sigima 0.0.1.dev0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sigima/__init__.py +142 -2
- sigima/client/__init__.py +105 -0
- sigima/client/base.py +780 -0
- sigima/client/remote.py +469 -0
- sigima/client/stub.py +814 -0
- sigima/client/utils.py +90 -0
- sigima/config.py +444 -0
- sigima/data/logo/Sigima.svg +135 -0
- sigima/data/tests/annotations.json +798 -0
- sigima/data/tests/curve_fitting/exponential_fit.txt +511 -0
- sigima/data/tests/curve_fitting/gaussian_fit.txt +100 -0
- sigima/data/tests/curve_fitting/piecewiseexponential_fit.txt +1022 -0
- sigima/data/tests/curve_fitting/polynomial_fit.txt +100 -0
- sigima/data/tests/curve_fitting/twohalfgaussian_fit.txt +1000 -0
- sigima/data/tests/curve_formats/bandwidth.txt +201 -0
- sigima/data/tests/curve_formats/boxcar.npy +0 -0
- sigima/data/tests/curve_formats/datetime.txt +1001 -0
- sigima/data/tests/curve_formats/dynamic_parameters.txt +4000 -0
- sigima/data/tests/curve_formats/fw1e2.txt +301 -0
- sigima/data/tests/curve_formats/fwhm.txt +319 -0
- sigima/data/tests/curve_formats/multiple_curves.csv +29 -0
- sigima/data/tests/curve_formats/noised_saw.mat +0 -0
- sigima/data/tests/curve_formats/oscilloscope.csv +111 -0
- sigima/data/tests/curve_formats/other/other2/recursive2.txt +5 -0
- sigima/data/tests/curve_formats/other/recursive1.txt +5 -0
- sigima/data/tests/curve_formats/paracetamol.npy +0 -0
- sigima/data/tests/curve_formats/paracetamol.txt +1010 -0
- sigima/data/tests/curve_formats/paracetamol_dx_dy.csv +1000 -0
- sigima/data/tests/curve_formats/paracetamol_dy.csv +1001 -0
- sigima/data/tests/curve_formats/pulse1.npy +0 -0
- sigima/data/tests/curve_formats/pulse2.npy +0 -0
- sigima/data/tests/curve_formats/simple.txt +5 -0
- sigima/data/tests/curve_formats/spectrum.mca +2139 -0
- sigima/data/tests/curve_formats/square2.npy +0 -0
- sigima/data/tests/curve_formats/step.npy +0 -0
- sigima/data/tests/fabry-perot1.jpg +0 -0
- sigima/data/tests/fabry-perot2.jpg +0 -0
- sigima/data/tests/flower.npy +0 -0
- sigima/data/tests/image_formats/NF 180338201.scor-data +11003 -0
- sigima/data/tests/image_formats/binary_image.npy +0 -0
- sigima/data/tests/image_formats/binary_image.png +0 -0
- sigima/data/tests/image_formats/centroid_test.npy +0 -0
- sigima/data/tests/image_formats/coordinated_text/complex_image.txt +10011 -0
- sigima/data/tests/image_formats/coordinated_text/complex_ref_image.txt +10010 -0
- sigima/data/tests/image_formats/coordinated_text/image.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image2.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_no_unit_no_label.txt +14 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_nan.txt +15 -0
- sigima/data/tests/image_formats/coordinated_text/image_with_unit.txt +14 -0
- sigima/data/tests/image_formats/fiber.csv +480 -0
- sigima/data/tests/image_formats/fiber.jpg +0 -0
- sigima/data/tests/image_formats/fiber.png +0 -0
- sigima/data/tests/image_formats/fiber.txt +480 -0
- sigima/data/tests/image_formats/gaussian_spot_with_noise.npy +0 -0
- sigima/data/tests/image_formats/mr-brain.dcm +0 -0
- sigima/data/tests/image_formats/noised_gaussian.mat +0 -0
- sigima/data/tests/image_formats/sif_reader/nd_lum_image_no_glue.sif +0 -0
- sigima/data/tests/image_formats/sif_reader/raman1.sif +0 -0
- sigima/data/tests/image_formats/tiling.txt +10 -0
- sigima/data/tests/image_formats/uint16.tiff +0 -0
- sigima/data/tests/image_formats/uint8.tiff +0 -0
- sigima/data/tests/laser_beam/TEM00_z_13.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_18.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_23.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_30.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_35.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_40.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_45.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_50.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_55.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_60.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_65.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_70.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_75.jpg +0 -0
- sigima/data/tests/laser_beam/TEM00_z_80.jpg +0 -0
- sigima/enums.py +195 -0
- sigima/io/__init__.py +123 -0
- sigima/io/base.py +311 -0
- sigima/io/common/__init__.py +5 -0
- sigima/io/common/basename.py +164 -0
- sigima/io/common/converters.py +189 -0
- sigima/io/common/objmeta.py +181 -0
- sigima/io/common/textreader.py +58 -0
- sigima/io/convenience.py +157 -0
- sigima/io/enums.py +17 -0
- sigima/io/ftlab.py +395 -0
- sigima/io/image/__init__.py +9 -0
- sigima/io/image/base.py +177 -0
- sigima/io/image/formats.py +1016 -0
- sigima/io/image/funcs.py +414 -0
- sigima/io/signal/__init__.py +9 -0
- sigima/io/signal/base.py +129 -0
- sigima/io/signal/formats.py +290 -0
- sigima/io/signal/funcs.py +723 -0
- sigima/objects/__init__.py +260 -0
- sigima/objects/base.py +937 -0
- sigima/objects/image/__init__.py +88 -0
- sigima/objects/image/creation.py +556 -0
- sigima/objects/image/object.py +524 -0
- sigima/objects/image/roi.py +904 -0
- sigima/objects/scalar/__init__.py +57 -0
- sigima/objects/scalar/common.py +215 -0
- sigima/objects/scalar/geometry.py +502 -0
- sigima/objects/scalar/table.py +784 -0
- sigima/objects/shape.py +290 -0
- sigima/objects/signal/__init__.py +133 -0
- sigima/objects/signal/constants.py +27 -0
- sigima/objects/signal/creation.py +1428 -0
- sigima/objects/signal/object.py +444 -0
- sigima/objects/signal/roi.py +274 -0
- sigima/params.py +405 -0
- sigima/proc/__init__.py +96 -0
- sigima/proc/base.py +381 -0
- sigima/proc/decorator.py +330 -0
- sigima/proc/image/__init__.py +513 -0
- sigima/proc/image/arithmetic.py +335 -0
- sigima/proc/image/base.py +260 -0
- sigima/proc/image/detection.py +519 -0
- sigima/proc/image/edges.py +329 -0
- sigima/proc/image/exposure.py +406 -0
- sigima/proc/image/extraction.py +458 -0
- sigima/proc/image/filtering.py +219 -0
- sigima/proc/image/fourier.py +147 -0
- sigima/proc/image/geometry.py +661 -0
- sigima/proc/image/mathops.py +340 -0
- sigima/proc/image/measurement.py +195 -0
- sigima/proc/image/morphology.py +155 -0
- sigima/proc/image/noise.py +107 -0
- sigima/proc/image/preprocessing.py +182 -0
- sigima/proc/image/restoration.py +235 -0
- sigima/proc/image/threshold.py +217 -0
- sigima/proc/image/transformations.py +393 -0
- sigima/proc/signal/__init__.py +376 -0
- sigima/proc/signal/analysis.py +206 -0
- sigima/proc/signal/arithmetic.py +551 -0
- sigima/proc/signal/base.py +262 -0
- sigima/proc/signal/extraction.py +60 -0
- sigima/proc/signal/features.py +310 -0
- sigima/proc/signal/filtering.py +484 -0
- sigima/proc/signal/fitting.py +276 -0
- sigima/proc/signal/fourier.py +259 -0
- sigima/proc/signal/mathops.py +420 -0
- sigima/proc/signal/processing.py +580 -0
- sigima/proc/signal/stability.py +175 -0
- sigima/proc/title_formatting.py +227 -0
- sigima/proc/validation.py +272 -0
- sigima/tests/__init__.py +7 -0
- sigima/tests/common/__init__.py +0 -0
- sigima/tests/common/arithmeticparam_unit_test.py +26 -0
- sigima/tests/common/basename_unit_test.py +126 -0
- sigima/tests/common/client_unit_test.py +412 -0
- sigima/tests/common/converters_unit_test.py +77 -0
- sigima/tests/common/decorator_unit_test.py +176 -0
- sigima/tests/common/examples_unit_test.py +104 -0
- sigima/tests/common/kernel_normalization_unit_test.py +242 -0
- sigima/tests/common/roi_basic_unit_test.py +73 -0
- sigima/tests/common/roi_geometry_unit_test.py +171 -0
- sigima/tests/common/scalar_builder_unit_test.py +142 -0
- sigima/tests/common/scalar_unit_test.py +991 -0
- sigima/tests/common/shape_unit_test.py +183 -0
- sigima/tests/common/stat_unit_test.py +138 -0
- sigima/tests/common/title_formatting_unit_test.py +338 -0
- sigima/tests/common/tools_coordinates_unit_test.py +60 -0
- sigima/tests/common/transformations_unit_test.py +178 -0
- sigima/tests/common/validation_unit_test.py +205 -0
- sigima/tests/conftest.py +129 -0
- sigima/tests/data.py +998 -0
- sigima/tests/env.py +280 -0
- sigima/tests/guiutils.py +163 -0
- sigima/tests/helpers.py +532 -0
- sigima/tests/image/__init__.py +28 -0
- sigima/tests/image/binning_unit_test.py +128 -0
- sigima/tests/image/blob_detection_unit_test.py +312 -0
- sigima/tests/image/centroid_unit_test.py +170 -0
- sigima/tests/image/check_2d_array_unit_test.py +63 -0
- sigima/tests/image/contour_unit_test.py +172 -0
- sigima/tests/image/convolution_unit_test.py +178 -0
- sigima/tests/image/datatype_unit_test.py +67 -0
- sigima/tests/image/edges_unit_test.py +155 -0
- sigima/tests/image/enclosingcircle_unit_test.py +88 -0
- sigima/tests/image/exposure_unit_test.py +223 -0
- sigima/tests/image/fft2d_unit_test.py +189 -0
- sigima/tests/image/filtering_unit_test.py +166 -0
- sigima/tests/image/geometry_unit_test.py +654 -0
- sigima/tests/image/hough_circle_unit_test.py +147 -0
- sigima/tests/image/imageobj_unit_test.py +737 -0
- sigima/tests/image/morphology_unit_test.py +71 -0
- sigima/tests/image/noise_unit_test.py +57 -0
- sigima/tests/image/offset_correction_unit_test.py +72 -0
- sigima/tests/image/operation_unit_test.py +518 -0
- sigima/tests/image/peak2d_limits_unit_test.py +41 -0
- sigima/tests/image/peak2d_unit_test.py +133 -0
- sigima/tests/image/profile_unit_test.py +159 -0
- sigima/tests/image/projections_unit_test.py +121 -0
- sigima/tests/image/restoration_unit_test.py +141 -0
- sigima/tests/image/roi2dparam_unit_test.py +53 -0
- sigima/tests/image/roi_advanced_unit_test.py +588 -0
- sigima/tests/image/roi_grid_unit_test.py +279 -0
- sigima/tests/image/spectrum2d_unit_test.py +40 -0
- sigima/tests/image/threshold_unit_test.py +91 -0
- sigima/tests/io/__init__.py +0 -0
- sigima/tests/io/addnewformat_unit_test.py +125 -0
- sigima/tests/io/convenience_funcs_unit_test.py +470 -0
- sigima/tests/io/coordinated_text_format_unit_test.py +495 -0
- sigima/tests/io/datetime_csv_unit_test.py +198 -0
- sigima/tests/io/imageio_formats_test.py +41 -0
- sigima/tests/io/ioregistry_unit_test.py +69 -0
- sigima/tests/io/objmeta_unit_test.py +87 -0
- sigima/tests/io/readobj_unit_test.py +130 -0
- sigima/tests/io/readwriteobj_unit_test.py +67 -0
- sigima/tests/signal/__init__.py +0 -0
- sigima/tests/signal/analysis_unit_test.py +135 -0
- sigima/tests/signal/check_1d_arrays_unit_test.py +169 -0
- sigima/tests/signal/convolution_unit_test.py +404 -0
- sigima/tests/signal/datetime_unit_test.py +176 -0
- sigima/tests/signal/fft1d_unit_test.py +303 -0
- sigima/tests/signal/filters_unit_test.py +403 -0
- sigima/tests/signal/fitting_unit_test.py +929 -0
- sigima/tests/signal/fwhm_unit_test.py +111 -0
- sigima/tests/signal/noise_unit_test.py +128 -0
- sigima/tests/signal/offset_correction_unit_test.py +34 -0
- sigima/tests/signal/operation_unit_test.py +489 -0
- sigima/tests/signal/peakdetection_unit_test.py +145 -0
- sigima/tests/signal/processing_unit_test.py +657 -0
- sigima/tests/signal/pulse/__init__.py +112 -0
- sigima/tests/signal/pulse/crossing_times_unit_test.py +123 -0
- sigima/tests/signal/pulse/plateau_detection_unit_test.py +102 -0
- sigima/tests/signal/pulse/pulse_unit_test.py +1824 -0
- sigima/tests/signal/roi_advanced_unit_test.py +392 -0
- sigima/tests/signal/signalobj_unit_test.py +603 -0
- sigima/tests/signal/stability_unit_test.py +431 -0
- sigima/tests/signal/uncertainty_unit_test.py +611 -0
- sigima/tests/vistools.py +1030 -0
- sigima/tools/__init__.py +59 -0
- sigima/tools/checks.py +290 -0
- sigima/tools/coordinates.py +308 -0
- sigima/tools/datatypes.py +26 -0
- sigima/tools/image/__init__.py +97 -0
- sigima/tools/image/detection.py +451 -0
- sigima/tools/image/exposure.py +77 -0
- sigima/tools/image/extraction.py +48 -0
- sigima/tools/image/fourier.py +260 -0
- sigima/tools/image/geometry.py +190 -0
- sigima/tools/image/preprocessing.py +165 -0
- sigima/tools/signal/__init__.py +86 -0
- sigima/tools/signal/dynamic.py +254 -0
- sigima/tools/signal/features.py +135 -0
- sigima/tools/signal/filtering.py +171 -0
- sigima/tools/signal/fitting.py +1171 -0
- sigima/tools/signal/fourier.py +466 -0
- sigima/tools/signal/interpolation.py +70 -0
- sigima/tools/signal/peakdetection.py +126 -0
- sigima/tools/signal/pulse.py +1626 -0
- sigima/tools/signal/scaling.py +50 -0
- sigima/tools/signal/stability.py +258 -0
- sigima/tools/signal/windowing.py +90 -0
- sigima/worker.py +79 -0
- sigima-1.0.0.dist-info/METADATA +233 -0
- sigima-1.0.0.dist-info/RECORD +262 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/licenses/LICENSE +29 -29
- sigima-0.0.1.dev0.dist-info/METADATA +0 -60
- sigima-0.0.1.dev0.dist-info/RECORD +0 -6
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/WHEEL +0 -0
- {sigima-0.0.1.dev0.dist-info → sigima-1.0.0.dist-info}/top_level.txt +0 -0
sigima/tests/data.py
ADDED
|
@@ -0,0 +1,998 @@
|
|
|
1
|
+
# Copyright (c) DataLab Platform Developers, BSD 3-Clause license, see LICENSE file.
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Test data functions
|
|
5
|
+
|
|
6
|
+
Functions creating test data: curves, images, ...
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
# pylint: disable=invalid-name # Allows short reference names like x, y, ...
|
|
10
|
+
# guitest: skip
|
|
11
|
+
|
|
12
|
+
from __future__ import annotations
|
|
13
|
+
|
|
14
|
+
from typing import Any, Callable, Generator
|
|
15
|
+
|
|
16
|
+
import guidata.dataset as gds
|
|
17
|
+
import numpy as np
|
|
18
|
+
|
|
19
|
+
from sigima.config import _
|
|
20
|
+
from sigima.io import read_image, read_signal
|
|
21
|
+
from sigima.objects import (
|
|
22
|
+
GaussParam,
|
|
23
|
+
GeometryResult,
|
|
24
|
+
ImageDatatypes,
|
|
25
|
+
ImageObj,
|
|
26
|
+
ImageROI,
|
|
27
|
+
ImageTypes,
|
|
28
|
+
NewImageParam,
|
|
29
|
+
NewSignalParam,
|
|
30
|
+
NormalDistribution1DParam,
|
|
31
|
+
NormalDistribution2DParam,
|
|
32
|
+
SignalObj,
|
|
33
|
+
SignalROI,
|
|
34
|
+
SignalTypes,
|
|
35
|
+
TableResult,
|
|
36
|
+
create_image,
|
|
37
|
+
create_image_from_param,
|
|
38
|
+
create_image_roi,
|
|
39
|
+
create_signal_from_param,
|
|
40
|
+
create_signal_parameters,
|
|
41
|
+
create_signal_roi,
|
|
42
|
+
)
|
|
43
|
+
from sigima.objects.image import UniformDistribution2DParam, create_image_parameters
|
|
44
|
+
from sigima.objects.scalar import KindShape
|
|
45
|
+
from sigima.tests.env import execenv
|
|
46
|
+
from sigima.tests.helpers import get_test_fnames
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def get_test_signal(filename: str) -> SignalObj:
|
|
50
|
+
"""Return test signal
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
filename: Filename
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
Signal object
|
|
57
|
+
"""
|
|
58
|
+
return read_signal(get_test_fnames(filename)[0])
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def get_test_image(filename: str) -> ImageObj:
|
|
62
|
+
"""Return test image
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
filename: Filename
|
|
66
|
+
|
|
67
|
+
Returns:
|
|
68
|
+
Image object
|
|
69
|
+
"""
|
|
70
|
+
return read_image(get_test_fnames(filename)[0])
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def iterate_signal_creation(
|
|
74
|
+
size: int = 500,
|
|
75
|
+
non_zero: bool = False,
|
|
76
|
+
verbose: bool = True,
|
|
77
|
+
preproc: Callable[[NewSignalParam], None] | None = None,
|
|
78
|
+
postproc: Callable[[SignalObj], None] | None = None,
|
|
79
|
+
) -> Generator[SignalObj, None, None]:
|
|
80
|
+
"""Iterate over all possible signals created from parameters
|
|
81
|
+
|
|
82
|
+
Args:
|
|
83
|
+
size: Size of the data. Defaults to 500.
|
|
84
|
+
non_zero: If True, skip zero signals. Defaults to False.
|
|
85
|
+
verbose: If True, print the signal types being created. Defaults to True.
|
|
86
|
+
preproc: Callback function to preprocess the signal parameters set before
|
|
87
|
+
creation. Defaults to None.
|
|
88
|
+
postproc: Callback function to postprocess the signal object after creation.
|
|
89
|
+
Defaults to None.
|
|
90
|
+
|
|
91
|
+
Yields:
|
|
92
|
+
Signal object created from parameters.
|
|
93
|
+
"""
|
|
94
|
+
if verbose:
|
|
95
|
+
execenv.print(
|
|
96
|
+
f" Iterating over {len(SignalTypes)} signal types "
|
|
97
|
+
f"(size={size}, non_zero={non_zero}):"
|
|
98
|
+
)
|
|
99
|
+
for stype in SignalTypes:
|
|
100
|
+
if non_zero and stype in (SignalTypes.ZERO,):
|
|
101
|
+
continue
|
|
102
|
+
if verbose:
|
|
103
|
+
execenv.print(f" {stype.value}")
|
|
104
|
+
param = create_signal_parameters(stype, size=size)
|
|
105
|
+
if preproc is not None:
|
|
106
|
+
preproc(param)
|
|
107
|
+
signal = create_signal_from_param(param)
|
|
108
|
+
if postproc is not None:
|
|
109
|
+
postproc(signal, stype)
|
|
110
|
+
yield signal
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def create_paracetamol_signal(
|
|
114
|
+
size: int | None = None, title: str | None = None
|
|
115
|
+
) -> SignalObj:
|
|
116
|
+
"""Create test signal (Paracetamol molecule spectrum)
|
|
117
|
+
|
|
118
|
+
Args:
|
|
119
|
+
size: Size of the data. Defaults to None.
|
|
120
|
+
title: Title of the signal. Defaults to None.
|
|
121
|
+
|
|
122
|
+
Returns:
|
|
123
|
+
Signal object
|
|
124
|
+
"""
|
|
125
|
+
obj = read_signal(get_test_fnames("paracetamol.txt")[0])
|
|
126
|
+
if title is not None:
|
|
127
|
+
obj.title = title
|
|
128
|
+
if size is not None:
|
|
129
|
+
x0, y0 = obj.xydata
|
|
130
|
+
x1 = np.linspace(x0[0], x0[-1], size)
|
|
131
|
+
y1 = np.interp(x1, x0, y0)
|
|
132
|
+
obj.set_xydata(x1, y1)
|
|
133
|
+
return obj
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def add_gaussian_noise_to_signal(
|
|
137
|
+
signal: SignalObj, p: NormalDistribution1DParam | None = None
|
|
138
|
+
) -> None:
|
|
139
|
+
"""Add Gaussian (Normal-law) random noise to data
|
|
140
|
+
|
|
141
|
+
Args:
|
|
142
|
+
signal: Signal object
|
|
143
|
+
p: Gaussian noise parameters.
|
|
144
|
+
"""
|
|
145
|
+
if p is None:
|
|
146
|
+
p = NormalDistribution1DParam()
|
|
147
|
+
rng = np.random.default_rng(p.seed)
|
|
148
|
+
signal.data += rng.normal(p.mu, p.sigma, size=signal.data.shape)
|
|
149
|
+
signal.title = f"GaussNoise({signal.title}, µ={p.mu}, σ={p.sigma})"
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def create_noisy_signal(
|
|
153
|
+
noiseparam: NormalDistribution1DParam | None = None,
|
|
154
|
+
param: NewSignalParam | None = None,
|
|
155
|
+
title: str | None = None,
|
|
156
|
+
noised: bool | None = None,
|
|
157
|
+
) -> SignalObj:
|
|
158
|
+
"""Create curve data, optionally noised
|
|
159
|
+
|
|
160
|
+
Args:
|
|
161
|
+
noiseparam: Noise parameters. Default: None: No noise
|
|
162
|
+
newparam: New signal parameters.
|
|
163
|
+
Default: Gaussian, size=500, xmin=-10, xmax=10,
|
|
164
|
+
a=1.0, sigma=1.0, mu=0.0, ymin=0.0
|
|
165
|
+
title: Title of the signal. Default: None
|
|
166
|
+
If not None, overrides the title in newparam
|
|
167
|
+
noised: If True, add noise to the signal.
|
|
168
|
+
Default: None (use noiseparam)
|
|
169
|
+
If True, eventually creates a new noiseparam if None
|
|
170
|
+
|
|
171
|
+
Returns:
|
|
172
|
+
Signal object
|
|
173
|
+
"""
|
|
174
|
+
if param is None:
|
|
175
|
+
param = GaussParam()
|
|
176
|
+
if title is not None:
|
|
177
|
+
param.title = title
|
|
178
|
+
param.title = "Test signal (noisy)" if param.title is None else param.title
|
|
179
|
+
if noised is not None and noised and noiseparam is None:
|
|
180
|
+
noiseparam = NormalDistribution1DParam()
|
|
181
|
+
noiseparam.sigma = 5.0
|
|
182
|
+
sig = create_signal_from_param(param)
|
|
183
|
+
if noiseparam is not None:
|
|
184
|
+
add_gaussian_noise_to_signal(sig, noiseparam)
|
|
185
|
+
return sig
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def create_periodic_signal(
|
|
189
|
+
stype: SignalTypes,
|
|
190
|
+
freq: float = 50.0,
|
|
191
|
+
size: int = 10000,
|
|
192
|
+
xmin: float = -10.0,
|
|
193
|
+
xmax: float = 10.0,
|
|
194
|
+
a: float = 1.0,
|
|
195
|
+
) -> SignalObj:
|
|
196
|
+
"""Create a periodic signal
|
|
197
|
+
|
|
198
|
+
Args:
|
|
199
|
+
stype: Type of the signal (shape of the periodic signal).
|
|
200
|
+
freq: Frequency of the signal. Defaults to 50.0.
|
|
201
|
+
size: Size of the signal. Defaults to 10000.
|
|
202
|
+
xmin: Minimum value of the signal. Defaults to None.
|
|
203
|
+
xmax: Maximum value of the signal. Defaults to None.
|
|
204
|
+
a: Amplitude of the signal. Defaults to 1.0.
|
|
205
|
+
|
|
206
|
+
Returns:
|
|
207
|
+
Signal object
|
|
208
|
+
"""
|
|
209
|
+
p = create_signal_parameters(stype, size=size, xmin=xmin, xmax=xmax, freq=freq, a=a)
|
|
210
|
+
return create_signal_from_param(p)
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def create_2d_steps_data(size: int, width: int, dtype: np.dtype) -> np.ndarray:
|
|
214
|
+
"""Creating 2D steps data for testing purpose
|
|
215
|
+
|
|
216
|
+
Args:
|
|
217
|
+
size: Size of the data
|
|
218
|
+
width: Width of the steps
|
|
219
|
+
dtype: Data type
|
|
220
|
+
|
|
221
|
+
Returns:
|
|
222
|
+
2D data
|
|
223
|
+
"""
|
|
224
|
+
data = np.zeros((size, size), dtype=dtype)
|
|
225
|
+
value = 1
|
|
226
|
+
for col in range(0, size - width + 1, width):
|
|
227
|
+
data[:, col : col + width] = np.array(value).astype(dtype)
|
|
228
|
+
value *= 10
|
|
229
|
+
data2 = np.zeros_like(data)
|
|
230
|
+
value = 1
|
|
231
|
+
for row in range(0, size - width + 1, width):
|
|
232
|
+
data2[row : row + width, :] = np.array(value).astype(dtype)
|
|
233
|
+
value *= 10
|
|
234
|
+
data += data2
|
|
235
|
+
return data
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def create_2d_random(
|
|
239
|
+
size: int, dtype: np.dtype, level: float = 0.1, seed: int = 1
|
|
240
|
+
) -> np.ndarray:
|
|
241
|
+
"""Creating 2D Uniform-law random image
|
|
242
|
+
|
|
243
|
+
Args:
|
|
244
|
+
size: Size of the data
|
|
245
|
+
dtype: Data type
|
|
246
|
+
level: Level of the random noise. Defaults to 0.1.
|
|
247
|
+
seed: Seed for random number generator. Defaults to 1.
|
|
248
|
+
|
|
249
|
+
Returns:
|
|
250
|
+
2D data
|
|
251
|
+
"""
|
|
252
|
+
rng = np.random.default_rng(seed)
|
|
253
|
+
amp = (np.iinfo(dtype).max if np.issubdtype(dtype, np.integer) else 1.0) * level
|
|
254
|
+
return np.array(rng.random((size, size)) * amp, dtype=dtype)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
def create_2d_gaussian(
|
|
258
|
+
size: int,
|
|
259
|
+
dtype: np.dtype,
|
|
260
|
+
x0: float = 0,
|
|
261
|
+
y0: float = 0,
|
|
262
|
+
mu: float = 0.0,
|
|
263
|
+
sigma: float = 2.0,
|
|
264
|
+
amp: float | None = None,
|
|
265
|
+
) -> np.ndarray:
|
|
266
|
+
"""Creating 2D Gaussian (-10 <= x <= 10 and -10 <= y <= 10)
|
|
267
|
+
|
|
268
|
+
Args:
|
|
269
|
+
size: Size of the data
|
|
270
|
+
dtype: Data type
|
|
271
|
+
x0: x0. Defaults to 0.
|
|
272
|
+
y0: y0. Defaults to 0.
|
|
273
|
+
mu: mu. Defaults to 0.0.
|
|
274
|
+
sigma: sigma. Defaults to 2.0.
|
|
275
|
+
amp: Amplitude. Defaults to None.
|
|
276
|
+
|
|
277
|
+
Returns:
|
|
278
|
+
2D data
|
|
279
|
+
"""
|
|
280
|
+
xydata = np.linspace(-10, 10, size)
|
|
281
|
+
x, y = np.meshgrid(xydata, xydata)
|
|
282
|
+
if amp is None:
|
|
283
|
+
try:
|
|
284
|
+
amp = np.iinfo(dtype).max * 0.5
|
|
285
|
+
except ValueError:
|
|
286
|
+
# dtype is not integer
|
|
287
|
+
amp = 1.0
|
|
288
|
+
return np.array(
|
|
289
|
+
amp
|
|
290
|
+
* np.exp(
|
|
291
|
+
-((np.sqrt((x - x0) ** 2 + (y - y0) ** 2) - mu) ** 2) / (2.0 * sigma**2)
|
|
292
|
+
),
|
|
293
|
+
dtype=dtype,
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
def get_laser_spot_data() -> list[np.ndarray]:
|
|
298
|
+
"""Return a list of NumPy arrays containing images which are relevant for
|
|
299
|
+
testing laser spot image processing features
|
|
300
|
+
|
|
301
|
+
Returns:
|
|
302
|
+
List of NumPy arrays
|
|
303
|
+
"""
|
|
304
|
+
znoise = create_2d_random(2000, np.uint16)
|
|
305
|
+
zgauss = create_2d_gaussian(2000, np.uint16, x0=2.0, y0=-3.0)
|
|
306
|
+
return [zgauss + znoise] + [
|
|
307
|
+
read_image(fname).data for fname in get_test_fnames("*.scor-data")
|
|
308
|
+
]
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
class PeakDataParam(gds.DataSet):
|
|
312
|
+
"""Peak data test image parameters"""
|
|
313
|
+
|
|
314
|
+
size = gds.IntItem(_("Size"), default=2000, min=1)
|
|
315
|
+
n_points = gds.IntItem(_("Number"), default=4, min=1, help=_("Number of points"))
|
|
316
|
+
sigma_gauss2d = gds.FloatItem(
|
|
317
|
+
"σ<sub>Gauss2D</sub>", default=0.06, help=_("Sigma of the 2D Gaussian")
|
|
318
|
+
)
|
|
319
|
+
amp_gauss2d = gds.IntItem(
|
|
320
|
+
"A<sub>Gauss2D</sub>", default=1900, help=_("Amplitude of the 2D Gaussian")
|
|
321
|
+
)
|
|
322
|
+
mu_noise = gds.IntItem(
|
|
323
|
+
"μ<sub>noise</sub>", default=845, help=_("Mean of the Gaussian distribution")
|
|
324
|
+
)
|
|
325
|
+
sigma_noise = gds.IntItem(
|
|
326
|
+
"σ<sub>noise</sub>",
|
|
327
|
+
default=25,
|
|
328
|
+
help=_("Standard deviation of the Gaussian distribution"),
|
|
329
|
+
)
|
|
330
|
+
dx0 = gds.FloatItem("dx0", default=0.0)
|
|
331
|
+
dy0 = gds.FloatItem("dy0", default=0.0)
|
|
332
|
+
att = gds.FloatItem(_("Attenuation"), default=1.0)
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
def get_peak2d_data(
|
|
336
|
+
p: PeakDataParam | None = None, seed: int | None = None, multi: bool = False
|
|
337
|
+
) -> tuple[np.ndarray, np.ndarray]:
|
|
338
|
+
"""Return a list of NumPy arrays containing images which are relevant for
|
|
339
|
+
testing 2D peak detection or similar image processing features
|
|
340
|
+
|
|
341
|
+
Args:
|
|
342
|
+
p: Peak data test image parameters. Defaults to None.
|
|
343
|
+
seed: Seed for random number generator. Defaults to None.
|
|
344
|
+
multi: If True, multiple peaks are generated. Defaults to False.
|
|
345
|
+
|
|
346
|
+
Returns:
|
|
347
|
+
A tuple containing the image data and coordinates of the peaks.
|
|
348
|
+
"""
|
|
349
|
+
if p is None:
|
|
350
|
+
p = PeakDataParam()
|
|
351
|
+
delta = 0.1
|
|
352
|
+
rng = np.random.default_rng(seed)
|
|
353
|
+
coords_phys = (rng.random((p.n_points, 2)) - 0.5) * 10 * (1 - delta)
|
|
354
|
+
data = rng.normal(p.mu_noise, p.sigma_noise, size=(p.size, p.size))
|
|
355
|
+
multi_nb = 2 if multi else 1
|
|
356
|
+
for x0, y0 in coords_phys:
|
|
357
|
+
for idx in range(multi_nb):
|
|
358
|
+
if idx != 0:
|
|
359
|
+
p.dx0 = 0.08 + rng.random() * 0.08
|
|
360
|
+
p.dy0 = 0.08 + rng.random() * 0.08
|
|
361
|
+
p.att = 0.2 + rng.random() * 0.8
|
|
362
|
+
data += create_2d_gaussian(
|
|
363
|
+
p.size,
|
|
364
|
+
np.uint16,
|
|
365
|
+
x0=x0 + p.dx0,
|
|
366
|
+
y0=y0 + p.dy0,
|
|
367
|
+
sigma=p.sigma_gauss2d,
|
|
368
|
+
amp=p.amp_gauss2d / multi_nb * p.att,
|
|
369
|
+
)
|
|
370
|
+
# Convert coordinates to indices
|
|
371
|
+
coords = []
|
|
372
|
+
for x0, y0 in coords_phys:
|
|
373
|
+
x = (x0 + 10) / 20 * p.size
|
|
374
|
+
y = (y0 + 10) / 20 * p.size
|
|
375
|
+
if 0 <= x < p.size and 0 <= y < p.size:
|
|
376
|
+
coords.append((x, y))
|
|
377
|
+
return data, np.array(coords)
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
CLASS_NAME = "class_name"
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
def create_test_signal_rois(
|
|
384
|
+
obj: SignalObj,
|
|
385
|
+
) -> Generator[SignalROI, None, None]:
|
|
386
|
+
"""Create test signal ROIs (sigima.objects.SignalROI test object)
|
|
387
|
+
|
|
388
|
+
Yields:
|
|
389
|
+
SignalROI object
|
|
390
|
+
"""
|
|
391
|
+
# ROI coordinates: for each ROI type, the coordinates are given for indices=True
|
|
392
|
+
# and indices=False (physical coordinates)
|
|
393
|
+
roi_coords = {
|
|
394
|
+
"segment": {
|
|
395
|
+
CLASS_NAME: "SegmentROI",
|
|
396
|
+
True: [50, 100], # indices [x0, dx]
|
|
397
|
+
False: [7.5, 10.0], # physical
|
|
398
|
+
},
|
|
399
|
+
}
|
|
400
|
+
for indices in (True, False):
|
|
401
|
+
execenv.print("indices:", indices)
|
|
402
|
+
|
|
403
|
+
for geometry, coords in roi_coords.items():
|
|
404
|
+
execenv.print(" geometry:", geometry)
|
|
405
|
+
|
|
406
|
+
roi = create_signal_roi(coords[indices], indices=indices)
|
|
407
|
+
|
|
408
|
+
sroi = roi.get_single_roi(0)
|
|
409
|
+
assert sroi.__class__.__name__ == coords[CLASS_NAME]
|
|
410
|
+
|
|
411
|
+
cds_ind = [int(val) for val in sroi.get_indices_coords(obj)]
|
|
412
|
+
assert cds_ind == coords[True]
|
|
413
|
+
|
|
414
|
+
cds_phys = [float(val) for val in sroi.get_physical_coords(obj)]
|
|
415
|
+
assert cds_phys == coords[False]
|
|
416
|
+
|
|
417
|
+
execenv.print(" get_physical_coords:", cds_phys)
|
|
418
|
+
execenv.print(" get_indices_coords: ", cds_ind)
|
|
419
|
+
|
|
420
|
+
yield roi
|
|
421
|
+
|
|
422
|
+
|
|
423
|
+
def __idx_to_phys(obj: ImageObj, idx_coords: list[int]) -> list[float]:
|
|
424
|
+
"""Convert index coordinates to physical coordinates.
|
|
425
|
+
|
|
426
|
+
Args:
|
|
427
|
+
obj: Image object
|
|
428
|
+
idx_coords: List of index coordinates [x0, y0, dx, dy].
|
|
429
|
+
|
|
430
|
+
Returns:
|
|
431
|
+
List of physical coordinates [x0, y0, dx, dy].
|
|
432
|
+
"""
|
|
433
|
+
coords_array = np.array(idx_coords, dtype=float)
|
|
434
|
+
coords_array[::2] = coords_array[::2] * obj.dx + obj.x0
|
|
435
|
+
coords_array[1::2] = coords_array[1::2] * obj.dy + obj.y0
|
|
436
|
+
return coords_array.tolist()
|
|
437
|
+
|
|
438
|
+
|
|
439
|
+
def create_test_image_rois(obj: ImageObj) -> Generator[ImageROI, None, None]:
|
|
440
|
+
"""Create test image ROIs (sigima.objects.ImageROI test object)
|
|
441
|
+
|
|
442
|
+
Yields:
|
|
443
|
+
ImageROI object
|
|
444
|
+
"""
|
|
445
|
+
# ROI coordinates: for each ROI type, the coordinates are given for indices=True
|
|
446
|
+
# and indices=False (physical coordinates)
|
|
447
|
+
rect_idx = [500, 750, 1000, 1250] # [x0, y0, dx, dy]
|
|
448
|
+
circ_idx = [1500, 1500, 500] # [x0, y0, radius]
|
|
449
|
+
poly_idx = [450, 150, 1300, 350, 1250, 950, 400, 1350] # [x0, y0, ...]
|
|
450
|
+
roi_coords = {
|
|
451
|
+
"rectangle": {
|
|
452
|
+
CLASS_NAME: "RectangularROI",
|
|
453
|
+
True: rect_idx, # indices [x0, y0, dx, dy]
|
|
454
|
+
False: __idx_to_phys(obj, rect_idx), # physical
|
|
455
|
+
},
|
|
456
|
+
"circle": {
|
|
457
|
+
CLASS_NAME: "CircularROI",
|
|
458
|
+
True: circ_idx, # indices [x0, y0, radius]
|
|
459
|
+
False: __idx_to_phys(obj, circ_idx), # physical
|
|
460
|
+
},
|
|
461
|
+
"polygon": {
|
|
462
|
+
CLASS_NAME: "PolygonalROI",
|
|
463
|
+
True: poly_idx, # indices [x0, y0, ...]
|
|
464
|
+
False: __idx_to_phys(obj, poly_idx), # physical
|
|
465
|
+
},
|
|
466
|
+
}
|
|
467
|
+
for indices in (True, False):
|
|
468
|
+
execenv.print("indices:", indices)
|
|
469
|
+
|
|
470
|
+
for geometry, coords in roi_coords.items():
|
|
471
|
+
execenv.print(" geometry:", geometry)
|
|
472
|
+
|
|
473
|
+
roi = create_image_roi(geometry, coords[indices], indices=indices)
|
|
474
|
+
|
|
475
|
+
sroi = roi.get_single_roi(0)
|
|
476
|
+
assert sroi.__class__.__name__ == coords[CLASS_NAME]
|
|
477
|
+
|
|
478
|
+
bbox_phys = [float(val) for val in sroi.get_bounding_box(obj)]
|
|
479
|
+
if geometry in ("rectangle", "circle"):
|
|
480
|
+
# pylint: disable=unbalanced-tuple-unpacking
|
|
481
|
+
x0, y0, x1, y1 = obj.physical_to_indices(bbox_phys)
|
|
482
|
+
if geometry == "rectangle":
|
|
483
|
+
coords_from_bbox = [int(xy) for xy in [x0, y0, x1 - x0, y1 - y0]]
|
|
484
|
+
else:
|
|
485
|
+
coords_from_bbox = [
|
|
486
|
+
int(xy) for xy in [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0) / 2]
|
|
487
|
+
]
|
|
488
|
+
assert coords_from_bbox == coords[True]
|
|
489
|
+
|
|
490
|
+
cds_phys = np.array(sroi.get_physical_coords(obj), float)
|
|
491
|
+
assert all(np.isclose(cds_phys, coords[False]))
|
|
492
|
+
cds_ind = np.rint(sroi.get_indices_coords(obj))
|
|
493
|
+
assert all(np.isclose(cds_ind, coords[True]))
|
|
494
|
+
|
|
495
|
+
execenv.print(" get_bounding_box: ", bbox_phys)
|
|
496
|
+
execenv.print(" get_physical_coords:", cds_phys)
|
|
497
|
+
execenv.print(" get_indices_coords: ", cds_ind)
|
|
498
|
+
|
|
499
|
+
yield roi
|
|
500
|
+
|
|
501
|
+
|
|
502
|
+
def __iterate_image_datatypes(
|
|
503
|
+
itype: ImageTypes,
|
|
504
|
+
data_size: int,
|
|
505
|
+
verbose: bool,
|
|
506
|
+
preproc: Callable[[NewImageParam], None] | None = None,
|
|
507
|
+
postproc: Callable[[ImageObj, ImageTypes], None] | None = None,
|
|
508
|
+
) -> Generator[ImageObj | None, None, None]:
|
|
509
|
+
"""Iterate over all datatypes for a given image type
|
|
510
|
+
|
|
511
|
+
Args:
|
|
512
|
+
itype: Image type
|
|
513
|
+
data_size: Size of the data
|
|
514
|
+
verbose: If True, print the image types being created
|
|
515
|
+
preproc: Callback function to preprocess the image parameters set before
|
|
516
|
+
creation. Defaults to None.
|
|
517
|
+
postproc: Callback function to postprocess the image object after creation.
|
|
518
|
+
Defaults to None.
|
|
519
|
+
|
|
520
|
+
Yields:
|
|
521
|
+
Image object created from parameters
|
|
522
|
+
"""
|
|
523
|
+
for idtype in ImageDatatypes:
|
|
524
|
+
if verbose:
|
|
525
|
+
execenv.print(f" {idtype.value}")
|
|
526
|
+
param = create_image_parameters(
|
|
527
|
+
itype, idtype=idtype, width=data_size, height=data_size
|
|
528
|
+
)
|
|
529
|
+
if itype == ImageTypes.RAMP and idtype != ImageDatatypes.FLOAT64:
|
|
530
|
+
continue # Testing only float64 for ramp
|
|
531
|
+
if itype == ImageTypes.UNIFORM_DISTRIBUTION:
|
|
532
|
+
assert isinstance(param, UniformDistribution2DParam)
|
|
533
|
+
param.set_from_datatype(idtype.value)
|
|
534
|
+
elif itype == ImageTypes.NORMAL_DISTRIBUTION:
|
|
535
|
+
assert isinstance(param, NormalDistribution2DParam)
|
|
536
|
+
param.set_from_datatype(idtype.value)
|
|
537
|
+
if preproc is not None:
|
|
538
|
+
preproc(param)
|
|
539
|
+
image = create_image_from_param(param)
|
|
540
|
+
if postproc is not None:
|
|
541
|
+
postproc(image, itype)
|
|
542
|
+
yield image
|
|
543
|
+
|
|
544
|
+
|
|
545
|
+
def iterate_image_creation(
|
|
546
|
+
size: int = 500,
|
|
547
|
+
non_zero: bool = False,
|
|
548
|
+
verbose: bool = True,
|
|
549
|
+
preproc: Callable[[NewImageParam], None] | None = None,
|
|
550
|
+
postproc: Callable[[ImageObj, ImageTypes], None] | None = None,
|
|
551
|
+
) -> Generator[ImageObj, None, None]:
|
|
552
|
+
"""Iterate over all possible images created from parameters
|
|
553
|
+
|
|
554
|
+
Args:
|
|
555
|
+
size: Size of the data. Defaults to 500.
|
|
556
|
+
non_zero: If True, skip empty and zero images. Defaults to False.
|
|
557
|
+
verbose: If True, print the image types being created. Defaults to True.
|
|
558
|
+
preproc: Callback function to preprocess the image parameters set before
|
|
559
|
+
creation. Defaults to None.
|
|
560
|
+
postproc: Callback function to postprocess the image object after creation.
|
|
561
|
+
|
|
562
|
+
Yields:
|
|
563
|
+
Image object created from parameters.
|
|
564
|
+
"""
|
|
565
|
+
if verbose:
|
|
566
|
+
execenv.print(
|
|
567
|
+
f" Iterating over {len(ImageTypes)} image types "
|
|
568
|
+
f"(size={size}, non_zero={non_zero}):"
|
|
569
|
+
)
|
|
570
|
+
for itype in ImageTypes:
|
|
571
|
+
if non_zero and itype == ImageTypes.ZEROS:
|
|
572
|
+
continue
|
|
573
|
+
if verbose:
|
|
574
|
+
execenv.print(f" {itype.value}")
|
|
575
|
+
yield from __iterate_image_datatypes(itype, size, verbose, preproc, postproc)
|
|
576
|
+
|
|
577
|
+
|
|
578
|
+
def __set_default_size_dtype(
|
|
579
|
+
p: NewImageParam | None = None,
|
|
580
|
+
) -> NewImageParam:
|
|
581
|
+
"""Set default shape and dtype
|
|
582
|
+
|
|
583
|
+
Args:
|
|
584
|
+
p: Image parameters. Defaults to None. If None, a new object is created.
|
|
585
|
+
|
|
586
|
+
Returns:
|
|
587
|
+
Image parameters
|
|
588
|
+
"""
|
|
589
|
+
if p is None:
|
|
590
|
+
p = NewImageParam()
|
|
591
|
+
p.height = 2000 if p.height is None else p.height
|
|
592
|
+
p.width = 2000 if p.width is None else p.width
|
|
593
|
+
p.dtype = ImageDatatypes.UINT16 if p.dtype is None else p.dtype
|
|
594
|
+
return p
|
|
595
|
+
|
|
596
|
+
|
|
597
|
+
def create_checkerboard(p: NewImageParam | None = None, num_checkers=8) -> ImageObj:
|
|
598
|
+
"""Generate a checkerboard pattern
|
|
599
|
+
|
|
600
|
+
Args:
|
|
601
|
+
p: Image parameters. Defaults to None.
|
|
602
|
+
num_checkers: Number of checkers. Defaults to 8.
|
|
603
|
+
"""
|
|
604
|
+
p = __set_default_size_dtype(p)
|
|
605
|
+
p.title = "Test image (checkerboard)" if p.title is None else p.title
|
|
606
|
+
obj = create_image_from_param(p)
|
|
607
|
+
re = np.r_[num_checkers * [0, 1]] # one row of the checkerboard
|
|
608
|
+
board = np.vstack(num_checkers * (re, re ^ 1)) # build the checkerboard
|
|
609
|
+
board = np.kron(
|
|
610
|
+
board, np.ones((p.height // num_checkers, p.height // num_checkers))
|
|
611
|
+
) # scale up the board
|
|
612
|
+
obj.data = board
|
|
613
|
+
return obj
|
|
614
|
+
|
|
615
|
+
|
|
616
|
+
def create_2dstep_image(p: NewImageParam | None = None) -> ImageObj:
|
|
617
|
+
"""Creating 2D step image
|
|
618
|
+
|
|
619
|
+
Args:
|
|
620
|
+
p: Image parameters. Defaults to None.
|
|
621
|
+
|
|
622
|
+
Returns:
|
|
623
|
+
Image object
|
|
624
|
+
"""
|
|
625
|
+
p = __set_default_size_dtype(p)
|
|
626
|
+
p.title = "Test image (2D step)" if p.title is None else p.title
|
|
627
|
+
obj = create_image_from_param(p)
|
|
628
|
+
obj.data = create_2d_steps_data(p.height, p.height // 10, p.dtype.to_numpy_dtype())
|
|
629
|
+
return obj
|
|
630
|
+
|
|
631
|
+
|
|
632
|
+
class RingParam(gds.DataSet):
|
|
633
|
+
"""Parameters for creating a ring image"""
|
|
634
|
+
|
|
635
|
+
image_size = gds.IntItem(_("Size"), default=1000)
|
|
636
|
+
xc = gds.IntItem(_("X<sub>center</sub>"), default=500)
|
|
637
|
+
yc = gds.IntItem(_("Y<sub>center</sub>"), default=500)
|
|
638
|
+
thickness = gds.IntItem(_("Thickness"), default=10)
|
|
639
|
+
radius = gds.IntItem(_("Radius"), default=250)
|
|
640
|
+
intensity = gds.IntItem(_("Intensity"), default=1000)
|
|
641
|
+
|
|
642
|
+
|
|
643
|
+
def create_ring_data(
|
|
644
|
+
image_size: int, xc: int, yc: int, thickness: int, radius: int, intensity: int
|
|
645
|
+
) -> np.ndarray:
|
|
646
|
+
"""Create 2D ring data
|
|
647
|
+
|
|
648
|
+
Args:
|
|
649
|
+
image_size: Size of the image
|
|
650
|
+
xc: Center x coordinate
|
|
651
|
+
yc: Center y coordinate
|
|
652
|
+
thickness: Thickness of the ring
|
|
653
|
+
radius: Radius of the ring
|
|
654
|
+
intensity: Intensity of the ring
|
|
655
|
+
|
|
656
|
+
Returns:
|
|
657
|
+
2D data
|
|
658
|
+
"""
|
|
659
|
+
data = np.zeros((image_size, image_size), dtype=np.uint16)
|
|
660
|
+
for x in range(data.shape[0]):
|
|
661
|
+
for y in range(data.shape[1]):
|
|
662
|
+
if (x - xc) ** 2 + (y - yc) ** 2 >= (radius - thickness) ** 2 and (
|
|
663
|
+
x - xc
|
|
664
|
+
) ** 2 + (y - yc) ** 2 <= (radius + thickness) ** 2:
|
|
665
|
+
data[x, y] = intensity
|
|
666
|
+
return data
|
|
667
|
+
|
|
668
|
+
|
|
669
|
+
def create_ring_image(p: RingParam | None = None) -> ImageObj:
|
|
670
|
+
"""Creating 2D ring image
|
|
671
|
+
|
|
672
|
+
Args:
|
|
673
|
+
p: Ring image parameters. Defaults to None.
|
|
674
|
+
|
|
675
|
+
Returns:
|
|
676
|
+
Image object
|
|
677
|
+
"""
|
|
678
|
+
if p is None:
|
|
679
|
+
p = RingParam()
|
|
680
|
+
obj = create_image(
|
|
681
|
+
f"Ring(size={p.image_size},xc={p.xc},yc={p.yc},thickness={p.thickness},"
|
|
682
|
+
f"radius={p.radius},intensity={p.intensity})"
|
|
683
|
+
)
|
|
684
|
+
obj.data = create_ring_data(
|
|
685
|
+
p.image_size,
|
|
686
|
+
p.xc,
|
|
687
|
+
p.yc,
|
|
688
|
+
p.thickness,
|
|
689
|
+
p.radius,
|
|
690
|
+
p.intensity,
|
|
691
|
+
)
|
|
692
|
+
return obj
|
|
693
|
+
|
|
694
|
+
|
|
695
|
+
def create_peak_image(p: NewImageParam | None = None) -> ImageObj:
|
|
696
|
+
"""Creating image with bright peaks
|
|
697
|
+
|
|
698
|
+
Args:
|
|
699
|
+
p: Image parameters. Defaults to None
|
|
700
|
+
|
|
701
|
+
Returns:
|
|
702
|
+
Image object
|
|
703
|
+
"""
|
|
704
|
+
p = __set_default_size_dtype(p)
|
|
705
|
+
p.title = "Test image (2D peaks)" if p.title is None else p.title
|
|
706
|
+
obj = create_image_from_param(p)
|
|
707
|
+
param = PeakDataParam()
|
|
708
|
+
if p.height is not None and p.width is not None:
|
|
709
|
+
param.size = max(p.height, p.width)
|
|
710
|
+
obj.data, coords = get_peak2d_data(param)
|
|
711
|
+
obj.metadata["peak_coords"] = coords
|
|
712
|
+
return obj
|
|
713
|
+
|
|
714
|
+
|
|
715
|
+
def create_sincos_image(p: NewImageParam | None = None) -> ImageObj:
|
|
716
|
+
"""Creating test image (sin(x)+cos(y))
|
|
717
|
+
|
|
718
|
+
Args:
|
|
719
|
+
p: Image parameters. Defaults to None
|
|
720
|
+
|
|
721
|
+
Returns:
|
|
722
|
+
Image object
|
|
723
|
+
"""
|
|
724
|
+
p = __set_default_size_dtype(p)
|
|
725
|
+
p.title = "Test image (sin(x)+cos(y))" if p.title is None else p.title
|
|
726
|
+
x, y = np.meshgrid(np.linspace(0, 10, p.width), np.linspace(0, 10, p.height))
|
|
727
|
+
raw_data = 0.5 * (np.sin(x) + np.cos(y)) + 0.5
|
|
728
|
+
obj = create_image_from_param(p)
|
|
729
|
+
if np.issubdtype(p.dtype.to_numpy_dtype(), np.floating):
|
|
730
|
+
obj.data = raw_data
|
|
731
|
+
return obj
|
|
732
|
+
dmin = np.iinfo(p.dtype.to_numpy_dtype()).min * 0.95
|
|
733
|
+
dmax = np.iinfo(p.dtype.to_numpy_dtype()).max * 0.95
|
|
734
|
+
obj.data = np.array(raw_data * (dmax - dmin) + dmin, dtype=p.dtype.to_numpy_dtype())
|
|
735
|
+
return obj
|
|
736
|
+
|
|
737
|
+
|
|
738
|
+
def add_annotations_from_file(obj: SignalObj | ImageObj, filename: str) -> None:
|
|
739
|
+
"""Add annotations from a file to a Signal or Image object
|
|
740
|
+
|
|
741
|
+
Args:
|
|
742
|
+
obj: Signal or Image object to which annotations will be added
|
|
743
|
+
filename: Filename containing annotations
|
|
744
|
+
"""
|
|
745
|
+
with open(filename, "r", encoding="utf-8") as file:
|
|
746
|
+
json_str = file.read()
|
|
747
|
+
if obj.annotations:
|
|
748
|
+
json_str = obj.annotations[:-1] + "," + json_str[1:]
|
|
749
|
+
obj.annotations = json_str
|
|
750
|
+
|
|
751
|
+
|
|
752
|
+
def create_noisy_gaussian_image(
|
|
753
|
+
p: NewImageParam | None = None,
|
|
754
|
+
center: tuple[float, float] | None = None,
|
|
755
|
+
level: float = 0.1,
|
|
756
|
+
add_annotations: bool = False,
|
|
757
|
+
) -> ImageObj:
|
|
758
|
+
"""Create test image (2D noisy gaussian)
|
|
759
|
+
|
|
760
|
+
Args:
|
|
761
|
+
p: Image parameters. Defaults to None.
|
|
762
|
+
center: Center of the gaussian. Defaults to None.
|
|
763
|
+
level: Level of the random noise. Defaults to 0.1.
|
|
764
|
+
add_annotations: If True, add annotations. Defaults to False.
|
|
765
|
+
|
|
766
|
+
Returns:
|
|
767
|
+
Image object
|
|
768
|
+
"""
|
|
769
|
+
p = __set_default_size_dtype(p)
|
|
770
|
+
p.title = "Test image (noisy 2D Gaussian)" if p.title is None else p.title
|
|
771
|
+
obj = create_image_from_param(p)
|
|
772
|
+
if center is None:
|
|
773
|
+
# Default center
|
|
774
|
+
x0, y0 = 2.0, 3.0
|
|
775
|
+
else:
|
|
776
|
+
x0, y0 = center
|
|
777
|
+
obj.data = create_2d_gaussian(p.width, dtype=p.dtype.to_numpy_dtype(), x0=x0, y0=y0)
|
|
778
|
+
if level:
|
|
779
|
+
obj.data += create_2d_random(p.width, p.dtype.to_numpy_dtype(), level)
|
|
780
|
+
if add_annotations:
|
|
781
|
+
add_annotations_from_file(obj, get_test_fnames("annotations.json")[0])
|
|
782
|
+
return obj
|
|
783
|
+
|
|
784
|
+
|
|
785
|
+
def iterate_noisy_images(size: int = 128) -> Generator[ImageObj, None, None]:
|
|
786
|
+
"""Iterate over all possible noisy Gaussian images in different datatypes.
|
|
787
|
+
|
|
788
|
+
Args:
|
|
789
|
+
size: Size of the image. Defaults to 128.
|
|
790
|
+
"""
|
|
791
|
+
for dtype in ImageDatatypes:
|
|
792
|
+
param = NewImageParam.create(dtype=dtype, height=size, width=size)
|
|
793
|
+
yield create_noisy_gaussian_image(param, level=0.0)
|
|
794
|
+
|
|
795
|
+
|
|
796
|
+
def iterate_noisy_image_couples(
|
|
797
|
+
size: int = 128,
|
|
798
|
+
) -> Generator[tuple[ImageObj, ImageObj], None, None]:
|
|
799
|
+
"""Iterate over all possible pairs of noisy Gaussian images in different datatypes.
|
|
800
|
+
|
|
801
|
+
Args:
|
|
802
|
+
size: Size of the images. Defaults to 128.
|
|
803
|
+
"""
|
|
804
|
+
for dtype1 in ImageDatatypes:
|
|
805
|
+
param1 = NewImageParam.create(dtype=dtype1, height=size, width=size)
|
|
806
|
+
ima1 = create_noisy_gaussian_image(param1, level=0.0)
|
|
807
|
+
for dtype2 in ImageDatatypes:
|
|
808
|
+
param2 = NewImageParam.create(dtype=dtype2, height=size, width=size)
|
|
809
|
+
ima2 = create_noisy_gaussian_image(param2, level=0.0)
|
|
810
|
+
yield ima1, ima2
|
|
811
|
+
|
|
812
|
+
|
|
813
|
+
def create_n_images(n: int = 100) -> list[ImageObj]:
|
|
814
|
+
"""Create a list of N different images for testing."""
|
|
815
|
+
images = []
|
|
816
|
+
for i in range(n):
|
|
817
|
+
param = NewImageParam.create(
|
|
818
|
+
dtype=ImageDatatypes.FLOAT32,
|
|
819
|
+
height=128,
|
|
820
|
+
width=128,
|
|
821
|
+
)
|
|
822
|
+
img = create_noisy_gaussian_image(param, level=(i + 1) * 0.1)
|
|
823
|
+
images.append(img)
|
|
824
|
+
return images
|
|
825
|
+
|
|
826
|
+
|
|
827
|
+
class GridOfGaussianImages(gds.DataSet):
|
|
828
|
+
"""Grid of Gaussian images"""
|
|
829
|
+
|
|
830
|
+
nrows = gds.IntItem(_("Number of rows"), default=3, min=1)
|
|
831
|
+
ncols = gds.IntItem(_("Number of columns"), default=3, min=1)
|
|
832
|
+
|
|
833
|
+
|
|
834
|
+
def create_grid_of_gaussian_images(p: GridOfGaussianImages | None = None) -> ImageObj:
|
|
835
|
+
"""Create a grid image with multiple noisy Gaussian images.
|
|
836
|
+
|
|
837
|
+
Args:
|
|
838
|
+
p: Grid of Gaussian images parameters. Defaults to None.
|
|
839
|
+
|
|
840
|
+
Returns:
|
|
841
|
+
Image object containing the grid of images.
|
|
842
|
+
"""
|
|
843
|
+
p = p or GridOfGaussianImages()
|
|
844
|
+
size = 512
|
|
845
|
+
grid_data = np.zeros((size, size), dtype=np.float32)
|
|
846
|
+
xmin, xmax = -10.0, 10.0
|
|
847
|
+
ymin, ymax = -10.0, 10.0
|
|
848
|
+
xstep = (xmax - xmin) / p.ncols
|
|
849
|
+
ystep = (ymax - ymin) / p.nrows
|
|
850
|
+
sigma = 0.1
|
|
851
|
+
amp = 1.0
|
|
852
|
+
for j in range(p.ncols):
|
|
853
|
+
for i in range(p.nrows):
|
|
854
|
+
grid_data += create_2d_gaussian(
|
|
855
|
+
size,
|
|
856
|
+
dtype=float,
|
|
857
|
+
x0=(i + 0.5) * xstep + xmin,
|
|
858
|
+
y0=(j + 0.5) * ystep + ymin,
|
|
859
|
+
sigma=sigma,
|
|
860
|
+
amp=amp,
|
|
861
|
+
)
|
|
862
|
+
sigma += 0.05
|
|
863
|
+
amp *= 1.1
|
|
864
|
+
return create_image("Grid Image", grid_data)
|
|
865
|
+
|
|
866
|
+
|
|
867
|
+
def create_multigaussian_image(p: NewImageParam | None = None) -> ImageObj:
|
|
868
|
+
"""Create test image (multiple 2D-gaussian peaks)
|
|
869
|
+
|
|
870
|
+
Args:
|
|
871
|
+
p: Image parameters. Defaults to None.
|
|
872
|
+
|
|
873
|
+
Returns:
|
|
874
|
+
Image object
|
|
875
|
+
"""
|
|
876
|
+
p = __set_default_size_dtype(p)
|
|
877
|
+
p.title = "Test image (multi-2D-gaussian)" if p.title is None else p.title
|
|
878
|
+
obj = create_image_from_param(p)
|
|
879
|
+
obj.data = (
|
|
880
|
+
create_2d_gaussian(p.width, p.dtype.to_numpy_dtype(), x0=0.5, y0=3.0)
|
|
881
|
+
+ create_2d_gaussian(
|
|
882
|
+
p.width, p.dtype.to_numpy_dtype(), x0=-1.0, y0=-1.0, sigma=1.0
|
|
883
|
+
)
|
|
884
|
+
+ create_2d_gaussian(p.width, p.dtype.to_numpy_dtype(), x0=7.0, y0=8.0)
|
|
885
|
+
)
|
|
886
|
+
return obj
|
|
887
|
+
|
|
888
|
+
|
|
889
|
+
def create_annotated_image(title: str | None = None) -> ImageObj:
|
|
890
|
+
"""Create test image with annotations
|
|
891
|
+
|
|
892
|
+
Returns:
|
|
893
|
+
Image object
|
|
894
|
+
"""
|
|
895
|
+
data = create_2d_gaussian(600, np.uint16, x0=2.0, y0=3.0)
|
|
896
|
+
title = "Test image (with metadata)" if title is None else title
|
|
897
|
+
image = create_image(title, data)
|
|
898
|
+
add_annotations_from_file(image, get_test_fnames("annotations.json")[0])
|
|
899
|
+
return image
|
|
900
|
+
|
|
901
|
+
|
|
902
|
+
def create_test_metadata() -> dict[str, Any]:
|
|
903
|
+
"""Create test metadata for signals or images.
|
|
904
|
+
|
|
905
|
+
Returns:
|
|
906
|
+
Metadata dictionary
|
|
907
|
+
"""
|
|
908
|
+
metadata = {}
|
|
909
|
+
metadata["tata"] = {
|
|
910
|
+
"lkl": 2,
|
|
911
|
+
"tototo": 3,
|
|
912
|
+
"arrdata": np.array([0, 1, 2, 3, 4, 5]),
|
|
913
|
+
"zzzz": "lklk",
|
|
914
|
+
"bool": True,
|
|
915
|
+
"float": 1.234,
|
|
916
|
+
"list": [1, 2.5, 3, "str", False, 5],
|
|
917
|
+
"d": {
|
|
918
|
+
"lkl": 2,
|
|
919
|
+
"tototo": 3,
|
|
920
|
+
"zzzz": "lklk",
|
|
921
|
+
"bool": True,
|
|
922
|
+
"float": 1.234,
|
|
923
|
+
"list": [
|
|
924
|
+
1,
|
|
925
|
+
2.5,
|
|
926
|
+
3,
|
|
927
|
+
"str",
|
|
928
|
+
False,
|
|
929
|
+
5,
|
|
930
|
+
{"lkl": 2, "l": [1, 2, 3]},
|
|
931
|
+
],
|
|
932
|
+
},
|
|
933
|
+
}
|
|
934
|
+
metadata["toto"] = [
|
|
935
|
+
np.array([[1, 2], [-3, 0]]),
|
|
936
|
+
np.array([[1, 2], [-3, 0], [99, 241]]),
|
|
937
|
+
]
|
|
938
|
+
metadata["array"] = np.array([-5, -4, -3, -2, -1])
|
|
939
|
+
return metadata
|
|
940
|
+
|
|
941
|
+
|
|
942
|
+
def create_test_signal_with_metadata() -> SignalObj:
|
|
943
|
+
"""Create a test signal with complex metadata for serialization testing.
|
|
944
|
+
|
|
945
|
+
Returns:
|
|
946
|
+
Signal object with metadata containing various data types.
|
|
947
|
+
"""
|
|
948
|
+
signal = create_paracetamol_signal()
|
|
949
|
+
signal.metadata = create_test_metadata()
|
|
950
|
+
return signal
|
|
951
|
+
|
|
952
|
+
|
|
953
|
+
def create_test_image_with_metadata() -> ImageObj:
|
|
954
|
+
"""Create a test image with complex metadata for serialization testing.
|
|
955
|
+
|
|
956
|
+
Returns:
|
|
957
|
+
Image object with metadata containing various data types.
|
|
958
|
+
"""
|
|
959
|
+
data = get_test_image("flower.npy").data
|
|
960
|
+
image = create_image("Test image with peaks", data)
|
|
961
|
+
image.metadata = create_test_metadata()
|
|
962
|
+
return image
|
|
963
|
+
|
|
964
|
+
|
|
965
|
+
def generate_geometry_results() -> Generator[GeometryResult, None, None]:
|
|
966
|
+
"""Create test geometry results.
|
|
967
|
+
|
|
968
|
+
Yields:
|
|
969
|
+
GeometryResult object
|
|
970
|
+
"""
|
|
971
|
+
for index, (shape, coords) in enumerate(
|
|
972
|
+
(
|
|
973
|
+
(KindShape.CIRCLE, [[250, 250, 200]]),
|
|
974
|
+
(KindShape.RECTANGLE, [[300, 200, 150, 250]]),
|
|
975
|
+
(KindShape.SEGMENT, [[50, 250, 400, 400]]),
|
|
976
|
+
(KindShape.POINT, [[500, 500]]),
|
|
977
|
+
(
|
|
978
|
+
KindShape.POLYGON,
|
|
979
|
+
[[100, 100, 150, 100, 150, 150, 200, 100, 250, 50]],
|
|
980
|
+
),
|
|
981
|
+
)
|
|
982
|
+
):
|
|
983
|
+
yield GeometryResult(f"GeomResult{index}", shape, coords=np.asarray(coords))
|
|
984
|
+
|
|
985
|
+
|
|
986
|
+
def generate_table_results() -> Generator[TableResult, None, None]:
|
|
987
|
+
"""Create test table results.
|
|
988
|
+
|
|
989
|
+
Yields:
|
|
990
|
+
TableResult object
|
|
991
|
+
"""
|
|
992
|
+
for index, (names, data) in enumerate(
|
|
993
|
+
(
|
|
994
|
+
(["A", "B", "C", "D"], [["banana", 2.5, -30909, 1.0]]),
|
|
995
|
+
(["P1", "P2", "P3", "P4"], [["apple", 1.232325, -9, 0]]),
|
|
996
|
+
)
|
|
997
|
+
):
|
|
998
|
+
yield TableResult(f"TestProperties{index}", "test", names, data=data)
|