sequenzo 0.1.31__cp310-cp310-macosx_10_9_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- _sequenzo_fastcluster.cpython-310-darwin.so +0 -0
- sequenzo/__init__.py +349 -0
- sequenzo/big_data/__init__.py +12 -0
- sequenzo/big_data/clara/__init__.py +26 -0
- sequenzo/big_data/clara/clara.py +476 -0
- sequenzo/big_data/clara/utils/__init__.py +27 -0
- sequenzo/big_data/clara/utils/aggregatecases.py +92 -0
- sequenzo/big_data/clara/utils/davies_bouldin.py +91 -0
- sequenzo/big_data/clara/utils/get_weighted_diss.cpython-310-darwin.so +0 -0
- sequenzo/big_data/clara/utils/wfcmdd.py +205 -0
- sequenzo/big_data/clara/visualization.py +88 -0
- sequenzo/clustering/KMedoids.py +178 -0
- sequenzo/clustering/__init__.py +30 -0
- sequenzo/clustering/clustering_c_code.cpython-310-darwin.so +0 -0
- sequenzo/clustering/hierarchical_clustering.py +1256 -0
- sequenzo/clustering/sequenzo_fastcluster/fastcluster.py +495 -0
- sequenzo/clustering/sequenzo_fastcluster/src/fastcluster.cpp +1877 -0
- sequenzo/clustering/sequenzo_fastcluster/src/fastcluster_python.cpp +1264 -0
- sequenzo/clustering/src/KMedoid.cpp +263 -0
- sequenzo/clustering/src/PAM.cpp +237 -0
- sequenzo/clustering/src/PAMonce.cpp +265 -0
- sequenzo/clustering/src/cluster_quality.cpp +496 -0
- sequenzo/clustering/src/cluster_quality.h +128 -0
- sequenzo/clustering/src/cluster_quality_backup.cpp +570 -0
- sequenzo/clustering/src/module.cpp +228 -0
- sequenzo/clustering/src/weightedinertia.cpp +111 -0
- sequenzo/clustering/utils/__init__.py +27 -0
- sequenzo/clustering/utils/disscenter.py +122 -0
- sequenzo/data_preprocessing/__init__.py +22 -0
- sequenzo/data_preprocessing/helpers.py +303 -0
- sequenzo/datasets/__init__.py +41 -0
- sequenzo/datasets/biofam.csv +2001 -0
- sequenzo/datasets/biofam_child_domain.csv +2001 -0
- sequenzo/datasets/biofam_left_domain.csv +2001 -0
- sequenzo/datasets/biofam_married_domain.csv +2001 -0
- sequenzo/datasets/chinese_colonial_territories.csv +12 -0
- sequenzo/datasets/country_co2_emissions.csv +194 -0
- sequenzo/datasets/country_co2_emissions_global_deciles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_global_quintiles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_local_deciles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_local_quintiles.csv +195 -0
- sequenzo/datasets/country_gdp_per_capita.csv +194 -0
- sequenzo/datasets/dyadic_children.csv +61 -0
- sequenzo/datasets/dyadic_parents.csv +61 -0
- sequenzo/datasets/mvad.csv +713 -0
- sequenzo/datasets/pairfam_activity_by_month.csv +1028 -0
- sequenzo/datasets/pairfam_activity_by_year.csv +1028 -0
- sequenzo/datasets/pairfam_family_by_month.csv +1028 -0
- sequenzo/datasets/pairfam_family_by_year.csv +1028 -0
- sequenzo/datasets/political_science_aid_shock.csv +166 -0
- sequenzo/datasets/political_science_donor_fragmentation.csv +157 -0
- sequenzo/define_sequence_data.py +1400 -0
- sequenzo/dissimilarity_measures/__init__.py +31 -0
- sequenzo/dissimilarity_measures/c_code.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/get_distance_matrix.py +762 -0
- sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +246 -0
- sequenzo/dissimilarity_measures/src/DHDdistance.cpp +148 -0
- sequenzo/dissimilarity_measures/src/LCPdistance.cpp +114 -0
- sequenzo/dissimilarity_measures/src/LCPspellDistance.cpp +215 -0
- sequenzo/dissimilarity_measures/src/OMdistance.cpp +247 -0
- sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +281 -0
- sequenzo/dissimilarity_measures/src/__init__.py +0 -0
- sequenzo/dissimilarity_measures/src/dist2matrix.cpp +63 -0
- sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
- sequenzo/dissimilarity_measures/src/module.cpp +40 -0
- sequenzo/dissimilarity_measures/src/setup.py +30 -0
- sequenzo/dissimilarity_measures/src/utils.h +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/.github/cmake-test/main.cpp +6 -0
- sequenzo/dissimilarity_measures/src/xsimd/benchmark/main.cpp +159 -0
- sequenzo/dissimilarity_measures/src/xsimd/benchmark/xsimd_benchmark.hpp +565 -0
- sequenzo/dissimilarity_measures/src/xsimd/docs/source/conf.py +37 -0
- sequenzo/dissimilarity_measures/src/xsimd/examples/mandelbrot.cpp +330 -0
- sequenzo/dissimilarity_measures/src/xsimd/examples/pico_bench.hpp +246 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +266 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +112 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +323 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +218 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +2583 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +880 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_rounding.hpp +72 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +978 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +1924 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +1144 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +656 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512cd.hpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +244 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512er.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +2650 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512ifma.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512pf.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +131 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512bw.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512vbmi2.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avxvnni.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +24 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +393 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +788 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +93 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx2.hpp +46 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +97 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +92 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_i8mm_neon64.hpp +17 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +142 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +3142 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +1543 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +1513 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +1260 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +2024 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +67 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_1.hpp +339 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_2.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +186 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +1155 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +1780 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +240 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +484 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +269 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +27 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/math/xsimd_rem_pio2.hpp +719 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_aligned_allocator.hpp +349 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_alignment.hpp +91 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +2765 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx2_register.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512bw_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512cd_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512dq_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512er_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512f_register.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512ifma_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512pf_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vbmi2_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vbmi_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_avx512bw_register.hpp +54 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_avx512vbmi2_register.hpp +53 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx_register.hpp +64 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avxvnni_register.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +1524 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch_constant.hpp +300 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_common_arch.hpp +47 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_emulated_register.hpp +80 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_avx2_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_avx_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_sse_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma4_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_i8mm_neon64_register.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon64_register.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon_register.hpp +154 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_register.hpp +94 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +506 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse2_register.hpp +59 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse3_register.hpp +49 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_1_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_2_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_ssse3_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sve_register.hpp +156 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +337 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_utils.hpp +536 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_wasm_register.hpp +59 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +75 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/architectures/dummy.cpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set.cpp +13 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean.cpp +24 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_aligned.cpp +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_arch_independent.cpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_tag_dispatch.cpp +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/manipulating_abstract_batches.cpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/manipulating_parametric_batches.cpp +8 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum.hpp +31 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum_avx2.cpp +3 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum_sse2.cpp +3 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/writing_vectorized_code.cpp +11 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/main.cpp +31 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_api.cpp +230 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_arch.cpp +217 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_basic_math.cpp +183 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch.cpp +1049 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_bool.cpp +508 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_cast.cpp +409 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_complex.cpp +712 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_constant.cpp +286 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_float.cpp +141 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_int.cpp +365 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_manip.cpp +308 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_bitwise_cast.cpp +222 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_exponential.cpp +226 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_hyperbolic.cpp +183 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_power.cpp +265 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_trigonometric.cpp +236 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_conversion.cpp +248 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_custom_default_arch.cpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_error_gamma.cpp +170 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_explicit_batch_instantiation.cpp +32 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_exponential.cpp +202 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_extract_pair.cpp +92 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_fp_manipulation.cpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_gnu_source.cpp +30 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_hyperbolic.cpp +167 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_load_store.cpp +304 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_memory.cpp +61 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_poly_evaluation.cpp +64 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_power.cpp +184 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_rounding.cpp +199 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_select.cpp +101 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_shuffle.cpp +760 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_sum.cpp +4 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_sum.hpp +34 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_traits.cpp +172 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_trigonometric.cpp +208 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_utils.hpp +611 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_wasm/test_wasm_playwright.py +123 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_xsimd_api.cpp +1460 -0
- sequenzo/dissimilarity_measures/utils/__init__.py +16 -0
- sequenzo/dissimilarity_measures/utils/get_LCP_length_for_2_seq.py +44 -0
- sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqconc.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqdss.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqdur.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqlength.cpython-310-darwin.so +0 -0
- sequenzo/multidomain/__init__.py +23 -0
- sequenzo/multidomain/association_between_domains.py +311 -0
- sequenzo/multidomain/cat.py +597 -0
- sequenzo/multidomain/combt.py +519 -0
- sequenzo/multidomain/dat.py +81 -0
- sequenzo/multidomain/idcd.py +139 -0
- sequenzo/multidomain/linked_polyad.py +292 -0
- sequenzo/openmp_setup.py +233 -0
- sequenzo/prefix_tree/__init__.py +62 -0
- sequenzo/prefix_tree/hub.py +114 -0
- sequenzo/prefix_tree/individual_level_indicators.py +1321 -0
- sequenzo/prefix_tree/spell_individual_level_indicators.py +580 -0
- sequenzo/prefix_tree/spell_level_indicators.py +297 -0
- sequenzo/prefix_tree/system_level_indicators.py +544 -0
- sequenzo/prefix_tree/utils.py +54 -0
- sequenzo/seqhmm/__init__.py +95 -0
- sequenzo/seqhmm/advanced_optimization.py +305 -0
- sequenzo/seqhmm/bootstrap.py +411 -0
- sequenzo/seqhmm/build_hmm.py +142 -0
- sequenzo/seqhmm/build_mhmm.py +136 -0
- sequenzo/seqhmm/build_nhmm.py +121 -0
- sequenzo/seqhmm/fit_mhmm.py +62 -0
- sequenzo/seqhmm/fit_model.py +61 -0
- sequenzo/seqhmm/fit_nhmm.py +76 -0
- sequenzo/seqhmm/formulas.py +289 -0
- sequenzo/seqhmm/forward_backward_nhmm.py +276 -0
- sequenzo/seqhmm/gradients_nhmm.py +306 -0
- sequenzo/seqhmm/hmm.py +291 -0
- sequenzo/seqhmm/mhmm.py +314 -0
- sequenzo/seqhmm/model_comparison.py +238 -0
- sequenzo/seqhmm/multichannel_em.py +282 -0
- sequenzo/seqhmm/multichannel_utils.py +138 -0
- sequenzo/seqhmm/nhmm.py +270 -0
- sequenzo/seqhmm/nhmm_utils.py +191 -0
- sequenzo/seqhmm/predict.py +137 -0
- sequenzo/seqhmm/predict_mhmm.py +142 -0
- sequenzo/seqhmm/simulate.py +878 -0
- sequenzo/seqhmm/utils.py +218 -0
- sequenzo/seqhmm/visualization.py +910 -0
- sequenzo/sequence_characteristics/__init__.py +40 -0
- sequenzo/sequence_characteristics/complexity_index.py +49 -0
- sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +220 -0
- sequenzo/sequence_characteristics/plot_characteristics.py +593 -0
- sequenzo/sequence_characteristics/simple_characteristics.py +311 -0
- sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +39 -0
- sequenzo/sequence_characteristics/turbulence.py +155 -0
- sequenzo/sequence_characteristics/variance_of_spell_durations.py +86 -0
- sequenzo/sequence_characteristics/within_sequence_entropy.py +43 -0
- sequenzo/suffix_tree/__init__.py +66 -0
- sequenzo/suffix_tree/hub.py +114 -0
- sequenzo/suffix_tree/individual_level_indicators.py +1679 -0
- sequenzo/suffix_tree/spell_individual_level_indicators.py +493 -0
- sequenzo/suffix_tree/spell_level_indicators.py +248 -0
- sequenzo/suffix_tree/system_level_indicators.py +535 -0
- sequenzo/suffix_tree/utils.py +56 -0
- sequenzo/version_check.py +283 -0
- sequenzo/visualization/__init__.py +29 -0
- sequenzo/visualization/plot_mean_time.py +222 -0
- sequenzo/visualization/plot_modal_state.py +276 -0
- sequenzo/visualization/plot_most_frequent_sequences.py +147 -0
- sequenzo/visualization/plot_relative_frequency.py +405 -0
- sequenzo/visualization/plot_sequence_index.py +1175 -0
- sequenzo/visualization/plot_single_medoid.py +153 -0
- sequenzo/visualization/plot_state_distribution.py +651 -0
- sequenzo/visualization/plot_transition_matrix.py +190 -0
- sequenzo/visualization/utils/__init__.py +23 -0
- sequenzo/visualization/utils/utils.py +310 -0
- sequenzo/with_event_history_analysis/__init__.py +35 -0
- sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
- sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
- sequenzo-0.1.31.dist-info/METADATA +286 -0
- sequenzo-0.1.31.dist-info/RECORD +299 -0
- sequenzo-0.1.31.dist-info/WHEEL +5 -0
- sequenzo-0.1.31.dist-info/licenses/LICENSE +28 -0
- sequenzo-0.1.31.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,493 @@
|
|
|
1
|
+
"""
|
|
2
|
+
@Author : Yuqi Liang 梁彧祺
|
|
3
|
+
@File : spell_individual_level_indicators.py
|
|
4
|
+
@Time : 2026/1/30 15:57
|
|
5
|
+
@Desc : Individual-level indicators for spell-based suffix tree analysis.
|
|
6
|
+
|
|
7
|
+
Spell-based Suffix Tree: Individual-level convergence indicators.
|
|
8
|
+
|
|
9
|
+
Provides per-sequence (per-individual) rarity and convergence measures when the
|
|
10
|
+
unit of analysis is SPELL from the end. Each "level" is one spell from the end
|
|
11
|
+
(last spell, last two spells, ...). Lower rarity = more typical ending pattern.
|
|
12
|
+
Variable-length sequences are supported: individuals with fewer spells have NaN
|
|
13
|
+
at spell levels beyond their length.
|
|
14
|
+
|
|
15
|
+
Design mirrors: sequenzo/suffix_tree/individual_level_indicators.py (position-based).
|
|
16
|
+
- Position version: level = time index from end, suffix = states from year t to end.
|
|
17
|
+
- Spell version: level = spell index from end, suffix = last k spells.
|
|
18
|
+
|
|
19
|
+
Usage:
|
|
20
|
+
from sequenzo.suffix_tree import build_spell_suffix_tree
|
|
21
|
+
from sequenzo.suffix_tree.spell_individual_level_indicators import SpellIndividualConvergence
|
|
22
|
+
|
|
23
|
+
tree = build_spell_suffix_tree(seqdata, expcost=0)
|
|
24
|
+
ind = SpellIndividualConvergence(tree)
|
|
25
|
+
rarity_per_spell = ind.compute_suffix_rarity_per_spell()
|
|
26
|
+
converged = ind.compute_converged(method="zscore", z_threshold=1.5)
|
|
27
|
+
"""
|
|
28
|
+
from typing import Any, Dict, List, Optional
|
|
29
|
+
|
|
30
|
+
import numpy as np
|
|
31
|
+
import pandas as pd
|
|
32
|
+
|
|
33
|
+
from .spell_level_indicators import SpellSuffixTree
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
_EPS = 1e-10
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class SpellIndividualConvergence:
|
|
40
|
+
"""
|
|
41
|
+
Individual-level convergence and rarity for spell-based suffix trees.
|
|
42
|
+
|
|
43
|
+
Requires a SpellSuffixTree built with build_spell_suffix_tree(seqdata, ...),
|
|
44
|
+
so that tree._spell_states and tree._spell_durations exist and tree.counts /
|
|
45
|
+
tree.total_sequences are populated. Suffix at level k = last k spells (from end).
|
|
46
|
+
Lower rarity = more typical ending; converged = low rarity (z < -z_threshold).
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
def __init__(self, tree: SpellSuffixTree):
|
|
50
|
+
if not isinstance(tree, SpellSuffixTree):
|
|
51
|
+
raise TypeError(
|
|
52
|
+
"[!] SpellIndividualConvergence requires a SpellSuffixTree. "
|
|
53
|
+
"Use: build_spell_suffix_tree(seqdata) then SpellIndividualConvergence(tree)"
|
|
54
|
+
)
|
|
55
|
+
if not hasattr(tree, "_spell_states") or not hasattr(tree, "_spell_durations"):
|
|
56
|
+
raise ValueError(
|
|
57
|
+
"[!] SpellSuffixTree must be built with build_spell_suffix_tree(seqdata) "
|
|
58
|
+
"so that _spell_states and _spell_durations are attached."
|
|
59
|
+
)
|
|
60
|
+
self.tree = tree
|
|
61
|
+
self.spell_states = tree._spell_states
|
|
62
|
+
self.spell_durations = tree._spell_durations
|
|
63
|
+
self.N = tree.total_sequences
|
|
64
|
+
self.max_spells = max(len(s) for s in self.spell_states) if self.spell_states else 0
|
|
65
|
+
|
|
66
|
+
def _build_rarity_matrix(self) -> np.ndarray:
|
|
67
|
+
"""
|
|
68
|
+
Build (N, max_spells) matrix of suffix rarity at each spell level (from end).
|
|
69
|
+
Level k = last k spells. rarity_{i,k} = -log( freq(suffix_{i,k}) / N ).
|
|
70
|
+
Cells where individual i has no spell at that level from end are np.nan.
|
|
71
|
+
"""
|
|
72
|
+
N, max_spells = self.N, self.max_spells
|
|
73
|
+
counts = self.tree.counts
|
|
74
|
+
rarity = np.full((N, max_spells), np.nan, dtype=float)
|
|
75
|
+
for i, states_i in enumerate(self.spell_states):
|
|
76
|
+
rev = list(reversed(states_i))
|
|
77
|
+
for k in range(len(rev)):
|
|
78
|
+
key = tuple(rev[: k + 1])
|
|
79
|
+
freq = counts.get(key, 0) / max(N, 1)
|
|
80
|
+
rarity[i, k] = -np.log(freq + _EPS)
|
|
81
|
+
return rarity
|
|
82
|
+
|
|
83
|
+
def compute_suffix_rarity_per_spell(
|
|
84
|
+
self,
|
|
85
|
+
as_dataframe: bool = True,
|
|
86
|
+
column_prefix: str = "k",
|
|
87
|
+
zscore: bool = False,
|
|
88
|
+
):
|
|
89
|
+
"""
|
|
90
|
+
Compute per-spell-level suffix rarity for each individual (from end).
|
|
91
|
+
|
|
92
|
+
Level k = last k spells. Higher rarity = rarer ending pattern.
|
|
93
|
+
Levels beyond an individual's spell length are NaN.
|
|
94
|
+
"""
|
|
95
|
+
rarity = self._build_rarity_matrix()
|
|
96
|
+
if zscore:
|
|
97
|
+
col_means = np.nanmean(rarity, axis=0)
|
|
98
|
+
col_stds = np.nanstd(rarity, axis=0, ddof=1)
|
|
99
|
+
with np.errstate(invalid="ignore", divide="ignore"):
|
|
100
|
+
rarity = (rarity - col_means) / col_stds
|
|
101
|
+
rarity = np.where(np.isfinite(rarity), rarity, np.nan)
|
|
102
|
+
if not as_dataframe:
|
|
103
|
+
return rarity
|
|
104
|
+
columns = [f"{column_prefix}{k + 1}" for k in range(self.max_spells)]
|
|
105
|
+
return pd.DataFrame(rarity, columns=columns)
|
|
106
|
+
|
|
107
|
+
def compute_suffix_rarity_score(self) -> List[float]:
|
|
108
|
+
"""
|
|
109
|
+
One aggregated rarity score per individual: sum of -log(freq/N) over spell levels (from end).
|
|
110
|
+
Higher = rarer ending path.
|
|
111
|
+
"""
|
|
112
|
+
rarity = self._build_rarity_matrix()
|
|
113
|
+
scores = []
|
|
114
|
+
for i in range(self.N):
|
|
115
|
+
row = rarity[i, :]
|
|
116
|
+
valid = np.isfinite(row)
|
|
117
|
+
scores.append(float(np.sum(row[valid])) if np.any(valid) else np.nan)
|
|
118
|
+
return scores
|
|
119
|
+
|
|
120
|
+
def compute_standardized_rarity_score(
|
|
121
|
+
self,
|
|
122
|
+
min_k: int = 1,
|
|
123
|
+
window: int = 1,
|
|
124
|
+
) -> List[float]:
|
|
125
|
+
"""
|
|
126
|
+
Standardized rarity score per individual for convergence classification.
|
|
127
|
+
|
|
128
|
+
For convergence we take the minimum (most typical): standardized_score_i =
|
|
129
|
+
min over starting spell level of (max over window of z_{i,k}). Lower = more typical.
|
|
130
|
+
"""
|
|
131
|
+
rarity = self._build_rarity_matrix()
|
|
132
|
+
col_means = np.nanmean(rarity, axis=0)
|
|
133
|
+
col_stds = np.nanstd(rarity, axis=0, ddof=1)
|
|
134
|
+
with np.errstate(invalid="ignore", divide="ignore"):
|
|
135
|
+
rarity_z = (rarity - col_means) / col_stds
|
|
136
|
+
rarity_z = np.where(np.isfinite(rarity_z), rarity_z, np.nan)
|
|
137
|
+
|
|
138
|
+
start_min = min_k - 1
|
|
139
|
+
start_max = max(0, self.max_spells - window)
|
|
140
|
+
standardized_scores = []
|
|
141
|
+
for i in range(self.N):
|
|
142
|
+
z_row = rarity_z[i, :]
|
|
143
|
+
candidate_values = []
|
|
144
|
+
for t0 in range(start_min, start_max + 1):
|
|
145
|
+
vals = [z_row[t0 + j] for j in range(window)]
|
|
146
|
+
if not np.all(np.isfinite(vals)):
|
|
147
|
+
continue
|
|
148
|
+
candidate_values.append(float(np.max(vals)))
|
|
149
|
+
standardized_scores.append(float(np.nanmin(candidate_values)) if candidate_values else np.nan)
|
|
150
|
+
return standardized_scores
|
|
151
|
+
|
|
152
|
+
def compute_converged(
|
|
153
|
+
self,
|
|
154
|
+
z_threshold: float = 1.5,
|
|
155
|
+
min_k: int = 1,
|
|
156
|
+
window: int = 1,
|
|
157
|
+
inclusive: bool = False,
|
|
158
|
+
group_labels: Optional[Any] = None,
|
|
159
|
+
*,
|
|
160
|
+
method: str = "zscore",
|
|
161
|
+
proportion: Optional[float] = None,
|
|
162
|
+
quantile_p: Optional[float] = None,
|
|
163
|
+
min_count: int = 1,
|
|
164
|
+
) -> List[int]:
|
|
165
|
+
"""
|
|
166
|
+
Compute binary convergence flags (0/1) per individual. Converged = low rarity (typical).
|
|
167
|
+
|
|
168
|
+
- "zscore": converged if there exists a window where all z-scores < -z_threshold (or <= if inclusive).
|
|
169
|
+
- "top_proportion": select the proportion with smallest standardized scores (most typical).
|
|
170
|
+
- "quantile": converged if standardized score <= quantile_p (e.g. 0.10 = bottom 10%).
|
|
171
|
+
"""
|
|
172
|
+
N = self.N
|
|
173
|
+
start_min = min_k - 1
|
|
174
|
+
start_max = max(0, self.max_spells - window)
|
|
175
|
+
method_norm = (method or "zscore").lower()
|
|
176
|
+
|
|
177
|
+
if method_norm in {"top_proportion", "topk", "proportion", "rank"}:
|
|
178
|
+
p = proportion if proportion is not None else 0.10
|
|
179
|
+
scores = np.asarray(
|
|
180
|
+
self.compute_standardized_rarity_score(min_k=min_k, window=window), dtype=float
|
|
181
|
+
)
|
|
182
|
+
if group_labels is None:
|
|
183
|
+
vals = scores
|
|
184
|
+
finite_mask = np.isfinite(vals)
|
|
185
|
+
n_valid = int(np.sum(finite_mask))
|
|
186
|
+
if n_valid == 0:
|
|
187
|
+
return [0] * N
|
|
188
|
+
k = int(np.floor(p * n_valid))
|
|
189
|
+
if k < int(min_count):
|
|
190
|
+
k = int(min_count)
|
|
191
|
+
if k > n_valid:
|
|
192
|
+
k = n_valid
|
|
193
|
+
order = np.argsort(np.where(np.isfinite(vals), vals, np.inf), kind="mergesort")
|
|
194
|
+
flags = np.zeros(N, dtype=int)
|
|
195
|
+
if k >= 1:
|
|
196
|
+
flags[order[:k]] = 1
|
|
197
|
+
return flags.tolist()
|
|
198
|
+
else:
|
|
199
|
+
labels = np.asarray(group_labels)
|
|
200
|
+
flags = np.zeros(N, dtype=int)
|
|
201
|
+
for g in pd.unique(labels):
|
|
202
|
+
idx = np.where(labels == g)[0]
|
|
203
|
+
vals = scores[idx]
|
|
204
|
+
finite_mask = np.isfinite(vals)
|
|
205
|
+
n_valid = int(np.sum(finite_mask))
|
|
206
|
+
if n_valid == 0:
|
|
207
|
+
continue
|
|
208
|
+
k = int(np.floor(p * n_valid))
|
|
209
|
+
if k < int(min_count):
|
|
210
|
+
k = int(min_count)
|
|
211
|
+
if k > n_valid:
|
|
212
|
+
k = n_valid
|
|
213
|
+
order_local = np.argsort(np.where(np.isfinite(vals), vals, np.inf), kind="mergesort")
|
|
214
|
+
if k >= 1:
|
|
215
|
+
selected_global = idx[order_local[:k]]
|
|
216
|
+
flags[selected_global] = 1
|
|
217
|
+
return flags.tolist()
|
|
218
|
+
|
|
219
|
+
if method_norm == "quantile":
|
|
220
|
+
q = quantile_p if quantile_p is not None else 0.10
|
|
221
|
+
scores = np.asarray(
|
|
222
|
+
self.compute_standardized_rarity_score(min_k=min_k, window=window), dtype=float
|
|
223
|
+
)
|
|
224
|
+
flags = np.zeros(N, dtype=int)
|
|
225
|
+
if group_labels is None:
|
|
226
|
+
valid = scores[np.isfinite(scores)]
|
|
227
|
+
if valid.size == 0:
|
|
228
|
+
return flags.tolist()
|
|
229
|
+
try:
|
|
230
|
+
xq = float(np.nanquantile(scores, q))
|
|
231
|
+
except Exception:
|
|
232
|
+
xq = float(np.quantile(valid, q))
|
|
233
|
+
flags[scores <= xq] = 1
|
|
234
|
+
return flags.tolist()
|
|
235
|
+
else:
|
|
236
|
+
labels = np.asarray(group_labels)
|
|
237
|
+
for g in pd.unique(labels):
|
|
238
|
+
idx = np.where(labels == g)[0]
|
|
239
|
+
vals = scores[idx]
|
|
240
|
+
valid = vals[np.isfinite(vals)]
|
|
241
|
+
if valid.size == 0:
|
|
242
|
+
continue
|
|
243
|
+
try:
|
|
244
|
+
xq = float(np.nanquantile(vals, q))
|
|
245
|
+
except Exception:
|
|
246
|
+
xq = float(np.quantile(valid, q))
|
|
247
|
+
flags[idx[vals <= xq]] = 1
|
|
248
|
+
return flags.tolist()
|
|
249
|
+
|
|
250
|
+
rarity = self._build_rarity_matrix()
|
|
251
|
+
col_means = np.nanmean(rarity, axis=0)
|
|
252
|
+
col_stds = np.nanstd(rarity, axis=0, ddof=1)
|
|
253
|
+
with np.errstate(invalid="ignore", divide="ignore"):
|
|
254
|
+
rarity_z = (rarity - col_means) / col_stds
|
|
255
|
+
rarity_z = np.where(np.isfinite(rarity_z), rarity_z, np.nan)
|
|
256
|
+
|
|
257
|
+
flags = []
|
|
258
|
+
for i in range(N):
|
|
259
|
+
z_row = rarity_z[i, :]
|
|
260
|
+
converged = 0
|
|
261
|
+
for t0 in range(start_min, start_max + 1):
|
|
262
|
+
vals = [z_row[t0 + j] for j in range(window)]
|
|
263
|
+
if not np.all(np.isfinite(vals)):
|
|
264
|
+
continue
|
|
265
|
+
if inclusive:
|
|
266
|
+
condition = all(v <= -z_threshold for v in vals)
|
|
267
|
+
else:
|
|
268
|
+
condition = all(v < -z_threshold for v in vals)
|
|
269
|
+
if condition:
|
|
270
|
+
converged = 1
|
|
271
|
+
break
|
|
272
|
+
flags.append(converged)
|
|
273
|
+
return flags
|
|
274
|
+
|
|
275
|
+
def _compute_window_max_list(self, min_k: int, window: int) -> np.ndarray:
|
|
276
|
+
"""Per-individual, per starting spell level: max z in that window (for first_convergence_spell)."""
|
|
277
|
+
rarity = self._build_rarity_matrix()
|
|
278
|
+
col_means = np.nanmean(rarity, axis=0)
|
|
279
|
+
col_stds = np.nanstd(rarity, axis=0, ddof=1)
|
|
280
|
+
with np.errstate(invalid="ignore", divide="ignore"):
|
|
281
|
+
rarity_z = (rarity - col_means) / col_stds
|
|
282
|
+
rarity_z = np.where(np.isfinite(rarity_z), rarity_z, np.nan)
|
|
283
|
+
|
|
284
|
+
start_min = min_k - 1
|
|
285
|
+
start_max = max(0, self.max_spells - window)
|
|
286
|
+
n_starts = max(0, start_max - start_min + 1)
|
|
287
|
+
window_maxes = np.full((self.N, n_starts), np.nan, dtype=float)
|
|
288
|
+
for i in range(self.N):
|
|
289
|
+
z_row = rarity_z[i, :]
|
|
290
|
+
for idx, t0 in enumerate(range(start_min, start_max + 1)):
|
|
291
|
+
vals = [z_row[t0 + j] for j in range(window)]
|
|
292
|
+
if np.all(np.isfinite(vals)):
|
|
293
|
+
window_maxes[i, idx] = float(np.max(vals))
|
|
294
|
+
return window_maxes
|
|
295
|
+
|
|
296
|
+
def compute_first_convergence_spell(
|
|
297
|
+
self,
|
|
298
|
+
z_threshold: float = 1.5,
|
|
299
|
+
min_k: int = 1,
|
|
300
|
+
window: int = 1,
|
|
301
|
+
inclusive: bool = False,
|
|
302
|
+
group_labels: Optional[Any] = None,
|
|
303
|
+
*,
|
|
304
|
+
method: str = "zscore",
|
|
305
|
+
proportion: Optional[float] = None,
|
|
306
|
+
quantile_p: Optional[float] = None,
|
|
307
|
+
min_count: int = 1,
|
|
308
|
+
) -> List[Optional[int]]:
|
|
309
|
+
"""
|
|
310
|
+
First spell level (1-indexed from end) at which the individual is converged, or None.
|
|
311
|
+
Level 1 = last spell, level 2 = last two spells, etc.
|
|
312
|
+
"""
|
|
313
|
+
N = self.N
|
|
314
|
+
start_min = min_k - 1
|
|
315
|
+
start_max = max(0, self.max_spells - window)
|
|
316
|
+
method_norm = (method or "zscore").lower()
|
|
317
|
+
|
|
318
|
+
if method_norm in {"top_proportion", "topk", "proportion", "rank", "quantile"}:
|
|
319
|
+
agg_scores = np.asarray(
|
|
320
|
+
self.compute_standardized_rarity_score(min_k=min_k, window=window), dtype=float
|
|
321
|
+
)
|
|
322
|
+
per_start_window_max = self._compute_window_max_list(min_k, window)
|
|
323
|
+
n_starts = per_start_window_max.shape[1]
|
|
324
|
+
|
|
325
|
+
if method_norm in {"top_proportion", "topk", "proportion", "rank"}:
|
|
326
|
+
p = proportion if proportion is not None else 0.10
|
|
327
|
+
if group_labels is None:
|
|
328
|
+
vals = agg_scores
|
|
329
|
+
finite_mask = np.isfinite(vals)
|
|
330
|
+
n_valid = int(np.sum(finite_mask))
|
|
331
|
+
if n_valid == 0:
|
|
332
|
+
return [None] * N
|
|
333
|
+
k = int(np.floor(p * n_valid))
|
|
334
|
+
if k < int(min_count):
|
|
335
|
+
k = int(min_count)
|
|
336
|
+
if k > n_valid:
|
|
337
|
+
k = n_valid
|
|
338
|
+
order = np.argsort(np.where(np.isfinite(vals), vals, np.inf), kind="mergesort")
|
|
339
|
+
selected_idx = set(order[:k].tolist()) if k >= 1 else set()
|
|
340
|
+
thresh_val = vals[order[k - 1]] if k >= 1 else np.nan
|
|
341
|
+
spells = []
|
|
342
|
+
for i in range(N):
|
|
343
|
+
if i not in selected_idx or not np.isfinite(thresh_val):
|
|
344
|
+
spells.append(None)
|
|
345
|
+
continue
|
|
346
|
+
wm = per_start_window_max[i, :]
|
|
347
|
+
first_spell = None
|
|
348
|
+
for t_idx in range(n_starts):
|
|
349
|
+
if np.isfinite(wm[t_idx]) and wm[t_idx] <= float(thresh_val):
|
|
350
|
+
first_spell = t_idx + min_k
|
|
351
|
+
break
|
|
352
|
+
spells.append(first_spell)
|
|
353
|
+
return spells
|
|
354
|
+
else:
|
|
355
|
+
labels = np.asarray(group_labels)
|
|
356
|
+
spells = [None] * N
|
|
357
|
+
for g in pd.unique(labels):
|
|
358
|
+
idx = np.where(labels == g)[0]
|
|
359
|
+
vals = agg_scores[idx]
|
|
360
|
+
finite_mask = np.isfinite(vals)
|
|
361
|
+
n_valid = int(np.sum(finite_mask))
|
|
362
|
+
if n_valid == 0:
|
|
363
|
+
continue
|
|
364
|
+
k = int(np.floor(p * n_valid))
|
|
365
|
+
if k < int(min_count):
|
|
366
|
+
k = int(min_count)
|
|
367
|
+
if k > n_valid:
|
|
368
|
+
k = n_valid
|
|
369
|
+
order_local = np.argsort(np.where(np.isfinite(vals), vals, np.inf), kind="mergesort")
|
|
370
|
+
selected_local = set(order_local[:k].tolist()) if k >= 1 else set()
|
|
371
|
+
thresh_val = vals[order_local[k - 1]] if k >= 1 else np.nan
|
|
372
|
+
for j_local, i_global in enumerate(idx):
|
|
373
|
+
if j_local not in selected_local or not np.isfinite(thresh_val):
|
|
374
|
+
continue
|
|
375
|
+
wm = per_start_window_max[i_global, :]
|
|
376
|
+
for t_idx in range(n_starts):
|
|
377
|
+
if np.isfinite(wm[t_idx]) and wm[t_idx] <= float(thresh_val):
|
|
378
|
+
spells[i_global] = t_idx + min_k
|
|
379
|
+
break
|
|
380
|
+
return spells
|
|
381
|
+
|
|
382
|
+
q = quantile_p if quantile_p is not None else 0.10
|
|
383
|
+
spells = [None] * N
|
|
384
|
+
n_starts = per_start_window_max.shape[1]
|
|
385
|
+
if group_labels is None:
|
|
386
|
+
valid = agg_scores[np.isfinite(agg_scores)]
|
|
387
|
+
if valid.size == 0:
|
|
388
|
+
return spells
|
|
389
|
+
try:
|
|
390
|
+
xq = float(np.nanquantile(agg_scores, q))
|
|
391
|
+
except Exception:
|
|
392
|
+
xq = float(np.quantile(valid, q))
|
|
393
|
+
for i in range(N):
|
|
394
|
+
if not np.isfinite(agg_scores[i]) or agg_scores[i] > xq:
|
|
395
|
+
continue
|
|
396
|
+
wm = per_start_window_max[i, :]
|
|
397
|
+
for t_idx in range(n_starts):
|
|
398
|
+
if np.isfinite(wm[t_idx]) and wm[t_idx] <= xq:
|
|
399
|
+
spells[i] = t_idx + min_k
|
|
400
|
+
break
|
|
401
|
+
return spells
|
|
402
|
+
else:
|
|
403
|
+
labels = np.asarray(group_labels)
|
|
404
|
+
for g in pd.unique(labels):
|
|
405
|
+
idx = np.where(labels == g)[0]
|
|
406
|
+
vals = agg_scores[idx]
|
|
407
|
+
valid = vals[np.isfinite(vals)]
|
|
408
|
+
if valid.size == 0:
|
|
409
|
+
continue
|
|
410
|
+
try:
|
|
411
|
+
xq = float(np.nanquantile(vals, q))
|
|
412
|
+
except Exception:
|
|
413
|
+
xq = float(np.quantile(valid, q))
|
|
414
|
+
for j_local, i_global in enumerate(idx):
|
|
415
|
+
if not np.isfinite(vals[j_local]) or vals[j_local] > xq:
|
|
416
|
+
continue
|
|
417
|
+
wm = per_start_window_max[i_global, :]
|
|
418
|
+
for t_idx in range(n_starts):
|
|
419
|
+
if np.isfinite(wm[t_idx]) and wm[t_idx] <= xq:
|
|
420
|
+
spells[i_global] = t_idx + min_k
|
|
421
|
+
break
|
|
422
|
+
return spells
|
|
423
|
+
|
|
424
|
+
rarity = self._build_rarity_matrix()
|
|
425
|
+
col_means = np.nanmean(rarity, axis=0)
|
|
426
|
+
col_stds = np.nanstd(rarity, axis=0, ddof=1)
|
|
427
|
+
with np.errstate(invalid="ignore", divide="ignore"):
|
|
428
|
+
rarity_z = (rarity - col_means) / col_stds
|
|
429
|
+
rarity_z = np.where(np.isfinite(rarity_z), rarity_z, np.nan)
|
|
430
|
+
|
|
431
|
+
spells = []
|
|
432
|
+
for i in range(N):
|
|
433
|
+
z_row = rarity_z[i, :]
|
|
434
|
+
first_spell = None
|
|
435
|
+
for t0 in range(start_min, start_max + 1):
|
|
436
|
+
vals = [z_row[t0 + j] for j in range(window)]
|
|
437
|
+
if not np.all(np.isfinite(vals)):
|
|
438
|
+
continue
|
|
439
|
+
if inclusive:
|
|
440
|
+
condition = all(v <= -z_threshold for v in vals)
|
|
441
|
+
else:
|
|
442
|
+
condition = all(v < -z_threshold for v in vals)
|
|
443
|
+
if condition:
|
|
444
|
+
first_spell = t0 + 1
|
|
445
|
+
break
|
|
446
|
+
spells.append(first_spell)
|
|
447
|
+
return spells
|
|
448
|
+
|
|
449
|
+
def compute_path_uniqueness(self) -> List[int]:
|
|
450
|
+
"""
|
|
451
|
+
Per individual: count of spell levels (from end) at which the suffix is unique (freq == 1).
|
|
452
|
+
"""
|
|
453
|
+
counts = self.tree.counts
|
|
454
|
+
uniqueness = []
|
|
455
|
+
for i, states_i in enumerate(self.spell_states):
|
|
456
|
+
rev = list(reversed(states_i))
|
|
457
|
+
count_unique = 0
|
|
458
|
+
for k in range(len(rev)):
|
|
459
|
+
key = tuple(rev[: k + 1])
|
|
460
|
+
if counts.get(key, 0) == 1:
|
|
461
|
+
count_unique += 1
|
|
462
|
+
uniqueness.append(count_unique)
|
|
463
|
+
return uniqueness
|
|
464
|
+
|
|
465
|
+
def diagnose_convergence_calculation(
|
|
466
|
+
self,
|
|
467
|
+
z_threshold: float = 1.5,
|
|
468
|
+
min_k: int = 1,
|
|
469
|
+
window: int = 1,
|
|
470
|
+
) -> Dict[str, Any]:
|
|
471
|
+
"""
|
|
472
|
+
Diagnostic for spell-level convergence: variance per spell level, number converged, distribution.
|
|
473
|
+
"""
|
|
474
|
+
rarity = self._build_rarity_matrix()
|
|
475
|
+
rarity_df = pd.DataFrame(rarity)
|
|
476
|
+
rarity_std = rarity_df.std(axis=0, ddof=1)
|
|
477
|
+
levels_zero_var = [
|
|
478
|
+
k + 1 for k in range(self.max_spells)
|
|
479
|
+
if pd.isna(rarity_std.iloc[k]) or rarity_std.iloc[k] < 1e-10
|
|
480
|
+
]
|
|
481
|
+
convergence_spells = self.compute_first_convergence_spell(
|
|
482
|
+
z_threshold=z_threshold, min_k=min_k, window=window, method="zscore"
|
|
483
|
+
)
|
|
484
|
+
n_converged = sum(1 for s in convergence_spells if s is not None)
|
|
485
|
+
spell_dist = pd.Series(convergence_spells).value_counts(dropna=False).sort_index().to_dict()
|
|
486
|
+
return {
|
|
487
|
+
"rarity_std_by_spell": rarity_std.tolist(),
|
|
488
|
+
"spell_levels_with_zero_variance": levels_zero_var,
|
|
489
|
+
"n_individuals_with_convergence": n_converged,
|
|
490
|
+
"convergence_spell_distribution": spell_dist,
|
|
491
|
+
"total_individuals": self.N,
|
|
492
|
+
"parameters_used": {"z_threshold": z_threshold, "min_k": min_k, "window": window},
|
|
493
|
+
}
|