sigima 0.0.1.dev0__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (264) hide show
  1. sigima/__init__.py +142 -2
  2. sigima/client/__init__.py +105 -0
  3. sigima/client/base.py +780 -0
  4. sigima/client/remote.py +469 -0
  5. sigima/client/stub.py +814 -0
  6. sigima/client/utils.py +90 -0
  7. sigima/config.py +444 -0
  8. sigima/data/logo/Sigima.svg +135 -0
  9. sigima/data/tests/annotations.json +798 -0
  10. sigima/data/tests/curve_fitting/exponential_fit.txt +511 -0
  11. sigima/data/tests/curve_fitting/gaussian_fit.txt +100 -0
  12. sigima/data/tests/curve_fitting/piecewiseexponential_fit.txt +1022 -0
  13. sigima/data/tests/curve_fitting/polynomial_fit.txt +100 -0
  14. sigima/data/tests/curve_fitting/twohalfgaussian_fit.txt +1000 -0
  15. sigima/data/tests/curve_formats/bandwidth.txt +201 -0
  16. sigima/data/tests/curve_formats/boxcar.npy +0 -0
  17. sigima/data/tests/curve_formats/datetime.txt +1001 -0
  18. sigima/data/tests/curve_formats/dynamic_parameters.txt +4000 -0
  19. sigima/data/tests/curve_formats/fw1e2.txt +301 -0
  20. sigima/data/tests/curve_formats/fwhm.txt +319 -0
  21. sigima/data/tests/curve_formats/multiple_curves.csv +29 -0
  22. sigima/data/tests/curve_formats/noised_saw.mat +0 -0
  23. sigima/data/tests/curve_formats/oscilloscope.csv +111 -0
  24. sigima/data/tests/curve_formats/other/other2/recursive2.txt +5 -0
  25. sigima/data/tests/curve_formats/other/recursive1.txt +5 -0
  26. sigima/data/tests/curve_formats/paracetamol.npy +0 -0
  27. sigima/data/tests/curve_formats/paracetamol.txt +1010 -0
  28. sigima/data/tests/curve_formats/paracetamol_dx_dy.csv +1000 -0
  29. sigima/data/tests/curve_formats/paracetamol_dy.csv +1001 -0
  30. sigima/data/tests/curve_formats/pulse1.npy +0 -0
  31. sigima/data/tests/curve_formats/pulse2.npy +0 -0
  32. sigima/data/tests/curve_formats/simple.txt +5 -0
  33. sigima/data/tests/curve_formats/spectrum.mca +2139 -0
  34. sigima/data/tests/curve_formats/square2.npy +0 -0
  35. sigima/data/tests/curve_formats/step.npy +0 -0
  36. sigima/data/tests/fabry-perot1.jpg +0 -0
  37. sigima/data/tests/fabry-perot2.jpg +0 -0
  38. sigima/data/tests/flower.npy +0 -0
  39. sigima/data/tests/image_formats/NF 180338201.scor-data +11003 -0
  40. sigima/data/tests/image_formats/binary_image.npy +0 -0
  41. sigima/data/tests/image_formats/binary_image.png +0 -0
  42. sigima/data/tests/image_formats/centroid_test.npy +0 -0
  43. sigima/data/tests/image_formats/coordinated_text/complex_image.txt +10011 -0
  44. sigima/data/tests/image_formats/coordinated_text/complex_ref_image.txt +10010 -0
  45. sigima/data/tests/image_formats/coordinated_text/image.txt +15 -0
  46. sigima/data/tests/image_formats/coordinated_text/image2.txt +14 -0
  47. sigima/data/tests/image_formats/coordinated_text/image_no_unit_no_label.txt +14 -0
  48. sigima/data/tests/image_formats/coordinated_text/image_with_nan.txt +15 -0
  49. sigima/data/tests/image_formats/coordinated_text/image_with_unit.txt +14 -0
  50. sigima/data/tests/image_formats/fiber.csv +480 -0
  51. sigima/data/tests/image_formats/fiber.jpg +0 -0
  52. sigima/data/tests/image_formats/fiber.png +0 -0
  53. sigima/data/tests/image_formats/fiber.txt +480 -0
  54. sigima/data/tests/image_formats/gaussian_spot_with_noise.npy +0 -0
  55. sigima/data/tests/image_formats/mr-brain.dcm +0 -0
  56. sigima/data/tests/image_formats/noised_gaussian.mat +0 -0
  57. sigima/data/tests/image_formats/sif_reader/nd_lum_image_no_glue.sif +0 -0
  58. sigima/data/tests/image_formats/sif_reader/raman1.sif +0 -0
  59. sigima/data/tests/image_formats/tiling.txt +10 -0
  60. sigima/data/tests/image_formats/uint16.tiff +0 -0
  61. sigima/data/tests/image_formats/uint8.tiff +0 -0
  62. sigima/data/tests/laser_beam/TEM00_z_13.jpg +0 -0
  63. sigima/data/tests/laser_beam/TEM00_z_18.jpg +0 -0
  64. sigima/data/tests/laser_beam/TEM00_z_23.jpg +0 -0
  65. sigima/data/tests/laser_beam/TEM00_z_30.jpg +0 -0
  66. sigima/data/tests/laser_beam/TEM00_z_35.jpg +0 -0
  67. sigima/data/tests/laser_beam/TEM00_z_40.jpg +0 -0
  68. sigima/data/tests/laser_beam/TEM00_z_45.jpg +0 -0
  69. sigima/data/tests/laser_beam/TEM00_z_50.jpg +0 -0
  70. sigima/data/tests/laser_beam/TEM00_z_55.jpg +0 -0
  71. sigima/data/tests/laser_beam/TEM00_z_60.jpg +0 -0
  72. sigima/data/tests/laser_beam/TEM00_z_65.jpg +0 -0
  73. sigima/data/tests/laser_beam/TEM00_z_70.jpg +0 -0
  74. sigima/data/tests/laser_beam/TEM00_z_75.jpg +0 -0
  75. sigima/data/tests/laser_beam/TEM00_z_80.jpg +0 -0
  76. sigima/enums.py +195 -0
  77. sigima/io/__init__.py +123 -0
  78. sigima/io/base.py +311 -0
  79. sigima/io/common/__init__.py +5 -0
  80. sigima/io/common/basename.py +164 -0
  81. sigima/io/common/converters.py +189 -0
  82. sigima/io/common/objmeta.py +181 -0
  83. sigima/io/common/textreader.py +58 -0
  84. sigima/io/convenience.py +157 -0
  85. sigima/io/enums.py +17 -0
  86. sigima/io/ftlab.py +395 -0
  87. sigima/io/image/__init__.py +9 -0
  88. sigima/io/image/base.py +177 -0
  89. sigima/io/image/formats.py +1016 -0
  90. sigima/io/image/funcs.py +414 -0
  91. sigima/io/signal/__init__.py +9 -0
  92. sigima/io/signal/base.py +129 -0
  93. sigima/io/signal/formats.py +290 -0
  94. sigima/io/signal/funcs.py +723 -0
  95. sigima/objects/__init__.py +260 -0
  96. sigima/objects/base.py +937 -0
  97. sigima/objects/image/__init__.py +88 -0
  98. sigima/objects/image/creation.py +556 -0
  99. sigima/objects/image/object.py +524 -0
  100. sigima/objects/image/roi.py +904 -0
  101. sigima/objects/scalar/__init__.py +57 -0
  102. sigima/objects/scalar/common.py +215 -0
  103. sigima/objects/scalar/geometry.py +502 -0
  104. sigima/objects/scalar/table.py +784 -0
  105. sigima/objects/shape.py +290 -0
  106. sigima/objects/signal/__init__.py +133 -0
  107. sigima/objects/signal/constants.py +27 -0
  108. sigima/objects/signal/creation.py +1428 -0
  109. sigima/objects/signal/object.py +444 -0
  110. sigima/objects/signal/roi.py +274 -0
  111. sigima/params.py +405 -0
  112. sigima/proc/__init__.py +96 -0
  113. sigima/proc/base.py +381 -0
  114. sigima/proc/decorator.py +330 -0
  115. sigima/proc/image/__init__.py +513 -0
  116. sigima/proc/image/arithmetic.py +335 -0
  117. sigima/proc/image/base.py +260 -0
  118. sigima/proc/image/detection.py +519 -0
  119. sigima/proc/image/edges.py +329 -0
  120. sigima/proc/image/exposure.py +406 -0
  121. sigima/proc/image/extraction.py +458 -0
  122. sigima/proc/image/filtering.py +219 -0
  123. sigima/proc/image/fourier.py +147 -0
  124. sigima/proc/image/geometry.py +661 -0
  125. sigima/proc/image/mathops.py +340 -0
  126. sigima/proc/image/measurement.py +195 -0
  127. sigima/proc/image/morphology.py +155 -0
  128. sigima/proc/image/noise.py +107 -0
  129. sigima/proc/image/preprocessing.py +182 -0
  130. sigima/proc/image/restoration.py +235 -0
  131. sigima/proc/image/threshold.py +217 -0
  132. sigima/proc/image/transformations.py +393 -0
  133. sigima/proc/signal/__init__.py +376 -0
  134. sigima/proc/signal/analysis.py +206 -0
  135. sigima/proc/signal/arithmetic.py +551 -0
  136. sigima/proc/signal/base.py +262 -0
  137. sigima/proc/signal/extraction.py +60 -0
  138. sigima/proc/signal/features.py +310 -0
  139. sigima/proc/signal/filtering.py +484 -0
  140. sigima/proc/signal/fitting.py +276 -0
  141. sigima/proc/signal/fourier.py +259 -0
  142. sigima/proc/signal/mathops.py +420 -0
  143. sigima/proc/signal/processing.py +580 -0
  144. sigima/proc/signal/stability.py +175 -0
  145. sigima/proc/title_formatting.py +227 -0
  146. sigima/proc/validation.py +272 -0
  147. sigima/tests/__init__.py +7 -0
  148. sigima/tests/common/__init__.py +0 -0
  149. sigima/tests/common/arithmeticparam_unit_test.py +26 -0
  150. sigima/tests/common/basename_unit_test.py +126 -0
  151. sigima/tests/common/client_unit_test.py +412 -0
  152. sigima/tests/common/converters_unit_test.py +77 -0
  153. sigima/tests/common/decorator_unit_test.py +176 -0
  154. sigima/tests/common/examples_unit_test.py +104 -0
  155. sigima/tests/common/kernel_normalization_unit_test.py +242 -0
  156. sigima/tests/common/roi_basic_unit_test.py +73 -0
  157. sigima/tests/common/roi_geometry_unit_test.py +171 -0
  158. sigima/tests/common/scalar_builder_unit_test.py +142 -0
  159. sigima/tests/common/scalar_unit_test.py +991 -0
  160. sigima/tests/common/shape_unit_test.py +183 -0
  161. sigima/tests/common/stat_unit_test.py +138 -0
  162. sigima/tests/common/title_formatting_unit_test.py +338 -0
  163. sigima/tests/common/tools_coordinates_unit_test.py +60 -0
  164. sigima/tests/common/transformations_unit_test.py +178 -0
  165. sigima/tests/common/validation_unit_test.py +205 -0
  166. sigima/tests/conftest.py +129 -0
  167. sigima/tests/data.py +998 -0
  168. sigima/tests/env.py +280 -0
  169. sigima/tests/guiutils.py +163 -0
  170. sigima/tests/helpers.py +532 -0
  171. sigima/tests/image/__init__.py +28 -0
  172. sigima/tests/image/binning_unit_test.py +128 -0
  173. sigima/tests/image/blob_detection_unit_test.py +312 -0
  174. sigima/tests/image/centroid_unit_test.py +170 -0
  175. sigima/tests/image/check_2d_array_unit_test.py +63 -0
  176. sigima/tests/image/contour_unit_test.py +172 -0
  177. sigima/tests/image/convolution_unit_test.py +178 -0
  178. sigima/tests/image/datatype_unit_test.py +67 -0
  179. sigima/tests/image/edges_unit_test.py +155 -0
  180. sigima/tests/image/enclosingcircle_unit_test.py +88 -0
  181. sigima/tests/image/exposure_unit_test.py +223 -0
  182. sigima/tests/image/fft2d_unit_test.py +189 -0
  183. sigima/tests/image/filtering_unit_test.py +166 -0
  184. sigima/tests/image/geometry_unit_test.py +654 -0
  185. sigima/tests/image/hough_circle_unit_test.py +147 -0
  186. sigima/tests/image/imageobj_unit_test.py +737 -0
  187. sigima/tests/image/morphology_unit_test.py +71 -0
  188. sigima/tests/image/noise_unit_test.py +57 -0
  189. sigima/tests/image/offset_correction_unit_test.py +72 -0
  190. sigima/tests/image/operation_unit_test.py +518 -0
  191. sigima/tests/image/peak2d_limits_unit_test.py +41 -0
  192. sigima/tests/image/peak2d_unit_test.py +133 -0
  193. sigima/tests/image/profile_unit_test.py +159 -0
  194. sigima/tests/image/projections_unit_test.py +121 -0
  195. sigima/tests/image/restoration_unit_test.py +141 -0
  196. sigima/tests/image/roi2dparam_unit_test.py +53 -0
  197. sigima/tests/image/roi_advanced_unit_test.py +588 -0
  198. sigima/tests/image/roi_grid_unit_test.py +279 -0
  199. sigima/tests/image/spectrum2d_unit_test.py +40 -0
  200. sigima/tests/image/threshold_unit_test.py +91 -0
  201. sigima/tests/io/__init__.py +0 -0
  202. sigima/tests/io/addnewformat_unit_test.py +125 -0
  203. sigima/tests/io/convenience_funcs_unit_test.py +470 -0
  204. sigima/tests/io/coordinated_text_format_unit_test.py +495 -0
  205. sigima/tests/io/datetime_csv_unit_test.py +198 -0
  206. sigima/tests/io/imageio_formats_test.py +41 -0
  207. sigima/tests/io/ioregistry_unit_test.py +69 -0
  208. sigima/tests/io/objmeta_unit_test.py +87 -0
  209. sigima/tests/io/readobj_unit_test.py +130 -0
  210. sigima/tests/io/readwriteobj_unit_test.py +67 -0
  211. sigima/tests/signal/__init__.py +0 -0
  212. sigima/tests/signal/analysis_unit_test.py +135 -0
  213. sigima/tests/signal/check_1d_arrays_unit_test.py +169 -0
  214. sigima/tests/signal/convolution_unit_test.py +404 -0
  215. sigima/tests/signal/datetime_unit_test.py +176 -0
  216. sigima/tests/signal/fft1d_unit_test.py +303 -0
  217. sigima/tests/signal/filters_unit_test.py +403 -0
  218. sigima/tests/signal/fitting_unit_test.py +929 -0
  219. sigima/tests/signal/fwhm_unit_test.py +111 -0
  220. sigima/tests/signal/noise_unit_test.py +128 -0
  221. sigima/tests/signal/offset_correction_unit_test.py +34 -0
  222. sigima/tests/signal/operation_unit_test.py +489 -0
  223. sigima/tests/signal/peakdetection_unit_test.py +145 -0
  224. sigima/tests/signal/processing_unit_test.py +657 -0
  225. sigima/tests/signal/pulse/__init__.py +112 -0
  226. sigima/tests/signal/pulse/crossing_times_unit_test.py +123 -0
  227. sigima/tests/signal/pulse/plateau_detection_unit_test.py +102 -0
  228. sigima/tests/signal/pulse/pulse_unit_test.py +1824 -0
  229. sigima/tests/signal/roi_advanced_unit_test.py +392 -0
  230. sigima/tests/signal/signalobj_unit_test.py +603 -0
  231. sigima/tests/signal/stability_unit_test.py +431 -0
  232. sigima/tests/signal/uncertainty_unit_test.py +611 -0
  233. sigima/tests/vistools.py +1030 -0
  234. sigima/tools/__init__.py +59 -0
  235. sigima/tools/checks.py +290 -0
  236. sigima/tools/coordinates.py +308 -0
  237. sigima/tools/datatypes.py +26 -0
  238. sigima/tools/image/__init__.py +97 -0
  239. sigima/tools/image/detection.py +451 -0
  240. sigima/tools/image/exposure.py +77 -0
  241. sigima/tools/image/extraction.py +48 -0
  242. sigima/tools/image/fourier.py +260 -0
  243. sigima/tools/image/geometry.py +190 -0
  244. sigima/tools/image/preprocessing.py +165 -0
  245. sigima/tools/signal/__init__.py +86 -0
  246. sigima/tools/signal/dynamic.py +254 -0
  247. sigima/tools/signal/features.py +135 -0
  248. sigima/tools/signal/filtering.py +171 -0
  249. sigima/tools/signal/fitting.py +1171 -0
  250. sigima/tools/signal/fourier.py +466 -0
  251. sigima/tools/signal/interpolation.py +70 -0
  252. sigima/tools/signal/peakdetection.py +126 -0
  253. sigima/tools/signal/pulse.py +1626 -0
  254. sigima/tools/signal/scaling.py +50 -0
  255. sigima/tools/signal/stability.py +258 -0
  256. sigima/tools/signal/windowing.py +90 -0
  257. sigima/worker.py +79 -0
  258. sigima-1.0.0.dist-info/METADATA +233 -0
  259. sigima-1.0.0.dist-info/RECORD +262 -0
  260. {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/licenses/LICENSE +29 -29
  261. sigima-0.0.1.dev0.dist-info/METADATA +0 -60
  262. sigima-0.0.1.dev0.dist-info/RECORD +0 -6
  263. {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/WHEEL +0 -0
  264. {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1171 @@
1
+ # Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
2
+
3
+ """
4
+ Curve Fitting Algorithms
5
+ =========================
6
+
7
+ This module provides curve fitting functions without GUI dependencies.
8
+ The functions take x,y data and return fitted curves and parameters.
9
+
10
+ These functions are designed to be used programmatically and in tests,
11
+ providing the core fitting algorithms without PlotPy GUI components.
12
+ """
13
+
14
+ from __future__ import annotations
15
+
16
+ import string
17
+ import warnings
18
+ from typing import Type
19
+
20
+ import numpy as np
21
+ import scipy.optimize
22
+ import scipy.special
23
+
24
+ from sigima.tools.signal import peakdetection, pulse
25
+
26
+
27
+ class FitComputer:
28
+ """Base class for fit computers"""
29
+
30
+ PARAMS_NAMES: tuple[str] = () # To be defined by subclasses
31
+
32
+ def __init__(self, x: np.ndarray, y: np.ndarray) -> None:
33
+ self.x = x
34
+ self.y = y
35
+
36
+ def get_params_names(self) -> tuple[str]:
37
+ """Return the names of the parameters used in this fit."""
38
+ return self.PARAMS_NAMES
39
+
40
+ def check_params(self, **params) -> None:
41
+ """Check that all required parameters are provided."""
42
+ missing = [p for p in self.get_params_names() if p not in params]
43
+ if missing:
44
+ raise ValueError(f"Missing required parameters: {missing}")
45
+
46
+ @classmethod
47
+ def args_kwargs_to_list(cls, *args, **kwargs) -> list[float]:
48
+ """Convert args and kwargs to a parameter list."""
49
+ if kwargs and args:
50
+ raise ValueError("Cannot mix positional and keyword arguments")
51
+ if cls.PARAMS_NAMES:
52
+ param_names = cls.PARAMS_NAMES
53
+ else:
54
+ if not kwargs:
55
+ raise ValueError("No parameter names available and no kwargs provided")
56
+ param_names = cls.infer_param_names_from_kwargs(kwargs)
57
+ if len(args) > len(param_names):
58
+ raise ValueError("Too many positional arguments")
59
+ if args:
60
+ params = list(args)
61
+ else:
62
+ params = []
63
+ for name in param_names:
64
+ if name in kwargs:
65
+ params.append(kwargs[name])
66
+ else:
67
+ raise ValueError(f"Missing required parameter: {name}")
68
+ return params
69
+
70
+ @classmethod
71
+ def infer_param_names_from_kwargs(cls, kwargs: dict) -> tuple[str, ...]:
72
+ """Infer parameter names from kwargs. Override in subclasses if needed."""
73
+ return tuple(kwargs.keys())
74
+
75
+ @classmethod
76
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
77
+ """Evaluate the fit function at given x values."""
78
+ raise NotImplementedError("Subclasses must implement evaluate method")
79
+
80
+ def compute_initial_params(self) -> dict[str, float]:
81
+ """Compute initial parameters for fitting. To be implemented by subclasses."""
82
+ raise NotImplementedError(
83
+ "Subclasses must implement compute_initial_params method"
84
+ )
85
+
86
+ # pylint: disable=unused-argument
87
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
88
+ """Compute parameter bounds for fitting."""
89
+ return None
90
+
91
+ def create_params(self, y_fitted: np.ndarray, **params) -> dict[str, float]:
92
+ """Create a fit parameters dictionary from given parameters."""
93
+ self.check_params(**params)
94
+ params["fit_type"] = self.__class__.__name__.replace("FitComputer", "").lower()
95
+ params["residual_rms"] = np.sqrt(np.mean((self.y - y_fitted) ** 2))
96
+ return params
97
+
98
+ def fit(self) -> tuple[np.ndarray, dict[str, float]]:
99
+ """Fit the model to the data."""
100
+ # Default implementation uses scipy curve_fit
101
+ return self.optimize_fit_with_scipy()
102
+
103
+ def optimize_fit_with_scipy(self) -> tuple[np.ndarray, np.ndarray]:
104
+ """Generic fitting function using `scipy.optimize.curve_fit`
105
+
106
+ Returns:
107
+ tuple: (fitted_y_values, fitted_parameters)
108
+ """
109
+ initial_params = self.compute_initial_params()
110
+ bounds = self.compute_bounds(**initial_params) # pylint: disable=E1128
111
+ if bounds is not None:
112
+ # Convert bounds to scipy format
113
+ lower_bounds = [b[0] for b in bounds]
114
+ upper_bounds = [b[1] for b in bounds]
115
+ bounds_scipy = (lower_bounds, upper_bounds)
116
+ else:
117
+ bounds_scipy = (-np.inf, np.inf)
118
+
119
+ # Create a wrapper function that unpacks parameters correctly
120
+ def objective_func(x, *params):
121
+ """Wrapper function for scipy curve_fit."""
122
+ param_dict = dict(zip(self.get_params_names(), params))
123
+ try:
124
+ # Try as classmethod first
125
+ return self.__class__.evaluate(x, **param_dict)
126
+ except TypeError:
127
+ # Fall back to instance method
128
+ return self.evaluate(x, **param_dict)
129
+
130
+ try:
131
+ with warnings.catch_warnings():
132
+ warnings.filterwarnings(
133
+ "ignore", category=scipy.optimize.OptimizeWarning
134
+ )
135
+ popt, _ = scipy.optimize.curve_fit(
136
+ objective_func,
137
+ self.x,
138
+ self.y,
139
+ p0=list(initial_params.values()),
140
+ bounds=bounds_scipy,
141
+ maxfev=5000,
142
+ )
143
+ except (RuntimeError, ValueError, TypeError) as err:
144
+ # Fallback to initial parameters if optimization fails
145
+ warnings.warn(f"Optimization failed: {err}. Using initial parameters.")
146
+ try:
147
+ # Try as classmethod first
148
+ fitted_y = self.__class__.evaluate(self.x, **initial_params)
149
+ except TypeError:
150
+ # Fall back to instance method
151
+ fitted_y = self.evaluate(self.x, **initial_params)
152
+ result_params = self.create_params(fitted_y, **initial_params)
153
+ return fitted_y, result_params
154
+
155
+ names = self.get_params_names()
156
+ assert len(popt) == len(names), "Unexpected number of parameters"
157
+ param_dict = dict(zip(names, popt))
158
+ try:
159
+ # Try as classmethod first
160
+ fitted_y = self.__class__.evaluate(self.x, **param_dict)
161
+ except TypeError:
162
+ # Fall back to instance method
163
+ fitted_y = self.evaluate(self.x, **param_dict)
164
+ params = self.create_params(fitted_y, **param_dict)
165
+ return fitted_y, params
166
+
167
+
168
+ class LinearFitComputer(FitComputer):
169
+ """Linear fit computer"""
170
+
171
+ PARAMS_NAMES = ("a", "b") # slope and intercept
172
+
173
+ @classmethod
174
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
175
+ """Evaluate linear function at given x values."""
176
+ # pylint: disable=unbalanced-tuple-unpacking
177
+ a, b = cls.args_kwargs_to_list(*args, **kwargs)
178
+ return a * x + b
179
+
180
+ def compute_initial_params(self) -> dict[str, float]:
181
+ """Compute initial parameters for linear fitting using numpy polyfit."""
182
+ coeffs = np.polyfit(self.x, self.y, 1)
183
+ a, b = coeffs
184
+ return {"a": a, "b": b}
185
+
186
+
187
+ class PolynomialFitComputer(FitComputer):
188
+ """Polynomial fit computer of given degree"""
189
+
190
+ def __init__(self, x: np.ndarray, y: np.ndarray, degree: int = 2) -> None:
191
+ super().__init__(x, y)
192
+ if degree < 1:
193
+ raise ValueError("Degree must be at least 1")
194
+ self.degree = degree
195
+
196
+ def get_params_names(self) -> tuple[str]:
197
+ """Return the names of the parameters used in this fit."""
198
+ return tuple(string.ascii_lowercase[: self.degree + 1])
199
+
200
+ @classmethod
201
+ def infer_param_names_from_kwargs(cls, kwargs: dict) -> tuple[str, ...]:
202
+ """Infer parameter names for polynomial from kwargs."""
203
+ # Parameters are named 'a', 'b', 'c', ... in order
204
+ param_keys = [k for k in kwargs.keys() if k in string.ascii_lowercase]
205
+ if not param_keys:
206
+ raise ValueError("No valid polynomial parameters found")
207
+ # Sort to ensure correct order (a, b, c, ...)
208
+ return tuple(sorted(param_keys))
209
+
210
+ @classmethod
211
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
212
+ """Evaluate polynomial function at given x values."""
213
+ # pylint: disable=unbalanced-tuple-unpacking
214
+ coeffs = cls.args_kwargs_to_list(*args, **kwargs)
215
+ return np.polyval(coeffs, x)
216
+
217
+ def compute_initial_params(self) -> dict[str, float]:
218
+ """Compute initial parameters for polynomial fitting using numpy polyfit."""
219
+ coeffs = np.polyfit(self.x, self.y, self.degree)
220
+ param_names = self.get_params_names()
221
+
222
+ # Map numpy polyfit coefficients (highest to lowest degree) to parameter names
223
+ return dict(zip(param_names, coeffs))
224
+
225
+
226
+ class GaussianFitComputer(FitComputer):
227
+ """Gaussian fit computer"""
228
+
229
+ PARAMS_NAMES = ("amp", "sigma", "x0", "y0")
230
+
231
+ @classmethod
232
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
233
+ """Evaluate Gaussian function at given x values."""
234
+ # pylint: disable=unbalanced-tuple-unpacking
235
+ amp, sigma, x0, y0 = cls.args_kwargs_to_list(*args, **kwargs)
236
+ return pulse.GaussianModel.func(x, amp, sigma, x0, y0)
237
+
238
+ def compute_initial_params(self) -> dict[str, float]:
239
+ """Compute initial parameters for Gaussian fitting."""
240
+ dx = np.max(self.x) - np.min(self.x)
241
+ dy = np.max(self.y) - np.min(self.y)
242
+ y_min = np.min(self.y)
243
+
244
+ sigma = dx * 0.1
245
+ amp = pulse.GaussianModel.get_amp_from_amplitude(dy, sigma)
246
+ x0 = peakdetection.xpeak(self.x, self.y)
247
+ y0 = y_min
248
+
249
+ return {"amp": amp, "sigma": sigma, "x0": x0, "y0": y0}
250
+
251
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
252
+ """Compute parameter bounds for Gaussian fitting."""
253
+ dy = np.max(self.y) - np.min(self.y)
254
+ y_min = np.min(self.y)
255
+
256
+ return [
257
+ (0.0, initial_params["amp"] * 2), # amp
258
+ (initial_params["sigma"] * 0.1, initial_params["sigma"] * 10), # sigma
259
+ (np.min(self.x), np.max(self.x)), # x0
260
+ (y_min - 0.2 * dy, y_min + 0.2 * dy), # y0
261
+ ]
262
+
263
+
264
+ class LorentzianFitComputer(FitComputer):
265
+ """Lorentzian fit computer"""
266
+
267
+ PARAMS_NAMES = ("amp", "sigma", "x0", "y0")
268
+
269
+ @classmethod
270
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
271
+ """Evaluate Lorentzian function at given x values."""
272
+ # pylint: disable=unbalanced-tuple-unpacking
273
+ amp, sigma, x0, y0 = cls.args_kwargs_to_list(*args, **kwargs)
274
+ return pulse.LorentzianModel.func(x, amp, sigma, x0, y0)
275
+
276
+ def compute_initial_params(self) -> dict[str, float]:
277
+ """Compute initial parameters for Lorentzian fitting."""
278
+ dx = np.max(self.x) - np.min(self.x)
279
+ dy = np.max(self.y) - np.min(self.y)
280
+ y_min = np.min(self.y)
281
+
282
+ sigma = dx * 0.1
283
+ amp = pulse.LorentzianModel.get_amp_from_amplitude(dy, sigma)
284
+ x0 = peakdetection.xpeak(self.x, self.y)
285
+ y0 = y_min
286
+
287
+ return {"amp": amp, "sigma": sigma, "x0": x0, "y0": y0}
288
+
289
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
290
+ """Compute parameter bounds for Lorentzian fitting."""
291
+ dy = np.max(self.y) - np.min(self.y)
292
+ y_min = np.min(self.y)
293
+
294
+ return [
295
+ (0.0, initial_params["amp"] * 2), # amp
296
+ (initial_params["sigma"] * 0.1, initial_params["sigma"] * 10), # sigma
297
+ (np.min(self.x), np.max(self.x)), # x0
298
+ (y_min - 0.2 * dy, y_min + 0.2 * dy), # y0
299
+ ]
300
+
301
+
302
+ class VoigtFitComputer(FitComputer):
303
+ """Voigt fit computer"""
304
+
305
+ PARAMS_NAMES = ("amp", "sigma", "x0", "y0")
306
+
307
+ @classmethod
308
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
309
+ """Evaluate Voigt function at given x values."""
310
+ # pylint: disable=unbalanced-tuple-unpacking
311
+ amp, sigma, x0, y0 = cls.args_kwargs_to_list(*args, **kwargs)
312
+ return pulse.VoigtModel.func(x, amp, sigma, x0, y0)
313
+
314
+ def compute_initial_params(self) -> dict[str, float]:
315
+ """Compute initial parameters for Voigt fitting."""
316
+ dx = np.max(self.x) - np.min(self.x)
317
+ dy = np.max(self.y) - np.min(self.y)
318
+ y_min = np.min(self.y)
319
+
320
+ sigma = dx * 0.1
321
+ amp = pulse.VoigtModel.get_amp_from_amplitude(dy, sigma)
322
+ x0 = peakdetection.xpeak(self.x, self.y)
323
+ y0 = y_min
324
+
325
+ return {"amp": amp, "sigma": sigma, "x0": x0, "y0": y0}
326
+
327
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
328
+ """Compute parameter bounds for Voigt fitting."""
329
+ sigma = initial_params["sigma"]
330
+ amp = initial_params["amp"]
331
+ return [
332
+ (0.0, 10 * amp), # amp
333
+ (sigma * 0.01, sigma * 10), # sigma
334
+ (np.min(self.x), np.max(self.x)), # x0
335
+ (initial_params["y0"] - amp, initial_params["y0"] + amp), # y0
336
+ ]
337
+
338
+
339
+ class ExponentialFitComputer(FitComputer):
340
+ """Exponential fit computer: y = a * exp(b * x) + y0"""
341
+
342
+ PARAMS_NAMES = ("a", "b", "y0")
343
+
344
+ @classmethod
345
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
346
+ """Evaluate exponential function at given x values."""
347
+ # pylint: disable=unbalanced-tuple-unpacking
348
+ a, b, y0 = cls.args_kwargs_to_list(*args, **kwargs)
349
+ # Clip b to prevent overflow
350
+ b_clipped = np.clip(b, -50, 50)
351
+ return a * np.exp(b_clipped * x) + y0
352
+
353
+ def compute_initial_params(self) -> dict[str, float]:
354
+ """Compute initial parameters for exponential fitting."""
355
+ y_range = np.max(self.y) - np.min(self.y)
356
+ y_min = np.min(self.y)
357
+
358
+ # Estimate from data
359
+ if len(self.y) > 1:
360
+ # Try to determine if it's growth or decay
361
+ if self.y[0] > self.y[-1]:
362
+ # Decay
363
+ a = y_range
364
+ b = -1.0 / (np.max(self.x) - np.min(self.x))
365
+ else:
366
+ # Growth
367
+ a = y_range * 0.1
368
+ b = 1.0 / (np.max(self.x) - np.min(self.x))
369
+ else:
370
+ a = y_range
371
+ b = -1.0
372
+
373
+ y0 = y_min
374
+
375
+ return {"a": a, "b": b, "y0": y0}
376
+
377
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
378
+ """Compute parameter bounds for exponential fitting."""
379
+ y_range = np.max(self.y) - np.min(self.y)
380
+ y_min = np.min(self.y)
381
+
382
+ return [
383
+ (-y_range * 1000, y_range * 1000), # a
384
+ (-10, 10), # b (reasonable range to prevent overflow)
385
+ (y_min - 0.5 * y_range, y_min + 0.5 * y_range), # y0
386
+ ]
387
+
388
+
389
+ class PlanckianFitComputer(FitComputer):
390
+ """Planckian fit computer"""
391
+
392
+ PARAMS_NAMES = ("amp", "x0", "sigma", "y0")
393
+
394
+ @classmethod
395
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
396
+ """Return Planckian fitting function
397
+
398
+ Args:
399
+ x: wavelength values (in nm or other units)
400
+ amp: amplitude scaling factor
401
+ x0: peak wavelength (Wien's displacement law)
402
+ sigma: width parameter (larger sigma = wider peak)
403
+ y0: baseline offset
404
+ """
405
+ # pylint: disable=unbalanced-tuple-unpacking
406
+ amp, x0, sigma, y0 = cls.args_kwargs_to_list(*args, **kwargs)
407
+
408
+ # Planck-like function with Wien's displacement law behavior
409
+ # The function peaks at approximately x0 when properly parameterized
410
+
411
+ x = np.asarray(x, dtype=float)
412
+ y = np.full_like(x, y0, dtype=float)
413
+
414
+ # Only compute for positive wavelengths
415
+ valid_mask = x > 0
416
+ if not np.any(valid_mask):
417
+ return y
418
+
419
+ x_valid = x[valid_mask]
420
+
421
+ try:
422
+ # Wien's displacement law: λ_max * T = constant
423
+ # For a proper Planckian curve, we need:
424
+ # d/dx [x^(-5) / (exp(c/x) - 1)] = 0 at x = x0
425
+ # This gives us c = 5*x0 for the peak condition
426
+
427
+ # The exponential argument that produces peak at x0
428
+ wien_constant = 5.0
429
+
430
+ # Use sigma to control the effective temperature/width
431
+ # sigma=1.0 gives the canonical Planck curve
432
+ # sigma>1.0 gives broader curves (cooler)
433
+ # sigma<1.0 gives sharper curves (hotter)
434
+ temperature_factor = sigma
435
+
436
+ exp_argument = wien_constant * x0 / (x_valid * temperature_factor)
437
+
438
+ # Clip to prevent overflow
439
+ exp_argument = np.clip(exp_argument, 0, 50)
440
+
441
+ # Planck function components:
442
+ # 1. The wavelength dependence: x^(-5)
443
+ wavelength_factor = (x_valid / x0) ** (-5)
444
+
445
+ # 2. The exponential term: 1/(exp(arg) - 1)
446
+ exp_denominator = np.expm1(exp_argument) # exp(x) - 1
447
+
448
+ # Avoid division by very small numbers
449
+ exp_denominator = np.where(
450
+ np.abs(exp_denominator) < 1e-12, 1e-12, exp_denominator
451
+ )
452
+
453
+ # Combine the Planckian terms
454
+ planck_curve = wavelength_factor / exp_denominator
455
+
456
+ # Apply amplitude and add to baseline
457
+ y[valid_mask] += amp * planck_curve
458
+
459
+ except (OverflowError, ZeroDivisionError, RuntimeWarning):
460
+ # If computation fails, return baseline only
461
+ pass
462
+
463
+ return y
464
+
465
+ def compute_initial_params(self) -> dict[str, float]:
466
+ """Compute initial parameters for Planckian fitting."""
467
+ dy = np.max(self.y) - np.min(self.y)
468
+ x_peak = self.x[np.argmax(self.y)]
469
+ y_min = np.min(self.y)
470
+ return {"amp": dy, "x0": x_peak, "sigma": 1.0, "y0": y_min}
471
+
472
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
473
+ """Compute parameter bounds for Planckian fitting."""
474
+ return [
475
+ (initial_params["amp"] * 0.01, initial_params["amp"] * 100), # amp
476
+ (np.min(self.x), np.max(self.x)), # x0
477
+ (0.1, 5.0), # sigma
478
+ (
479
+ initial_params["y0"] - 0.2 * initial_params["amp"],
480
+ initial_params["y0"] + 0.2 * initial_params["amp"],
481
+ ), # y0
482
+ ]
483
+
484
+
485
+ class TwoHalfGaussianFitComputer(FitComputer):
486
+ """Two Half-Gaussian fit computer"""
487
+
488
+ PARAMS_NAMES = (
489
+ "amp_left",
490
+ "amp_right",
491
+ "sigma_left",
492
+ "sigma_right",
493
+ "x0",
494
+ "y0_left",
495
+ "y0_right",
496
+ )
497
+
498
+ @classmethod
499
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
500
+ """Return two half-Gaussian with separate left/right amplitudes
501
+
502
+ Args:
503
+ x: x values
504
+ amp_left: amplitude for left side (x < x0)
505
+ amp_right: amplitude for right side (x >= x0)
506
+ sigma_left: standard deviation for x < x0
507
+ sigma_right: standard deviation for x > x0
508
+ x0: center position
509
+ y0_left: baseline offset for x < x0
510
+ y0_right: baseline offset for x >= x0
511
+ """
512
+ # pylint: disable=unbalanced-tuple-unpacking
513
+ amp_left, amp_right, sigma_left, sigma_right, x0, y0_left, y0_right = (
514
+ cls.args_kwargs_to_list(*args, **kwargs)
515
+ )
516
+
517
+ y = np.zeros_like(x)
518
+
519
+ # Left side (x < x0): use amp_left, sigma_left and y0_left
520
+ left_mask = x < x0
521
+ if np.any(left_mask):
522
+ exp_left = np.exp(-0.5 * ((x[left_mask] - x0) / sigma_left) ** 2)
523
+ y[left_mask] = y0_left + amp_left * exp_left
524
+
525
+ # Right side (x >= x0): use amp_right, sigma_right and y0_right
526
+ right_mask = x >= x0
527
+ if np.any(right_mask):
528
+ exp_right = np.exp(-0.5 * ((x[right_mask] - x0) / sigma_right) ** 2)
529
+ y[right_mask] = y0_right + amp_right * exp_right
530
+
531
+ return y
532
+
533
+ def compute_initial_params(self) -> dict[str, float]:
534
+ """Compute initial parameters for Two Half-Gaussian fitting."""
535
+ # Parameter estimation with separate baseline analysis
536
+ dx = np.max(self.x) - np.min(self.x)
537
+ dy = np.max(self.y) - np.min(self.y)
538
+ x_peak = self.x[np.argmax(self.y)]
539
+
540
+ # Estimate separate baselines for left and right sides
541
+ left_mask = self.x < x_peak
542
+ right_mask = self.x >= x_peak
543
+
544
+ # Use the lower quartile of each side for robust baseline estimation
545
+ if np.any(left_mask):
546
+ y0_left = np.percentile(self.y[left_mask], 25)
547
+ else:
548
+ y0_left = np.min(self.y)
549
+ if np.any(right_mask):
550
+ y0_right = np.percentile(self.y[right_mask], 25)
551
+ else:
552
+ y0_right = np.min(self.y)
553
+
554
+ # Peak amplitude estimation (above average baseline)
555
+ avg_baseline = (y0_left + y0_right) / 2
556
+ amp_guess = np.max(self.y) - avg_baseline
557
+ half_max = avg_baseline + amp_guess * 0.5
558
+
559
+ # Find points at half maximum
560
+ left_points = np.where((self.x < x_peak) & (self.y >= half_max))[0]
561
+ right_points = np.where((self.x > x_peak) & (self.y >= half_max))[0]
562
+
563
+ # Estimate sigma values from half-width measurements
564
+ if len(left_points) > 0:
565
+ left_hw = x_peak - self.x[left_points[0]]
566
+ sigma_left = left_hw / np.sqrt(2 * np.log(2))
567
+ else:
568
+ sigma_left = dx * 0.05
569
+
570
+ if len(right_points) > 0:
571
+ right_hw = self.x[right_points[-1]] - x_peak
572
+ sigma_right = right_hw / np.sqrt(2 * np.log(2))
573
+ else:
574
+ sigma_right = dx * 0.05
575
+
576
+ x0 = x_peak
577
+
578
+ if np.any(left_mask):
579
+ left_peak_val = np.max(self.y[left_mask])
580
+ amp_left = left_peak_val - y0_left
581
+ else:
582
+ amp_left = dy * 0.5
583
+
584
+ if np.any(right_mask):
585
+ right_peak_val = np.max(self.y[right_mask])
586
+ amp_right = right_peak_val - y0_right
587
+ else:
588
+ amp_right = dy * 0.5
589
+
590
+ return {
591
+ "amp_left": amp_left,
592
+ "amp_right": amp_right,
593
+ "sigma_left": sigma_left,
594
+ "sigma_right": sigma_right,
595
+ "x0": x0,
596
+ "y0_left": y0_left,
597
+ "y0_right": y0_right,
598
+ }
599
+
600
+
601
+ class DoubleExponentialFitComputer(FitComputer):
602
+ """Piecewise exponential (raise-decay) fit computer."""
603
+
604
+ PARAMS_NAMES = ("x_center", "a_left", "b_left", "a_right", "b_right", "y0")
605
+
606
+ @classmethod
607
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
608
+ """Return piecewise exponential (raise-decay) fitting function
609
+
610
+ Args:
611
+ x: time values
612
+ x_center: center position (boundary between left and right components)
613
+ a_left: left component amplitude coefficient
614
+ b_left: left component time constant coefficient
615
+ a_right: right component amplitude coefficient
616
+ b_right: right component time constant coefficient
617
+ y0: baseline offset
618
+ """
619
+ # pylint: disable=unbalanced-tuple-unpacking
620
+ x_center, a_left, b_left, a_right, b_right, y0 = cls.args_kwargs_to_list(
621
+ *args, **kwargs
622
+ )
623
+ y = np.zeros_like(x)
624
+ y[x < x_center] = a_left * np.exp(b_left * x[x < x_center]) + y0
625
+ y[x >= x_center] = a_right * np.exp(b_right * x[x >= x_center]) + y0
626
+ return y
627
+
628
+ def compute_initial_params(self) -> dict[str, float]:
629
+ """Compute initial parameters for piecewise exponential (raise-decay)
630
+ fitting."""
631
+ y_range = np.max(self.y) - np.min(self.y)
632
+ x_range = np.max(self.x) - np.min(self.x)
633
+ y_max = np.max(self.y)
634
+
635
+ # Baseline is rarely different from zero:
636
+ y0 = 0.0
637
+
638
+ # Analyze signal characteristics for better initial guesses
639
+ peak_idx = np.argmax(self.y)
640
+
641
+ # Estimate x_center as the peak position
642
+ x_center = self.x[peak_idx]
643
+
644
+ # Estimate parameters (a_left, b_left, a_right, b_right) by decomposing
645
+ # the signal into growth and decay components based on peak position, and
646
+ # fitting each curve with exponential functions using exponential_fit().
647
+ # X center estimation is very rough here, so we need to remove say 10% of
648
+ # the x range on each side to avoid fitting artifacts.
649
+ x_range = np.max(self.x) - np.min(self.x)
650
+ x_left_mask = self.x < (x_center - 0.1 * x_range)
651
+ x_right_mask = self.x >= (x_center + 0.1 * x_range)
652
+
653
+ x_left, y_left = self.x[x_left_mask], self.y[x_left_mask]
654
+ x_right, y_right = self.x[x_right_mask], self.y[x_right_mask]
655
+
656
+ left_params = {"a": 0.0, "b": 0.1, "y0": 0.0}
657
+ right_params = {"a": 0.0, "b": 0.1, "y0": 0.0}
658
+ if np.any(x_left_mask):
659
+ _y_fitted, left_params = ExponentialFitComputer(x_left, y_left).fit()
660
+ if np.any(x_right_mask):
661
+ _y_fitted, right_params = ExponentialFitComputer(x_right, y_right).fit()
662
+
663
+ a_left = left_params["a"]
664
+ b_left = left_params["b"]
665
+ a_right = right_params["a"]
666
+ b_right = right_params["b"]
667
+ y0 = (left_params["y0"] + right_params["y0"]) / 2
668
+
669
+ # Set bounds for parameters - b can be positive or negative
670
+ amp_bound = max(abs(y_max - y0), y_range) * 2
671
+ rate_bound = 5.0 / max(x_range, 1e-6) # Avoid division by zero
672
+
673
+ # Ensure initial parameters are within bounds
674
+ b_left = np.clip(b_left, -rate_bound, rate_bound)
675
+ b_right = np.clip(b_right, -rate_bound, rate_bound)
676
+ a_left = np.clip(a_left, -amp_bound, amp_bound)
677
+ a_right = np.clip(a_right, -amp_bound, amp_bound)
678
+
679
+ return {
680
+ "x_center": x_center,
681
+ "a_left": a_left,
682
+ "b_left": b_left,
683
+ "a_right": a_right,
684
+ "b_right": b_right,
685
+ "y0": y0,
686
+ }
687
+
688
+
689
+ class BaseMultiPeakFitComputer(FitComputer):
690
+ """Base class for multi-peak fit computers"""
691
+
692
+ PULSE_MODEL: Type[pulse.PulseFitModel] # To be defined by subclasses
693
+
694
+ def __init__(
695
+ self, x: np.ndarray, y: np.ndarray, peak_indices: list[int] | None = None
696
+ ) -> None:
697
+ super().__init__(x, y)
698
+ self.peak_indices = peak_indices
699
+
700
+ def get_params_names(self) -> tuple[str]:
701
+ """Return the names of the parameters used in this fit."""
702
+ n_peaks = len(self.peak_indices)
703
+ names = []
704
+ for i in range(n_peaks):
705
+ names.extend([f"amp_{i + 1}", f"sigma_{i + 1}", f"x0_{i + 1}"])
706
+ names.append("y0")
707
+ return tuple(names)
708
+
709
+ @classmethod
710
+ def infer_param_names_from_kwargs(cls, kwargs: dict) -> tuple[str, ...]:
711
+ """Infer parameter names for multi-gaussian from kwargs."""
712
+ # Find all amp_X parameters to count peaks
713
+ amp_params = [k for k in kwargs.keys() if k.startswith("amp_")]
714
+ n_peaks = len(amp_params)
715
+ if n_peaks == 0:
716
+ raise ValueError("No amp parameters found")
717
+
718
+ names = []
719
+ for i in range(1, n_peaks + 1):
720
+ names.extend([f"amp_{i}", f"sigma_{i}", f"x0_{i}"])
721
+ names.append("y0")
722
+ return tuple(names)
723
+
724
+ @classmethod
725
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
726
+ """Evaluate the fit function at given x values."""
727
+ # pylint: disable=unbalanced-tuple-unpacking
728
+ paramlist = cls.args_kwargs_to_list(*args, **kwargs)
729
+ # Determine number of peaks from parameter count
730
+ n_peaks = (
731
+ len(paramlist) - 1
732
+ ) // 3 # -1 for y0, then divide by 3 params per peak
733
+ y_result = np.zeros_like(x) + paramlist[-1]
734
+ for i in range(n_peaks):
735
+ amp, sigma, x0 = paramlist[3 * i : 3 * i + 3]
736
+ y_result += cls.PULSE_MODEL.func(x, amp, sigma, x0, 0.0)
737
+ return y_result
738
+
739
+ def compute_initial_params(self) -> dict[str, float]:
740
+ """Compute initial parameters for Multi Gaussian fitting."""
741
+ params = {}
742
+ for i, peak_idx in enumerate(self.peak_indices):
743
+ if i > 0:
744
+ istart = (self.peak_indices[i - 1] + peak_idx) // 2
745
+ else:
746
+ istart = 0
747
+ if i < len(self.peak_indices) - 1:
748
+ iend = (self.peak_indices[i + 1] + peak_idx) // 2
749
+ else:
750
+ iend = len(self.x) - 1
751
+ local_dx = 0.5 * (self.x[iend] - self.x[istart])
752
+ local_dy = np.max(self.y[istart:iend]) - np.min(self.y[istart:iend])
753
+ amp = self.PULSE_MODEL.get_amp_from_amplitude(local_dy, local_dx * 0.1)
754
+ sigma = local_dx * 0.1
755
+ x0 = self.x[peak_idx]
756
+
757
+ params[f"amp_{i + 1}"] = amp
758
+ params[f"sigma_{i + 1}"] = sigma
759
+ params[f"x0_{i + 1}"] = x0
760
+
761
+ params["y0"] = np.min(self.y)
762
+ return params
763
+
764
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
765
+ """Compute parameter bounds for Multi Lorentzian fitting."""
766
+ bounds = []
767
+ for i, peak_idx in enumerate(self.peak_indices):
768
+ if i > 0:
769
+ istart = (self.peak_indices[i - 1] + peak_idx) // 2
770
+ else:
771
+ istart = 0
772
+ if i < len(self.peak_indices) - 1:
773
+ iend = (self.peak_indices[i + 1] + peak_idx) // 2
774
+ else:
775
+ iend = len(self.x) - 1
776
+ local_dx = 0.5 * (self.x[iend] - self.x[istart])
777
+ bounds.extend(
778
+ [
779
+ (0.0, initial_params[f"amp_{i + 1}"] * 10.0), # amp
780
+ (local_dx * 0.001, local_dx * 10.0), # sigma
781
+ (self.x[istart], self.x[iend]), # x0
782
+ ]
783
+ )
784
+ y0 = initial_params["y0"]
785
+ dy = np.max(self.y) - np.min(self.y)
786
+ bounds.append((y0 - dy, y0 + dy))
787
+ return bounds
788
+
789
+ def create_params(self, y_fitted: np.ndarray, **params) -> dict[str, float]:
790
+ """Create a flat fit parameters dictionary."""
791
+ self.check_params(**params)
792
+ params["fit_type"] = self.__class__.__name__.replace("FitComputer", "").lower()
793
+ params["residual_rms"] = np.sqrt(np.mean((self.y - y_fitted) ** 2))
794
+ return params
795
+
796
+
797
+ class MultiGaussianFitComputer(BaseMultiPeakFitComputer):
798
+ """Multi Gaussian fit computer"""
799
+
800
+ PULSE_MODEL = pulse.GaussianModel
801
+
802
+
803
+ class MultiLorentzianFitComputer(BaseMultiPeakFitComputer):
804
+ """Multi Lorentzian fit computer"""
805
+
806
+ PULSE_MODEL = pulse.LorentzianModel
807
+
808
+
809
+ class SinusoidalFitComputer(FitComputer):
810
+ """Sinusoidal fit computer."""
811
+
812
+ PARAMS_NAMES = ("amplitude", "frequency", "phase", "offset")
813
+
814
+ @classmethod
815
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
816
+ """Evaluate sinusoidal function at given x values."""
817
+ # pylint: disable=unbalanced-tuple-unpacking
818
+ amplitude, frequency, phase, offset = cls.args_kwargs_to_list(*args, **kwargs)
819
+ return amplitude * np.sin(2 * np.pi * frequency * x + phase) + offset
820
+
821
+ def compute_initial_params(self) -> dict[str, float]:
822
+ """Compute initial parameters for sinusoidal fitting."""
823
+ # Parameter estimation using FFT for frequency
824
+ dy = np.max(self.y) - np.min(self.y)
825
+ amplitude = dy / 2
826
+ offset = np.mean(self.y)
827
+ phase = 0.0
828
+
829
+ # Estimate frequency using FFT
830
+ if len(self.x) > 2:
831
+ dt = self.x[1] - self.x[0] # Assuming evenly spaced
832
+ fft_y = np.fft.fft(self.y - offset)
833
+ freqs = np.fft.fftfreq(len(self.y), dt)
834
+ # Find dominant frequency (excluding DC component)
835
+ dominant_idx = np.argmax(np.abs(fft_y[1 : len(fft_y) // 2])) + 1
836
+ frequency = np.abs(freqs[dominant_idx])
837
+ else:
838
+ frequency = 1.0 / (np.max(self.x) - np.min(self.x))
839
+
840
+ return {
841
+ "amplitude": amplitude,
842
+ "frequency": frequency,
843
+ "phase": phase,
844
+ "offset": offset,
845
+ }
846
+
847
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
848
+ """Compute parameter bounds for sinusoidal fitting."""
849
+ dy = initial_params["amplitude"] * 2
850
+ y0 = initial_params["offset"]
851
+ return [
852
+ (0.0, dy), # amplitude
853
+ (0.0, 2.0 * initial_params["frequency"]), # frequency
854
+ (-2 * np.pi, 2 * np.pi), # phase
855
+ (y0 - dy, y0 + dy), # offset
856
+ ]
857
+
858
+
859
+ class CDFFitComputer(FitComputer):
860
+ """Cumulative Distribution Function (CDF) fit computer"""
861
+
862
+ PARAMS_NAMES = ("amplitude", "mu", "sigma", "baseline")
863
+
864
+ @classmethod
865
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
866
+ """Evaluate CDF function at given x values."""
867
+ # pylint: disable=unbalanced-tuple-unpacking
868
+ amplitude, mu, sigma, baseline = cls.args_kwargs_to_list(*args, **kwargs)
869
+ erf = scipy.special.erf # pylint: disable=no-member
870
+ return amplitude * erf((x - mu) / (sigma * np.sqrt(2))) + baseline
871
+
872
+ def compute_initial_params(self) -> dict[str, float]:
873
+ """Compute initial parameters for CDF fitting."""
874
+ # Parameter estimation
875
+ y_min, y_max = np.min(self.y), np.max(self.y)
876
+ dy = y_max - y_min
877
+ x_min, x_max = np.min(self.x), np.max(self.x)
878
+ dx = x_max - x_min
879
+ return {
880
+ "amplitude": dy,
881
+ "mu": (x_max + np.abs(x_min)) / 2,
882
+ "sigma": dx / 10,
883
+ "baseline": dy / 2,
884
+ }
885
+
886
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
887
+ """Compute parameter bounds for CDF fitting."""
888
+ y_min, y_max = np.min(self.y), np.max(self.y)
889
+ dy = initial_params["amplitude"]
890
+ x_min, x_max = np.min(self.x), np.max(self.x)
891
+ dx = x_max - x_min
892
+ return [
893
+ (0.0, dy * 2), # amplitude
894
+ (x_min, x_max), # mu
895
+ (dx * 0.001, dx), # sigma
896
+ (y_min - dy, y_max + dy), # baseline
897
+ ]
898
+
899
+
900
+ class SigmoidFitComputer(FitComputer):
901
+ """Sigmoid fit computer."""
902
+
903
+ PARAMS_NAMES = ("amplitude", "k", "x0", "offset")
904
+
905
+ @classmethod
906
+ def evaluate(cls, x: np.ndarray, *args, **kwargs) -> np.ndarray:
907
+ """Evaluate Sigmoid function at given x values."""
908
+ # pylint: disable=unbalanced-tuple-unpacking
909
+ amplitude, k, x0, offset = cls.args_kwargs_to_list(*args, **kwargs)
910
+ return amplitude / (1 + np.exp(-k * (x - x0))) + offset
911
+
912
+ def compute_initial_params(self) -> dict[str, float]:
913
+ """Compute initial parameters for Sigmoid fitting."""
914
+ y_min, y_max = np.min(self.y), np.max(self.y)
915
+ dy = y_max - y_min
916
+ x_min, x_max = np.min(self.x), np.max(self.x)
917
+ dx = x_max - x_min
918
+ return {
919
+ "amplitude": dy,
920
+ "k": 4.0 / dx,
921
+ "x0": (x_max + np.abs(x_min)) / 2,
922
+ "offset": y_min,
923
+ }
924
+
925
+ def compute_bounds(self, **initial_params) -> list[tuple[float, float]] | None:
926
+ """Compute parameter bounds for Sigmoid fitting."""
927
+ y_min, y_max = np.min(self.y), np.max(self.y)
928
+ dy = initial_params["amplitude"]
929
+ x_min, x_max = np.min(self.x), np.max(self.x)
930
+ dx = x_max - x_min
931
+ return [
932
+ (0.0, 10 * dy), # amplitude
933
+ (0.1 / dx, 100.0 / dx), # k
934
+ (x_min, x_max), # x0
935
+ (y_min - dy, y_max + dy), # offset
936
+ ]
937
+
938
+
939
+ def linear_fit(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, dict[str, float]]:
940
+ """Compute linear fit: y = a*x + b.
941
+
942
+ Args:
943
+ x: x data array
944
+ y: y data array
945
+
946
+ Returns:
947
+ A tuple containing the fitted y values and a dictionary of fit parameters.
948
+ """
949
+ return LinearFitComputer(x, y).fit()
950
+
951
+
952
+ def polynomial_fit(
953
+ x: np.ndarray, y: np.ndarray, degree: int = 2
954
+ ) -> tuple[np.ndarray, dict[str, float]]:
955
+ """Compute polynomial fit.
956
+
957
+ Args:
958
+ x: x data array
959
+ y: y data array
960
+ degree: polynomial degree
961
+
962
+ Returns:
963
+ A tuple containing the fitted y values and a dictionary of fit parameters.
964
+ """
965
+ return PolynomialFitComputer(x, y, degree).fit()
966
+
967
+
968
+ def gaussian_fit(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, dict[str, float]]:
969
+ """Compute Gaussian fit.
970
+
971
+ Args:
972
+ x: x data array
973
+ y: y data array
974
+
975
+ Returns:
976
+ A tuple containing the fitted y values and a dictionary of fit parameters.
977
+ """
978
+ return GaussianFitComputer(x, y).fit()
979
+
980
+
981
+ def lorentzian_fit(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, dict]:
982
+ """Compute Lorentzian fit.
983
+
984
+ Args:
985
+ x: x data array
986
+ y: y data array
987
+
988
+ Returns:
989
+ A tuple containing the fitted y values and a dictionary of fit parameters.
990
+ """
991
+ return LorentzianFitComputer(x, y).fit()
992
+
993
+
994
+ def exponential_fit(
995
+ x: np.ndarray, y: np.ndarray
996
+ ) -> tuple[np.ndarray, dict[str, float]]:
997
+ """Compute exponential fit: y = a * exp(b * x) + y0.
998
+
999
+ Args:
1000
+ x: x data array
1001
+ y: y data array
1002
+
1003
+ Returns:
1004
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1005
+ """
1006
+ return ExponentialFitComputer(x, y).fit()
1007
+
1008
+
1009
+ def planckian_fit(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, dict[str, float]]:
1010
+ """Compute Planckian (blackbody radiation) fit.
1011
+
1012
+ Args:
1013
+ x: wavelength data array
1014
+ y: intensity data array
1015
+
1016
+ Returns:
1017
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1018
+ """
1019
+ return PlanckianFitComputer(x, y).fit()
1020
+
1021
+
1022
+ def twohalfgaussian_fit(
1023
+ x: np.ndarray, y: np.ndarray
1024
+ ) -> tuple[np.ndarray, dict[str, float]]:
1025
+ """Compute two half-Gaussian fit for asymmetric peaks with separate baselines.
1026
+
1027
+ Now supports separate amplitudes for even better asymmetric peak fitting.
1028
+
1029
+ Args:
1030
+ x: x data array
1031
+ y: y data array
1032
+
1033
+ Returns:
1034
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1035
+ """
1036
+ return TwoHalfGaussianFitComputer(x, y).fit()
1037
+
1038
+
1039
+ def piecewiseexponential_fit(
1040
+ x: np.ndarray, y: np.ndarray
1041
+ ) -> tuple[np.ndarray, dict[str, float]]:
1042
+ """Compute piecewise exponential fit (raise-decay).
1043
+
1044
+ Args:
1045
+ x: time data array
1046
+ y: intensity data array
1047
+
1048
+ Returns:
1049
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1050
+ """
1051
+ return DoubleExponentialFitComputer(x, y).fit()
1052
+
1053
+
1054
+ def multilorentzian_fit(
1055
+ x: np.ndarray, y: np.ndarray, peak_indices: list[int]
1056
+ ) -> tuple[np.ndarray, dict[str, float]]:
1057
+ """Compute multi-Lorentzian fit for multiple peaks.
1058
+
1059
+ Args:
1060
+ x: x data array
1061
+ y: y data array
1062
+ peak_indices: list of peak indices
1063
+
1064
+ Returns:
1065
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1066
+ """
1067
+ return MultiLorentzianFitComputer(x, y, peak_indices).fit()
1068
+
1069
+
1070
+ def multigaussian_fit(
1071
+ x: np.ndarray, y: np.ndarray, peak_indices: list[int]
1072
+ ) -> tuple[np.ndarray, dict[str, float]]:
1073
+ """Compute multi-Gaussian fit for multiple peaks.
1074
+
1075
+ Args:
1076
+ x: x data array
1077
+ y: y data array
1078
+ peak_indices: list of peak indices
1079
+
1080
+ Returns:
1081
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1082
+ """
1083
+ return MultiGaussianFitComputer(x, y, peak_indices).fit()
1084
+
1085
+
1086
+ def sinusoidal_fit(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, dict[str, float]]:
1087
+ """Compute sinusoidal fit.
1088
+
1089
+ Args:
1090
+ x: x data array
1091
+ y: y data array
1092
+
1093
+ Returns:
1094
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1095
+ """
1096
+ return SinusoidalFitComputer(x, y).fit()
1097
+
1098
+
1099
+ def voigt_fit(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, dict[str, float]]:
1100
+ """Compute Voigt fit.
1101
+
1102
+ Args:
1103
+ x: x data array
1104
+ y: y data array
1105
+
1106
+ Returns:
1107
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1108
+ """
1109
+ return VoigtFitComputer(x, y).fit()
1110
+
1111
+
1112
+ def cdf_fit(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, dict[str, float]]:
1113
+ """Compute Cumulative Distribution Function (CDF) fit.
1114
+
1115
+ Args:
1116
+ x: x data array
1117
+ y: y data array
1118
+
1119
+ Returns:
1120
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1121
+ """
1122
+ return CDFFitComputer(x, y).fit()
1123
+
1124
+
1125
+ def sigmoid_fit(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, dict[str, float]]:
1126
+ """Compute Sigmoid (Logistic) fit.
1127
+
1128
+ Args:
1129
+ x: x data array
1130
+ y: y data array
1131
+
1132
+ Returns:
1133
+ A tuple containing the fitted y values and a dictionary of fit parameters.
1134
+ """
1135
+ return SigmoidFitComputer(x, y).fit()
1136
+
1137
+
1138
+ FIT_TYPE_MAPPING = {
1139
+ "linear": LinearFitComputer,
1140
+ "polynomial": PolynomialFitComputer,
1141
+ "gaussian": GaussianFitComputer,
1142
+ "lorentzian": LorentzianFitComputer,
1143
+ "exponential": ExponentialFitComputer,
1144
+ "planckian": PlanckianFitComputer,
1145
+ "twohalfgaussian": TwoHalfGaussianFitComputer,
1146
+ "doubleexponential": DoubleExponentialFitComputer,
1147
+ "multilorentzian": MultiLorentzianFitComputer,
1148
+ "multigaussian": MultiGaussianFitComputer,
1149
+ "sinusoidal": SinusoidalFitComputer,
1150
+ "voigt": VoigtFitComputer,
1151
+ "cdf": CDFFitComputer,
1152
+ "sigmoid": SigmoidFitComputer,
1153
+ }
1154
+
1155
+
1156
+ def evaluate_fit(x: np.ndarray, **fit_params) -> np.ndarray:
1157
+ """Evaluate fit function with given parameters at x values.
1158
+
1159
+ Args:
1160
+ x: X values to evaluate at
1161
+ **fit_params: Fit parameters (any of the ``*Params`` dataclasses)
1162
+
1163
+ Returns:
1164
+ Y values computed from the fit function
1165
+ """
1166
+ params = fit_params.copy()
1167
+ params.pop("residual_rms", None)
1168
+ fcclass: Type[FitComputer] = FIT_TYPE_MAPPING.get(params.pop("fit_type", None))
1169
+ if fcclass is None:
1170
+ raise ValueError(f"Unsupported fit type: {fit_params.get('fit_type')}")
1171
+ return fcclass.evaluate(x, **params)