sigima 0.0.1.dev0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sigima/__init__.py +142 -2
- sigima/client/__init__.py +105 -0
- sigima/client/base.py +780 -0
- sigima/client/remote.py +469 -0
- sigima/client/stub.py +814 -0
- sigima/client/utils.py +90 -0
- sigima/config.py +444 -0
- sigima/data/logo/Sigima.svg +135 -0
- sigima/data/tests/annotations.json +798 -0
- sigima/data/tests/curve_fitting/exponential_fit.txt +511 -0
- sigima/data/tests/curve_fitting/gaussian_fit.txt +100 -0
- sigima/data/tests/curve_fitting/piecewiseexponential_fit.txt +1022 -0
- sigima/data/tests/curve_fitting/polynomial_fit.txt +100 -0
- sigima/data/tests/curve_fitting/twohalfgaussian_fit.txt +1000 -0
- sigima/data/tests/curve_formats/bandwidth.txt +201 -0
- sigima/data/tests/curve_formats/boxcar.npy +0 -0
- sigima/data/tests/curve_formats/datetime.txt +1001 -0
- sigima/data/tests/curve_formats/dynamic_parameters.txt +4000 -0
- sigima/data/tests/curve_formats/fw1e2.txt +301 -0
- sigima/data/tests/curve_formats/fwhm.txt +319 -0
- sigima/data/tests/curve_formats/multiple_curves.csv +29 -0
- sigima/data/tests/curve_formats/noised_saw.mat +0 -0
- sigima/data/tests/curve_formats/oscilloscope.csv +111 -0
- sigima/data/tests/curve_formats/other/other2/recursive2.txt +5 -0
- sigima/data/tests/curve_formats/other/recursive1.txt +5 -0
- sigima/data/tests/curve_formats/paracetamol.npy +0 -0
- sigima/data/tests/curve_formats/paracetamol.txt +1010 -0
- sigima/data/tests/curve_formats/paracetamol_dx_dy.csv +1000 -0
- sigima/data/tests/curve_formats/paracetamol_dy.csv +1001 -0
- sigima/data/tests/curve_formats/pulse1.npy +0 -0
- sigima/data/tests/curve_formats/pulse2.npy +0 -0
- sigima/data/tests/curve_formats/simple.txt +5 -0
- sigima/data/tests/curve_formats/spectrum.mca +2139 -0
- sigima/data/tests/curve_formats/square2.npy +0 -0
- sigima/data/tests/curve_formats/step.npy +0 -0
- sigima/data/tests/fabry-perot1.jpg +0 -0
- sigima/data/tests/fabry-perot2.jpg +0 -0
- sigima/data/tests/flower.npy +0 -0
- sigima/data/tests/image_formats/NF 180338201.scor-data +11003 -0
- sigima/data/tests/image_formats/binary_image.npy +0 -0
- sigima/data/tests/image_formats/binary_image.png +0 -0
- sigima/data/tests/image_formats/centroid_test.npy +0 -0
- sigima/data/tests/image_formats/coordinated_text/complex_image.txt +10011 -0
- sigima/data/tests/image_formats/coordinated_text/complex_ref_image.txt +10010 -0
- sigima/data/tests/image_formats/coordinated_text/image.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image2.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_no_unit_no_label.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_nan.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_unit.txt +14 -0
- sigima/data/tests/image_formats/fiber.csv +480 -0
- sigima/data/tests/image_formats/fiber.jpg +0 -0
- sigima/data/tests/image_formats/fiber.png +0 -0
- sigima/data/tests/image_formats/fiber.txt +480 -0
- sigima/data/tests/image_formats/gaussian_spot_with_noise.npy +0 -0
- sigima/data/tests/image_formats/mr-brain.dcm +0 -0
- sigima/data/tests/image_formats/noised_gaussian.mat +0 -0
- sigima/data/tests/image_formats/sif_reader/nd_lum_image_no_glue.sif +0 -0
- sigima/data/tests/image_formats/sif_reader/raman1.sif +0 -0
- sigima/data/tests/image_formats/tiling.txt +10 -0
- sigima/data/tests/image_formats/uint16.tiff +0 -0
- sigima/data/tests/image_formats/uint8.tiff +0 -0
- sigima/data/tests/laser_beam/TEM00_z_13.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_18.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_23.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_30.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_35.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_40.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_45.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_50.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_55.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_60.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_65.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_70.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_75.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_80.jpg +0 -0
- sigima/enums.py +195 -0
- sigima/io/__init__.py +123 -0
- sigima/io/base.py +311 -0
- sigima/io/common/__init__.py +5 -0
- sigima/io/common/basename.py +164 -0
- sigima/io/common/converters.py +189 -0
- sigima/io/common/objmeta.py +181 -0
- sigima/io/common/textreader.py +58 -0
- sigima/io/convenience.py +157 -0
- sigima/io/enums.py +17 -0
- sigima/io/ftlab.py +395 -0
- sigima/io/image/__init__.py +9 -0
- sigima/io/image/base.py +177 -0
- sigima/io/image/formats.py +1016 -0
- sigima/io/image/funcs.py +414 -0
- sigima/io/signal/__init__.py +9 -0
- sigima/io/signal/base.py +129 -0
- sigima/io/signal/formats.py +290 -0
- sigima/io/signal/funcs.py +723 -0
- sigima/objects/__init__.py +260 -0
- sigima/objects/base.py +937 -0
- sigima/objects/image/__init__.py +88 -0
- sigima/objects/image/creation.py +556 -0
- sigima/objects/image/object.py +524 -0
- sigima/objects/image/roi.py +904 -0
- sigima/objects/scalar/__init__.py +57 -0
- sigima/objects/scalar/common.py +215 -0
- sigima/objects/scalar/geometry.py +502 -0
- sigima/objects/scalar/table.py +784 -0
- sigima/objects/shape.py +290 -0
- sigima/objects/signal/__init__.py +133 -0
- sigima/objects/signal/constants.py +27 -0
- sigima/objects/signal/creation.py +1428 -0
- sigima/objects/signal/object.py +444 -0
- sigima/objects/signal/roi.py +274 -0
- sigima/params.py +405 -0
- sigima/proc/__init__.py +96 -0
- sigima/proc/base.py +381 -0
- sigima/proc/decorator.py +330 -0
- sigima/proc/image/__init__.py +513 -0
- sigima/proc/image/arithmetic.py +335 -0
- sigima/proc/image/base.py +260 -0
- sigima/proc/image/detection.py +519 -0
- sigima/proc/image/edges.py +329 -0
- sigima/proc/image/exposure.py +406 -0
- sigima/proc/image/extraction.py +458 -0
- sigima/proc/image/filtering.py +219 -0
- sigima/proc/image/fourier.py +147 -0
- sigima/proc/image/geometry.py +661 -0
- sigima/proc/image/mathops.py +340 -0
- sigima/proc/image/measurement.py +195 -0
- sigima/proc/image/morphology.py +155 -0
- sigima/proc/image/noise.py +107 -0
- sigima/proc/image/preprocessing.py +182 -0
- sigima/proc/image/restoration.py +235 -0
- sigima/proc/image/threshold.py +217 -0
- sigima/proc/image/transformations.py +393 -0
- sigima/proc/signal/__init__.py +376 -0
- sigima/proc/signal/analysis.py +206 -0
- sigima/proc/signal/arithmetic.py +551 -0
- sigima/proc/signal/base.py +262 -0
- sigima/proc/signal/extraction.py +60 -0
- sigima/proc/signal/features.py +310 -0
- sigima/proc/signal/filtering.py +484 -0
- sigima/proc/signal/fitting.py +276 -0
- sigima/proc/signal/fourier.py +259 -0
- sigima/proc/signal/mathops.py +420 -0
- sigima/proc/signal/processing.py +580 -0
- sigima/proc/signal/stability.py +175 -0
- sigima/proc/title_formatting.py +227 -0
- sigima/proc/validation.py +272 -0
- sigima/tests/__init__.py +7 -0
- sigima/tests/common/__init__.py +0 -0
- sigima/tests/common/arithmeticparam_unit_test.py +26 -0
- sigima/tests/common/basename_unit_test.py +126 -0
- sigima/tests/common/client_unit_test.py +412 -0
- sigima/tests/common/converters_unit_test.py +77 -0
- sigima/tests/common/decorator_unit_test.py +176 -0
- sigima/tests/common/examples_unit_test.py +104 -0
- sigima/tests/common/kernel_normalization_unit_test.py +242 -0
- sigima/tests/common/roi_basic_unit_test.py +73 -0
- sigima/tests/common/roi_geometry_unit_test.py +171 -0
- sigima/tests/common/scalar_builder_unit_test.py +142 -0
- sigima/tests/common/scalar_unit_test.py +991 -0
- sigima/tests/common/shape_unit_test.py +183 -0
- sigima/tests/common/stat_unit_test.py +138 -0
- sigima/tests/common/title_formatting_unit_test.py +338 -0
- sigima/tests/common/tools_coordinates_unit_test.py +60 -0
- sigima/tests/common/transformations_unit_test.py +178 -0
- sigima/tests/common/validation_unit_test.py +205 -0
- sigima/tests/conftest.py +129 -0
- sigima/tests/data.py +998 -0
- sigima/tests/env.py +280 -0
- sigima/tests/guiutils.py +163 -0
- sigima/tests/helpers.py +532 -0
- sigima/tests/image/__init__.py +28 -0
- sigima/tests/image/binning_unit_test.py +128 -0
- sigima/tests/image/blob_detection_unit_test.py +312 -0
- sigima/tests/image/centroid_unit_test.py +170 -0
- sigima/tests/image/check_2d_array_unit_test.py +63 -0
- sigima/tests/image/contour_unit_test.py +172 -0
- sigima/tests/image/convolution_unit_test.py +178 -0
- sigima/tests/image/datatype_unit_test.py +67 -0
- sigima/tests/image/edges_unit_test.py +155 -0
- sigima/tests/image/enclosingcircle_unit_test.py +88 -0
- sigima/tests/image/exposure_unit_test.py +223 -0
- sigima/tests/image/fft2d_unit_test.py +189 -0
- sigima/tests/image/filtering_unit_test.py +166 -0
- sigima/tests/image/geometry_unit_test.py +654 -0
- sigima/tests/image/hough_circle_unit_test.py +147 -0
- sigima/tests/image/imageobj_unit_test.py +737 -0
- sigima/tests/image/morphology_unit_test.py +71 -0
- sigima/tests/image/noise_unit_test.py +57 -0
- sigima/tests/image/offset_correction_unit_test.py +72 -0
- sigima/tests/image/operation_unit_test.py +518 -0
- sigima/tests/image/peak2d_limits_unit_test.py +41 -0
- sigima/tests/image/peak2d_unit_test.py +133 -0
- sigima/tests/image/profile_unit_test.py +159 -0
- sigima/tests/image/projections_unit_test.py +121 -0
- sigima/tests/image/restoration_unit_test.py +141 -0
- sigima/tests/image/roi2dparam_unit_test.py +53 -0
- sigima/tests/image/roi_advanced_unit_test.py +588 -0
- sigima/tests/image/roi_grid_unit_test.py +279 -0
- sigima/tests/image/spectrum2d_unit_test.py +40 -0
- sigima/tests/image/threshold_unit_test.py +91 -0
- sigima/tests/io/__init__.py +0 -0
- sigima/tests/io/addnewformat_unit_test.py +125 -0
- sigima/tests/io/convenience_funcs_unit_test.py +470 -0
- sigima/tests/io/coordinated_text_format_unit_test.py +495 -0
- sigima/tests/io/datetime_csv_unit_test.py +198 -0
- sigima/tests/io/imageio_formats_test.py +41 -0
- sigima/tests/io/ioregistry_unit_test.py +69 -0
- sigima/tests/io/objmeta_unit_test.py +87 -0
- sigima/tests/io/readobj_unit_test.py +130 -0
- sigima/tests/io/readwriteobj_unit_test.py +67 -0
- sigima/tests/signal/__init__.py +0 -0
- sigima/tests/signal/analysis_unit_test.py +135 -0
- sigima/tests/signal/check_1d_arrays_unit_test.py +169 -0
- sigima/tests/signal/convolution_unit_test.py +404 -0
- sigima/tests/signal/datetime_unit_test.py +176 -0
- sigima/tests/signal/fft1d_unit_test.py +303 -0
- sigima/tests/signal/filters_unit_test.py +403 -0
- sigima/tests/signal/fitting_unit_test.py +929 -0
- sigima/tests/signal/fwhm_unit_test.py +111 -0
- sigima/tests/signal/noise_unit_test.py +128 -0
- sigima/tests/signal/offset_correction_unit_test.py +34 -0
- sigima/tests/signal/operation_unit_test.py +489 -0
- sigima/tests/signal/peakdetection_unit_test.py +145 -0
- sigima/tests/signal/processing_unit_test.py +657 -0
- sigima/tests/signal/pulse/__init__.py +112 -0
- sigima/tests/signal/pulse/crossing_times_unit_test.py +123 -0
- sigima/tests/signal/pulse/plateau_detection_unit_test.py +102 -0
- sigima/tests/signal/pulse/pulse_unit_test.py +1824 -0
- sigima/tests/signal/roi_advanced_unit_test.py +392 -0
- sigima/tests/signal/signalobj_unit_test.py +603 -0
- sigima/tests/signal/stability_unit_test.py +431 -0
- sigima/tests/signal/uncertainty_unit_test.py +611 -0
- sigima/tests/vistools.py +1030 -0
- sigima/tools/__init__.py +59 -0
- sigima/tools/checks.py +290 -0
- sigima/tools/coordinates.py +308 -0
- sigima/tools/datatypes.py +26 -0
- sigima/tools/image/__init__.py +97 -0
- sigima/tools/image/detection.py +451 -0
- sigima/tools/image/exposure.py +77 -0
- sigima/tools/image/extraction.py +48 -0
- sigima/tools/image/fourier.py +260 -0
- sigima/tools/image/geometry.py +190 -0
- sigima/tools/image/preprocessing.py +165 -0
- sigima/tools/signal/__init__.py +86 -0
- sigima/tools/signal/dynamic.py +254 -0
- sigima/tools/signal/features.py +135 -0
- sigima/tools/signal/filtering.py +171 -0
- sigima/tools/signal/fitting.py +1171 -0
- sigima/tools/signal/fourier.py +466 -0
- sigima/tools/signal/interpolation.py +70 -0
- sigima/tools/signal/peakdetection.py +126 -0
- sigima/tools/signal/pulse.py +1626 -0
- sigima/tools/signal/scaling.py +50 -0
- sigima/tools/signal/stability.py +258 -0
- sigima/tools/signal/windowing.py +90 -0
- sigima/worker.py +79 -0
- sigima-1.0.0.dist-info/METADATA +233 -0
- sigima-1.0.0.dist-info/RECORD +262 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/licenses/LICENSE +29 -29
- sigima-0.0.1.dev0.dist-info/METADATA +0 -60
- sigima-0.0.1.dev0.dist-info/RECORD +0 -6
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/WHEEL +0 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,519 @@
|
|
|
1
|
+
# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Detection computation module
|
|
5
|
+
----------------------------
|
|
6
|
+
|
|
7
|
+
This module provides algorithms for detecting objects or patterns in images,
|
|
8
|
+
such as blobs, peaks, or custom structures.
|
|
9
|
+
|
|
10
|
+
Main features include:
|
|
11
|
+
|
|
12
|
+
- Blob and peak detection algorithms
|
|
13
|
+
- Support for object localization and counting
|
|
14
|
+
|
|
15
|
+
Detection algorithms are fundamental for many image analysis pipelines,
|
|
16
|
+
enabling automated extraction of regions or features of interest.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
# pylint: disable=invalid-name # Allows short reference names like x, y, ...
|
|
20
|
+
|
|
21
|
+
# Note:
|
|
22
|
+
# ----
|
|
23
|
+
# All dataset classes must also be imported in the sigima.params module.
|
|
24
|
+
|
|
25
|
+
from __future__ import annotations
|
|
26
|
+
|
|
27
|
+
import guidata.dataset as gds
|
|
28
|
+
import numpy as np
|
|
29
|
+
|
|
30
|
+
import sigima.enums
|
|
31
|
+
import sigima.tools.image
|
|
32
|
+
from sigima.config import _
|
|
33
|
+
from sigima.objects import GeometryResult, ImageObj, KindShape, create_image_roi
|
|
34
|
+
from sigima.proc.decorator import computation_function
|
|
35
|
+
from sigima.proc.image.base import compute_geometry_from_obj
|
|
36
|
+
|
|
37
|
+
# NOTE: Only parameter classes DEFINED in this module should be included in __all__.
|
|
38
|
+
# Parameter classes imported from other modules (like sigima.proc.base) should NOT
|
|
39
|
+
# be re-exported to avoid Sphinx cross-reference conflicts. The sigima.params module
|
|
40
|
+
# serves as the central API point that imports and re-exports all parameter classes.
|
|
41
|
+
__all__ = [
|
|
42
|
+
"BaseBlobParam",
|
|
43
|
+
"BlobDOGParam",
|
|
44
|
+
"BlobDOHParam",
|
|
45
|
+
"BlobLOGParam",
|
|
46
|
+
"BlobOpenCVParam",
|
|
47
|
+
"ContourShapeParam",
|
|
48
|
+
"GenericDetectionParam",
|
|
49
|
+
"HoughCircleParam",
|
|
50
|
+
"Peak2DDetectionParam",
|
|
51
|
+
"blob_dog",
|
|
52
|
+
"blob_doh",
|
|
53
|
+
"blob_log",
|
|
54
|
+
"blob_opencv",
|
|
55
|
+
"contour_shape",
|
|
56
|
+
"hough_circle_peaks",
|
|
57
|
+
"peak_detection",
|
|
58
|
+
]
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
class GenericDetectionParam(gds.DataSet):
|
|
62
|
+
"""Generic detection parameters"""
|
|
63
|
+
|
|
64
|
+
threshold = gds.FloatItem(
|
|
65
|
+
_("Relative threshold"),
|
|
66
|
+
default=0.5,
|
|
67
|
+
min=0.1,
|
|
68
|
+
max=0.9,
|
|
69
|
+
help=_(
|
|
70
|
+
"Detection threshold, relative to difference between "
|
|
71
|
+
"data maximum and minimum"
|
|
72
|
+
),
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class Peak2DDetectionParam(GenericDetectionParam):
|
|
77
|
+
"""Peak detection parameters"""
|
|
78
|
+
|
|
79
|
+
size = gds.IntItem(
|
|
80
|
+
_("Neighborhoods size"),
|
|
81
|
+
default=None,
|
|
82
|
+
check=False, # Allow None value
|
|
83
|
+
min=1,
|
|
84
|
+
unit="pixels",
|
|
85
|
+
help=_(
|
|
86
|
+
"Size of the sliding window used in maximum/minimum filtering algorithm "
|
|
87
|
+
"(if no value is provided, the algorithm will use a default size "
|
|
88
|
+
"based on the image size). "
|
|
89
|
+
),
|
|
90
|
+
)
|
|
91
|
+
create_rois = gds.BoolItem(_("Create regions of interest"), default=True)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
@computation_function()
|
|
95
|
+
def peak_detection(obj: ImageObj, p: Peak2DDetectionParam) -> GeometryResult | None:
|
|
96
|
+
"""Compute 2D peak detection
|
|
97
|
+
with :py:func:`sigima.tools.image.get_2d_peaks_coords`
|
|
98
|
+
|
|
99
|
+
Args:
|
|
100
|
+
obj: input image
|
|
101
|
+
p: parameters
|
|
102
|
+
|
|
103
|
+
Returns:
|
|
104
|
+
Peak coordinates
|
|
105
|
+
"""
|
|
106
|
+
geometry = compute_geometry_from_obj(
|
|
107
|
+
"peak",
|
|
108
|
+
"point",
|
|
109
|
+
obj,
|
|
110
|
+
sigima.tools.image.get_2d_peaks_coords,
|
|
111
|
+
p.size,
|
|
112
|
+
p.threshold,
|
|
113
|
+
)
|
|
114
|
+
if geometry is not None and p.create_rois and len(geometry) > 1:
|
|
115
|
+
# Create a rectangular ROI around each peak, only if there are more than one
|
|
116
|
+
# peak detected (otherwise, it would not make sense to create an ROI)
|
|
117
|
+
dist = sigima.tools.image.distance_matrix(geometry.coords)
|
|
118
|
+
dist_min = dist[dist != 0].min()
|
|
119
|
+
assert dist_min > 0
|
|
120
|
+
radius = int(0.5 * dist_min / np.sqrt(2) - 1)
|
|
121
|
+
assert radius >= 1
|
|
122
|
+
ymax, xmax = obj.data.shape
|
|
123
|
+
coords = []
|
|
124
|
+
for x, y in geometry.coords:
|
|
125
|
+
x0, y0 = max(x - radius, 0), max(y - radius, 0)
|
|
126
|
+
dx, dy = min(x + radius, xmax) - x0, min(y + radius, ymax) - y0
|
|
127
|
+
coords.append([x0, y0, dx, dy])
|
|
128
|
+
obj.roi = create_image_roi("rectangle", coords, indices=True)
|
|
129
|
+
return geometry
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
class ContourShapeParam(GenericDetectionParam):
|
|
133
|
+
"""Contour shape parameters"""
|
|
134
|
+
|
|
135
|
+
# Keep choices aligned with supported geometry kinds
|
|
136
|
+
assert set(item.name for item in sigima.enums.ContourShape).issubset(
|
|
137
|
+
set(item.name for item in KindShape)
|
|
138
|
+
)
|
|
139
|
+
shape = gds.ChoiceItem(_("Shape"), sigima.enums.ContourShape)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
@computation_function()
|
|
143
|
+
def contour_shape(image: ImageObj, p: ContourShapeParam) -> GeometryResult | None:
|
|
144
|
+
"""Compute contour shape with :py:func:`sigima.tools.image.get_contour_shapes`."""
|
|
145
|
+
shape: sigima.enums.ContourShape = p.shape
|
|
146
|
+
kindshape = getattr(KindShape, shape.name)
|
|
147
|
+
return compute_geometry_from_obj(
|
|
148
|
+
"contour",
|
|
149
|
+
kindshape,
|
|
150
|
+
image,
|
|
151
|
+
sigima.tools.image.get_contour_shapes,
|
|
152
|
+
shape,
|
|
153
|
+
p.threshold,
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
class BaseBlobParam(gds.DataSet):
|
|
158
|
+
"""Base class for blob detection parameters"""
|
|
159
|
+
|
|
160
|
+
min_sigma = gds.FloatItem(
|
|
161
|
+
"σ<sub>min</sub>",
|
|
162
|
+
default=10.0,
|
|
163
|
+
unit="pixels",
|
|
164
|
+
min=0,
|
|
165
|
+
nonzero=True,
|
|
166
|
+
help=_(
|
|
167
|
+
"The minimum standard deviation for Gaussian Kernel. "
|
|
168
|
+
"Keep this low to detect smaller blobs."
|
|
169
|
+
),
|
|
170
|
+
)
|
|
171
|
+
max_sigma = gds.FloatItem(
|
|
172
|
+
"σ<sub>max</sub>",
|
|
173
|
+
default=30.0,
|
|
174
|
+
unit="pixels",
|
|
175
|
+
min=0,
|
|
176
|
+
nonzero=True,
|
|
177
|
+
help=_(
|
|
178
|
+
"The maximum standard deviation for Gaussian Kernel. "
|
|
179
|
+
"Keep this high to detect larger blobs."
|
|
180
|
+
),
|
|
181
|
+
)
|
|
182
|
+
threshold_rel = gds.FloatItem(
|
|
183
|
+
_("Relative threshold"),
|
|
184
|
+
default=0.2,
|
|
185
|
+
min=0.0,
|
|
186
|
+
max=1.0,
|
|
187
|
+
help=_("Minimum intensity of blobs."),
|
|
188
|
+
)
|
|
189
|
+
overlap = gds.FloatItem(
|
|
190
|
+
_("Overlap"),
|
|
191
|
+
default=0.5,
|
|
192
|
+
min=0.0,
|
|
193
|
+
max=1.0,
|
|
194
|
+
help=_(
|
|
195
|
+
"If two blobs overlap by a fraction greater than this value, the "
|
|
196
|
+
"smaller blob is eliminated."
|
|
197
|
+
),
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
class BlobDOGParam(BaseBlobParam):
|
|
202
|
+
"""Blob detection using Difference of Gaussian method"""
|
|
203
|
+
|
|
204
|
+
exclude_border = gds.BoolItem(
|
|
205
|
+
_("Exclude border"),
|
|
206
|
+
default=True,
|
|
207
|
+
help=_("If True, exclude blobs from the border of the image."),
|
|
208
|
+
)
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
@computation_function()
|
|
212
|
+
def blob_dog(image: ImageObj, p: BlobDOGParam) -> GeometryResult | None:
|
|
213
|
+
"""Compute blobs using Difference of Gaussian method
|
|
214
|
+
with :py:func:`sigima.tools.image.find_blobs_dog`
|
|
215
|
+
|
|
216
|
+
Args:
|
|
217
|
+
imageOutput: input image
|
|
218
|
+
p: parameters
|
|
219
|
+
|
|
220
|
+
Returns:
|
|
221
|
+
Blobs coordinates
|
|
222
|
+
"""
|
|
223
|
+
return compute_geometry_from_obj(
|
|
224
|
+
"blob_dog",
|
|
225
|
+
"circle",
|
|
226
|
+
image,
|
|
227
|
+
sigima.tools.image.find_blobs_dog,
|
|
228
|
+
p.min_sigma,
|
|
229
|
+
p.max_sigma,
|
|
230
|
+
p.overlap,
|
|
231
|
+
p.threshold_rel,
|
|
232
|
+
p.exclude_border,
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
class BlobDOHParam(BaseBlobParam):
|
|
237
|
+
"""Blob detection using Determinant of Hessian method"""
|
|
238
|
+
|
|
239
|
+
log_scale = gds.BoolItem(
|
|
240
|
+
_("Log scale"),
|
|
241
|
+
default=False,
|
|
242
|
+
help=_(
|
|
243
|
+
"If set intermediate values of standard deviations are interpolated "
|
|
244
|
+
"using a logarithmic scale to the base 10. "
|
|
245
|
+
"If not, linear interpolation is used."
|
|
246
|
+
),
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
@computation_function()
|
|
251
|
+
def blob_doh(image: ImageObj, p: BlobDOHParam) -> GeometryResult | None:
|
|
252
|
+
"""Compute blobs using Determinant of Hessian method
|
|
253
|
+
with :py:func:`sigima.tools.image.find_blobs_doh`
|
|
254
|
+
|
|
255
|
+
Args:
|
|
256
|
+
imageOutput: input image
|
|
257
|
+
p: parameters
|
|
258
|
+
|
|
259
|
+
Returns:
|
|
260
|
+
Blobs coordinates
|
|
261
|
+
"""
|
|
262
|
+
return compute_geometry_from_obj(
|
|
263
|
+
"blob_doh",
|
|
264
|
+
"circle",
|
|
265
|
+
image,
|
|
266
|
+
sigima.tools.image.find_blobs_doh,
|
|
267
|
+
p.min_sigma,
|
|
268
|
+
p.max_sigma,
|
|
269
|
+
p.overlap,
|
|
270
|
+
p.log_scale,
|
|
271
|
+
p.threshold_rel,
|
|
272
|
+
)
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
class BlobLOGParam(BlobDOHParam):
|
|
276
|
+
"""Blob detection using Laplacian of Gaussian method"""
|
|
277
|
+
|
|
278
|
+
exclude_border = gds.BoolItem(
|
|
279
|
+
_("Exclude border"),
|
|
280
|
+
default=True,
|
|
281
|
+
help=_("If True, exclude blobs from the border of the image."),
|
|
282
|
+
)
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
@computation_function()
|
|
286
|
+
def blob_log(image: ImageObj, p: BlobLOGParam) -> GeometryResult | None:
|
|
287
|
+
"""Compute blobs using Laplacian of Gaussian method
|
|
288
|
+
with :py:func:`sigima.tools.image.find_blobs_log`
|
|
289
|
+
|
|
290
|
+
Args:
|
|
291
|
+
imageOutput: input image
|
|
292
|
+
p: parameters
|
|
293
|
+
|
|
294
|
+
Returns:
|
|
295
|
+
Blobs coordinates
|
|
296
|
+
"""
|
|
297
|
+
return compute_geometry_from_obj(
|
|
298
|
+
"blob_log",
|
|
299
|
+
"circle",
|
|
300
|
+
image,
|
|
301
|
+
sigima.tools.image.find_blobs_log,
|
|
302
|
+
p.min_sigma,
|
|
303
|
+
p.max_sigma,
|
|
304
|
+
p.overlap,
|
|
305
|
+
p.log_scale,
|
|
306
|
+
p.threshold_rel,
|
|
307
|
+
p.exclude_border,
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
class BlobOpenCVParam(gds.DataSet):
|
|
312
|
+
"""Blob detection using OpenCV"""
|
|
313
|
+
|
|
314
|
+
min_threshold = gds.FloatItem(
|
|
315
|
+
_("Min. threshold"),
|
|
316
|
+
default=10.0,
|
|
317
|
+
min=0.0,
|
|
318
|
+
help=_(
|
|
319
|
+
"The minimum threshold between local maxima and minima. "
|
|
320
|
+
"This parameter does not affect the quality of the blobs, "
|
|
321
|
+
"only the quantity. Lower thresholds result in larger "
|
|
322
|
+
"numbers of blobs."
|
|
323
|
+
),
|
|
324
|
+
)
|
|
325
|
+
max_threshold = gds.FloatItem(
|
|
326
|
+
_("Max. threshold"),
|
|
327
|
+
default=200.0,
|
|
328
|
+
min=0.0,
|
|
329
|
+
help=_(
|
|
330
|
+
"The maximum threshold between local maxima and minima. "
|
|
331
|
+
"This parameter does not affect the quality of the blobs, "
|
|
332
|
+
"only the quantity. Lower thresholds result in larger "
|
|
333
|
+
"numbers of blobs."
|
|
334
|
+
),
|
|
335
|
+
)
|
|
336
|
+
min_repeatability = gds.IntItem(
|
|
337
|
+
_("Min. repeatability"),
|
|
338
|
+
default=2,
|
|
339
|
+
min=1,
|
|
340
|
+
help=_(
|
|
341
|
+
"The minimum number of times a blob needs to be detected "
|
|
342
|
+
"in a sequence of images to be considered valid."
|
|
343
|
+
),
|
|
344
|
+
)
|
|
345
|
+
min_dist_between_blobs = gds.FloatItem(
|
|
346
|
+
_("Min. distance between blobs"),
|
|
347
|
+
default=10.0,
|
|
348
|
+
min=0.0,
|
|
349
|
+
nonzero=True,
|
|
350
|
+
help=_(
|
|
351
|
+
"The minimum distance between two blobs. If blobs are found "
|
|
352
|
+
"closer together than this distance, the smaller blob is removed."
|
|
353
|
+
),
|
|
354
|
+
)
|
|
355
|
+
_prop_col = gds.ValueProp(False)
|
|
356
|
+
filter_by_color = gds.BoolItem(
|
|
357
|
+
_("Filter by color"),
|
|
358
|
+
default=True,
|
|
359
|
+
help=_("If true, the image is filtered by color instead of intensity."),
|
|
360
|
+
).set_prop("display", store=_prop_col)
|
|
361
|
+
blob_color = gds.IntItem(
|
|
362
|
+
_("Blob color"),
|
|
363
|
+
default=0,
|
|
364
|
+
help=_(
|
|
365
|
+
"The color of the blobs to detect (0 for dark blobs, 255 for light blobs)."
|
|
366
|
+
),
|
|
367
|
+
).set_prop("display", active=_prop_col)
|
|
368
|
+
_prop_area = gds.ValueProp(False)
|
|
369
|
+
filter_by_area = gds.BoolItem(
|
|
370
|
+
_("Filter by area"),
|
|
371
|
+
default=True,
|
|
372
|
+
help=_("If true, the image is filtered by blob area."),
|
|
373
|
+
).set_prop("display", store=_prop_area)
|
|
374
|
+
min_area = gds.FloatItem(
|
|
375
|
+
_("Min. area"),
|
|
376
|
+
default=25.0,
|
|
377
|
+
min=0.0,
|
|
378
|
+
help=_("The minimum blob area."),
|
|
379
|
+
).set_prop("display", active=_prop_area)
|
|
380
|
+
max_area = gds.FloatItem(
|
|
381
|
+
_("Max. area"),
|
|
382
|
+
default=500.0,
|
|
383
|
+
min=0.0,
|
|
384
|
+
help=_("The maximum blob area."),
|
|
385
|
+
).set_prop("display", active=_prop_area)
|
|
386
|
+
_prop_circ = gds.ValueProp(False)
|
|
387
|
+
filter_by_circularity = gds.BoolItem(
|
|
388
|
+
_("Filter by circularity"),
|
|
389
|
+
default=False,
|
|
390
|
+
help=_("If true, the image is filtered by blob circularity."),
|
|
391
|
+
).set_prop("display", store=_prop_circ)
|
|
392
|
+
min_circularity = gds.FloatItem(
|
|
393
|
+
_("Min. circularity"),
|
|
394
|
+
default=0.8,
|
|
395
|
+
min=0.0,
|
|
396
|
+
max=1.0,
|
|
397
|
+
help=_("The minimum circularity of the blobs."),
|
|
398
|
+
).set_prop("display", active=_prop_circ)
|
|
399
|
+
max_circularity = gds.FloatItem(
|
|
400
|
+
_("Max. circularity"),
|
|
401
|
+
default=1.0,
|
|
402
|
+
min=0.0,
|
|
403
|
+
max=1.0,
|
|
404
|
+
help=_("The maximum circularity of the blobs."),
|
|
405
|
+
).set_prop("display", active=_prop_circ)
|
|
406
|
+
_prop_iner = gds.ValueProp(False)
|
|
407
|
+
filter_by_inertia = gds.BoolItem(
|
|
408
|
+
_("Filter by inertia"),
|
|
409
|
+
default=False,
|
|
410
|
+
help=_("If true, the image is filtered by blob inertia."),
|
|
411
|
+
).set_prop("display", store=_prop_iner)
|
|
412
|
+
min_inertia_ratio = gds.FloatItem(
|
|
413
|
+
_("Min. inertia ratio"),
|
|
414
|
+
default=0.6,
|
|
415
|
+
min=0.0,
|
|
416
|
+
max=1.0,
|
|
417
|
+
help=_("The minimum inertia ratio of the blobs."),
|
|
418
|
+
).set_prop("display", active=_prop_iner)
|
|
419
|
+
max_inertia_ratio = gds.FloatItem(
|
|
420
|
+
_("Max. inertia ratio"),
|
|
421
|
+
default=1.0,
|
|
422
|
+
min=0.0,
|
|
423
|
+
max=1.0,
|
|
424
|
+
help=_("The maximum inertia ratio of the blobs."),
|
|
425
|
+
).set_prop("display", active=_prop_iner)
|
|
426
|
+
_prop_conv = gds.ValueProp(False)
|
|
427
|
+
filter_by_convexity = gds.BoolItem(
|
|
428
|
+
_("Filter by convexity"),
|
|
429
|
+
default=False,
|
|
430
|
+
help=_("If true, the image is filtered by blob convexity."),
|
|
431
|
+
).set_prop("display", store=_prop_conv)
|
|
432
|
+
min_convexity = gds.FloatItem(
|
|
433
|
+
_("Min. convexity"),
|
|
434
|
+
default=0.8,
|
|
435
|
+
min=0.0,
|
|
436
|
+
max=1.0,
|
|
437
|
+
help=_("The minimum convexity of the blobs."),
|
|
438
|
+
).set_prop("display", active=_prop_conv)
|
|
439
|
+
max_convexity = gds.FloatItem(
|
|
440
|
+
_("Max. convexity"),
|
|
441
|
+
default=1.0,
|
|
442
|
+
min=0.0,
|
|
443
|
+
max=1.0,
|
|
444
|
+
help=_("The maximum convexity of the blobs."),
|
|
445
|
+
).set_prop("display", active=_prop_conv)
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
@computation_function()
|
|
449
|
+
def blob_opencv(image: ImageObj, p: BlobOpenCVParam) -> GeometryResult | None:
|
|
450
|
+
"""Compute blobs using OpenCV
|
|
451
|
+
with :py:func:`sigima.tools.image.find_blobs_opencv`
|
|
452
|
+
|
|
453
|
+
Args:
|
|
454
|
+
imageOutput: input image
|
|
455
|
+
p: parameters
|
|
456
|
+
|
|
457
|
+
Returns:
|
|
458
|
+
Blobs coordinates
|
|
459
|
+
"""
|
|
460
|
+
return compute_geometry_from_obj(
|
|
461
|
+
"blob_opencv",
|
|
462
|
+
"circle",
|
|
463
|
+
image,
|
|
464
|
+
sigima.tools.image.find_blobs_opencv,
|
|
465
|
+
p.min_threshold,
|
|
466
|
+
p.max_threshold,
|
|
467
|
+
p.min_repeatability,
|
|
468
|
+
p.min_dist_between_blobs,
|
|
469
|
+
p.filter_by_color,
|
|
470
|
+
p.blob_color,
|
|
471
|
+
p.filter_by_area,
|
|
472
|
+
p.min_area,
|
|
473
|
+
p.max_area,
|
|
474
|
+
p.filter_by_circularity,
|
|
475
|
+
p.min_circularity,
|
|
476
|
+
p.max_circularity,
|
|
477
|
+
p.filter_by_inertia,
|
|
478
|
+
p.min_inertia_ratio,
|
|
479
|
+
p.max_inertia_ratio,
|
|
480
|
+
p.filter_by_convexity,
|
|
481
|
+
p.min_convexity,
|
|
482
|
+
p.max_convexity,
|
|
483
|
+
)
|
|
484
|
+
|
|
485
|
+
|
|
486
|
+
class HoughCircleParam(gds.DataSet):
|
|
487
|
+
"""Circle Hough transform parameters"""
|
|
488
|
+
|
|
489
|
+
min_radius = gds.IntItem(
|
|
490
|
+
_("Radius<sub>min</sub>"), unit="pixels", min=0, nonzero=True
|
|
491
|
+
)
|
|
492
|
+
max_radius = gds.IntItem(
|
|
493
|
+
_("Radius<sub>max</sub>"), unit="pixels", min=0, nonzero=True
|
|
494
|
+
)
|
|
495
|
+
min_distance = gds.IntItem(_("Minimal distance"), min=0)
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
@computation_function()
|
|
499
|
+
def hough_circle_peaks(image: ImageObj, p: HoughCircleParam) -> GeometryResult | None:
|
|
500
|
+
"""Compute Hough circles
|
|
501
|
+
with :py:func:`sigima.tools.image.get_hough_circle_peaks`
|
|
502
|
+
|
|
503
|
+
Args:
|
|
504
|
+
image: input image
|
|
505
|
+
p: parameters
|
|
506
|
+
|
|
507
|
+
Returns:
|
|
508
|
+
Circle coordinates
|
|
509
|
+
"""
|
|
510
|
+
return compute_geometry_from_obj(
|
|
511
|
+
"hough_circle_peak",
|
|
512
|
+
"circle",
|
|
513
|
+
image,
|
|
514
|
+
sigima.tools.image.get_hough_circle_peaks,
|
|
515
|
+
p.min_radius,
|
|
516
|
+
p.max_radius,
|
|
517
|
+
None,
|
|
518
|
+
p.min_distance,
|
|
519
|
+
)
|