sigima 0.0.1.dev0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sigima/__init__.py +142 -2
- sigima/client/__init__.py +105 -0
- sigima/client/base.py +780 -0
- sigima/client/remote.py +469 -0
- sigima/client/stub.py +814 -0
- sigima/client/utils.py +90 -0
- sigima/config.py +444 -0
- sigima/data/logo/Sigima.svg +135 -0
- sigima/data/tests/annotations.json +798 -0
- sigima/data/tests/curve_fitting/exponential_fit.txt +511 -0
- sigima/data/tests/curve_fitting/gaussian_fit.txt +100 -0
- sigima/data/tests/curve_fitting/piecewiseexponential_fit.txt +1022 -0
- sigima/data/tests/curve_fitting/polynomial_fit.txt +100 -0
- sigima/data/tests/curve_fitting/twohalfgaussian_fit.txt +1000 -0
- sigima/data/tests/curve_formats/bandwidth.txt +201 -0
- sigima/data/tests/curve_formats/boxcar.npy +0 -0
- sigima/data/tests/curve_formats/datetime.txt +1001 -0
- sigima/data/tests/curve_formats/dynamic_parameters.txt +4000 -0
- sigima/data/tests/curve_formats/fw1e2.txt +301 -0
- sigima/data/tests/curve_formats/fwhm.txt +319 -0
- sigima/data/tests/curve_formats/multiple_curves.csv +29 -0
- sigima/data/tests/curve_formats/noised_saw.mat +0 -0
- sigima/data/tests/curve_formats/oscilloscope.csv +111 -0
- sigima/data/tests/curve_formats/other/other2/recursive2.txt +5 -0
- sigima/data/tests/curve_formats/other/recursive1.txt +5 -0
- sigima/data/tests/curve_formats/paracetamol.npy +0 -0
- sigima/data/tests/curve_formats/paracetamol.txt +1010 -0
- sigima/data/tests/curve_formats/paracetamol_dx_dy.csv +1000 -0
- sigima/data/tests/curve_formats/paracetamol_dy.csv +1001 -0
- sigima/data/tests/curve_formats/pulse1.npy +0 -0
- sigima/data/tests/curve_formats/pulse2.npy +0 -0
- sigima/data/tests/curve_formats/simple.txt +5 -0
- sigima/data/tests/curve_formats/spectrum.mca +2139 -0
- sigima/data/tests/curve_formats/square2.npy +0 -0
- sigima/data/tests/curve_formats/step.npy +0 -0
- sigima/data/tests/fabry-perot1.jpg +0 -0
- sigima/data/tests/fabry-perot2.jpg +0 -0
- sigima/data/tests/flower.npy +0 -0
- sigima/data/tests/image_formats/NF 180338201.scor-data +11003 -0
- sigima/data/tests/image_formats/binary_image.npy +0 -0
- sigima/data/tests/image_formats/binary_image.png +0 -0
- sigima/data/tests/image_formats/centroid_test.npy +0 -0
- sigima/data/tests/image_formats/coordinated_text/complex_image.txt +10011 -0
- sigima/data/tests/image_formats/coordinated_text/complex_ref_image.txt +10010 -0
- sigima/data/tests/image_formats/coordinated_text/image.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image2.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_no_unit_no_label.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_nan.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_unit.txt +14 -0
- sigima/data/tests/image_formats/fiber.csv +480 -0
- sigima/data/tests/image_formats/fiber.jpg +0 -0
- sigima/data/tests/image_formats/fiber.png +0 -0
- sigima/data/tests/image_formats/fiber.txt +480 -0
- sigima/data/tests/image_formats/gaussian_spot_with_noise.npy +0 -0
- sigima/data/tests/image_formats/mr-brain.dcm +0 -0
- sigima/data/tests/image_formats/noised_gaussian.mat +0 -0
- sigima/data/tests/image_formats/sif_reader/nd_lum_image_no_glue.sif +0 -0
- sigima/data/tests/image_formats/sif_reader/raman1.sif +0 -0
- sigima/data/tests/image_formats/tiling.txt +10 -0
- sigima/data/tests/image_formats/uint16.tiff +0 -0
- sigima/data/tests/image_formats/uint8.tiff +0 -0
- sigima/data/tests/laser_beam/TEM00_z_13.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_18.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_23.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_30.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_35.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_40.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_45.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_50.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_55.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_60.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_65.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_70.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_75.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_80.jpg +0 -0
- sigima/enums.py +195 -0
- sigima/io/__init__.py +123 -0
- sigima/io/base.py +311 -0
- sigima/io/common/__init__.py +5 -0
- sigima/io/common/basename.py +164 -0
- sigima/io/common/converters.py +189 -0
- sigima/io/common/objmeta.py +181 -0
- sigima/io/common/textreader.py +58 -0
- sigima/io/convenience.py +157 -0
- sigima/io/enums.py +17 -0
- sigima/io/ftlab.py +395 -0
- sigima/io/image/__init__.py +9 -0
- sigima/io/image/base.py +177 -0
- sigima/io/image/formats.py +1016 -0
- sigima/io/image/funcs.py +414 -0
- sigima/io/signal/__init__.py +9 -0
- sigima/io/signal/base.py +129 -0
- sigima/io/signal/formats.py +290 -0
- sigima/io/signal/funcs.py +723 -0
- sigima/objects/__init__.py +260 -0
- sigima/objects/base.py +937 -0
- sigima/objects/image/__init__.py +88 -0
- sigima/objects/image/creation.py +556 -0
- sigima/objects/image/object.py +524 -0
- sigima/objects/image/roi.py +904 -0
- sigima/objects/scalar/__init__.py +57 -0
- sigima/objects/scalar/common.py +215 -0
- sigima/objects/scalar/geometry.py +502 -0
- sigima/objects/scalar/table.py +784 -0
- sigima/objects/shape.py +290 -0
- sigima/objects/signal/__init__.py +133 -0
- sigima/objects/signal/constants.py +27 -0
- sigima/objects/signal/creation.py +1428 -0
- sigima/objects/signal/object.py +444 -0
- sigima/objects/signal/roi.py +274 -0
- sigima/params.py +405 -0
- sigima/proc/__init__.py +96 -0
- sigima/proc/base.py +381 -0
- sigima/proc/decorator.py +330 -0
- sigima/proc/image/__init__.py +513 -0
- sigima/proc/image/arithmetic.py +335 -0
- sigima/proc/image/base.py +260 -0
- sigima/proc/image/detection.py +519 -0
- sigima/proc/image/edges.py +329 -0
- sigima/proc/image/exposure.py +406 -0
- sigima/proc/image/extraction.py +458 -0
- sigima/proc/image/filtering.py +219 -0
- sigima/proc/image/fourier.py +147 -0
- sigima/proc/image/geometry.py +661 -0
- sigima/proc/image/mathops.py +340 -0
- sigima/proc/image/measurement.py +195 -0
- sigima/proc/image/morphology.py +155 -0
- sigima/proc/image/noise.py +107 -0
- sigima/proc/image/preprocessing.py +182 -0
- sigima/proc/image/restoration.py +235 -0
- sigima/proc/image/threshold.py +217 -0
- sigima/proc/image/transformations.py +393 -0
- sigima/proc/signal/__init__.py +376 -0
- sigima/proc/signal/analysis.py +206 -0
- sigima/proc/signal/arithmetic.py +551 -0
- sigima/proc/signal/base.py +262 -0
- sigima/proc/signal/extraction.py +60 -0
- sigima/proc/signal/features.py +310 -0
- sigima/proc/signal/filtering.py +484 -0
- sigima/proc/signal/fitting.py +276 -0
- sigima/proc/signal/fourier.py +259 -0
- sigima/proc/signal/mathops.py +420 -0
- sigima/proc/signal/processing.py +580 -0
- sigima/proc/signal/stability.py +175 -0
- sigima/proc/title_formatting.py +227 -0
- sigima/proc/validation.py +272 -0
- sigima/tests/__init__.py +7 -0
- sigima/tests/common/__init__.py +0 -0
- sigima/tests/common/arithmeticparam_unit_test.py +26 -0
- sigima/tests/common/basename_unit_test.py +126 -0
- sigima/tests/common/client_unit_test.py +412 -0
- sigima/tests/common/converters_unit_test.py +77 -0
- sigima/tests/common/decorator_unit_test.py +176 -0
- sigima/tests/common/examples_unit_test.py +104 -0
- sigima/tests/common/kernel_normalization_unit_test.py +242 -0
- sigima/tests/common/roi_basic_unit_test.py +73 -0
- sigima/tests/common/roi_geometry_unit_test.py +171 -0
- sigima/tests/common/scalar_builder_unit_test.py +142 -0
- sigima/tests/common/scalar_unit_test.py +991 -0
- sigima/tests/common/shape_unit_test.py +183 -0
- sigima/tests/common/stat_unit_test.py +138 -0
- sigima/tests/common/title_formatting_unit_test.py +338 -0
- sigima/tests/common/tools_coordinates_unit_test.py +60 -0
- sigima/tests/common/transformations_unit_test.py +178 -0
- sigima/tests/common/validation_unit_test.py +205 -0
- sigima/tests/conftest.py +129 -0
- sigima/tests/data.py +998 -0
- sigima/tests/env.py +280 -0
- sigima/tests/guiutils.py +163 -0
- sigima/tests/helpers.py +532 -0
- sigima/tests/image/__init__.py +28 -0
- sigima/tests/image/binning_unit_test.py +128 -0
- sigima/tests/image/blob_detection_unit_test.py +312 -0
- sigima/tests/image/centroid_unit_test.py +170 -0
- sigima/tests/image/check_2d_array_unit_test.py +63 -0
- sigima/tests/image/contour_unit_test.py +172 -0
- sigima/tests/image/convolution_unit_test.py +178 -0
- sigima/tests/image/datatype_unit_test.py +67 -0
- sigima/tests/image/edges_unit_test.py +155 -0
- sigima/tests/image/enclosingcircle_unit_test.py +88 -0
- sigima/tests/image/exposure_unit_test.py +223 -0
- sigima/tests/image/fft2d_unit_test.py +189 -0
- sigima/tests/image/filtering_unit_test.py +166 -0
- sigima/tests/image/geometry_unit_test.py +654 -0
- sigima/tests/image/hough_circle_unit_test.py +147 -0
- sigima/tests/image/imageobj_unit_test.py +737 -0
- sigima/tests/image/morphology_unit_test.py +71 -0
- sigima/tests/image/noise_unit_test.py +57 -0
- sigima/tests/image/offset_correction_unit_test.py +72 -0
- sigima/tests/image/operation_unit_test.py +518 -0
- sigima/tests/image/peak2d_limits_unit_test.py +41 -0
- sigima/tests/image/peak2d_unit_test.py +133 -0
- sigima/tests/image/profile_unit_test.py +159 -0
- sigima/tests/image/projections_unit_test.py +121 -0
- sigima/tests/image/restoration_unit_test.py +141 -0
- sigima/tests/image/roi2dparam_unit_test.py +53 -0
- sigima/tests/image/roi_advanced_unit_test.py +588 -0
- sigima/tests/image/roi_grid_unit_test.py +279 -0
- sigima/tests/image/spectrum2d_unit_test.py +40 -0
- sigima/tests/image/threshold_unit_test.py +91 -0
- sigima/tests/io/__init__.py +0 -0
- sigima/tests/io/addnewformat_unit_test.py +125 -0
- sigima/tests/io/convenience_funcs_unit_test.py +470 -0
- sigima/tests/io/coordinated_text_format_unit_test.py +495 -0
- sigima/tests/io/datetime_csv_unit_test.py +198 -0
- sigima/tests/io/imageio_formats_test.py +41 -0
- sigima/tests/io/ioregistry_unit_test.py +69 -0
- sigima/tests/io/objmeta_unit_test.py +87 -0
- sigima/tests/io/readobj_unit_test.py +130 -0
- sigima/tests/io/readwriteobj_unit_test.py +67 -0
- sigima/tests/signal/__init__.py +0 -0
- sigima/tests/signal/analysis_unit_test.py +135 -0
- sigima/tests/signal/check_1d_arrays_unit_test.py +169 -0
- sigima/tests/signal/convolution_unit_test.py +404 -0
- sigima/tests/signal/datetime_unit_test.py +176 -0
- sigima/tests/signal/fft1d_unit_test.py +303 -0
- sigima/tests/signal/filters_unit_test.py +403 -0
- sigima/tests/signal/fitting_unit_test.py +929 -0
- sigima/tests/signal/fwhm_unit_test.py +111 -0
- sigima/tests/signal/noise_unit_test.py +128 -0
- sigima/tests/signal/offset_correction_unit_test.py +34 -0
- sigima/tests/signal/operation_unit_test.py +489 -0
- sigima/tests/signal/peakdetection_unit_test.py +145 -0
- sigima/tests/signal/processing_unit_test.py +657 -0
- sigima/tests/signal/pulse/__init__.py +112 -0
- sigima/tests/signal/pulse/crossing_times_unit_test.py +123 -0
- sigima/tests/signal/pulse/plateau_detection_unit_test.py +102 -0
- sigima/tests/signal/pulse/pulse_unit_test.py +1824 -0
- sigima/tests/signal/roi_advanced_unit_test.py +392 -0
- sigima/tests/signal/signalobj_unit_test.py +603 -0
- sigima/tests/signal/stability_unit_test.py +431 -0
- sigima/tests/signal/uncertainty_unit_test.py +611 -0
- sigima/tests/vistools.py +1030 -0
- sigima/tools/__init__.py +59 -0
- sigima/tools/checks.py +290 -0
- sigima/tools/coordinates.py +308 -0
- sigima/tools/datatypes.py +26 -0
- sigima/tools/image/__init__.py +97 -0
- sigima/tools/image/detection.py +451 -0
- sigima/tools/image/exposure.py +77 -0
- sigima/tools/image/extraction.py +48 -0
- sigima/tools/image/fourier.py +260 -0
- sigima/tools/image/geometry.py +190 -0
- sigima/tools/image/preprocessing.py +165 -0
- sigima/tools/signal/__init__.py +86 -0
- sigima/tools/signal/dynamic.py +254 -0
- sigima/tools/signal/features.py +135 -0
- sigima/tools/signal/filtering.py +171 -0
- sigima/tools/signal/fitting.py +1171 -0
- sigima/tools/signal/fourier.py +466 -0
- sigima/tools/signal/interpolation.py +70 -0
- sigima/tools/signal/peakdetection.py +126 -0
- sigima/tools/signal/pulse.py +1626 -0
- sigima/tools/signal/scaling.py +50 -0
- sigima/tools/signal/stability.py +258 -0
- sigima/tools/signal/windowing.py +90 -0
- sigima/worker.py +79 -0
- sigima-1.0.0.dist-info/METADATA +233 -0
- sigima-1.0.0.dist-info/RECORD +262 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/licenses/LICENSE +29 -29
- sigima-0.0.1.dev0.dist-info/METADATA +0 -60
- sigima-0.0.1.dev0.dist-info/RECORD +0 -6
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/WHEEL +0 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,657 @@
|
|
|
1
|
+
# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Unit tests for signal processing functions
|
|
5
|
+
------------------------------------------
|
|
6
|
+
|
|
7
|
+
Features from the "Processing" menu are covered by this test.
|
|
8
|
+
The "Processing" menu contains functions to process signals, such as
|
|
9
|
+
calibration, smoothing, and baseline correction.
|
|
10
|
+
|
|
11
|
+
Some of the functions are tested here, such as the signal calibration.
|
|
12
|
+
Other functions may be tested in different files, depending on the
|
|
13
|
+
complexity of the function.
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
# pylint: disable=invalid-name # Allows short reference names like x, y, ...
|
|
17
|
+
# pylint: disable=duplicate-code
|
|
18
|
+
|
|
19
|
+
from __future__ import annotations
|
|
20
|
+
|
|
21
|
+
import numpy as np
|
|
22
|
+
import pytest
|
|
23
|
+
import scipy
|
|
24
|
+
import scipy.ndimage as spi
|
|
25
|
+
import scipy.signal as sps
|
|
26
|
+
from packaging.version import Version
|
|
27
|
+
|
|
28
|
+
import sigima.enums
|
|
29
|
+
import sigima.objects
|
|
30
|
+
import sigima.params
|
|
31
|
+
import sigima.proc.signal
|
|
32
|
+
import sigima.tests.data
|
|
33
|
+
import sigima.tools.coordinates
|
|
34
|
+
from sigima.tests.data import get_test_signal
|
|
35
|
+
from sigima.tests.helpers import check_array_result, check_scalar_result
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
@pytest.mark.validation
|
|
39
|
+
def test_signal_calibration() -> None:
|
|
40
|
+
"""Validation test for the signal calibration processing."""
|
|
41
|
+
src = get_test_signal("paracetamol.txt")
|
|
42
|
+
p = sigima.params.XYCalibrateParam()
|
|
43
|
+
|
|
44
|
+
# Test with a = 1 and b = 0: should do nothing
|
|
45
|
+
p.a, p.b = 1.0, 0.0
|
|
46
|
+
for axis, _taxis in p.axes:
|
|
47
|
+
p.axis = axis
|
|
48
|
+
dst = sigima.proc.signal.calibration(src, p)
|
|
49
|
+
exp = src.xydata
|
|
50
|
+
check_array_result("Calibration[identity]", dst.xydata, exp)
|
|
51
|
+
|
|
52
|
+
# Testing with random values of a and b
|
|
53
|
+
p.a, p.b = 0.5, 0.1
|
|
54
|
+
for axis, _taxis in p.axes:
|
|
55
|
+
p.axis = axis
|
|
56
|
+
exp_x1, exp_y1 = src.xydata.copy()
|
|
57
|
+
if axis == "x":
|
|
58
|
+
exp_x1 = p.a * exp_x1 + p.b
|
|
59
|
+
else:
|
|
60
|
+
exp_y1 = p.a * exp_y1 + p.b
|
|
61
|
+
dst = sigima.proc.signal.calibration(src, p)
|
|
62
|
+
res_x1, res_y1 = dst.xydata
|
|
63
|
+
title = f"Calibration[{axis},a={p.a},b={p.b}]"
|
|
64
|
+
check_array_result(f"{title}.x", res_x1, exp_x1)
|
|
65
|
+
check_array_result(f"{title}.y", res_y1, exp_y1)
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
@pytest.mark.validation
|
|
69
|
+
def test_signal_transpose() -> None:
|
|
70
|
+
"""Validation test for the signal transpose processing."""
|
|
71
|
+
src = get_test_signal("paracetamol.txt")
|
|
72
|
+
dst = sigima.proc.signal.transpose(src)
|
|
73
|
+
exp_y, exp_x = src.xydata
|
|
74
|
+
check_array_result("Transpose|x", dst.x, exp_x)
|
|
75
|
+
check_array_result("Transpose|y", dst.y, exp_y)
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
@pytest.mark.validation
|
|
79
|
+
def test_signal_reverse_x() -> None:
|
|
80
|
+
"""Validation test for the signal reverse x processing."""
|
|
81
|
+
src = get_test_signal("paracetamol.txt")
|
|
82
|
+
dst = sigima.proc.signal.reverse_x(src)
|
|
83
|
+
exp = src.data[::-1]
|
|
84
|
+
check_array_result("ReverseX", dst.data, exp)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def test_to_polar() -> None:
|
|
88
|
+
"""Unit test for the Cartesian to polar conversion."""
|
|
89
|
+
title = "Cartesian2Polar"
|
|
90
|
+
x = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
|
|
91
|
+
y = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
|
|
92
|
+
|
|
93
|
+
r, theta = sigima.tools.coordinates.to_polar(x, y, "rad")
|
|
94
|
+
exp_r = np.array([0.0, np.sqrt(2.0), np.sqrt(8.0), np.sqrt(18.0), np.sqrt(32.0)])
|
|
95
|
+
exp_theta = np.array([0.0, np.pi / 4.0, np.pi / 4.0, np.pi / 4.0, np.pi / 4.0])
|
|
96
|
+
check_array_result(f"{title}|r", r, exp_r)
|
|
97
|
+
check_array_result(f"{title}|theta", theta, exp_theta)
|
|
98
|
+
|
|
99
|
+
r, theta = sigima.tools.coordinates.to_polar(x, y, unit="°")
|
|
100
|
+
exp_theta = np.array([0.0, 45.0, 45.0, 45.0, 45.0])
|
|
101
|
+
check_array_result(f"{title}|r", r, exp_r)
|
|
102
|
+
check_array_result(f"{title}|theta", theta, exp_theta)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def test_to_cartesian() -> None:
|
|
106
|
+
"""Unit test for the polar to Cartesian conversion."""
|
|
107
|
+
title = "Polar2Cartesian"
|
|
108
|
+
r = np.array([0.0, np.sqrt(2.0), np.sqrt(8.0), np.sqrt(18.0), np.sqrt(32.0)])
|
|
109
|
+
theta = np.array([0.0, np.pi / 4.0, np.pi / 4.0, np.pi / 4.0, np.pi / 4.0])
|
|
110
|
+
|
|
111
|
+
x, y = sigima.tools.coordinates.to_cartesian(r, theta, "rad")
|
|
112
|
+
exp_x = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
|
|
113
|
+
exp_y = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
|
|
114
|
+
check_array_result(f"{title}|x", x, exp_x)
|
|
115
|
+
check_array_result(f"{title}|y", y, exp_y)
|
|
116
|
+
|
|
117
|
+
theta = np.array([0.0, 45.0, 45.0, 45.0, 45.0])
|
|
118
|
+
x, y = sigima.tools.coordinates.to_cartesian(r, theta, unit="°")
|
|
119
|
+
check_array_result(f"{title}|x", x, exp_x)
|
|
120
|
+
check_array_result(f"{title}|y", y, exp_y)
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
@pytest.mark.validation
|
|
124
|
+
def test_signal_to_polar() -> None:
|
|
125
|
+
"""Validation test for the signal Cartesian to polar processing."""
|
|
126
|
+
title = "Cartesian2Polar"
|
|
127
|
+
p = sigima.params.AngleUnitParam()
|
|
128
|
+
x = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
|
|
129
|
+
y = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
|
|
130
|
+
src = sigima.objects.create_signal("test", x, y)
|
|
131
|
+
|
|
132
|
+
for p.unit in sigima.enums.AngleUnit:
|
|
133
|
+
dst1 = sigima.proc.signal.to_polar(src, p)
|
|
134
|
+
dst2 = sigima.proc.signal.to_cartesian(dst1, p)
|
|
135
|
+
check_array_result(f"{title}|x", dst2.x, x)
|
|
136
|
+
check_array_result(f"{title}|y", dst2.y, y)
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
@pytest.mark.validation
|
|
140
|
+
def test_signal_to_cartesian() -> None:
|
|
141
|
+
"""Validation test for the signal polar to Cartesian processing."""
|
|
142
|
+
title = "Polar2Cartesian"
|
|
143
|
+
p = sigima.params.AngleUnitParam()
|
|
144
|
+
r = np.array([0.0, np.sqrt(2.0), np.sqrt(8.0), np.sqrt(18.0), np.sqrt(32.0)])
|
|
145
|
+
|
|
146
|
+
a_deg = np.array([0.0, 45.0, 45.0, 45.0, 45.0])
|
|
147
|
+
a_rad = np.array([0.0, np.pi / 4.0, np.pi / 4.0, np.pi / 4.0, np.pi / 4.0])
|
|
148
|
+
for p.unit in sigima.enums.AngleUnit:
|
|
149
|
+
theta = a_rad if p.unit == sigima.enums.AngleUnit.RADIAN else a_deg
|
|
150
|
+
src = sigima.objects.create_signal("test", r, theta)
|
|
151
|
+
dst1 = sigima.proc.signal.to_cartesian(src, p)
|
|
152
|
+
dst2 = sigima.proc.signal.to_polar(dst1, p)
|
|
153
|
+
check_array_result(f"{title}|x", dst2.x, r)
|
|
154
|
+
check_array_result(f"{title}|y", dst2.y, theta)
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
@pytest.mark.validation
|
|
158
|
+
def test_signal_normalize() -> None:
|
|
159
|
+
"""Validation test for the signal normalization processing."""
|
|
160
|
+
src = get_test_signal("paracetamol.txt")
|
|
161
|
+
p = sigima.params.NormalizeParam()
|
|
162
|
+
src.y[10:15] = np.nan # Adding some NaN values to the signal
|
|
163
|
+
|
|
164
|
+
# Given the fact that the normalization methods implementations are
|
|
165
|
+
# straightforward, we do not need to compare arrays with each other,
|
|
166
|
+
# we simply need to check if some properties are satisfied.
|
|
167
|
+
for method in sigima.enums.NormalizationMethod:
|
|
168
|
+
p.method = method
|
|
169
|
+
dst = sigima.proc.signal.normalize(src, p)
|
|
170
|
+
title = f"Normalize[method='{p.method}']"
|
|
171
|
+
exp_min, exp_max = None, None
|
|
172
|
+
if p.method == sigima.enums.NormalizationMethod.MAXIMUM:
|
|
173
|
+
exp_min, exp_max = np.nanmin(src.data) / np.nanmax(src.data), 1.0
|
|
174
|
+
elif p.method == sigima.enums.NormalizationMethod.AMPLITUDE:
|
|
175
|
+
exp_min, exp_max = 0.0, 1.0
|
|
176
|
+
elif p.method == sigima.enums.NormalizationMethod.AREA:
|
|
177
|
+
area = np.nansum(src.data)
|
|
178
|
+
exp_min, exp_max = np.nanmin(src.data) / area, np.nanmax(src.data) / area
|
|
179
|
+
elif p.method == sigima.enums.NormalizationMethod.ENERGY:
|
|
180
|
+
energy = np.sqrt(np.nansum(np.abs(src.data) ** 2))
|
|
181
|
+
exp_min, exp_max = (
|
|
182
|
+
np.nanmin(src.data) / energy,
|
|
183
|
+
np.nanmax(src.data) / energy,
|
|
184
|
+
)
|
|
185
|
+
elif p.method == sigima.enums.NormalizationMethod.RMS:
|
|
186
|
+
rms = np.sqrt(np.nanmean(np.abs(src.data) ** 2))
|
|
187
|
+
exp_min, exp_max = np.nanmin(src.data) / rms, np.nanmax(src.data) / rms
|
|
188
|
+
check_scalar_result(f"{title}|min", np.nanmin(dst.data), exp_min)
|
|
189
|
+
check_scalar_result(f"{title}|max", np.nanmax(dst.data), exp_max)
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
@pytest.mark.validation
|
|
193
|
+
def test_signal_clip() -> None:
|
|
194
|
+
"""Validation test for the signal clipping processing."""
|
|
195
|
+
src = get_test_signal("paracetamol.txt")
|
|
196
|
+
p = sigima.params.ClipParam()
|
|
197
|
+
|
|
198
|
+
for lower, upper in ((float("-inf"), float("inf")), (250.0, 500.0)):
|
|
199
|
+
p.lower, p.upper = lower, upper
|
|
200
|
+
dst = sigima.proc.signal.clip(src, p)
|
|
201
|
+
exp = np.clip(src.data, p.lower, p.upper)
|
|
202
|
+
check_array_result(f"Clip[{lower},{upper}]", dst.data, exp)
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
@pytest.mark.validation
|
|
206
|
+
def test_signal_derivative() -> None:
|
|
207
|
+
"""Validation test for the signal derivative processing."""
|
|
208
|
+
src = get_test_signal("paracetamol.txt")
|
|
209
|
+
dst = sigima.proc.signal.derivative(src)
|
|
210
|
+
x, y = src.xydata
|
|
211
|
+
|
|
212
|
+
# Compute the derivative using a simple finite difference:
|
|
213
|
+
dx = x[1:] - x[:-1]
|
|
214
|
+
dy = y[1:] - y[:-1]
|
|
215
|
+
dydx = dy / dx
|
|
216
|
+
exp = np.zeros_like(y)
|
|
217
|
+
exp[0] = dydx[0]
|
|
218
|
+
exp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1]) / (dx[1:] + dx[:-1])
|
|
219
|
+
exp[-1] = dydx[-1]
|
|
220
|
+
|
|
221
|
+
check_array_result("Derivative", dst.y, exp)
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
@pytest.mark.validation
|
|
225
|
+
def test_signal_integral() -> None:
|
|
226
|
+
"""Validation test for the signal integral processing."""
|
|
227
|
+
src = get_test_signal("paracetamol.txt")
|
|
228
|
+
src.data /= np.max(src.data)
|
|
229
|
+
|
|
230
|
+
# Check the integral of the derivative:
|
|
231
|
+
dst = sigima.proc.signal.integral(sigima.proc.signal.derivative(src))
|
|
232
|
+
# The integral of the derivative should be the original signal, up to a constant:
|
|
233
|
+
dst.y += src.y[0]
|
|
234
|
+
|
|
235
|
+
check_array_result("Integral[Derivative]", dst.y, src.y, atol=0.05)
|
|
236
|
+
|
|
237
|
+
dst = sigima.proc.signal.integral(src)
|
|
238
|
+
x, y = src.xydata
|
|
239
|
+
|
|
240
|
+
# Compute the integral using a simple trapezoidal rule:
|
|
241
|
+
exp = np.zeros_like(y)
|
|
242
|
+
exp[1:] = np.cumsum(0.5 * (y[1:] + y[:-1]) * (x[1:] - x[:-1]))
|
|
243
|
+
exp[0] = exp[1]
|
|
244
|
+
|
|
245
|
+
check_array_result("Integral", dst.y, exp, atol=0.05)
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
@pytest.mark.validation
|
|
249
|
+
def test_signal_detrending() -> None:
|
|
250
|
+
"""Validation test for the signal detrending processing."""
|
|
251
|
+
src = get_test_signal("paracetamol.txt")
|
|
252
|
+
for method_value, _method_name in sigima.params.DetrendingParam.methods:
|
|
253
|
+
p = sigima.params.DetrendingParam.create(method=method_value)
|
|
254
|
+
dst = sigima.proc.signal.detrending(src, p)
|
|
255
|
+
exp = sps.detrend(src.data, type=p.method)
|
|
256
|
+
check_array_result(f"Detrending [method={p.method}]", dst.data, exp)
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
@pytest.mark.validation
|
|
260
|
+
def test_signal_offset_correction() -> None:
|
|
261
|
+
"""Validation test for the signal offset correction processing."""
|
|
262
|
+
src = get_test_signal("paracetamol.txt")
|
|
263
|
+
# Defining the ROI that will be used to estimate the offset
|
|
264
|
+
imin, imax = 0, 20
|
|
265
|
+
p = sigima.objects.ROI1DParam.create(xmin=src.x[imin], xmax=src.x[imax])
|
|
266
|
+
dst = sigima.proc.signal.offset_correction(src, p)
|
|
267
|
+
exp = src.data - np.mean(src.data[imin:imax])
|
|
268
|
+
check_array_result("OffsetCorrection", dst.data, exp)
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
@pytest.mark.validation
|
|
272
|
+
def test_signal_gaussian_filter() -> None:
|
|
273
|
+
"""Validation test for the signal Gaussian filter processing."""
|
|
274
|
+
src = get_test_signal("paracetamol.txt")
|
|
275
|
+
for sigma in (10.0, 50.0):
|
|
276
|
+
p = sigima.params.GaussianParam.create(sigma=sigma)
|
|
277
|
+
dst = sigima.proc.signal.gaussian_filter(src, p)
|
|
278
|
+
exp = spi.gaussian_filter(src.data, sigma=sigma)
|
|
279
|
+
check_array_result(f"GaussianFilter[sigma={sigma}]", dst.data, exp)
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
@pytest.mark.validation
|
|
283
|
+
def test_signal_moving_average() -> None:
|
|
284
|
+
"""Validation test for the signal moving average processing."""
|
|
285
|
+
src = get_test_signal("paracetamol.txt")
|
|
286
|
+
p = sigima.params.MovingAverageParam.create(n=30)
|
|
287
|
+
for mode in sigima.enums.FilterMode:
|
|
288
|
+
p.mode = mode
|
|
289
|
+
dst = sigima.proc.signal.moving_average(src, p)
|
|
290
|
+
exp = spi.uniform_filter(src.data, size=p.n, mode=mode.value)
|
|
291
|
+
|
|
292
|
+
# Implementation note:
|
|
293
|
+
# --------------------
|
|
294
|
+
#
|
|
295
|
+
# The SciPy's `uniform_filter` handles the edges more accurately than
|
|
296
|
+
# a method based on a simple convolution with a kernel of ones like this:
|
|
297
|
+
# (the following function was the original implementation of the moving average
|
|
298
|
+
# in Sigima before it was replaced by the SciPy's `uniform_filter` function)
|
|
299
|
+
#
|
|
300
|
+
# def moving_average(y: np.ndarray, n: int) -> np.ndarray:
|
|
301
|
+
# y_padded = np.pad(y, (n // 2, n - 1 - n // 2), mode="edge")
|
|
302
|
+
# return np.convolve(y_padded, np.ones((n,)) / n, mode="valid")
|
|
303
|
+
|
|
304
|
+
check_array_result(f"MovingAvg[n={p.n},mode={p.mode}]", dst.data, exp, rtol=0.1)
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
@pytest.mark.validation
|
|
308
|
+
@pytest.mark.skipif(
|
|
309
|
+
Version("1.15.0") <= Version(scipy.__version__) <= Version("1.15.2"),
|
|
310
|
+
reason="Skipping test: scipy median_filter is broken in 1.15.0-1.15.2",
|
|
311
|
+
)
|
|
312
|
+
def test_signal_moving_median() -> None:
|
|
313
|
+
"""Validation test for the signal moving median processing."""
|
|
314
|
+
src = get_test_signal("paracetamol.txt")
|
|
315
|
+
p = sigima.params.MovingMedianParam.create(n=15)
|
|
316
|
+
for mode in sigima.enums.FilterMode:
|
|
317
|
+
p.mode = mode
|
|
318
|
+
dst = sigima.proc.signal.moving_median(src, p)
|
|
319
|
+
exp = spi.median_filter(src.data, size=p.n, mode=mode.value)
|
|
320
|
+
check_array_result(f"MovingMed[n={p.n},mode={p.mode}]", dst.data, exp, rtol=0.1)
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
@pytest.mark.validation
|
|
324
|
+
def test_signal_wiener() -> None:
|
|
325
|
+
"""Validation test for the signal Wiener filter processing."""
|
|
326
|
+
src = get_test_signal("paracetamol.txt")
|
|
327
|
+
dst = sigima.proc.signal.wiener(src)
|
|
328
|
+
exp = sps.wiener(src.data)
|
|
329
|
+
check_array_result("Wiener", dst.data, exp)
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
@pytest.mark.validation
|
|
333
|
+
def test_signal_resampling() -> None:
|
|
334
|
+
"""Validation test for the signal resampling processing."""
|
|
335
|
+
src1 = sigima.tests.data.create_periodic_signal(
|
|
336
|
+
sigima.objects.SignalTypes.SINE, freq=50.0, size=5
|
|
337
|
+
)
|
|
338
|
+
x1, y1 = src1.xydata
|
|
339
|
+
p1 = sigima.params.Resampling1DParam.create(
|
|
340
|
+
xmin=src1.x[0], xmax=src1.x[-1], nbpts=src1.x.size
|
|
341
|
+
)
|
|
342
|
+
p1.update_from_obj(src1) # Just to test this method
|
|
343
|
+
dst1 = sigima.proc.signal.resampling(src1, p1)
|
|
344
|
+
dst1x, dst1y = dst1.xydata
|
|
345
|
+
check_array_result("x1new", dst1x, x1)
|
|
346
|
+
check_array_result("y1new", dst1y, y1)
|
|
347
|
+
|
|
348
|
+
src2 = sigima.tests.data.create_periodic_signal(
|
|
349
|
+
sigima.objects.SignalTypes.SINE, freq=50.0, size=9
|
|
350
|
+
)
|
|
351
|
+
p2 = sigima.params.Resampling1DParam.create(
|
|
352
|
+
xmin=src1.x[0], xmax=src1.x[-1], nbpts=src1.x.size
|
|
353
|
+
)
|
|
354
|
+
dst2 = sigima.proc.signal.resampling(src2, p2)
|
|
355
|
+
dst2x, dst2y = dst2.xydata
|
|
356
|
+
check_array_result("x2new", dst2x, x1)
|
|
357
|
+
check_array_result("y2new", dst2y, y1)
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
@pytest.mark.validation
|
|
361
|
+
def test_signal_xy_mode() -> None:
|
|
362
|
+
"""Validation test for the signal X-Y mode processing."""
|
|
363
|
+
s1 = sigima.tests.data.create_periodic_signal(
|
|
364
|
+
sigima.objects.SignalTypes.COSINE, freq=50.0, size=5
|
|
365
|
+
)
|
|
366
|
+
s2 = sigima.tests.data.create_periodic_signal(
|
|
367
|
+
sigima.objects.SignalTypes.SINE, freq=50.0, size=5
|
|
368
|
+
)
|
|
369
|
+
dst = sigima.proc.signal.xy_mode(s1, s2)
|
|
370
|
+
x, y = dst.xydata
|
|
371
|
+
check_array_result("XYMode", x, s1.y)
|
|
372
|
+
check_array_result("XYMode", y, s2.y)
|
|
373
|
+
check_array_result("XYMode", x**2 + y**2, np.ones_like(x))
|
|
374
|
+
|
|
375
|
+
s1 = sigima.tests.data.create_periodic_signal(
|
|
376
|
+
sigima.objects.SignalTypes.COSINE, freq=50.0, size=9
|
|
377
|
+
)
|
|
378
|
+
s2 = sigima.tests.data.create_periodic_signal(
|
|
379
|
+
sigima.objects.SignalTypes.SINE, freq=50.0, size=5
|
|
380
|
+
)
|
|
381
|
+
dst = sigima.proc.signal.xy_mode(s1, s2)
|
|
382
|
+
x, y = dst.xydata
|
|
383
|
+
check_array_result("XYMode2", x, s1.y[::2])
|
|
384
|
+
check_array_result("XYMode2", y, s2.y)
|
|
385
|
+
check_array_result("XYMode2", x**2 + y**2, np.ones_like(x))
|
|
386
|
+
|
|
387
|
+
|
|
388
|
+
@pytest.mark.validation
|
|
389
|
+
def test_signal_histogram() -> None:
|
|
390
|
+
"""Validation test for the signal histogram processing."""
|
|
391
|
+
# Create a test signal with known data for histogram analysis
|
|
392
|
+
src = sigima.tests.data.create_periodic_signal(
|
|
393
|
+
sigima.objects.SignalTypes.SINE, freq=50.0, size=1000, a=2.0
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
# Test with default parameters
|
|
397
|
+
p = sigima.params.HistogramParam()
|
|
398
|
+
p.bins = 50
|
|
399
|
+
p.lower = None
|
|
400
|
+
p.upper = None
|
|
401
|
+
dst = sigima.proc.signal.histogram(src, p)
|
|
402
|
+
|
|
403
|
+
# Validate result properties
|
|
404
|
+
x, y = dst.xydata
|
|
405
|
+
|
|
406
|
+
# Check that we got the expected number of bins
|
|
407
|
+
check_scalar_result("Histogram|bins", len(x), 50)
|
|
408
|
+
check_scalar_result("Histogram|bins", len(y), 50)
|
|
409
|
+
|
|
410
|
+
# Check that histogram sums to the total number of data points
|
|
411
|
+
check_scalar_result("Histogram|total_counts", np.sum(y), len(src.y))
|
|
412
|
+
|
|
413
|
+
# Check that all counts are non-negative
|
|
414
|
+
assert np.all(y >= 0), "Histogram counts should be non-negative"
|
|
415
|
+
|
|
416
|
+
# Check that x values are within the data range
|
|
417
|
+
data_min, data_max = np.min(src.y), np.max(src.y)
|
|
418
|
+
assert np.min(x) >= data_min, "Histogram x values should be >= data minimum"
|
|
419
|
+
assert np.max(x) <= data_max, "Histogram x values should be <= data maximum"
|
|
420
|
+
|
|
421
|
+
# Test with explicit range
|
|
422
|
+
p.lower = -1.0
|
|
423
|
+
p.upper = 1.0
|
|
424
|
+
p.bins = 20
|
|
425
|
+
dst2 = sigima.proc.signal.histogram(src, p)
|
|
426
|
+
x2, y2 = dst2.xydata
|
|
427
|
+
|
|
428
|
+
# Check that we got the expected number of bins
|
|
429
|
+
check_scalar_result("Histogram|explicit_range_bins", len(x2), 20)
|
|
430
|
+
|
|
431
|
+
# Check that x values are within the specified range
|
|
432
|
+
assert np.min(x2) >= -1.0, "Histogram x values should be >= lower limit"
|
|
433
|
+
assert np.max(x2) <= 1.0, "Histogram x values should be <= upper limit"
|
|
434
|
+
|
|
435
|
+
# Check that counts sum to the number of data points within the range
|
|
436
|
+
data_in_range = src.y[(src.y >= -1.0) & (src.y <= 1.0)]
|
|
437
|
+
check_scalar_result("Histogram|range_counts", np.sum(y2), len(data_in_range))
|
|
438
|
+
|
|
439
|
+
# Test with a simple known dataset by creating a signal manually
|
|
440
|
+
# Create a signal with known uniform distribution data
|
|
441
|
+
simple_sig = sigima.objects.create_signal(
|
|
442
|
+
"Test Signal",
|
|
443
|
+
np.linspace(0, 1, 100), # x values
|
|
444
|
+
np.linspace(0, 1, 100), # y values: uniform distribution from 0 to 1
|
|
445
|
+
)
|
|
446
|
+
|
|
447
|
+
p_uniform = sigima.params.HistogramParam()
|
|
448
|
+
p_uniform.bins = 10
|
|
449
|
+
p_uniform.lower = 0.0
|
|
450
|
+
p_uniform.upper = 1.0
|
|
451
|
+
dst_uniform = sigima.proc.signal.histogram(simple_sig, p_uniform)
|
|
452
|
+
_x_uniform, y_uniform = dst_uniform.xydata
|
|
453
|
+
|
|
454
|
+
# For the uniform data (0 to 1), each bin should have exactly 10 values
|
|
455
|
+
expected_count = 10
|
|
456
|
+
check_array_result(
|
|
457
|
+
"Histogram|uniform_counts", y_uniform, np.full(10, expected_count, dtype=float)
|
|
458
|
+
)
|
|
459
|
+
|
|
460
|
+
# Test edge case: single bin
|
|
461
|
+
p_single = sigima.params.HistogramParam()
|
|
462
|
+
p_single.bins = 1
|
|
463
|
+
dst_single = sigima.proc.signal.histogram(src, p_single)
|
|
464
|
+
x_single, y_single = dst_single.xydata
|
|
465
|
+
check_scalar_result("Histogram|single_bin_x_count", len(x_single), 1)
|
|
466
|
+
check_scalar_result("Histogram|single_bin_y_count", len(y_single), 1)
|
|
467
|
+
check_scalar_result("Histogram|single_bin_total", y_single[0], len(src.y))
|
|
468
|
+
|
|
469
|
+
# Test with binary data
|
|
470
|
+
binary_sig = sigima.objects.create_signal(
|
|
471
|
+
"Binary Signal",
|
|
472
|
+
np.arange(20), # x values
|
|
473
|
+
np.array([0] * 10 + [1] * 10), # 10 zeros, 10 ones
|
|
474
|
+
)
|
|
475
|
+
p_binary = sigima.params.HistogramParam()
|
|
476
|
+
p_binary.bins = 2
|
|
477
|
+
p_binary.lower = 0.0
|
|
478
|
+
p_binary.upper = 1.0
|
|
479
|
+
dst_binary = sigima.proc.signal.histogram(binary_sig, p_binary)
|
|
480
|
+
_x_binary, y_binary = dst_binary.xydata
|
|
481
|
+
|
|
482
|
+
# Should have 10 counts in each bin for our binary data
|
|
483
|
+
check_array_result("Histogram|binary_counts", y_binary, np.array([10.0, 10.0]))
|
|
484
|
+
|
|
485
|
+
|
|
486
|
+
@pytest.mark.validation
|
|
487
|
+
def test_signal_interpolate() -> None:
|
|
488
|
+
"""Validation test for the signal interpolation processing."""
|
|
489
|
+
# Create test signals
|
|
490
|
+
x1 = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
|
|
491
|
+
y1 = np.array([0.0, 1.0, 4.0, 9.0, 16.0]) # Quadratic function: y = x²
|
|
492
|
+
src1 = sigima.objects.create_signal("src1", x1, y1)
|
|
493
|
+
|
|
494
|
+
# Create target x-axis for interpolation (denser sampling)
|
|
495
|
+
x2 = np.array([0.5, 1.5, 2.5, 3.5])
|
|
496
|
+
y2 = np.zeros_like(x2) # Y values don't matter for interpolation target
|
|
497
|
+
src2 = sigima.objects.create_signal("src2", x2, y2)
|
|
498
|
+
|
|
499
|
+
p = sigima.params.InterpolationParam()
|
|
500
|
+
|
|
501
|
+
# Test linear interpolation
|
|
502
|
+
p.method = sigima.enums.Interpolation1DMethod.LINEAR
|
|
503
|
+
dst = sigima.proc.signal.interpolate(src1, src2, p)
|
|
504
|
+
expected_linear = np.array([0.5, 2.5, 6.5, 12.5]) # Linear interpolation of x²
|
|
505
|
+
check_array_result("Interpolate[LINEAR]", dst.y, expected_linear)
|
|
506
|
+
check_array_result("Interpolate[LINEAR]|x", dst.x, x2)
|
|
507
|
+
|
|
508
|
+
# Test spline interpolation (should be exact for polynomial functions)
|
|
509
|
+
p.method = sigima.enums.Interpolation1DMethod.SPLINE
|
|
510
|
+
dst = sigima.proc.signal.interpolate(src1, src2, p)
|
|
511
|
+
expected_spline = np.array([0.25, 2.25, 6.25, 12.25]) # Exact values for x²
|
|
512
|
+
check_array_result("Interpolate[SPLINE]", dst.y, expected_spline, atol=1e-10)
|
|
513
|
+
check_array_result("Interpolate[SPLINE]|x", dst.x, x2)
|
|
514
|
+
|
|
515
|
+
# Test quadratic interpolation (should be exact for polynomial functions)
|
|
516
|
+
p.method = sigima.enums.Interpolation1DMethod.QUADRATIC
|
|
517
|
+
dst = sigima.proc.signal.interpolate(src1, src2, p)
|
|
518
|
+
expected_quadratic = np.array([0.25, 2.25, 6.25, 12.25]) # Exact values for x²
|
|
519
|
+
check_array_result("Interpolate[QUADRATIC]", dst.y, expected_quadratic, atol=1e-10)
|
|
520
|
+
check_array_result("Interpolate[QUADRATIC]|x", dst.x, x2)
|
|
521
|
+
|
|
522
|
+
# Test cubic interpolation
|
|
523
|
+
p.method = sigima.enums.Interpolation1DMethod.CUBIC
|
|
524
|
+
dst = sigima.proc.signal.interpolate(src1, src2, p)
|
|
525
|
+
expected_cubic = np.array([0.25, 2.25, 6.25, 12.25]) # Should be exact for x²
|
|
526
|
+
check_array_result("Interpolate[CUBIC]", dst.y, expected_cubic, atol=1e-10)
|
|
527
|
+
check_array_result("Interpolate[CUBIC]|x", dst.x, x2)
|
|
528
|
+
|
|
529
|
+
# Test PCHIP interpolation
|
|
530
|
+
p.method = sigima.enums.Interpolation1DMethod.PCHIP
|
|
531
|
+
dst = sigima.proc.signal.interpolate(src1, src2, p)
|
|
532
|
+
expected_pchip = np.array([0.3125, 2.21875, 6.23958333, 12.22916667])
|
|
533
|
+
check_array_result("Interpolate[PCHIP]", dst.y, expected_pchip, atol=1e-10)
|
|
534
|
+
check_array_result("Interpolate[PCHIP]|x", dst.x, x2)
|
|
535
|
+
|
|
536
|
+
# Test barycentric interpolation
|
|
537
|
+
p.method = sigima.enums.Interpolation1DMethod.BARYCENTRIC
|
|
538
|
+
dst = sigima.proc.signal.interpolate(src1, src2, p)
|
|
539
|
+
expected_barycentric = np.array([0.25, 2.25, 6.25, 12.25]) # Should be exact
|
|
540
|
+
check_array_result(
|
|
541
|
+
"Interpolate[BARYCENTRIC]", dst.y, expected_barycentric, atol=1e-10
|
|
542
|
+
)
|
|
543
|
+
check_array_result("Interpolate[BARYCENTRIC]|x", dst.x, x2)
|
|
544
|
+
|
|
545
|
+
# Test fill_value parameter with extrapolation
|
|
546
|
+
x2_extrap = np.array([-1.0, 0.5, 1.5, 5.0]) # Include points outside range
|
|
547
|
+
y2_extrap = np.zeros_like(x2_extrap)
|
|
548
|
+
src2_extrap = sigima.objects.create_signal("src2_extrap", x2_extrap, y2_extrap)
|
|
549
|
+
|
|
550
|
+
p.method = sigima.enums.Interpolation1DMethod.LINEAR
|
|
551
|
+
p.fill_value = -999.0 # Custom fill value for extrapolation
|
|
552
|
+
dst = sigima.proc.signal.interpolate(src1, src2_extrap, p)
|
|
553
|
+
expected_with_fill = np.array([-999.0, 0.5, 2.5, -999.0])
|
|
554
|
+
check_array_result("Interpolate[LINEAR+fill_value]", dst.y, expected_with_fill)
|
|
555
|
+
check_array_result("Interpolate[LINEAR+fill_value]|x", dst.x, x2_extrap)
|
|
556
|
+
|
|
557
|
+
|
|
558
|
+
@pytest.mark.validation
|
|
559
|
+
def test_signal_apply_window() -> None:
|
|
560
|
+
"""Validation test for the signal windowing processing."""
|
|
561
|
+
# Create a test signal with known data
|
|
562
|
+
x = np.linspace(0, 10, 100)
|
|
563
|
+
y = np.ones_like(x) # Constant signal to make windowing effects visible
|
|
564
|
+
src = sigima.objects.create_signal("test_signal", x, y)
|
|
565
|
+
|
|
566
|
+
p = sigima.params.WindowingParam()
|
|
567
|
+
|
|
568
|
+
# Test HAMMING window (default)
|
|
569
|
+
p.method = sigima.enums.WindowingMethod.HAMMING
|
|
570
|
+
dst = sigima.proc.signal.apply_window(src, p)
|
|
571
|
+
expected_hamming = y * np.hamming(len(y))
|
|
572
|
+
check_array_result("ApplyWindow[HAMMING]", dst.y, expected_hamming)
|
|
573
|
+
check_array_result("ApplyWindow[HAMMING]|x", dst.x, x)
|
|
574
|
+
|
|
575
|
+
# Test BLACKMAN window
|
|
576
|
+
p.method = sigima.enums.WindowingMethod.BLACKMAN
|
|
577
|
+
dst = sigima.proc.signal.apply_window(src, p)
|
|
578
|
+
expected_blackman = y * np.blackman(len(y))
|
|
579
|
+
check_array_result("ApplyWindow[BLACKMAN]", dst.y, expected_blackman)
|
|
580
|
+
check_array_result("ApplyWindow[BLACKMAN]|x", dst.x, x)
|
|
581
|
+
|
|
582
|
+
# Test HANN window
|
|
583
|
+
p.method = sigima.enums.WindowingMethod.HANN
|
|
584
|
+
dst = sigima.proc.signal.apply_window(src, p)
|
|
585
|
+
expected_hann = y * np.hanning(len(y))
|
|
586
|
+
check_array_result("ApplyWindow[HANN]", dst.y, expected_hann)
|
|
587
|
+
check_array_result("ApplyWindow[HANN]|x", dst.x, x)
|
|
588
|
+
|
|
589
|
+
# Test GAUSSIAN window with custom sigma
|
|
590
|
+
p.method = sigima.enums.WindowingMethod.GAUSSIAN
|
|
591
|
+
p.sigma = 7.0
|
|
592
|
+
dst = sigima.proc.signal.apply_window(src, p)
|
|
593
|
+
expected_gaussian = y * scipy.signal.windows.gaussian(len(y), p.sigma)
|
|
594
|
+
check_array_result("ApplyWindow[GAUSSIAN]", dst.y, expected_gaussian)
|
|
595
|
+
check_array_result("ApplyWindow[GAUSSIAN]|x", dst.x, x)
|
|
596
|
+
|
|
597
|
+
# Test KAISER window with custom beta
|
|
598
|
+
p.method = sigima.enums.WindowingMethod.KAISER
|
|
599
|
+
p.beta = 14.0
|
|
600
|
+
dst = sigima.proc.signal.apply_window(src, p)
|
|
601
|
+
expected_kaiser = y * np.kaiser(len(y), p.beta)
|
|
602
|
+
check_array_result("ApplyWindow[KAISER]", dst.y, expected_kaiser)
|
|
603
|
+
check_array_result("ApplyWindow[KAISER]|x", dst.x, x)
|
|
604
|
+
|
|
605
|
+
# Test TUKEY window with custom alpha
|
|
606
|
+
p.method = sigima.enums.WindowingMethod.TUKEY
|
|
607
|
+
p.alpha = 0.5
|
|
608
|
+
dst = sigima.proc.signal.apply_window(src, p)
|
|
609
|
+
expected_tukey = y * scipy.signal.windows.tukey(len(y), p.alpha)
|
|
610
|
+
check_array_result("ApplyWindow[TUKEY]", dst.y, expected_tukey)
|
|
611
|
+
check_array_result("ApplyWindow[TUKEY]|x", dst.x, x)
|
|
612
|
+
|
|
613
|
+
# Test BARTLETT window
|
|
614
|
+
p.method = sigima.enums.WindowingMethod.BARTLETT
|
|
615
|
+
dst = sigima.proc.signal.apply_window(src, p)
|
|
616
|
+
expected_bartlett = y * np.bartlett(len(y))
|
|
617
|
+
check_array_result("ApplyWindow[BARTLETT]", dst.y, expected_bartlett)
|
|
618
|
+
check_array_result("ApplyWindow[BARTLETT]|x", dst.x, x)
|
|
619
|
+
|
|
620
|
+
# Verify windowing preserves edge values for certain windows
|
|
621
|
+
# Most windows should have zero or near-zero values at the edges
|
|
622
|
+
p.method = sigima.enums.WindowingMethod.HAMMING
|
|
623
|
+
dst = sigima.proc.signal.apply_window(src, p)
|
|
624
|
+
assert dst.y[0] < 0.1, "Hamming window should have small edge values"
|
|
625
|
+
assert dst.y[-1] < 0.1, "Hamming window should have small edge values"
|
|
626
|
+
|
|
627
|
+
# Verify windowing preserves the original x-axis
|
|
628
|
+
assert np.array_equal(dst.x, src.x), "X-axis should be preserved after windowing"
|
|
629
|
+
|
|
630
|
+
# Verify the signal object metadata is properly set
|
|
631
|
+
assert "Apply Window" in dst.title, (
|
|
632
|
+
"Result title should indicate windowing operation"
|
|
633
|
+
)
|
|
634
|
+
|
|
635
|
+
|
|
636
|
+
if __name__ == "__main__":
|
|
637
|
+
test_signal_calibration()
|
|
638
|
+
test_signal_transpose()
|
|
639
|
+
test_to_polar()
|
|
640
|
+
test_to_cartesian()
|
|
641
|
+
test_signal_to_polar()
|
|
642
|
+
test_signal_to_cartesian()
|
|
643
|
+
test_signal_reverse_x()
|
|
644
|
+
test_signal_normalize()
|
|
645
|
+
test_signal_clip()
|
|
646
|
+
test_signal_derivative()
|
|
647
|
+
test_signal_integral()
|
|
648
|
+
test_signal_offset_correction()
|
|
649
|
+
test_signal_gaussian_filter()
|
|
650
|
+
test_signal_moving_average()
|
|
651
|
+
test_signal_moving_median()
|
|
652
|
+
test_signal_wiener()
|
|
653
|
+
test_signal_resampling()
|
|
654
|
+
test_signal_xy_mode()
|
|
655
|
+
test_signal_histogram()
|
|
656
|
+
test_signal_interpolate()
|
|
657
|
+
test_signal_apply_window()
|