greater than stop_ratio or if ratios are
|
|
986
|
+
not between 0 and 1.
|
|
987
|
+
"""
|
|
988
|
+
if start_ratio < 0.0 or start_ratio > 1.0:
|
|
989
|
+
raise ValueError("start_ratio must be between 0 and 1")
|
|
990
|
+
if stop_ratio < 0.0 or stop_ratio > 1.0:
|
|
991
|
+
raise ValueError("stop_ratio must be between 0 and 1")
|
|
992
|
+
if start_ratio <= stop_ratio:
|
|
993
|
+
raise ValueError("For fall time, start_ratio must be greater than stop_ratio")
|
|
994
|
+
|
|
995
|
+
# Check if this might be a Gaussian signal
|
|
996
|
+
try:
|
|
997
|
+
if end_range is None:
|
|
998
|
+
end_range = get_end_range(x)
|
|
999
|
+
start_range = get_start_range(x)
|
|
1000
|
+
|
|
1001
|
+
signal_shape = heuristically_recognize_shape(x, y, start_range, end_range)
|
|
1002
|
+
if signal_shape in ["square", "gaussian"]: # Gaussian often detected as square
|
|
1003
|
+
# For Gaussian signals, use symmetric crossing calculation
|
|
1004
|
+
gaussian_result = _find_gaussian_crossing_times(
|
|
1005
|
+
x, y, start_ratio, stop_ratio, start_range, end_range
|
|
1006
|
+
)
|
|
1007
|
+
if gaussian_result is not None:
|
|
1008
|
+
start_time, stop_time = gaussian_result
|
|
1009
|
+
return abs(stop_time - start_time)
|
|
1010
|
+
except (InvalidSignalError, PolarityDetectionError):
|
|
1011
|
+
pass # Fall back to traditional method
|
|
1012
|
+
|
|
1013
|
+
# Traditional method for step/square signals
|
|
1014
|
+
if plateau_range is None:
|
|
1015
|
+
ymax_idx = np.argmax(y)
|
|
1016
|
+
else:
|
|
1017
|
+
# Use the index of the lower plateau boundary as the peak index:
|
|
1018
|
+
plateau_mask = (x >= plateau_range[0]) & (x <= plateau_range[1])
|
|
1019
|
+
if not np.any(plateau_mask):
|
|
1020
|
+
raise InvalidSignalError("No data points found in plateau_range")
|
|
1021
|
+
ymax_idx = np.nonzero(plateau_mask)[0][0]
|
|
1022
|
+
# For fall time calculation, we need a proper baseline range in the fall segment
|
|
1023
|
+
# Use a small portion near the peak as baseline instead of degenerate range
|
|
1024
|
+
x_fall = x[ymax_idx:]
|
|
1025
|
+
if len(x_fall) > 10: # Ensure we have enough points
|
|
1026
|
+
# Use the plateau if provided
|
|
1027
|
+
if plateau_range is None:
|
|
1028
|
+
# Use first fraction% of the fall segment as baseline, but at least 2 points
|
|
1029
|
+
baseline_points = max(2, int(fraction * len(x_fall)))
|
|
1030
|
+
fall_baseline_range = (x_fall[0], x_fall[baseline_points])
|
|
1031
|
+
else:
|
|
1032
|
+
fall_baseline_range = plateau_range
|
|
1033
|
+
else:
|
|
1034
|
+
# Fallback to a small range around the peak
|
|
1035
|
+
fall_baseline_range = (x[ymax_idx], x[min(ymax_idx + 2, len(x) - 1)])
|
|
1036
|
+
fall_time = get_rise_time(
|
|
1037
|
+
x[ymax_idx:],
|
|
1038
|
+
y[ymax_idx:],
|
|
1039
|
+
start_ratio,
|
|
1040
|
+
stop_ratio,
|
|
1041
|
+
fall_baseline_range,
|
|
1042
|
+
end_range,
|
|
1043
|
+
)
|
|
1044
|
+
return fall_time
|
|
1045
|
+
|
|
1046
|
+
|
|
1047
|
+
@check_1d_arrays(x_sorted=True)
|
|
1048
|
+
def heuristically_find_rise_start_time(
|
|
1049
|
+
x: np.ndarray, y: np.ndarray, start_range: tuple[float, float]
|
|
1050
|
+
) -> float | None:
|
|
1051
|
+
"""Finds the point where a step signal begins its systematic rise from baseline.
|
|
1052
|
+
|
|
1053
|
+
This function uses multiple strategies to detect the true start of a step
|
|
1054
|
+
transition:
|
|
1055
|
+
1. Trend analysis to identify sustained directional change
|
|
1056
|
+
2. Moving window statistics to detect consistent deviations
|
|
1057
|
+
3. Gradient analysis for backup detection
|
|
1058
|
+
|
|
1059
|
+
Args:
|
|
1060
|
+
x: 1D array of x values (e.g., time).
|
|
1061
|
+
y: 1D array of y values corresponding to `x`.
|
|
1062
|
+
start_range: Tuple defining the lower plateau region (start of the step).
|
|
1063
|
+
|
|
1064
|
+
Returns:
|
|
1065
|
+
The x-value of the first systematic rise, or None if no such value is found.
|
|
1066
|
+
|
|
1067
|
+
Raises:
|
|
1068
|
+
InvalidSignalError: If insufficient data is provided.
|
|
1069
|
+
"""
|
|
1070
|
+
if y.size < 20:
|
|
1071
|
+
raise InvalidSignalError(
|
|
1072
|
+
"Insufficient data for statistical analysis (need ≥20 points)"
|
|
1073
|
+
)
|
|
1074
|
+
|
|
1075
|
+
start_indices = np.nonzero(x >= start_range[1])[0]
|
|
1076
|
+
if len(start_indices) == 0:
|
|
1077
|
+
raise InvalidSignalError("No data points found after start_baseline_range")
|
|
1078
|
+
|
|
1079
|
+
start_idx = start_indices[0]
|
|
1080
|
+
|
|
1081
|
+
# Calculate baseline statistics from the start_range
|
|
1082
|
+
baseline_mask = (x >= start_range[0]) & (x <= start_range[1])
|
|
1083
|
+
if np.sum(baseline_mask) < 5:
|
|
1084
|
+
raise InvalidSignalError("Insufficient baseline data")
|
|
1085
|
+
|
|
1086
|
+
baseline_y = y[baseline_mask]
|
|
1087
|
+
baseline_mean = np.mean(baseline_y)
|
|
1088
|
+
baseline_std = np.std(baseline_y)
|
|
1089
|
+
|
|
1090
|
+
# Strategy 1: Look for consistent upward trend
|
|
1091
|
+
# Use a moving window to detect sustained increase
|
|
1092
|
+
window_size = max(5, len(y) // 100) # Adaptive window size
|
|
1093
|
+
|
|
1094
|
+
for i in range(start_idx, len(y) - window_size):
|
|
1095
|
+
# Get a window of data points
|
|
1096
|
+
window_y = y[i : i + window_size]
|
|
1097
|
+
window_mean = np.mean(window_y)
|
|
1098
|
+
|
|
1099
|
+
# Check if this window is significantly above baseline
|
|
1100
|
+
if window_mean > baseline_mean + 1.5 * baseline_std:
|
|
1101
|
+
# Verify this is the start of a trend by checking if subsequent windows
|
|
1102
|
+
# continue to be elevated
|
|
1103
|
+
confirmation_windows = 0
|
|
1104
|
+
for j in range(
|
|
1105
|
+
i + window_size,
|
|
1106
|
+
min(i + 3 * window_size, len(y) - window_size),
|
|
1107
|
+
window_size,
|
|
1108
|
+
):
|
|
1109
|
+
next_window_y = y[j : j + window_size]
|
|
1110
|
+
next_window_mean = np.mean(next_window_y)
|
|
1111
|
+
if next_window_mean >= window_mean:
|
|
1112
|
+
confirmation_windows += 1
|
|
1113
|
+
|
|
1114
|
+
# If we have at least one confirming window, this looks like the start
|
|
1115
|
+
if confirmation_windows >= 1:
|
|
1116
|
+
return x[i]
|
|
1117
|
+
|
|
1118
|
+
# Strategy 2: Gradient-based detection with smoothing
|
|
1119
|
+
# Smooth the signal to reduce noise effects
|
|
1120
|
+
y_smooth = scipy.ndimage.gaussian_filter1d(y, sigma=2.0)
|
|
1121
|
+
|
|
1122
|
+
dy = np.gradient(y_smooth, x)
|
|
1123
|
+
|
|
1124
|
+
# Find the region to search (after start_range)
|
|
1125
|
+
search_mask = x >= start_range[1]
|
|
1126
|
+
search_x = x[search_mask]
|
|
1127
|
+
search_dy = dy[search_mask]
|
|
1128
|
+
|
|
1129
|
+
if len(search_dy) > 10:
|
|
1130
|
+
# Look for sustained positive gradient
|
|
1131
|
+
baseline_dy = dy[(x >= start_range[0]) & (x <= start_range[1])]
|
|
1132
|
+
dy_baseline_std = np.std(baseline_dy) if len(baseline_dy) > 0 else 0.1
|
|
1133
|
+
|
|
1134
|
+
# Find first point where gradient is consistently above noise level
|
|
1135
|
+
gradient_threshold = 3 * dy_baseline_std
|
|
1136
|
+
|
|
1137
|
+
for i in range(len(search_dy) - 3):
|
|
1138
|
+
# Check if gradient is above threshold for several consecutive points
|
|
1139
|
+
if np.all(search_dy[i : i + 3] > gradient_threshold):
|
|
1140
|
+
return search_x[i]
|
|
1141
|
+
|
|
1142
|
+
# Strategy 3: Fall back to simple threshold above baseline
|
|
1143
|
+
# Look for first point that's consistently above baseline + 2*std
|
|
1144
|
+
threshold_y = baseline_mean + 2.0 * baseline_std
|
|
1145
|
+
|
|
1146
|
+
search_y = y[search_mask]
|
|
1147
|
+
for i in range(len(search_y) - 2):
|
|
1148
|
+
if np.all(search_y[i : i + 3] > threshold_y):
|
|
1149
|
+
return search_x[i]
|
|
1150
|
+
|
|
1151
|
+
return None
|
|
1152
|
+
|
|
1153
|
+
|
|
1154
|
+
def get_rise_start_time(
|
|
1155
|
+
x: np.ndarray,
|
|
1156
|
+
y: np.ndarray,
|
|
1157
|
+
start_range: tuple[float, float],
|
|
1158
|
+
end_range: tuple[float, float],
|
|
1159
|
+
threshold: float | None = None,
|
|
1160
|
+
) -> float:
|
|
1161
|
+
"""Find the rise start time of a step signal using multiple strategies.
|
|
1162
|
+
|
|
1163
|
+
This function tries multiple approaches to find the rise start time:
|
|
1164
|
+
1. Uses threshold crossing if threshold is provided
|
|
1165
|
+
2. Uses heuristic detection as fallback
|
|
1166
|
+
3. Validates results to ensure they make physical sense
|
|
1167
|
+
|
|
1168
|
+
Args:
|
|
1169
|
+
x: 1D array of x values (e.g., time or position).
|
|
1170
|
+
y: 1D array of y values (same size as x).
|
|
1171
|
+
start_range: A range (min, max) representing the initial flat region ("foot").
|
|
1172
|
+
end_range: A range (min, max) representing the final high region after the rise.
|
|
1173
|
+
threshold: If provided, use this fractional amplitude (0-1) to determine the
|
|
1174
|
+
end of the foot. If None, use heuristic detection.
|
|
1175
|
+
|
|
1176
|
+
Returns:
|
|
1177
|
+
The rise start time (foot end time).
|
|
1178
|
+
|
|
1179
|
+
Raises:
|
|
1180
|
+
InvalidSignalError: If rise start time cannot be determined.
|
|
1181
|
+
"""
|
|
1182
|
+
# Try heuristic detection first as it's often more reliable for step detection
|
|
1183
|
+
try:
|
|
1184
|
+
heuristic_result = heuristically_find_rise_start_time(x, y, start_range)
|
|
1185
|
+
except InvalidSignalError:
|
|
1186
|
+
heuristic_result = None
|
|
1187
|
+
|
|
1188
|
+
# Try threshold method if requested
|
|
1189
|
+
threshold_result = None
|
|
1190
|
+
if threshold is not None:
|
|
1191
|
+
try:
|
|
1192
|
+
threshold_result = find_crossing_at_ratio(
|
|
1193
|
+
x, y, threshold, start_range, end_range
|
|
1194
|
+
)
|
|
1195
|
+
except InvalidSignalError:
|
|
1196
|
+
pass
|
|
1197
|
+
|
|
1198
|
+
# Validate and choose the best result
|
|
1199
|
+
if heuristic_result is not None and threshold_result is not None:
|
|
1200
|
+
# If both methods give results, prefer the one that's more reasonable
|
|
1201
|
+
# For step signals, the heuristic should give a later (more accurate) time
|
|
1202
|
+
# than a low threshold crossing
|
|
1203
|
+
if threshold <= 0.2 and heuristic_result > threshold_result:
|
|
1204
|
+
return heuristic_result
|
|
1205
|
+
return threshold_result
|
|
1206
|
+
if heuristic_result is not None:
|
|
1207
|
+
return heuristic_result
|
|
1208
|
+
if threshold_result is not None:
|
|
1209
|
+
return threshold_result
|
|
1210
|
+
|
|
1211
|
+
# Last resort: look for the steepest part of the signal
|
|
1212
|
+
dy = np.gradient(y, x)
|
|
1213
|
+
search_mask = (x >= start_range[1]) & (x <= end_range[0])
|
|
1214
|
+
if np.any(search_mask):
|
|
1215
|
+
search_indices = np.where(search_mask)[0]
|
|
1216
|
+
max_dy_idx = search_indices[np.argmax(dy[search_mask])]
|
|
1217
|
+
# Move back to find the start of the steep region
|
|
1218
|
+
for i in range(max_dy_idx, max(0, max_dy_idx - 50), -1):
|
|
1219
|
+
if dy[i] <= dy[max_dy_idx] * 0.1: # 10% of max gradient
|
|
1220
|
+
return x[i]
|
|
1221
|
+
return x[max_dy_idx]
|
|
1222
|
+
|
|
1223
|
+
raise InvalidSignalError("Could not determine rise start time with any method")
|
|
1224
|
+
|
|
1225
|
+
|
|
1226
|
+
@check_1d_arrays(x_sorted=True)
|
|
1227
|
+
def full_width_at_y(
|
|
1228
|
+
x: np.ndarray,
|
|
1229
|
+
y: np.ndarray,
|
|
1230
|
+
level: float,
|
|
1231
|
+
) -> tuple[float, float, float, float]:
|
|
1232
|
+
"""Compute the full width at a given y level of a square shaped signal using
|
|
1233
|
+
zero-crossing method.
|
|
1234
|
+
|
|
1235
|
+
Args:
|
|
1236
|
+
x: 1D array of x values.
|
|
1237
|
+
y: 1D array of y values.
|
|
1238
|
+
level: The Y level at which to compute the width
|
|
1239
|
+
|
|
1240
|
+
Returns:
|
|
1241
|
+
Full width segment coordinates (x1, level, x2, level)
|
|
1242
|
+
"""
|
|
1243
|
+
tmax_idx = np.argmax(y)
|
|
1244
|
+
|
|
1245
|
+
roots1 = features.find_x_values_at_y(
|
|
1246
|
+
x[0 : tmax_idx + 1],
|
|
1247
|
+
y[0 : tmax_idx + 1],
|
|
1248
|
+
level,
|
|
1249
|
+
)
|
|
1250
|
+
if len(roots1) > 1:
|
|
1251
|
+
warnings.warn("Multiple crossing points found. Returning first.")
|
|
1252
|
+
roots2 = features.find_x_values_at_y(
|
|
1253
|
+
x[tmax_idx:],
|
|
1254
|
+
y[tmax_idx:],
|
|
1255
|
+
level,
|
|
1256
|
+
)
|
|
1257
|
+
if len(roots2) > 1:
|
|
1258
|
+
warnings.warn("Multiple crossing points found. Returning last.")
|
|
1259
|
+
t1 = roots1[0] if len(roots1) > 0 else np.nan
|
|
1260
|
+
t2 = roots2[-1] if len(roots2) > 0 else np.nan
|
|
1261
|
+
return t1, level, t2, level
|
|
1262
|
+
|
|
1263
|
+
|
|
1264
|
+
def full_width_at_ratio(
|
|
1265
|
+
x: np.ndarray,
|
|
1266
|
+
y: np.ndarray,
|
|
1267
|
+
ratio: float,
|
|
1268
|
+
start_range: tuple[float, float] | None = None,
|
|
1269
|
+
end_range: tuple[float, float] | None = None,
|
|
1270
|
+
fraction: float = 0.05,
|
|
1271
|
+
) -> tuple[float, float, float, float]:
|
|
1272
|
+
"""
|
|
1273
|
+
Calculate the full width at a specified ratio of the amplitude for a pulse signal.
|
|
1274
|
+
|
|
1275
|
+
This function determines the two crossing points (x1, x2) where the normalized
|
|
1276
|
+
signal crosses a given ratio of its amplitude, and returns these points along with
|
|
1277
|
+
the corresponding y-level.
|
|
1278
|
+
|
|
1279
|
+
Args:
|
|
1280
|
+
x: 1D array of x-values.
|
|
1281
|
+
y: 1D array of y-values.
|
|
1282
|
+
ratio: Ratio (between 0 and 1) of the amplitude at which to measure the width.
|
|
1283
|
+
start_range: Range of x-values to estimate the start baseline.
|
|
1284
|
+
end_range: Range of x-values to estimate the end baseline.
|
|
1285
|
+
fraction: Fraction of the x-range to use for baseline calculations if
|
|
1286
|
+
start_range or end_range are None.
|
|
1287
|
+
|
|
1288
|
+
Returns:
|
|
1289
|
+
Full width segment coordinates (x1, level, x2, level), where x1 and x2 are the
|
|
1290
|
+
crossing points at the specified ratio, and level is the corresponding y-value.
|
|
1291
|
+
|
|
1292
|
+
Raises:
|
|
1293
|
+
ValueError: If the amplitude of the signal is zero.
|
|
1294
|
+
RuntimeWarning: If the polarity cannot be determined, returns NaN for crossing
|
|
1295
|
+
times.
|
|
1296
|
+
|
|
1297
|
+
Notes:
|
|
1298
|
+
- The function normalizes the signal based on the detected amplitude and
|
|
1299
|
+
polarity.
|
|
1300
|
+
- The crossing times are computed using `features.find_first_x_at_y_value`
|
|
1301
|
+
function.
|
|
1302
|
+
"""
|
|
1303
|
+
amplitude = get_amplitude(x, y, start_range, end_range)
|
|
1304
|
+
|
|
1305
|
+
try:
|
|
1306
|
+
polarity = detect_polarity(x, y, start_range, end_range)
|
|
1307
|
+
except PolarityDetectionError as e:
|
|
1308
|
+
raise InvalidSignalError(f"Cannot determine width at ratio: {e}") from e
|
|
1309
|
+
|
|
1310
|
+
if start_range is None:
|
|
1311
|
+
start_range = get_start_range(x, fraction)
|
|
1312
|
+
if end_range is None:
|
|
1313
|
+
end_range = get_end_range(x, fraction)
|
|
1314
|
+
start_baseline = get_range_mean_y(x, y * polarity, start_range)
|
|
1315
|
+
|
|
1316
|
+
if amplitude == 0:
|
|
1317
|
+
raise InvalidSignalError(
|
|
1318
|
+
"Amplitude of your square signal is zero. Check your data."
|
|
1319
|
+
)
|
|
1320
|
+
|
|
1321
|
+
y_norm = np.asarray(polarity * (y - start_baseline) / amplitude, dtype=y.dtype.type)
|
|
1322
|
+
|
|
1323
|
+
level = y.dtype.type(ratio * polarity * amplitude + start_baseline)
|
|
1324
|
+
|
|
1325
|
+
tmax_idx = np.argmax(y_norm)
|
|
1326
|
+
|
|
1327
|
+
try:
|
|
1328
|
+
roots1 = features.find_x_values_at_y(
|
|
1329
|
+
x[0 : tmax_idx + 1],
|
|
1330
|
+
y_norm[0 : tmax_idx + 1],
|
|
1331
|
+
ratio,
|
|
1332
|
+
)
|
|
1333
|
+
except ValueError:
|
|
1334
|
+
roots1 = []
|
|
1335
|
+
if len(roots1) > 1:
|
|
1336
|
+
warnings.warn("Multiple crossing points found. Returning first.")
|
|
1337
|
+
x1 = roots1[0] if len(roots1) > 0 else np.nan
|
|
1338
|
+
try:
|
|
1339
|
+
roots2 = features.find_x_values_at_y(
|
|
1340
|
+
x[tmax_idx:],
|
|
1341
|
+
y_norm[tmax_idx:],
|
|
1342
|
+
ratio,
|
|
1343
|
+
)
|
|
1344
|
+
except ValueError:
|
|
1345
|
+
roots2 = []
|
|
1346
|
+
if len(roots2) > 1:
|
|
1347
|
+
warnings.warn("Multiple crossing points found. Returning last.")
|
|
1348
|
+
x2 = roots2[-1] if len(roots2) > 0 else np.nan
|
|
1349
|
+
return x1, level, x2, level
|
|
1350
|
+
|
|
1351
|
+
|
|
1352
|
+
def fwhm(
|
|
1353
|
+
x: np.ndarray,
|
|
1354
|
+
y: np.ndarray,
|
|
1355
|
+
method: Literal["zero-crossing", "gauss", "lorentz", "voigt"] = "zero-crossing",
|
|
1356
|
+
xmin: float | None = None,
|
|
1357
|
+
xmax: float | None = None,
|
|
1358
|
+
) -> tuple[float, float, float, float]:
|
|
1359
|
+
"""Compute Full Width at Half Maximum (FWHM) of the input data
|
|
1360
|
+
|
|
1361
|
+
Args:
|
|
1362
|
+
x: 1D array of x-values.
|
|
1363
|
+
y: 1D array of y-values.
|
|
1364
|
+
method: Calculation method. Two types of methods are supported: a zero-crossing
|
|
1365
|
+
method and fitting methods (based on various models: Gauss, Lorentz, Voigt).
|
|
1366
|
+
Defaults to "zero-crossing".
|
|
1367
|
+
xmin: Lower X bound for the fitting. Defaults to None (no lower bound,
|
|
1368
|
+
i.e. the fitting starts from the first point).
|
|
1369
|
+
xmax: Upper X bound for the fitting. Defaults to None (no upper bound,
|
|
1370
|
+
i.e. the fitting ends at the last point)
|
|
1371
|
+
|
|
1372
|
+
Returns:
|
|
1373
|
+
FWHM segment coordinates
|
|
1374
|
+
"""
|
|
1375
|
+
dx, dy, base = np.max(x) - np.min(x), np.max(y) - np.min(y), np.min(y)
|
|
1376
|
+
sigma, mu = dx * 0.1, peakdetection.xpeak(x, y)
|
|
1377
|
+
if isinstance(xmin, float):
|
|
1378
|
+
indices = np.where(x >= xmin)[0]
|
|
1379
|
+
x = x[indices]
|
|
1380
|
+
y = y[indices]
|
|
1381
|
+
if isinstance(xmax, float):
|
|
1382
|
+
indices = np.where(x <= xmax)[0]
|
|
1383
|
+
x = x[indices]
|
|
1384
|
+
y = y[indices]
|
|
1385
|
+
|
|
1386
|
+
if method == "zero-crossing":
|
|
1387
|
+
x1, y1, x2, y2 = full_width_at_ratio(x, y, 0.5)
|
|
1388
|
+
return x1, y1, x2, y2
|
|
1389
|
+
|
|
1390
|
+
try:
|
|
1391
|
+
fit_model_class: type[PulseFitModel] = {
|
|
1392
|
+
"gauss": GaussianModel,
|
|
1393
|
+
"lorentz": LorentzianModel,
|
|
1394
|
+
"voigt": VoigtModel,
|
|
1395
|
+
}[method]
|
|
1396
|
+
except KeyError as exc:
|
|
1397
|
+
raise ValueError(f"Invalid method {method}") from exc
|
|
1398
|
+
|
|
1399
|
+
def func(params) -> np.ndarray:
|
|
1400
|
+
"""Fitting model function"""
|
|
1401
|
+
# pylint: disable=cell-var-from-loop
|
|
1402
|
+
return y - fit_model_class.func(x, *params)
|
|
1403
|
+
|
|
1404
|
+
amp = fit_model_class.get_amp_from_amplitude(dy, sigma)
|
|
1405
|
+
(amp, sigma, mu, base), _ier = scipy.optimize.leastsq(
|
|
1406
|
+
func, np.array([amp, sigma, mu, base])
|
|
1407
|
+
)
|
|
1408
|
+
return fit_model_class.half_max_segment(amp, sigma, mu, base)
|
|
1409
|
+
|
|
1410
|
+
|
|
1411
|
+
@check_1d_arrays(x_sorted=True)
|
|
1412
|
+
def fw1e2(x: np.ndarray, y: np.ndarray) -> tuple[float, float, float, float]:
|
|
1413
|
+
"""Compute Full Width at 1/e² of the input data (using a Gaussian model fitting).
|
|
1414
|
+
|
|
1415
|
+
Args:
|
|
1416
|
+
x: 1D array of x-values.
|
|
1417
|
+
y: 1D array of y-values.
|
|
1418
|
+
|
|
1419
|
+
Returns:
|
|
1420
|
+
FW at 1/e² segment coordinates
|
|
1421
|
+
"""
|
|
1422
|
+
dx, dy, base = np.max(x) - np.min(x), np.max(y) - np.min(y), np.min(y)
|
|
1423
|
+
sigma, mu = dx * 0.1, peakdetection.xpeak(x, y)
|
|
1424
|
+
amp = GaussianModel.get_amp_from_amplitude(dy, sigma)
|
|
1425
|
+
p_in = np.array([amp, sigma, mu, base])
|
|
1426
|
+
|
|
1427
|
+
def func(params):
|
|
1428
|
+
"""Fitting model function"""
|
|
1429
|
+
# pylint: disable=cell-var-from-loop
|
|
1430
|
+
return y - GaussianModel.func(x, *params)
|
|
1431
|
+
|
|
1432
|
+
p_out, _ier = scipy.optimize.leastsq(func, p_in)
|
|
1433
|
+
amp, sigma, mu, base = p_out
|
|
1434
|
+
hw = 2 * sigma
|
|
1435
|
+
yhm = GaussianModel.amplitude(amp, sigma) / np.e**2 + base
|
|
1436
|
+
return mu - hw, yhm, mu + hw, yhm
|
|
1437
|
+
|
|
1438
|
+
|
|
1439
|
+
@dataclass
|
|
1440
|
+
class PulseFeatures:
|
|
1441
|
+
"""Extracted features from a pulse signal.
|
|
1442
|
+
|
|
1443
|
+
Attributes:
|
|
1444
|
+
signal_shape: The shape of the signal (step or square).
|
|
1445
|
+
polarity: The polarity of the signal (1 for positive, -1 for negative).
|
|
1446
|
+
amplitude: The amplitude of the signal.
|
|
1447
|
+
offset: The baseline offset of the signal.
|
|
1448
|
+
foot_duration: The duration of the foot (flat region before rise) of the signal.
|
|
1449
|
+
xstartmin: The minimum x-value of the start baseline region.
|
|
1450
|
+
xstartmax: The maximum x-value of the start baseline region.
|
|
1451
|
+
xendmin: The minimum x-value of the end baseline region.
|
|
1452
|
+
xendmax: The maximum x-value of the end baseline region.
|
|
1453
|
+
xplateaumin: The minimum x-value of the plateau region (if applicable).
|
|
1454
|
+
xplateaumax: The maximum x-value of the plateau region (if applicable).
|
|
1455
|
+
rise_time: The rise time of the signal (time from start_ratio to stop_ratio).
|
|
1456
|
+
fall_time: The fall time of the signal (time from stop_ratio to start_ratio).
|
|
1457
|
+
fwhm: The full width at half maximum of the signal.
|
|
1458
|
+
x50: The time at which the signal reaches 50% of its amplitude.
|
|
1459
|
+
x100: The time at which the signal reaches its maximum amplitude.
|
|
1460
|
+
"""
|
|
1461
|
+
|
|
1462
|
+
signal_shape: SignalShape = SignalShape.STEP
|
|
1463
|
+
polarity: int = 1
|
|
1464
|
+
amplitude: float = 0.0
|
|
1465
|
+
offset: float = 0.0
|
|
1466
|
+
foot_duration: float = 0.0
|
|
1467
|
+
xstartmin: float = 0.0
|
|
1468
|
+
xstartmax: float = 0.0
|
|
1469
|
+
xendmin: float = 0.0
|
|
1470
|
+
xendmax: float = 0.0
|
|
1471
|
+
xplateaumin: float | None = None
|
|
1472
|
+
xplateaumax: float | None = None
|
|
1473
|
+
rise_time: float | None = None
|
|
1474
|
+
fall_time: float | None = None
|
|
1475
|
+
fwhm: float | None = None
|
|
1476
|
+
x0: float | None = None
|
|
1477
|
+
x50: float | None = None
|
|
1478
|
+
x100: float | None = None
|
|
1479
|
+
|
|
1480
|
+
|
|
1481
|
+
def extract_pulse_features(
|
|
1482
|
+
x: np.ndarray,
|
|
1483
|
+
y: np.ndarray,
|
|
1484
|
+
start_range: tuple[float, float],
|
|
1485
|
+
end_range: tuple[float, float],
|
|
1486
|
+
start_ratio: float = 0.1,
|
|
1487
|
+
stop_ratio: float = 0.9,
|
|
1488
|
+
signal_shape: SignalShape | None = None,
|
|
1489
|
+
fraction: float = 0.05,
|
|
1490
|
+
denoise: bool = True,
|
|
1491
|
+
) -> PulseFeatures:
|
|
1492
|
+
"""Extract various pulse features from the input signal.
|
|
1493
|
+
|
|
1494
|
+
Args:
|
|
1495
|
+
x: 1D array of x values (e.g., time).
|
|
1496
|
+
y: 1D array of y values (signal).
|
|
1497
|
+
start_range: Interval for the first plateau (baseline).
|
|
1498
|
+
end_range: Interval for the second plateau (peak).
|
|
1499
|
+
signal_shape: Signal type (None for auto-detection).
|
|
1500
|
+
start_ratio: Fraction for rise start.
|
|
1501
|
+
stop_ratio: Fraction for rise end.
|
|
1502
|
+
fraction: Fraction of the x-range to use for baseline calculations if
|
|
1503
|
+
start_range or end_range are None.
|
|
1504
|
+
denoise: If True, apply a denoising filter to the signal before analysis.
|
|
1505
|
+
|
|
1506
|
+
Returns:
|
|
1507
|
+
Pulse features.
|
|
1508
|
+
|
|
1509
|
+
Raises:
|
|
1510
|
+
ValueError: If input parameters are invalid.
|
|
1511
|
+
"""
|
|
1512
|
+
if start_ratio > 1.0 or start_ratio < 0.0:
|
|
1513
|
+
raise ValueError("start_ratio must be between 0 and 1")
|
|
1514
|
+
if stop_ratio > 1.0 or stop_ratio < 0.0:
|
|
1515
|
+
raise ValueError("stop_ratio must be between 0 and 1")
|
|
1516
|
+
if start_ratio >= stop_ratio:
|
|
1517
|
+
raise ValueError("start_ratio must be less than stop_ratio")
|
|
1518
|
+
|
|
1519
|
+
if signal_shape is None:
|
|
1520
|
+
signal_shape = heuristically_recognize_shape(x, y, start_range, end_range)
|
|
1521
|
+
if not isinstance(signal_shape, (SignalShape, str)):
|
|
1522
|
+
raise ValueError("Invalid signal_shape")
|
|
1523
|
+
|
|
1524
|
+
if denoise:
|
|
1525
|
+
y = filtering.denoise_preserve_shape(y)[0]
|
|
1526
|
+
|
|
1527
|
+
polarity = detect_polarity(x, y, start_range, end_range, signal_shape=signal_shape)
|
|
1528
|
+
plateau_range = None
|
|
1529
|
+
if signal_shape == SignalShape.SQUARE:
|
|
1530
|
+
plateau_range = get_plateau_range(
|
|
1531
|
+
x, y, polarity, fraction, start_range, end_range
|
|
1532
|
+
)
|
|
1533
|
+
amplitude = get_amplitude(x, y, start_range, end_range, plateau_range, signal_shape)
|
|
1534
|
+
|
|
1535
|
+
ymax_idx = np.argmax(y)
|
|
1536
|
+
|
|
1537
|
+
if signal_shape == SignalShape.STEP:
|
|
1538
|
+
rise_time = get_rise_time(x, y, start_ratio, stop_ratio, start_range, end_range)
|
|
1539
|
+
x0 = get_rise_start_time(x, y, start_range, end_range)
|
|
1540
|
+
x50 = find_crossing_at_ratio(x, y, 0.5, start_range, end_range)
|
|
1541
|
+
fall_time = None
|
|
1542
|
+
fwhm_val = None
|
|
1543
|
+
else: # is square
|
|
1544
|
+
rise_time = get_rise_time(
|
|
1545
|
+
x[0 : ymax_idx + 1],
|
|
1546
|
+
y[0 : ymax_idx + 1],
|
|
1547
|
+
start_ratio,
|
|
1548
|
+
stop_ratio,
|
|
1549
|
+
start_range,
|
|
1550
|
+
(x[ymax_idx], x[ymax_idx]),
|
|
1551
|
+
)
|
|
1552
|
+
# Check if this is a Gaussian signal - if so, x50 should be on the rise
|
|
1553
|
+
gaussian_result = _find_gaussian_crossing_times(
|
|
1554
|
+
x, y, start_ratio, stop_ratio, start_range, end_range
|
|
1555
|
+
)
|
|
1556
|
+
if gaussian_result is not None:
|
|
1557
|
+
# For Gaussian signals, x50 is the 50% crossing on the rise (left side)
|
|
1558
|
+
x50 = find_crossing_at_ratio(
|
|
1559
|
+
x[0 : ymax_idx + 1],
|
|
1560
|
+
y[0 : ymax_idx + 1],
|
|
1561
|
+
0.5,
|
|
1562
|
+
start_range,
|
|
1563
|
+
(x[ymax_idx], x[ymax_idx]),
|
|
1564
|
+
)
|
|
1565
|
+
else:
|
|
1566
|
+
# For square signals, x50 is at the 50% crossing
|
|
1567
|
+
x50 = find_crossing_at_ratio(
|
|
1568
|
+
x[0 : ymax_idx + 1],
|
|
1569
|
+
y[0 : ymax_idx + 1],
|
|
1570
|
+
0.5,
|
|
1571
|
+
start_range,
|
|
1572
|
+
(x[ymax_idx], x[ymax_idx]),
|
|
1573
|
+
)
|
|
1574
|
+
fall_time = get_fall_time(
|
|
1575
|
+
x, y, stop_ratio, start_ratio, plateau_range, end_range
|
|
1576
|
+
)
|
|
1577
|
+
x0 = get_rise_start_time(
|
|
1578
|
+
x[0 : ymax_idx + 1],
|
|
1579
|
+
y[0 : ymax_idx + 1],
|
|
1580
|
+
start_range,
|
|
1581
|
+
(x[ymax_idx], x[ymax_idx]),
|
|
1582
|
+
)
|
|
1583
|
+
x1, _, x2, _ = fwhm(x, y, "zero-crossing")
|
|
1584
|
+
fwhm_val = x2 - x1 # full width at half maximum
|
|
1585
|
+
mean_x_sampling_time = float(np.mean(np.diff(x)))
|
|
1586
|
+
if fwhm_val <= 10 * mean_x_sampling_time:
|
|
1587
|
+
# if the fwhm is smaller than 10 times the mean sampling time, we cannot
|
|
1588
|
+
# rely on rising and falling times, as the pulse is too narrow
|
|
1589
|
+
fall_time = None
|
|
1590
|
+
rise_time = None
|
|
1591
|
+
|
|
1592
|
+
if x50 is None:
|
|
1593
|
+
# No x50 found (e.g., for very narrow pulses or Gaussian signals)
|
|
1594
|
+
x100 = x[ymax_idx]
|
|
1595
|
+
else:
|
|
1596
|
+
# For step/square signals, calculate conventional x100
|
|
1597
|
+
# Check if this is likely a Gaussian signal (symmetric crossings)
|
|
1598
|
+
gaussian_result = _find_gaussian_crossing_times(
|
|
1599
|
+
x, y, start_ratio, stop_ratio, start_range, end_range
|
|
1600
|
+
)
|
|
1601
|
+
if gaussian_result is not None:
|
|
1602
|
+
# Gaussian signal: x100 should be at the actual maximum
|
|
1603
|
+
x100 = x[ymax_idx]
|
|
1604
|
+
else:
|
|
1605
|
+
# Step/square signal: use traditional extrapolation from x0/x50
|
|
1606
|
+
x100 = x50 + (x50 - x0)
|
|
1607
|
+
|
|
1608
|
+
return PulseFeatures(
|
|
1609
|
+
signal_shape=signal_shape,
|
|
1610
|
+
polarity=polarity,
|
|
1611
|
+
amplitude=amplitude,
|
|
1612
|
+
offset=get_range_mean_y(x, y * polarity, start_range),
|
|
1613
|
+
foot_duration=x0 - x[0],
|
|
1614
|
+
xstartmin=start_range[0],
|
|
1615
|
+
xstartmax=start_range[1],
|
|
1616
|
+
xendmin=end_range[0],
|
|
1617
|
+
xendmax=end_range[1],
|
|
1618
|
+
xplateaumin=None if plateau_range is None else plateau_range[0],
|
|
1619
|
+
xplateaumax=None if plateau_range is None else plateau_range[1],
|
|
1620
|
+
rise_time=rise_time,
|
|
1621
|
+
fall_time=fall_time,
|
|
1622
|
+
fwhm=fwhm_val,
|
|
1623
|
+
x0=x0,
|
|
1624
|
+
x50=x50,
|
|
1625
|
+
x100=x100,
|
|
1626
|
+
)
|