sigima 0.0.1.dev0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sigima/__init__.py +142 -2
- sigima/client/__init__.py +105 -0
- sigima/client/base.py +780 -0
- sigima/client/remote.py +469 -0
- sigima/client/stub.py +814 -0
- sigima/client/utils.py +90 -0
- sigima/config.py +444 -0
- sigima/data/logo/Sigima.svg +135 -0
- sigima/data/tests/annotations.json +798 -0
- sigima/data/tests/curve_fitting/exponential_fit.txt +511 -0
- sigima/data/tests/curve_fitting/gaussian_fit.txt +100 -0
- sigima/data/tests/curve_fitting/piecewiseexponential_fit.txt +1022 -0
- sigima/data/tests/curve_fitting/polynomial_fit.txt +100 -0
- sigima/data/tests/curve_fitting/twohalfgaussian_fit.txt +1000 -0
- sigima/data/tests/curve_formats/bandwidth.txt +201 -0
- sigima/data/tests/curve_formats/boxcar.npy +0 -0
- sigima/data/tests/curve_formats/datetime.txt +1001 -0
- sigima/data/tests/curve_formats/dynamic_parameters.txt +4000 -0
- sigima/data/tests/curve_formats/fw1e2.txt +301 -0
- sigima/data/tests/curve_formats/fwhm.txt +319 -0
- sigima/data/tests/curve_formats/multiple_curves.csv +29 -0
- sigima/data/tests/curve_formats/noised_saw.mat +0 -0
- sigima/data/tests/curve_formats/oscilloscope.csv +111 -0
- sigima/data/tests/curve_formats/other/other2/recursive2.txt +5 -0
- sigima/data/tests/curve_formats/other/recursive1.txt +5 -0
- sigima/data/tests/curve_formats/paracetamol.npy +0 -0
- sigima/data/tests/curve_formats/paracetamol.txt +1010 -0
- sigima/data/tests/curve_formats/paracetamol_dx_dy.csv +1000 -0
- sigima/data/tests/curve_formats/paracetamol_dy.csv +1001 -0
- sigima/data/tests/curve_formats/pulse1.npy +0 -0
- sigima/data/tests/curve_formats/pulse2.npy +0 -0
- sigima/data/tests/curve_formats/simple.txt +5 -0
- sigima/data/tests/curve_formats/spectrum.mca +2139 -0
- sigima/data/tests/curve_formats/square2.npy +0 -0
- sigima/data/tests/curve_formats/step.npy +0 -0
- sigima/data/tests/fabry-perot1.jpg +0 -0
- sigima/data/tests/fabry-perot2.jpg +0 -0
- sigima/data/tests/flower.npy +0 -0
- sigima/data/tests/image_formats/NF 180338201.scor-data +11003 -0
- sigima/data/tests/image_formats/binary_image.npy +0 -0
- sigima/data/tests/image_formats/binary_image.png +0 -0
- sigima/data/tests/image_formats/centroid_test.npy +0 -0
- sigima/data/tests/image_formats/coordinated_text/complex_image.txt +10011 -0
- sigima/data/tests/image_formats/coordinated_text/complex_ref_image.txt +10010 -0
- sigima/data/tests/image_formats/coordinated_text/image.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image2.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_no_unit_no_label.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_nan.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_unit.txt +14 -0
- sigima/data/tests/image_formats/fiber.csv +480 -0
- sigima/data/tests/image_formats/fiber.jpg +0 -0
- sigima/data/tests/image_formats/fiber.png +0 -0
- sigima/data/tests/image_formats/fiber.txt +480 -0
- sigima/data/tests/image_formats/gaussian_spot_with_noise.npy +0 -0
- sigima/data/tests/image_formats/mr-brain.dcm +0 -0
- sigima/data/tests/image_formats/noised_gaussian.mat +0 -0
- sigima/data/tests/image_formats/sif_reader/nd_lum_image_no_glue.sif +0 -0
- sigima/data/tests/image_formats/sif_reader/raman1.sif +0 -0
- sigima/data/tests/image_formats/tiling.txt +10 -0
- sigima/data/tests/image_formats/uint16.tiff +0 -0
- sigima/data/tests/image_formats/uint8.tiff +0 -0
- sigima/data/tests/laser_beam/TEM00_z_13.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_18.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_23.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_30.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_35.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_40.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_45.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_50.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_55.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_60.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_65.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_70.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_75.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_80.jpg +0 -0
- sigima/enums.py +195 -0
- sigima/io/__init__.py +123 -0
- sigima/io/base.py +311 -0
- sigima/io/common/__init__.py +5 -0
- sigima/io/common/basename.py +164 -0
- sigima/io/common/converters.py +189 -0
- sigima/io/common/objmeta.py +181 -0
- sigima/io/common/textreader.py +58 -0
- sigima/io/convenience.py +157 -0
- sigima/io/enums.py +17 -0
- sigima/io/ftlab.py +395 -0
- sigima/io/image/__init__.py +9 -0
- sigima/io/image/base.py +177 -0
- sigima/io/image/formats.py +1016 -0
- sigima/io/image/funcs.py +414 -0
- sigima/io/signal/__init__.py +9 -0
- sigima/io/signal/base.py +129 -0
- sigima/io/signal/formats.py +290 -0
- sigima/io/signal/funcs.py +723 -0
- sigima/objects/__init__.py +260 -0
- sigima/objects/base.py +937 -0
- sigima/objects/image/__init__.py +88 -0
- sigima/objects/image/creation.py +556 -0
- sigima/objects/image/object.py +524 -0
- sigima/objects/image/roi.py +904 -0
- sigima/objects/scalar/__init__.py +57 -0
- sigima/objects/scalar/common.py +215 -0
- sigima/objects/scalar/geometry.py +502 -0
- sigima/objects/scalar/table.py +784 -0
- sigima/objects/shape.py +290 -0
- sigima/objects/signal/__init__.py +133 -0
- sigima/objects/signal/constants.py +27 -0
- sigima/objects/signal/creation.py +1428 -0
- sigima/objects/signal/object.py +444 -0
- sigima/objects/signal/roi.py +274 -0
- sigima/params.py +405 -0
- sigima/proc/__init__.py +96 -0
- sigima/proc/base.py +381 -0
- sigima/proc/decorator.py +330 -0
- sigima/proc/image/__init__.py +513 -0
- sigima/proc/image/arithmetic.py +335 -0
- sigima/proc/image/base.py +260 -0
- sigima/proc/image/detection.py +519 -0
- sigima/proc/image/edges.py +329 -0
- sigima/proc/image/exposure.py +406 -0
- sigima/proc/image/extraction.py +458 -0
- sigima/proc/image/filtering.py +219 -0
- sigima/proc/image/fourier.py +147 -0
- sigima/proc/image/geometry.py +661 -0
- sigima/proc/image/mathops.py +340 -0
- sigima/proc/image/measurement.py +195 -0
- sigima/proc/image/morphology.py +155 -0
- sigima/proc/image/noise.py +107 -0
- sigima/proc/image/preprocessing.py +182 -0
- sigima/proc/image/restoration.py +235 -0
- sigima/proc/image/threshold.py +217 -0
- sigima/proc/image/transformations.py +393 -0
- sigima/proc/signal/__init__.py +376 -0
- sigima/proc/signal/analysis.py +206 -0
- sigima/proc/signal/arithmetic.py +551 -0
- sigima/proc/signal/base.py +262 -0
- sigima/proc/signal/extraction.py +60 -0
- sigima/proc/signal/features.py +310 -0
- sigima/proc/signal/filtering.py +484 -0
- sigima/proc/signal/fitting.py +276 -0
- sigima/proc/signal/fourier.py +259 -0
- sigima/proc/signal/mathops.py +420 -0
- sigima/proc/signal/processing.py +580 -0
- sigima/proc/signal/stability.py +175 -0
- sigima/proc/title_formatting.py +227 -0
- sigima/proc/validation.py +272 -0
- sigima/tests/__init__.py +7 -0
- sigima/tests/common/__init__.py +0 -0
- sigima/tests/common/arithmeticparam_unit_test.py +26 -0
- sigima/tests/common/basename_unit_test.py +126 -0
- sigima/tests/common/client_unit_test.py +412 -0
- sigima/tests/common/converters_unit_test.py +77 -0
- sigima/tests/common/decorator_unit_test.py +176 -0
- sigima/tests/common/examples_unit_test.py +104 -0
- sigima/tests/common/kernel_normalization_unit_test.py +242 -0
- sigima/tests/common/roi_basic_unit_test.py +73 -0
- sigima/tests/common/roi_geometry_unit_test.py +171 -0
- sigima/tests/common/scalar_builder_unit_test.py +142 -0
- sigima/tests/common/scalar_unit_test.py +991 -0
- sigima/tests/common/shape_unit_test.py +183 -0
- sigima/tests/common/stat_unit_test.py +138 -0
- sigima/tests/common/title_formatting_unit_test.py +338 -0
- sigima/tests/common/tools_coordinates_unit_test.py +60 -0
- sigima/tests/common/transformations_unit_test.py +178 -0
- sigima/tests/common/validation_unit_test.py +205 -0
- sigima/tests/conftest.py +129 -0
- sigima/tests/data.py +998 -0
- sigima/tests/env.py +280 -0
- sigima/tests/guiutils.py +163 -0
- sigima/tests/helpers.py +532 -0
- sigima/tests/image/__init__.py +28 -0
- sigima/tests/image/binning_unit_test.py +128 -0
- sigima/tests/image/blob_detection_unit_test.py +312 -0
- sigima/tests/image/centroid_unit_test.py +170 -0
- sigima/tests/image/check_2d_array_unit_test.py +63 -0
- sigima/tests/image/contour_unit_test.py +172 -0
- sigima/tests/image/convolution_unit_test.py +178 -0
- sigima/tests/image/datatype_unit_test.py +67 -0
- sigima/tests/image/edges_unit_test.py +155 -0
- sigima/tests/image/enclosingcircle_unit_test.py +88 -0
- sigima/tests/image/exposure_unit_test.py +223 -0
- sigima/tests/image/fft2d_unit_test.py +189 -0
- sigima/tests/image/filtering_unit_test.py +166 -0
- sigima/tests/image/geometry_unit_test.py +654 -0
- sigima/tests/image/hough_circle_unit_test.py +147 -0
- sigima/tests/image/imageobj_unit_test.py +737 -0
- sigima/tests/image/morphology_unit_test.py +71 -0
- sigima/tests/image/noise_unit_test.py +57 -0
- sigima/tests/image/offset_correction_unit_test.py +72 -0
- sigima/tests/image/operation_unit_test.py +518 -0
- sigima/tests/image/peak2d_limits_unit_test.py +41 -0
- sigima/tests/image/peak2d_unit_test.py +133 -0
- sigima/tests/image/profile_unit_test.py +159 -0
- sigima/tests/image/projections_unit_test.py +121 -0
- sigima/tests/image/restoration_unit_test.py +141 -0
- sigima/tests/image/roi2dparam_unit_test.py +53 -0
- sigima/tests/image/roi_advanced_unit_test.py +588 -0
- sigima/tests/image/roi_grid_unit_test.py +279 -0
- sigima/tests/image/spectrum2d_unit_test.py +40 -0
- sigima/tests/image/threshold_unit_test.py +91 -0
- sigima/tests/io/__init__.py +0 -0
- sigima/tests/io/addnewformat_unit_test.py +125 -0
- sigima/tests/io/convenience_funcs_unit_test.py +470 -0
- sigima/tests/io/coordinated_text_format_unit_test.py +495 -0
- sigima/tests/io/datetime_csv_unit_test.py +198 -0
- sigima/tests/io/imageio_formats_test.py +41 -0
- sigima/tests/io/ioregistry_unit_test.py +69 -0
- sigima/tests/io/objmeta_unit_test.py +87 -0
- sigima/tests/io/readobj_unit_test.py +130 -0
- sigima/tests/io/readwriteobj_unit_test.py +67 -0
- sigima/tests/signal/__init__.py +0 -0
- sigima/tests/signal/analysis_unit_test.py +135 -0
- sigima/tests/signal/check_1d_arrays_unit_test.py +169 -0
- sigima/tests/signal/convolution_unit_test.py +404 -0
- sigima/tests/signal/datetime_unit_test.py +176 -0
- sigima/tests/signal/fft1d_unit_test.py +303 -0
- sigima/tests/signal/filters_unit_test.py +403 -0
- sigima/tests/signal/fitting_unit_test.py +929 -0
- sigima/tests/signal/fwhm_unit_test.py +111 -0
- sigima/tests/signal/noise_unit_test.py +128 -0
- sigima/tests/signal/offset_correction_unit_test.py +34 -0
- sigima/tests/signal/operation_unit_test.py +489 -0
- sigima/tests/signal/peakdetection_unit_test.py +145 -0
- sigima/tests/signal/processing_unit_test.py +657 -0
- sigima/tests/signal/pulse/__init__.py +112 -0
- sigima/tests/signal/pulse/crossing_times_unit_test.py +123 -0
- sigima/tests/signal/pulse/plateau_detection_unit_test.py +102 -0
- sigima/tests/signal/pulse/pulse_unit_test.py +1824 -0
- sigima/tests/signal/roi_advanced_unit_test.py +392 -0
- sigima/tests/signal/signalobj_unit_test.py +603 -0
- sigima/tests/signal/stability_unit_test.py +431 -0
- sigima/tests/signal/uncertainty_unit_test.py +611 -0
- sigima/tests/vistools.py +1030 -0
- sigima/tools/__init__.py +59 -0
- sigima/tools/checks.py +290 -0
- sigima/tools/coordinates.py +308 -0
- sigima/tools/datatypes.py +26 -0
- sigima/tools/image/__init__.py +97 -0
- sigima/tools/image/detection.py +451 -0
- sigima/tools/image/exposure.py +77 -0
- sigima/tools/image/extraction.py +48 -0
- sigima/tools/image/fourier.py +260 -0
- sigima/tools/image/geometry.py +190 -0
- sigima/tools/image/preprocessing.py +165 -0
- sigima/tools/signal/__init__.py +86 -0
- sigima/tools/signal/dynamic.py +254 -0
- sigima/tools/signal/features.py +135 -0
- sigima/tools/signal/filtering.py +171 -0
- sigima/tools/signal/fitting.py +1171 -0
- sigima/tools/signal/fourier.py +466 -0
- sigima/tools/signal/interpolation.py +70 -0
- sigima/tools/signal/peakdetection.py +126 -0
- sigima/tools/signal/pulse.py +1626 -0
- sigima/tools/signal/scaling.py +50 -0
- sigima/tools/signal/stability.py +258 -0
- sigima/tools/signal/windowing.py +90 -0
- sigima/worker.py +79 -0
- sigima-1.0.0.dist-info/METADATA +233 -0
- sigima-1.0.0.dist-info/RECORD +262 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/licenses/LICENSE +29 -29
- sigima-0.0.1.dev0.dist-info/METADATA +0 -60
- sigima-0.0.1.dev0.dist-info/RECORD +0 -6
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/WHEEL +0 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,335 @@
|
|
|
1
|
+
# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Arithmetic computation module
|
|
5
|
+
-----------------------------
|
|
6
|
+
|
|
7
|
+
This module provides arithmetic operations for images, such as pixel-wise addition,
|
|
8
|
+
subtraction, multiplication, division, as well as operations with constants
|
|
9
|
+
and combined arithmetic formulas.
|
|
10
|
+
|
|
11
|
+
Main features include:
|
|
12
|
+
|
|
13
|
+
- Pixel-wise addition, subtraction, multiplication, and division between images
|
|
14
|
+
- Application of arithmetic operations with constants to images
|
|
15
|
+
- Support for quadratic difference and general arithmetic expressions
|
|
16
|
+
|
|
17
|
+
These functions are typically used for basic algebraic processing and normalization
|
|
18
|
+
of image data.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
# pylint: disable=invalid-name # Allows short reference names like x, y, ...
|
|
22
|
+
|
|
23
|
+
# Note:
|
|
24
|
+
# ----
|
|
25
|
+
# - All `guidata.dataset.DataSet` parameter classes must also be imported
|
|
26
|
+
# in the `sigima.params` module.
|
|
27
|
+
# - All functions decorated by `computation_function` must be imported in the upper
|
|
28
|
+
# level `sigima.proc.image` module.
|
|
29
|
+
|
|
30
|
+
from __future__ import annotations
|
|
31
|
+
|
|
32
|
+
import warnings
|
|
33
|
+
|
|
34
|
+
import numpy as np
|
|
35
|
+
|
|
36
|
+
from sigima.enums import MathOperator
|
|
37
|
+
from sigima.objects.image import ImageObj
|
|
38
|
+
from sigima.proc.base import (
|
|
39
|
+
ArithmeticParam,
|
|
40
|
+
ConstantParam,
|
|
41
|
+
dst_1_to_1,
|
|
42
|
+
dst_2_to_1,
|
|
43
|
+
dst_n_to_1,
|
|
44
|
+
)
|
|
45
|
+
from sigima.proc.decorator import computation_function
|
|
46
|
+
from sigima.proc.image.base import restore_data_outside_roi
|
|
47
|
+
from sigima.tools.datatypes import clip_astype
|
|
48
|
+
|
|
49
|
+
# NOTE: Only parameter classes DEFINED in this module should be included in __all__.
|
|
50
|
+
# Parameter classes imported from other modules (like sigima.proc.base) should NOT
|
|
51
|
+
# be re-exported to avoid Sphinx cross-reference conflicts. The sigima.params module
|
|
52
|
+
# serves as the central API point that imports and re-exports all parameter classes.
|
|
53
|
+
__all__ = [
|
|
54
|
+
"addition",
|
|
55
|
+
"addition_constant",
|
|
56
|
+
"arithmetic",
|
|
57
|
+
"average",
|
|
58
|
+
"difference",
|
|
59
|
+
"difference_constant",
|
|
60
|
+
"division",
|
|
61
|
+
"division",
|
|
62
|
+
"division_constant",
|
|
63
|
+
"product",
|
|
64
|
+
"product_constant",
|
|
65
|
+
"quadratic_difference",
|
|
66
|
+
"standard_deviation",
|
|
67
|
+
]
|
|
68
|
+
|
|
69
|
+
# MARK: compute_n_to_1 functions -------------------------------------------------------
|
|
70
|
+
# Functions with N input images and 1 output image
|
|
71
|
+
# --------------------------------------------------------------------------------------
|
|
72
|
+
# Those functions are perfoming a computation on N input images and return a single
|
|
73
|
+
# output image. If we were only executing these functions locally, we would not need
|
|
74
|
+
# to define them here, but since we are using the multiprocessing module, we need to
|
|
75
|
+
# define them here so that they can be pickled and sent to the worker processes.
|
|
76
|
+
# Also, we need to systematically return the output image object, even if it is already
|
|
77
|
+
# modified in place, because the multiprocessing module will not be able to retrieve
|
|
78
|
+
# the modified object from the worker processes.
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
@computation_function()
|
|
82
|
+
def addition(src_list: list[ImageObj]) -> ImageObj:
|
|
83
|
+
"""Add images in the list and return the result image object
|
|
84
|
+
|
|
85
|
+
Args:
|
|
86
|
+
src_list: list of input image objects
|
|
87
|
+
|
|
88
|
+
Returns:
|
|
89
|
+
Output image object (modified in place)
|
|
90
|
+
"""
|
|
91
|
+
dst = dst_n_to_1(src_list, "Σ") # `dst` data is initialized to `src_list[0]` data
|
|
92
|
+
for src in src_list[1:]:
|
|
93
|
+
dst.data = np.add(dst.data, src.data, dtype=float)
|
|
94
|
+
restore_data_outside_roi(dst, src_list[0])
|
|
95
|
+
return dst
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
@computation_function()
|
|
99
|
+
def average(src_list: list[ImageObj]) -> ImageObj:
|
|
100
|
+
"""Compute the average of images in the list and return the result image object
|
|
101
|
+
|
|
102
|
+
Args:
|
|
103
|
+
src_list: list of input image objects
|
|
104
|
+
|
|
105
|
+
Returns:
|
|
106
|
+
Output image object (modified in place)
|
|
107
|
+
"""
|
|
108
|
+
dst = dst_n_to_1(src_list, "µ") # `dst` data is initialized to `src_list[0]` data
|
|
109
|
+
for src in src_list[1:]:
|
|
110
|
+
dst.data = np.add(dst.data, src.data, dtype=float)
|
|
111
|
+
dst.data /= len(src_list)
|
|
112
|
+
restore_data_outside_roi(dst, src_list[0])
|
|
113
|
+
return dst
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
@computation_function()
|
|
117
|
+
def standard_deviation(src_list: list[ImageObj]) -> ImageObj:
|
|
118
|
+
"""Compute the element-wise standard deviation of multiple images.
|
|
119
|
+
|
|
120
|
+
The first image in the list defines the "base" image. All other images are
|
|
121
|
+
used to compute the element-wise standard deviation with the base image.
|
|
122
|
+
|
|
123
|
+
.. note::
|
|
124
|
+
|
|
125
|
+
If all images share the same region of interest (ROI), the standard deviation
|
|
126
|
+
is computed only within the ROI.
|
|
127
|
+
|
|
128
|
+
.. warning::
|
|
129
|
+
|
|
130
|
+
It is assumed that all images have the same size and x-coordinates.
|
|
131
|
+
|
|
132
|
+
Args:
|
|
133
|
+
src_list: List of source images.
|
|
134
|
+
|
|
135
|
+
Returns:
|
|
136
|
+
Image object representing the standard deviation of the source images.
|
|
137
|
+
"""
|
|
138
|
+
dst = dst_n_to_1(src_list, "𝜎") # `dst` data is initialized to `src_list[0]` data
|
|
139
|
+
assert dst.data is not None
|
|
140
|
+
y_array = np.array([src.data for src in src_list], dtype=dst.data.dtype)
|
|
141
|
+
dst.data = np.std(y_array, axis=0, ddof=0)
|
|
142
|
+
restore_data_outside_roi(dst, src_list[0])
|
|
143
|
+
return dst
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
@computation_function()
|
|
147
|
+
def product(src_list: list[ImageObj]) -> ImageObj:
|
|
148
|
+
"""Multiply images in the list and return the result image object
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
src_list: list of input image objects
|
|
152
|
+
|
|
153
|
+
Returns:
|
|
154
|
+
Output image object (modified in place)
|
|
155
|
+
"""
|
|
156
|
+
dst = dst_n_to_1(src_list, "Π") # `dst` data is initialized to `src_list[0]` data
|
|
157
|
+
for src in src_list[1:]:
|
|
158
|
+
dst.data = np.multiply(dst.data, src.data, dtype=float)
|
|
159
|
+
restore_data_outside_roi(dst, src_list[0])
|
|
160
|
+
return dst
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
@computation_function()
|
|
164
|
+
def addition_constant(src: ImageObj, p: ConstantParam) -> ImageObj:
|
|
165
|
+
"""Add **dst** and a constant value and return the new result image object
|
|
166
|
+
|
|
167
|
+
Args:
|
|
168
|
+
src: input image object
|
|
169
|
+
p: constant value
|
|
170
|
+
|
|
171
|
+
Returns:
|
|
172
|
+
Result image object **src** + **p.value** (new object)
|
|
173
|
+
"""
|
|
174
|
+
# For the addition of a constant value, we convert the constant value to the same
|
|
175
|
+
# data type as the input image, for consistency.
|
|
176
|
+
value = np.array(p.value).astype(dtype=src.data.dtype)
|
|
177
|
+
dst = dst_1_to_1(src, "+", str(value))
|
|
178
|
+
dst.data = np.add(src.data, value, dtype=float)
|
|
179
|
+
restore_data_outside_roi(dst, src)
|
|
180
|
+
return dst
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
@computation_function()
|
|
184
|
+
def difference_constant(src: ImageObj, p: ConstantParam) -> ImageObj:
|
|
185
|
+
"""Subtract a constant value from an image and return the new result image object
|
|
186
|
+
|
|
187
|
+
Args:
|
|
188
|
+
src: input image object
|
|
189
|
+
p: constant value
|
|
190
|
+
|
|
191
|
+
Returns:
|
|
192
|
+
Result image object **src** - **p.value** (new object)
|
|
193
|
+
"""
|
|
194
|
+
# For the subtraction of a constant value, we convert the constant value to the same
|
|
195
|
+
# data type as the input image, for consistency.
|
|
196
|
+
value = np.array(p.value).astype(dtype=src.data.dtype)
|
|
197
|
+
dst = dst_1_to_1(src, "-", str(value))
|
|
198
|
+
dst.data = np.subtract(src.data, value, dtype=float)
|
|
199
|
+
restore_data_outside_roi(dst, src)
|
|
200
|
+
return dst
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
@computation_function()
|
|
204
|
+
def product_constant(src: ImageObj, p: ConstantParam) -> ImageObj:
|
|
205
|
+
"""Multiply **dst** by a constant value and return the new result image object
|
|
206
|
+
|
|
207
|
+
Args:
|
|
208
|
+
src: input image object
|
|
209
|
+
p: constant value
|
|
210
|
+
|
|
211
|
+
Returns:
|
|
212
|
+
Result image object **src** * **p.value** (new object)
|
|
213
|
+
"""
|
|
214
|
+
# For the multiplication by a constant value, we do not convert the constant value
|
|
215
|
+
# to the same data type as the input image, because we want to allow the user to
|
|
216
|
+
# multiply an image by a constant value of a different data type. The final data
|
|
217
|
+
# type conversion ensures that the output image has the same data type as the input
|
|
218
|
+
# image.
|
|
219
|
+
dst = dst_1_to_1(src, "×", str(p.value))
|
|
220
|
+
dst.data = np.multiply(src.data, p.value, dtype=float)
|
|
221
|
+
restore_data_outside_roi(dst, src)
|
|
222
|
+
return dst
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
@computation_function()
|
|
226
|
+
def division_constant(src: ImageObj, p: ConstantParam) -> ImageObj:
|
|
227
|
+
"""Divide an image by a constant value and return the new result image object
|
|
228
|
+
|
|
229
|
+
Args:
|
|
230
|
+
src: input image object
|
|
231
|
+
p: constant value
|
|
232
|
+
|
|
233
|
+
Returns:
|
|
234
|
+
Result image object **src** / **p.value** (new object)
|
|
235
|
+
"""
|
|
236
|
+
# For the division by a constant value, we do not convert the constant value to the
|
|
237
|
+
# same data type as the input image, because we want to allow the user to divide an
|
|
238
|
+
# image by a constant value of a different data type. The final data type conversion
|
|
239
|
+
# ensures that the output image has the same data type as the input image.
|
|
240
|
+
dst = dst_1_to_1(src, "/", str(p.value))
|
|
241
|
+
dst.data = np.divide(src.data, p.value, dtype=float)
|
|
242
|
+
restore_data_outside_roi(dst, src)
|
|
243
|
+
return dst
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
# MARK: compute_2_to_1 functions -------------------------------------------------------
|
|
247
|
+
# Functions with N input images + 1 input image and N output images
|
|
248
|
+
# --------------------------------------------------------------------------------------
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
@computation_function()
|
|
252
|
+
def arithmetic(src1: ImageObj, src2: ImageObj, p: ArithmeticParam) -> ImageObj:
|
|
253
|
+
"""Compute arithmetic operation on two images
|
|
254
|
+
|
|
255
|
+
Args:
|
|
256
|
+
src1: input image object
|
|
257
|
+
src2: input image object
|
|
258
|
+
p: arithmetic parameters
|
|
259
|
+
|
|
260
|
+
Returns:
|
|
261
|
+
Result image object
|
|
262
|
+
"""
|
|
263
|
+
initial_dtype = src1.data.dtype
|
|
264
|
+
title = p.operation.replace("obj1", "{0}").replace("obj2", "{1}")
|
|
265
|
+
dst = src1.copy(title=title)
|
|
266
|
+
o, a, b = p.operator, p.factor, p.constant
|
|
267
|
+
# Apply operator
|
|
268
|
+
if o in (MathOperator.MULTIPLY, MathOperator.DIVIDE) and a == 0.0:
|
|
269
|
+
dst.data = np.ones_like(src1.data) * b
|
|
270
|
+
elif o == MathOperator.ADD:
|
|
271
|
+
dst.data = np.add(src1.data, src2.data, dtype=float) * a + b
|
|
272
|
+
elif o == MathOperator.SUBTRACT:
|
|
273
|
+
dst.data = np.subtract(src1.data, src2.data, dtype=float) * a + b
|
|
274
|
+
elif o == MathOperator.MULTIPLY:
|
|
275
|
+
dst.data = np.multiply(src1.data, src2.data, dtype=float) * a + b
|
|
276
|
+
elif o == MathOperator.DIVIDE:
|
|
277
|
+
dst.data = np.divide(src1.data, src2.data, dtype=float) * a + b
|
|
278
|
+
# Eventually convert to initial data type
|
|
279
|
+
if p.restore_dtype:
|
|
280
|
+
dst.data = clip_astype(dst.data, initial_dtype)
|
|
281
|
+
restore_data_outside_roi(dst, src1)
|
|
282
|
+
return dst
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
@computation_function()
|
|
286
|
+
def difference(src1: ImageObj, src2: ImageObj) -> ImageObj:
|
|
287
|
+
"""Compute difference between two images
|
|
288
|
+
|
|
289
|
+
Args:
|
|
290
|
+
src1: input image object
|
|
291
|
+
src2: input image object
|
|
292
|
+
|
|
293
|
+
Returns:
|
|
294
|
+
Result image object **src1** - **src2** (new object)
|
|
295
|
+
"""
|
|
296
|
+
dst = dst_2_to_1(src1, src2, "-")
|
|
297
|
+
dst.data = np.subtract(src1.data, src2.data, dtype=float)
|
|
298
|
+
restore_data_outside_roi(dst, src1)
|
|
299
|
+
return dst
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
@computation_function()
|
|
303
|
+
def quadratic_difference(src1: ImageObj, src2: ImageObj) -> ImageObj:
|
|
304
|
+
"""Compute quadratic difference between two images
|
|
305
|
+
|
|
306
|
+
Args:
|
|
307
|
+
src1: input image object
|
|
308
|
+
src2: input image object
|
|
309
|
+
|
|
310
|
+
Returns:
|
|
311
|
+
Result image object (**src1** - **src2**) / sqrt(2.0) (new object)
|
|
312
|
+
"""
|
|
313
|
+
dst = dst_2_to_1(src1, src2, "quadratic_difference")
|
|
314
|
+
dst.data = np.subtract(src1.data, src2.data, dtype=float) / np.sqrt(2.0)
|
|
315
|
+
restore_data_outside_roi(dst, src1)
|
|
316
|
+
return dst
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
@computation_function()
|
|
320
|
+
def division(src1: ImageObj, src2: ImageObj) -> ImageObj:
|
|
321
|
+
"""Compute division between two images
|
|
322
|
+
|
|
323
|
+
Args:
|
|
324
|
+
src1: input image object
|
|
325
|
+
src2: input image object
|
|
326
|
+
|
|
327
|
+
Returns:
|
|
328
|
+
Result image object **src1** / **src2** (new object)
|
|
329
|
+
"""
|
|
330
|
+
dst = dst_2_to_1(src1, src2, "/")
|
|
331
|
+
with warnings.catch_warnings():
|
|
332
|
+
warnings.simplefilter("ignore", category=RuntimeWarning)
|
|
333
|
+
dst.data = np.divide(src1.data, src2.data, dtype=float)
|
|
334
|
+
restore_data_outside_roi(dst, src1)
|
|
335
|
+
return dst
|
|
@@ -0,0 +1,260 @@
|
|
|
1
|
+
# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Base computation module
|
|
5
|
+
-----------------------
|
|
6
|
+
|
|
7
|
+
This module provides core classes and utility functions that serve as building blocks
|
|
8
|
+
for the other computation modules.
|
|
9
|
+
|
|
10
|
+
Main features include:
|
|
11
|
+
|
|
12
|
+
- Generic helper functions used across image processing modules
|
|
13
|
+
- Core wrappers and infrastructure for computation functions
|
|
14
|
+
|
|
15
|
+
Intended primarily for internal use, these tools support consistent API design
|
|
16
|
+
and code reuse.
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
from __future__ import annotations
|
|
20
|
+
|
|
21
|
+
from collections.abc import Callable
|
|
22
|
+
from typing import Any
|
|
23
|
+
|
|
24
|
+
import numpy as np
|
|
25
|
+
|
|
26
|
+
from sigima.objects import NO_ROI, GeometryResult, ImageObj, KindShape, SignalObj
|
|
27
|
+
from sigima.proc.base import dst_1_to_1, new_signal_result
|
|
28
|
+
|
|
29
|
+
# NOTE: Only parameter classes DEFINED in this module should be included in __all__.
|
|
30
|
+
# Parameter classes imported from other modules (like sigima.proc.base) should NOT
|
|
31
|
+
# be re-exported to avoid Sphinx cross-reference conflicts. The sigima.params module
|
|
32
|
+
# serves as the central API point that imports and re-exports all parameter classes.
|
|
33
|
+
__all__ = [
|
|
34
|
+
"Wrap1to1Func",
|
|
35
|
+
"compute_geometry_from_obj",
|
|
36
|
+
"dst_1_to_1_signal",
|
|
37
|
+
"restore_data_outside_roi",
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def restore_data_outside_roi(dst: ImageObj, src: ImageObj) -> None:
|
|
42
|
+
"""Restore data outside the Region Of Interest (ROI) of the input image
|
|
43
|
+
after a computation, only if the input image has a ROI,
|
|
44
|
+
and if the output image has the same ROI as the input image,
|
|
45
|
+
and if the data types are compatible,
|
|
46
|
+
and if the shapes are the same.
|
|
47
|
+
Otherwise, do nothing.
|
|
48
|
+
|
|
49
|
+
Args:
|
|
50
|
+
dst: output image object
|
|
51
|
+
src: input image object
|
|
52
|
+
"""
|
|
53
|
+
if src.maskdata is not None and dst.maskdata is not None:
|
|
54
|
+
if (
|
|
55
|
+
np.array_equal(src.maskdata, dst.maskdata)
|
|
56
|
+
and (
|
|
57
|
+
dst.data.dtype == src.data.dtype
|
|
58
|
+
or not np.issubdtype(dst.data.dtype, np.integer)
|
|
59
|
+
)
|
|
60
|
+
and dst.data.shape == src.data.shape
|
|
61
|
+
):
|
|
62
|
+
dst.data[src.maskdata] = src.data[src.maskdata]
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
class Wrap1to1Func:
|
|
66
|
+
"""Wrap a 1 array → 1 array function to produce a 1 image → 1 image function,
|
|
67
|
+
which can be used as a Sigima computation function and inside DataLab's
|
|
68
|
+
infrastructure to perform computations with the Image Processor object.
|
|
69
|
+
|
|
70
|
+
This wrapping mechanism using a class is necessary for the resulted function to be
|
|
71
|
+
pickable by the ``multiprocessing`` module.
|
|
72
|
+
|
|
73
|
+
The instance of this wrapper is callable and returns a
|
|
74
|
+
:class:`sigima.objects.ImageObj` object.
|
|
75
|
+
|
|
76
|
+
Example:
|
|
77
|
+
|
|
78
|
+
>>> import numpy as np
|
|
79
|
+
>>> from sigima.proc.image import Wrap1to1Func
|
|
80
|
+
>>> import sigima.objects
|
|
81
|
+
>>> def add_noise(data):
|
|
82
|
+
... return data + np.random.random(data.shape)
|
|
83
|
+
>>> compute_add_noise = Wrap1to1Func(add_noise)
|
|
84
|
+
>>> data= np.ones((100, 100))
|
|
85
|
+
>>> ima0 = sigima.objects.create_image("Example", data)
|
|
86
|
+
>>> ima1 = compute_add_noise(ima0)
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
func: 1 array → 1 array function
|
|
90
|
+
*args: Additional positional arguments to pass to the function
|
|
91
|
+
**kwargs: Additional keyword arguments to pass to the function
|
|
92
|
+
|
|
93
|
+
.. note::
|
|
94
|
+
|
|
95
|
+
If `func_name` is provided in the keyword arguments, it will be used as the
|
|
96
|
+
function name instead of the default name derived from the function itself.
|
|
97
|
+
"""
|
|
98
|
+
|
|
99
|
+
def __init__(self, func: Callable, *args: Any, **kwargs: Any) -> None:
|
|
100
|
+
self.func = func
|
|
101
|
+
self.args = args
|
|
102
|
+
self.kwargs = kwargs
|
|
103
|
+
self.__name__ = self.kwargs.pop("func_name", func.__name__)
|
|
104
|
+
self.__doc__ = func.__doc__
|
|
105
|
+
self.__call__.__func__.__doc__ = self.func.__doc__
|
|
106
|
+
|
|
107
|
+
def __call__(self, src: ImageObj) -> ImageObj:
|
|
108
|
+
"""Compute the function on the input image and return the result image
|
|
109
|
+
|
|
110
|
+
Args:
|
|
111
|
+
src: input image object
|
|
112
|
+
|
|
113
|
+
Returns:
|
|
114
|
+
Output image object
|
|
115
|
+
"""
|
|
116
|
+
suffix = ", ".join(
|
|
117
|
+
[str(arg) for arg in self.args]
|
|
118
|
+
+ [f"{k}={v}" for k, v in self.kwargs.items() if v is not None]
|
|
119
|
+
)
|
|
120
|
+
dst = dst_1_to_1(src, self.__name__, suffix)
|
|
121
|
+
dst.data = self.func(src.data, *self.args, **self.kwargs)
|
|
122
|
+
restore_data_outside_roi(dst, src)
|
|
123
|
+
return dst
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def dst_1_to_1_signal(src: ImageObj, name: str, suffix: str | None = None) -> SignalObj:
|
|
127
|
+
"""Create a result signal object, for processing functions that take a single
|
|
128
|
+
image object as input and return a single signal object (1-to-1-signal).
|
|
129
|
+
|
|
130
|
+
Args:
|
|
131
|
+
src: input image object
|
|
132
|
+
name: name of the processing function
|
|
133
|
+
|
|
134
|
+
Returns:
|
|
135
|
+
Output signal object
|
|
136
|
+
"""
|
|
137
|
+
return new_signal_result(
|
|
138
|
+
src, name, suffix, (src.xunit, src.zunit), (src.xlabel, src.zlabel)
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def compute_geometry_from_obj(
|
|
143
|
+
title: str,
|
|
144
|
+
shape: KindShape,
|
|
145
|
+
obj: ImageObj,
|
|
146
|
+
func: Callable,
|
|
147
|
+
*args: Any,
|
|
148
|
+
) -> GeometryResult | None:
|
|
149
|
+
"""Compute a geometry shape from an image object by executing a computation function
|
|
150
|
+
on the data of the image object, for each ROI (Region Of Interest) in the image.
|
|
151
|
+
|
|
152
|
+
Args:
|
|
153
|
+
title: result title
|
|
154
|
+
shape: result shape kind
|
|
155
|
+
obj: input image object
|
|
156
|
+
func: computation function
|
|
157
|
+
*args: computation function arguments
|
|
158
|
+
|
|
159
|
+
Returns:
|
|
160
|
+
A geometry result object or None if no result is found.
|
|
161
|
+
|
|
162
|
+
.. important::
|
|
163
|
+
**Coordinate Conversion**: This function automatically converts coordinates
|
|
164
|
+
from pixel units (image indices) to physical units using the image object's
|
|
165
|
+
calibration information.
|
|
166
|
+
|
|
167
|
+
- **Input**: Computation function returns coordinates in pixel units
|
|
168
|
+
- **Output**: GeometryResult with coordinates in physical units (e.g., mm, µm)
|
|
169
|
+
|
|
170
|
+
The conversion is performed using the image's calibration parameters:
|
|
171
|
+
``physical_x = obj.dx * pixel_x + obj.x0`` and
|
|
172
|
+
``physical_y = obj.dy * pixel_y + obj.y0``
|
|
173
|
+
|
|
174
|
+
.. warning::
|
|
175
|
+
|
|
176
|
+
The computation function must take either a single argument (the data) or
|
|
177
|
+
multiple arguments (the data followed by the computation parameters).
|
|
178
|
+
|
|
179
|
+
Moreover, the computation function must return a single value or a NumPy array
|
|
180
|
+
containing the result of the computation. This array contains the coordinates
|
|
181
|
+
of points, polygons, circles or ellipses in the form [[x, y], ...], or
|
|
182
|
+
[[x0, y0, x1, y1, ...], ...], or [[x0, y0, r], ...], or
|
|
183
|
+
[[x0, y0, a, b, theta], ...].
|
|
184
|
+
|
|
185
|
+
Example:
|
|
186
|
+
>>> # func returns pixel coordinates like [[10, 20], [30, 40]]
|
|
187
|
+
>>> result = compute_geometry_from_obj(
|
|
188
|
+
... "Points", KindShape.POINT, image_obj, func
|
|
189
|
+
... )
|
|
190
|
+
>>> # result.coords now contains physical coordinates like [[0.5, 1.0],
|
|
191
|
+
>>> # [1.5, 2.0]]
|
|
192
|
+
|
|
193
|
+
See Also:
|
|
194
|
+
:class:`~sigima.objects.scalar.GeometryResult`: The result object that stores
|
|
195
|
+
physical coordinates.
|
|
196
|
+
"""
|
|
197
|
+
rows: list[np.ndarray] = []
|
|
198
|
+
num_cols: list[int] = []
|
|
199
|
+
roi_idx: list[int] = []
|
|
200
|
+
for i_roi in obj.iterate_roi_indices():
|
|
201
|
+
data_roi = obj.get_data(i_roi)
|
|
202
|
+
if args is None:
|
|
203
|
+
coords: np.ndarray = func(data_roi)
|
|
204
|
+
else:
|
|
205
|
+
coords: np.ndarray = func(data_roi, *args)
|
|
206
|
+
|
|
207
|
+
# This is a very long condition, but it's still quite readable, so we keep it
|
|
208
|
+
# as is and disable the pylint warning.
|
|
209
|
+
#
|
|
210
|
+
# pylint: disable=too-many-boolean-expressions
|
|
211
|
+
if not isinstance(coords, np.ndarray) or (
|
|
212
|
+
(
|
|
213
|
+
coords.ndim != 2
|
|
214
|
+
or coords.shape[1] < 2
|
|
215
|
+
or (coords.shape[1] > 5 and coords.shape[1] % 2 != 0)
|
|
216
|
+
)
|
|
217
|
+
and coords.size > 0
|
|
218
|
+
):
|
|
219
|
+
raise ValueError(
|
|
220
|
+
f"Computation function {func.__name__} must return a NumPy array "
|
|
221
|
+
f"containing coordinates of points, polygons, circles or ellipses "
|
|
222
|
+
f"(in the form [[x, y], ...], or [[x0, y0, x1, y1, ...], ...], or "
|
|
223
|
+
f"[[x0, y0, r], ...], or [[x0, y0, a, b, theta], ...]), or an empty "
|
|
224
|
+
f"array."
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
if coords.size:
|
|
228
|
+
coords = np.array(coords, dtype=float)
|
|
229
|
+
if coords.shape[1] % 2 == 0:
|
|
230
|
+
# Coordinates are in the form [x0, y0, x1, y1, ...]
|
|
231
|
+
colx, coly = slice(None, None, 2), slice(1, None, 2)
|
|
232
|
+
else:
|
|
233
|
+
# Circle [x0, y0, r] or ellipse coordinates [x0, y0, a, b, theta]
|
|
234
|
+
colx, coly = 0, 1
|
|
235
|
+
coords[:, colx] = obj.dx * coords[:, colx] + obj.x0
|
|
236
|
+
coords[:, coly] = obj.dy * coords[:, coly] + obj.y0
|
|
237
|
+
if obj.roi is not None:
|
|
238
|
+
x0, y0, _x1, _y1 = obj.roi.get_single_roi(i_roi).get_bounding_box(obj)
|
|
239
|
+
coords[:, colx] += x0 - obj.x0
|
|
240
|
+
coords[:, coly] += y0 - obj.y0
|
|
241
|
+
|
|
242
|
+
rows.append(coords)
|
|
243
|
+
num_cols.append(coords.shape[1])
|
|
244
|
+
roi_idx.extend([NO_ROI if i_roi is None else int(i_roi)] * coords.shape[0])
|
|
245
|
+
if rows:
|
|
246
|
+
if len(set(num_cols)) != 1:
|
|
247
|
+
# This happens when the number of columns is not the same for all ROIs.
|
|
248
|
+
# As of now, this happens only for polygon contours.
|
|
249
|
+
# We need to pad the arrays with NaNs.
|
|
250
|
+
max_cols = max(num_cols)
|
|
251
|
+
num_rows = sum(coords.shape[0] for coords in rows)
|
|
252
|
+
array = np.full((num_rows, max_cols), np.nan)
|
|
253
|
+
start = 0
|
|
254
|
+
for row in rows:
|
|
255
|
+
array[start : start + row.shape[0], : row.shape[1]] = row
|
|
256
|
+
start += row.shape[0]
|
|
257
|
+
else:
|
|
258
|
+
array = np.vstack(rows)
|
|
259
|
+
return GeometryResult(title, shape, array, np.asarray(roi_idx, dtype=int))
|
|
260
|
+
return None
|