sequenzo 0.1.31__cp310-cp310-macosx_10_9_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- _sequenzo_fastcluster.cpython-310-darwin.so +0 -0
- sequenzo/__init__.py +349 -0
- sequenzo/big_data/__init__.py +12 -0
- sequenzo/big_data/clara/__init__.py +26 -0
- sequenzo/big_data/clara/clara.py +476 -0
- sequenzo/big_data/clara/utils/__init__.py +27 -0
- sequenzo/big_data/clara/utils/aggregatecases.py +92 -0
- sequenzo/big_data/clara/utils/davies_bouldin.py +91 -0
- sequenzo/big_data/clara/utils/get_weighted_diss.cpython-310-darwin.so +0 -0
- sequenzo/big_data/clara/utils/wfcmdd.py +205 -0
- sequenzo/big_data/clara/visualization.py +88 -0
- sequenzo/clustering/KMedoids.py +178 -0
- sequenzo/clustering/__init__.py +30 -0
- sequenzo/clustering/clustering_c_code.cpython-310-darwin.so +0 -0
- sequenzo/clustering/hierarchical_clustering.py +1256 -0
- sequenzo/clustering/sequenzo_fastcluster/fastcluster.py +495 -0
- sequenzo/clustering/sequenzo_fastcluster/src/fastcluster.cpp +1877 -0
- sequenzo/clustering/sequenzo_fastcluster/src/fastcluster_python.cpp +1264 -0
- sequenzo/clustering/src/KMedoid.cpp +263 -0
- sequenzo/clustering/src/PAM.cpp +237 -0
- sequenzo/clustering/src/PAMonce.cpp +265 -0
- sequenzo/clustering/src/cluster_quality.cpp +496 -0
- sequenzo/clustering/src/cluster_quality.h +128 -0
- sequenzo/clustering/src/cluster_quality_backup.cpp +570 -0
- sequenzo/clustering/src/module.cpp +228 -0
- sequenzo/clustering/src/weightedinertia.cpp +111 -0
- sequenzo/clustering/utils/__init__.py +27 -0
- sequenzo/clustering/utils/disscenter.py +122 -0
- sequenzo/data_preprocessing/__init__.py +22 -0
- sequenzo/data_preprocessing/helpers.py +303 -0
- sequenzo/datasets/__init__.py +41 -0
- sequenzo/datasets/biofam.csv +2001 -0
- sequenzo/datasets/biofam_child_domain.csv +2001 -0
- sequenzo/datasets/biofam_left_domain.csv +2001 -0
- sequenzo/datasets/biofam_married_domain.csv +2001 -0
- sequenzo/datasets/chinese_colonial_territories.csv +12 -0
- sequenzo/datasets/country_co2_emissions.csv +194 -0
- sequenzo/datasets/country_co2_emissions_global_deciles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_global_quintiles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_local_deciles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_local_quintiles.csv +195 -0
- sequenzo/datasets/country_gdp_per_capita.csv +194 -0
- sequenzo/datasets/dyadic_children.csv +61 -0
- sequenzo/datasets/dyadic_parents.csv +61 -0
- sequenzo/datasets/mvad.csv +713 -0
- sequenzo/datasets/pairfam_activity_by_month.csv +1028 -0
- sequenzo/datasets/pairfam_activity_by_year.csv +1028 -0
- sequenzo/datasets/pairfam_family_by_month.csv +1028 -0
- sequenzo/datasets/pairfam_family_by_year.csv +1028 -0
- sequenzo/datasets/political_science_aid_shock.csv +166 -0
- sequenzo/datasets/political_science_donor_fragmentation.csv +157 -0
- sequenzo/define_sequence_data.py +1400 -0
- sequenzo/dissimilarity_measures/__init__.py +31 -0
- sequenzo/dissimilarity_measures/c_code.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/get_distance_matrix.py +762 -0
- sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +246 -0
- sequenzo/dissimilarity_measures/src/DHDdistance.cpp +148 -0
- sequenzo/dissimilarity_measures/src/LCPdistance.cpp +114 -0
- sequenzo/dissimilarity_measures/src/LCPspellDistance.cpp +215 -0
- sequenzo/dissimilarity_measures/src/OMdistance.cpp +247 -0
- sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +281 -0
- sequenzo/dissimilarity_measures/src/__init__.py +0 -0
- sequenzo/dissimilarity_measures/src/dist2matrix.cpp +63 -0
- sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
- sequenzo/dissimilarity_measures/src/module.cpp +40 -0
- sequenzo/dissimilarity_measures/src/setup.py +30 -0
- sequenzo/dissimilarity_measures/src/utils.h +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/.github/cmake-test/main.cpp +6 -0
- sequenzo/dissimilarity_measures/src/xsimd/benchmark/main.cpp +159 -0
- sequenzo/dissimilarity_measures/src/xsimd/benchmark/xsimd_benchmark.hpp +565 -0
- sequenzo/dissimilarity_measures/src/xsimd/docs/source/conf.py +37 -0
- sequenzo/dissimilarity_measures/src/xsimd/examples/mandelbrot.cpp +330 -0
- sequenzo/dissimilarity_measures/src/xsimd/examples/pico_bench.hpp +246 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +266 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +112 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +323 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +218 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +2583 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +880 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_rounding.hpp +72 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +978 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +1924 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +1144 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +656 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512cd.hpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +244 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512er.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +2650 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512ifma.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512pf.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +131 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512bw.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512vbmi2.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avxvnni.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +24 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +393 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +788 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +93 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx2.hpp +46 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +97 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +92 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_i8mm_neon64.hpp +17 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +142 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +3142 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +1543 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +1513 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +1260 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +2024 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +67 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_1.hpp +339 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_2.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +186 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +1155 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +1780 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +240 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +484 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +269 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +27 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/math/xsimd_rem_pio2.hpp +719 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_aligned_allocator.hpp +349 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_alignment.hpp +91 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +2765 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx2_register.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512bw_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512cd_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512dq_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512er_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512f_register.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512ifma_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512pf_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vbmi2_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vbmi_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_avx512bw_register.hpp +54 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_avx512vbmi2_register.hpp +53 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx_register.hpp +64 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avxvnni_register.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +1524 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch_constant.hpp +300 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_common_arch.hpp +47 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_emulated_register.hpp +80 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_avx2_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_avx_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_sse_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma4_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_i8mm_neon64_register.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon64_register.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon_register.hpp +154 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_register.hpp +94 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +506 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse2_register.hpp +59 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse3_register.hpp +49 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_1_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_2_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_ssse3_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sve_register.hpp +156 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +337 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_utils.hpp +536 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_wasm_register.hpp +59 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +75 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/architectures/dummy.cpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set.cpp +13 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean.cpp +24 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_aligned.cpp +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_arch_independent.cpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_tag_dispatch.cpp +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/manipulating_abstract_batches.cpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/manipulating_parametric_batches.cpp +8 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum.hpp +31 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum_avx2.cpp +3 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum_sse2.cpp +3 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/writing_vectorized_code.cpp +11 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/main.cpp +31 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_api.cpp +230 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_arch.cpp +217 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_basic_math.cpp +183 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch.cpp +1049 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_bool.cpp +508 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_cast.cpp +409 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_complex.cpp +712 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_constant.cpp +286 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_float.cpp +141 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_int.cpp +365 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_manip.cpp +308 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_bitwise_cast.cpp +222 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_exponential.cpp +226 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_hyperbolic.cpp +183 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_power.cpp +265 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_trigonometric.cpp +236 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_conversion.cpp +248 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_custom_default_arch.cpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_error_gamma.cpp +170 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_explicit_batch_instantiation.cpp +32 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_exponential.cpp +202 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_extract_pair.cpp +92 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_fp_manipulation.cpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_gnu_source.cpp +30 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_hyperbolic.cpp +167 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_load_store.cpp +304 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_memory.cpp +61 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_poly_evaluation.cpp +64 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_power.cpp +184 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_rounding.cpp +199 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_select.cpp +101 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_shuffle.cpp +760 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_sum.cpp +4 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_sum.hpp +34 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_traits.cpp +172 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_trigonometric.cpp +208 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_utils.hpp +611 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_wasm/test_wasm_playwright.py +123 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_xsimd_api.cpp +1460 -0
- sequenzo/dissimilarity_measures/utils/__init__.py +16 -0
- sequenzo/dissimilarity_measures/utils/get_LCP_length_for_2_seq.py +44 -0
- sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqconc.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqdss.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqdur.cpython-310-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqlength.cpython-310-darwin.so +0 -0
- sequenzo/multidomain/__init__.py +23 -0
- sequenzo/multidomain/association_between_domains.py +311 -0
- sequenzo/multidomain/cat.py +597 -0
- sequenzo/multidomain/combt.py +519 -0
- sequenzo/multidomain/dat.py +81 -0
- sequenzo/multidomain/idcd.py +139 -0
- sequenzo/multidomain/linked_polyad.py +292 -0
- sequenzo/openmp_setup.py +233 -0
- sequenzo/prefix_tree/__init__.py +62 -0
- sequenzo/prefix_tree/hub.py +114 -0
- sequenzo/prefix_tree/individual_level_indicators.py +1321 -0
- sequenzo/prefix_tree/spell_individual_level_indicators.py +580 -0
- sequenzo/prefix_tree/spell_level_indicators.py +297 -0
- sequenzo/prefix_tree/system_level_indicators.py +544 -0
- sequenzo/prefix_tree/utils.py +54 -0
- sequenzo/seqhmm/__init__.py +95 -0
- sequenzo/seqhmm/advanced_optimization.py +305 -0
- sequenzo/seqhmm/bootstrap.py +411 -0
- sequenzo/seqhmm/build_hmm.py +142 -0
- sequenzo/seqhmm/build_mhmm.py +136 -0
- sequenzo/seqhmm/build_nhmm.py +121 -0
- sequenzo/seqhmm/fit_mhmm.py +62 -0
- sequenzo/seqhmm/fit_model.py +61 -0
- sequenzo/seqhmm/fit_nhmm.py +76 -0
- sequenzo/seqhmm/formulas.py +289 -0
- sequenzo/seqhmm/forward_backward_nhmm.py +276 -0
- sequenzo/seqhmm/gradients_nhmm.py +306 -0
- sequenzo/seqhmm/hmm.py +291 -0
- sequenzo/seqhmm/mhmm.py +314 -0
- sequenzo/seqhmm/model_comparison.py +238 -0
- sequenzo/seqhmm/multichannel_em.py +282 -0
- sequenzo/seqhmm/multichannel_utils.py +138 -0
- sequenzo/seqhmm/nhmm.py +270 -0
- sequenzo/seqhmm/nhmm_utils.py +191 -0
- sequenzo/seqhmm/predict.py +137 -0
- sequenzo/seqhmm/predict_mhmm.py +142 -0
- sequenzo/seqhmm/simulate.py +878 -0
- sequenzo/seqhmm/utils.py +218 -0
- sequenzo/seqhmm/visualization.py +910 -0
- sequenzo/sequence_characteristics/__init__.py +40 -0
- sequenzo/sequence_characteristics/complexity_index.py +49 -0
- sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +220 -0
- sequenzo/sequence_characteristics/plot_characteristics.py +593 -0
- sequenzo/sequence_characteristics/simple_characteristics.py +311 -0
- sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +39 -0
- sequenzo/sequence_characteristics/turbulence.py +155 -0
- sequenzo/sequence_characteristics/variance_of_spell_durations.py +86 -0
- sequenzo/sequence_characteristics/within_sequence_entropy.py +43 -0
- sequenzo/suffix_tree/__init__.py +66 -0
- sequenzo/suffix_tree/hub.py +114 -0
- sequenzo/suffix_tree/individual_level_indicators.py +1679 -0
- sequenzo/suffix_tree/spell_individual_level_indicators.py +493 -0
- sequenzo/suffix_tree/spell_level_indicators.py +248 -0
- sequenzo/suffix_tree/system_level_indicators.py +535 -0
- sequenzo/suffix_tree/utils.py +56 -0
- sequenzo/version_check.py +283 -0
- sequenzo/visualization/__init__.py +29 -0
- sequenzo/visualization/plot_mean_time.py +222 -0
- sequenzo/visualization/plot_modal_state.py +276 -0
- sequenzo/visualization/plot_most_frequent_sequences.py +147 -0
- sequenzo/visualization/plot_relative_frequency.py +405 -0
- sequenzo/visualization/plot_sequence_index.py +1175 -0
- sequenzo/visualization/plot_single_medoid.py +153 -0
- sequenzo/visualization/plot_state_distribution.py +651 -0
- sequenzo/visualization/plot_transition_matrix.py +190 -0
- sequenzo/visualization/utils/__init__.py +23 -0
- sequenzo/visualization/utils/utils.py +310 -0
- sequenzo/with_event_history_analysis/__init__.py +35 -0
- sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
- sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
- sequenzo-0.1.31.dist-info/METADATA +286 -0
- sequenzo-0.1.31.dist-info/RECORD +299 -0
- sequenzo-0.1.31.dist-info/WHEEL +5 -0
- sequenzo-0.1.31.dist-info/licenses/LICENSE +28 -0
- sequenzo-0.1.31.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,544 @@
|
|
|
1
|
+
"""
|
|
2
|
+
@Author : Yuqi Liang 梁彧祺
|
|
3
|
+
@File : system_level_indicators.py
|
|
4
|
+
@Time : 02/05/2025 11:06
|
|
5
|
+
@Desc :
|
|
6
|
+
This module includes tools for building prefix trees, computing prefix counts, branching factors, and Jensen-Shannon divergence,
|
|
7
|
+
as well as generating composite scores to summarize system-level sequence diversity and complexity over time.
|
|
8
|
+
Visualization functions are also provided to plot these indicators and their distributions,
|
|
9
|
+
supporting comprehensive analysis of sequence system dynamics.
|
|
10
|
+
"""
|
|
11
|
+
from collections import defaultdict, Counter
|
|
12
|
+
import numpy as np
|
|
13
|
+
from scipy.stats import zscore
|
|
14
|
+
from numpy import array
|
|
15
|
+
from scipy.spatial.distance import jensenshannon
|
|
16
|
+
|
|
17
|
+
from sequenzo.visualization.utils import save_and_show_results
|
|
18
|
+
import matplotlib.pyplot as plt
|
|
19
|
+
import seaborn as sns
|
|
20
|
+
from typing import List, Optional, Dict, Any, Tuple
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class PrefixTree:
|
|
24
|
+
def __init__(self):
|
|
25
|
+
self.root = {}
|
|
26
|
+
self.counts = defaultdict(int) # prefix -> count
|
|
27
|
+
self.total_sequences = 0
|
|
28
|
+
|
|
29
|
+
def insert(self, sequence):
|
|
30
|
+
prefix = []
|
|
31
|
+
node = self.root
|
|
32
|
+
for state in sequence:
|
|
33
|
+
prefix.append(state)
|
|
34
|
+
key = tuple(prefix)
|
|
35
|
+
self.counts[key] += 1
|
|
36
|
+
if state not in node:
|
|
37
|
+
node[state] = {}
|
|
38
|
+
node = node[state]
|
|
39
|
+
|
|
40
|
+
def get_prefixes_at_depth(self, depth):
|
|
41
|
+
return [k for k in self.counts if len(k) == depth]
|
|
42
|
+
|
|
43
|
+
def get_children(self, prefix):
|
|
44
|
+
"""
|
|
45
|
+
Given a prefix (as a list or tuple), return its immediate children in the tree.
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
dict: mapping from child state -> subtree dict
|
|
49
|
+
"""
|
|
50
|
+
node = self.root
|
|
51
|
+
for state in prefix:
|
|
52
|
+
node = node.get(state, {})
|
|
53
|
+
return node
|
|
54
|
+
|
|
55
|
+
def get_children_count(self, prefix):
|
|
56
|
+
node = self.root
|
|
57
|
+
for state in prefix:
|
|
58
|
+
node = node.get(state, {})
|
|
59
|
+
return len(node)
|
|
60
|
+
|
|
61
|
+
def describe(self):
|
|
62
|
+
depths = [len(k) for k in self.counts.keys()]
|
|
63
|
+
max_depth = max(depths) if depths else 0
|
|
64
|
+
total_prefixes = len(self.counts)
|
|
65
|
+
print("\n[PrefixTree Overview]")
|
|
66
|
+
print(f"[>] Total sequences inserted: {self.total_sequences}")
|
|
67
|
+
print(f"[>] Max depth (time points): {max_depth}")
|
|
68
|
+
print(f"[>] Total distinct prefixes: {total_prefixes}")
|
|
69
|
+
|
|
70
|
+
for t in range(1, max_depth + 1):
|
|
71
|
+
level_prefixes = self.get_prefixes_at_depth(t)
|
|
72
|
+
print(f" Level {t}: {len(level_prefixes)} unique prefixes")
|
|
73
|
+
|
|
74
|
+
def __repr__(self):
|
|
75
|
+
"""
|
|
76
|
+
Returns a brief textual summary of the prefix tree object.
|
|
77
|
+
|
|
78
|
+
Note:
|
|
79
|
+
This method is intended to provide a lightweight, one-line overview
|
|
80
|
+
(e.g., max depth and total prefix count). For a full structural report
|
|
81
|
+
including per-level statistics, use the `.describe()` method instead.
|
|
82
|
+
"""
|
|
83
|
+
depths = [len(k) for k in self.counts.keys()]
|
|
84
|
+
return f"PrefixTree(max_depth={max(depths) if depths else 0}, total_prefixes={len(self.counts)})"
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def get_depth_stats(tree: "PrefixTree") -> Dict[str, Any]:
|
|
88
|
+
"""
|
|
89
|
+
Build depth-level stats in a single pass over the tree's prefix counts.
|
|
90
|
+
Use this when calling both compute_prefix_count and compute_branching_factor
|
|
91
|
+
to avoid scanning the tree twice (important when T or prefix count is large).
|
|
92
|
+
|
|
93
|
+
Returns:
|
|
94
|
+
dict with keys:
|
|
95
|
+
- 'depth_counts': dict depth -> number of distinct prefixes at that depth
|
|
96
|
+
- 'depth_to_prefixes': dict depth -> list of prefix tuples at that depth
|
|
97
|
+
"""
|
|
98
|
+
depth_counts = defaultdict(int)
|
|
99
|
+
depth_to_prefixes = defaultdict(list)
|
|
100
|
+
for k in tree.counts:
|
|
101
|
+
d = len(k)
|
|
102
|
+
depth_counts[d] += 1
|
|
103
|
+
depth_to_prefixes[d].append(k)
|
|
104
|
+
return {
|
|
105
|
+
"depth_counts": dict(depth_counts),
|
|
106
|
+
"depth_to_prefixes": dict(depth_to_prefixes),
|
|
107
|
+
}
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def compute_prefix_count(
|
|
111
|
+
tree, max_depth, depth_stats: Optional[Dict[str, Any]] = None
|
|
112
|
+
) -> List[int]:
|
|
113
|
+
"""
|
|
114
|
+
Prefix counts per time step 1..max_depth.
|
|
115
|
+
When T is large, pass precomputed depth_stats from get_depth_stats(tree)
|
|
116
|
+
so that combined with compute_branching_factor only one pass over the tree is used.
|
|
117
|
+
"""
|
|
118
|
+
if depth_stats is None:
|
|
119
|
+
depth_counts = defaultdict(int)
|
|
120
|
+
for k in tree.counts:
|
|
121
|
+
depth_counts[len(k)] += 1
|
|
122
|
+
depth_counts = dict(depth_counts)
|
|
123
|
+
else:
|
|
124
|
+
depth_counts = depth_stats["depth_counts"]
|
|
125
|
+
return [depth_counts.get(t, 0) for t in range(1, max_depth + 1)]
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def compute_branching_factor(
|
|
129
|
+
tree, max_depth, depth_prefixes: Optional[Dict[int, List[Tuple]]] = None
|
|
130
|
+
) -> List[float]:
|
|
131
|
+
"""
|
|
132
|
+
Branching factor per time step; first element is 0 to align with prefix count.
|
|
133
|
+
When T is large, pass depth_prefixes from get_depth_stats(tree)['depth_to_prefixes']
|
|
134
|
+
to avoid an extra full scan of the tree.
|
|
135
|
+
"""
|
|
136
|
+
if depth_prefixes is None:
|
|
137
|
+
depth_to_prefixes = defaultdict(list)
|
|
138
|
+
for k in tree.counts:
|
|
139
|
+
depth_to_prefixes[len(k)].append(k)
|
|
140
|
+
depth_to_prefixes = dict(depth_to_prefixes)
|
|
141
|
+
else:
|
|
142
|
+
depth_to_prefixes = depth_prefixes
|
|
143
|
+
result = []
|
|
144
|
+
for t in range(2, max_depth + 1):
|
|
145
|
+
prefixes = depth_to_prefixes.get(t - 1, [])
|
|
146
|
+
if not prefixes:
|
|
147
|
+
result.append(0.0)
|
|
148
|
+
continue
|
|
149
|
+
child_counts = [tree.get_children_count(p) for p in prefixes]
|
|
150
|
+
result.append(float(np.mean(child_counts)))
|
|
151
|
+
return [0.0] + result # pad to align with prefix count
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def compute_js_divergence(sequences, state_set):
|
|
155
|
+
"""
|
|
156
|
+
Jensen-Shannon divergence between consecutive time-step distributions.
|
|
157
|
+
Uses a single pass over sequences and vectorized numpy operations for speed
|
|
158
|
+
when T or N is large.
|
|
159
|
+
"""
|
|
160
|
+
T = len(sequences[0])
|
|
161
|
+
state_list = list(state_set)
|
|
162
|
+
n_states = len(state_list)
|
|
163
|
+
state_to_idx = {s: i for i, s in enumerate(state_list)}
|
|
164
|
+
N = len(sequences)
|
|
165
|
+
# Build (N, T) matrix of state indices in one pass
|
|
166
|
+
mat = np.empty((N, T), dtype=np.intp)
|
|
167
|
+
for i, seq in enumerate(sequences):
|
|
168
|
+
for t in range(T):
|
|
169
|
+
mat[i, t] = state_to_idx[seq[t]]
|
|
170
|
+
# Per-time distributions via bincount
|
|
171
|
+
distros = np.zeros((T, n_states), dtype=float)
|
|
172
|
+
for t in range(T):
|
|
173
|
+
counts = np.bincount(mat[:, t], minlength=n_states)
|
|
174
|
+
total = counts.sum()
|
|
175
|
+
if total > 0:
|
|
176
|
+
distros[t] = counts / total
|
|
177
|
+
else:
|
|
178
|
+
distros[t] = counts
|
|
179
|
+
js_scores = [0.0]
|
|
180
|
+
for t in range(1, T):
|
|
181
|
+
js = jensenshannon(distros[t], distros[t - 1])
|
|
182
|
+
js_scores.append(float(js))
|
|
183
|
+
return js_scores
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
def _build_prefix_tree_position(sequences):
|
|
187
|
+
"""Internal: build position-based prefix tree (level = time index)."""
|
|
188
|
+
tree = PrefixTree()
|
|
189
|
+
tree.total_sequences = len(sequences)
|
|
190
|
+
for seq in sequences:
|
|
191
|
+
for t in range(1, len(seq) + 1):
|
|
192
|
+
tree.insert(seq[:t])
|
|
193
|
+
return tree
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def build_prefix_tree(sequences):
|
|
197
|
+
"""
|
|
198
|
+
Build position-based prefix tree (level = time index).
|
|
199
|
+
|
|
200
|
+
For spell-based tree or unified hub with mode/expcost, use:
|
|
201
|
+
from sequenzo.prefix_tree.hub import build_prefix_tree
|
|
202
|
+
tree = build_prefix_tree(seqdata, mode="spell", expcost=0)
|
|
203
|
+
"""
|
|
204
|
+
return _build_prefix_tree_position(sequences)
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
def plot_system_indicators(
|
|
208
|
+
prefix_counts: List[float],
|
|
209
|
+
branching_factors: List[float],
|
|
210
|
+
js_divergence: Optional[List[float]] = None,
|
|
211
|
+
x_values: Optional[List] = None,
|
|
212
|
+
x_label: str = "Time (t)",
|
|
213
|
+
legend_loc: str = 'lower right',
|
|
214
|
+
legend_fontsize: int = 10,
|
|
215
|
+
save_as: Optional[str] = None,
|
|
216
|
+
figsize: Optional[tuple] = None,
|
|
217
|
+
dpi: int = 300,
|
|
218
|
+
custom_colors: Optional[Dict[str, str]] = None,
|
|
219
|
+
show: bool = True,
|
|
220
|
+
plot_distributions: bool = False,
|
|
221
|
+
style: Optional[str] = None
|
|
222
|
+
) -> None:
|
|
223
|
+
"""
|
|
224
|
+
Plot a single group's system-level indicators using the same visual style as
|
|
225
|
+
`plot_system_indicators_multiple_comparison`, but for one subplot.
|
|
226
|
+
|
|
227
|
+
Design:
|
|
228
|
+
- Left y-axis: raw Prefix Count
|
|
229
|
+
- Right y-axis: z-score of Branching Factor and (optionally) JS Divergence
|
|
230
|
+
- Consistent colors/markers and legend handling with the multi-comparison API
|
|
231
|
+
|
|
232
|
+
Parameters:
|
|
233
|
+
- prefix_counts: List[float]
|
|
234
|
+
Raw prefix counts per time step
|
|
235
|
+
- branching_factors: List[float]
|
|
236
|
+
Branching factor per time step
|
|
237
|
+
- js_divergence: Optional[List[float]]
|
|
238
|
+
JS divergence per time step; if None, only branching factor is shown on right axis
|
|
239
|
+
- x_values: Optional[List]
|
|
240
|
+
Custom x-axis ticks (e.g., years). If None, uses 1..T. Length must equal data length
|
|
241
|
+
- x_label: str
|
|
242
|
+
Label for x-axis. Default: "Time (t)"
|
|
243
|
+
- legend_loc: str
|
|
244
|
+
Legend location, e.g., 'upper left', 'upper right', 'lower right', 'best', etc. Default: 'lower right'
|
|
245
|
+
- legend_fontsize: int
|
|
246
|
+
Font size for legend text. Default: 10
|
|
247
|
+
- save_as: Optional[str]
|
|
248
|
+
If provided, save the figure to this path (png). DPI controlled by `dpi`
|
|
249
|
+
- figsize: Optional[tuple]
|
|
250
|
+
Figure size (width, height). Default: (12, 6)
|
|
251
|
+
- dpi: int
|
|
252
|
+
Figure DPI when saving. Default: 300
|
|
253
|
+
- custom_colors: Optional[Dict[str, str]]
|
|
254
|
+
Optional color overrides. Keys: "Prefix Count", "Branching Factor", "JS Divergence"
|
|
255
|
+
- show: bool
|
|
256
|
+
Whether to display the figure
|
|
257
|
+
- plot_distributions: bool
|
|
258
|
+
If True, additionally show raw distributions (histograms) of indicators
|
|
259
|
+
- style: Optional[str]
|
|
260
|
+
Matplotlib/seaborn style to apply. Common options: 'whitegrid', 'darkgrid',
|
|
261
|
+
'white', 'dark', 'ticks'. If None, uses default style. Default: None
|
|
262
|
+
|
|
263
|
+
Example:
|
|
264
|
+
>>> plot_system_indicators(
|
|
265
|
+
... prefix_counts=india_prefix_counts,
|
|
266
|
+
... branching_factors=india_branching_factors,
|
|
267
|
+
... js_divergence=india_js_scores,
|
|
268
|
+
... x_values=[2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019],
|
|
269
|
+
... x_label="Year",
|
|
270
|
+
... legend_loc="lower right",
|
|
271
|
+
... figsize=(12, 6),
|
|
272
|
+
... dpi=300,
|
|
273
|
+
... )
|
|
274
|
+
"""
|
|
275
|
+
T = len(prefix_counts)
|
|
276
|
+
# Set x values to align with multi-group API
|
|
277
|
+
if x_values is None:
|
|
278
|
+
x_values = list(range(1, T + 1))
|
|
279
|
+
if len(x_values) != T:
|
|
280
|
+
raise ValueError("Length of x_values must match data length")
|
|
281
|
+
|
|
282
|
+
# Normalize others
|
|
283
|
+
bf_z = zscore(array(branching_factors))
|
|
284
|
+
js_z = zscore(array(js_divergence)) if js_divergence else None
|
|
285
|
+
|
|
286
|
+
color_defaults = {
|
|
287
|
+
"Prefix Count": "#6BB6FF", # Soft sky blue (like Monet's water lilies)
|
|
288
|
+
"Branching Factor": "#FFB347", # Warm peach/coral (like sunset reflections)
|
|
289
|
+
"JS Divergence": "#F4A6CD", # Soft rose pink (divergence = different paths)
|
|
290
|
+
}
|
|
291
|
+
colors = {**color_defaults, **(custom_colors or {})}
|
|
292
|
+
|
|
293
|
+
# --- Main line plot with dual axes ---
|
|
294
|
+
if figsize is None:
|
|
295
|
+
figsize = (12, 6)
|
|
296
|
+
|
|
297
|
+
# Apply style if specified
|
|
298
|
+
if style is not None:
|
|
299
|
+
# Check if it's a seaborn style
|
|
300
|
+
seaborn_styles = ['whitegrid', 'darkgrid', 'white', 'dark', 'ticks']
|
|
301
|
+
if style in seaborn_styles:
|
|
302
|
+
sns.set_style(style)
|
|
303
|
+
else:
|
|
304
|
+
plt.style.use(style)
|
|
305
|
+
|
|
306
|
+
fig, ax1 = plt.subplots(figsize=figsize)
|
|
307
|
+
ax1.set_xlabel(x_label)
|
|
308
|
+
ax1.set_ylabel("Prefix Count", color=colors["Prefix Count"])
|
|
309
|
+
ax1.plot(x_values, prefix_counts, marker='o', color=colors["Prefix Count"], label="Prefix Count")
|
|
310
|
+
ax1.tick_params(axis='y', labelcolor=colors["Prefix Count"])
|
|
311
|
+
|
|
312
|
+
ax2 = ax1.twinx()
|
|
313
|
+
ax2.set_ylabel("Z-score (Other Indicators)")
|
|
314
|
+
ax2.plot(x_values, bf_z, marker='s', label='Branching Factor (z)', color=colors["Branching Factor"])
|
|
315
|
+
if js_z is not None:
|
|
316
|
+
ax2.plot(x_values, js_z, marker='^', label='JS Divergence (z)', color=colors["JS Divergence"])
|
|
317
|
+
|
|
318
|
+
lines1, labels1 = ax1.get_legend_handles_labels()
|
|
319
|
+
lines2, labels2 = ax2.get_legend_handles_labels()
|
|
320
|
+
ax2.legend(lines1 + lines2, labels1 + labels2, loc=legend_loc, fontsize=legend_fontsize)
|
|
321
|
+
|
|
322
|
+
ax1.set_title("System-Level Trajectory Indicators: Raw vs. Normalized")
|
|
323
|
+
fig.tight_layout()
|
|
324
|
+
|
|
325
|
+
save_and_show_results(save_as=save_as, dpi=dpi, show=show)
|
|
326
|
+
|
|
327
|
+
# --- Distribution plots if requested ---
|
|
328
|
+
if plot_distributions:
|
|
329
|
+
raw_data = {
|
|
330
|
+
"Prefix Count": prefix_counts,
|
|
331
|
+
"Branching Factor": branching_factors,
|
|
332
|
+
}
|
|
333
|
+
if js_divergence:
|
|
334
|
+
raw_data["JS Divergence"] = js_divergence
|
|
335
|
+
|
|
336
|
+
n = len(raw_data)
|
|
337
|
+
fig, axes = plt.subplots(1, n, figsize=(4 * n, 4))
|
|
338
|
+
if n == 1:
|
|
339
|
+
axes = [axes]
|
|
340
|
+
|
|
341
|
+
for ax, (label, values) in zip(axes, raw_data.items()):
|
|
342
|
+
sns.histplot(values, kde=True, ax=ax, color=colors.get(label, None))
|
|
343
|
+
ax.set_title(f"{label} Distribution")
|
|
344
|
+
ax.set_xlabel("Value")
|
|
345
|
+
ax.set_ylabel("Density")
|
|
346
|
+
|
|
347
|
+
fig.tight_layout()
|
|
348
|
+
suffix = "_distributions" if save_as else None
|
|
349
|
+
dist_path = save_as.replace(".png", f"{suffix}.png") if save_as else None
|
|
350
|
+
save_and_show_results(save_as=dist_path, dpi=dpi, show=show)
|
|
351
|
+
|
|
352
|
+
|
|
353
|
+
def plot_system_indicators_multiple_comparison(
|
|
354
|
+
groups_data: Dict[str, Dict[str, List[float]]],
|
|
355
|
+
group_names: Optional[List[str]] = None,
|
|
356
|
+
subplot_titles: Optional[List[str]] = None,
|
|
357
|
+
x_values: Optional[List] = None,
|
|
358
|
+
x_label: str = "Time (t)",
|
|
359
|
+
legend_loc: str = 'lower right',
|
|
360
|
+
legend_fontsize: int = 10,
|
|
361
|
+
save_as: Optional[str] = None,
|
|
362
|
+
figsize: Optional[tuple] = None,
|
|
363
|
+
dpi: int = 300,
|
|
364
|
+
custom_colors: Optional[Dict[str, str]] = None,
|
|
365
|
+
show: bool = True,
|
|
366
|
+
style: Optional[str] = None
|
|
367
|
+
) -> None:
|
|
368
|
+
"""
|
|
369
|
+
Plot system-level indicators comparison across multiple groups using dual y-axis design.
|
|
370
|
+
|
|
371
|
+
Parameters:
|
|
372
|
+
-----------
|
|
373
|
+
groups_data : Dict[str, Dict[str, List[float]]]
|
|
374
|
+
Dictionary with group names as keys and data dictionaries as values.
|
|
375
|
+
Each data dict should contain 'prefix_counts', 'branching_factors', and 'js_divergence'.
|
|
376
|
+
Example: {
|
|
377
|
+
"Group1": {
|
|
378
|
+
"prefix_counts": [10, 15, 20, ...],
|
|
379
|
+
"branching_factors": [1.2, 1.5, 1.8, ...],
|
|
380
|
+
"js_divergence": [0.1, 0.2, 0.15, ...]
|
|
381
|
+
},
|
|
382
|
+
"Group2": {...}
|
|
383
|
+
}
|
|
384
|
+
group_names : Optional[List[str]]
|
|
385
|
+
Custom names for groups. If None, uses keys from groups_data.
|
|
386
|
+
Used for default subplot titles if subplot_titles is not provided.
|
|
387
|
+
subplot_titles : Optional[List[str]]
|
|
388
|
+
Custom titles for each subplot. If None, uses default format:
|
|
389
|
+
"{group_name} - System-Level Trajectory Indicators: Raw vs. Normalized"
|
|
390
|
+
x_values : Optional[List]
|
|
391
|
+
Custom x-axis values. If None, uses 1, 2, 3, ...
|
|
392
|
+
x_label : str
|
|
393
|
+
Label for x-axis. Default: "Time (t)"
|
|
394
|
+
legend_loc : str
|
|
395
|
+
Legend location. Options: 'upper left', 'upper right', 'lower left',
|
|
396
|
+
'lower right', 'center', 'best', etc. Default: 'lower right'
|
|
397
|
+
legend_fontsize : int
|
|
398
|
+
Font size for legend text. Default: 10
|
|
399
|
+
save_as : Optional[str]
|
|
400
|
+
File path to save the plot (without extension)
|
|
401
|
+
figsize : Optional[tuple]
|
|
402
|
+
Figure size (width, height). If None, auto-calculated based on number of groups
|
|
403
|
+
dpi : int
|
|
404
|
+
DPI for saving. Default: 300
|
|
405
|
+
custom_colors : Optional[Dict[str, str]]
|
|
406
|
+
Custom colors for indicators. Default uses standard colors.
|
|
407
|
+
show : bool
|
|
408
|
+
Whether to show the plot. Default: True
|
|
409
|
+
style : Optional[str]
|
|
410
|
+
Style to apply. Seaborn styles ('whitegrid', 'darkgrid', 'white', 'dark', 'ticks')
|
|
411
|
+
or matplotlib styles. If None, uses default style. Default: None
|
|
412
|
+
|
|
413
|
+
Example:
|
|
414
|
+
--------
|
|
415
|
+
>>> data = {
|
|
416
|
+
... "India": {
|
|
417
|
+
... "prefix_counts": india_prefix_counts,
|
|
418
|
+
... "branching_factors": india_branching_factors,
|
|
419
|
+
... "js_divergence": india_js_divergence
|
|
420
|
+
... },
|
|
421
|
+
... "US": {
|
|
422
|
+
... "prefix_counts": us_prefix_counts,
|
|
423
|
+
... "branching_factors": us_branching_factors,
|
|
424
|
+
... "js_divergence": us_js_divergence
|
|
425
|
+
... }
|
|
426
|
+
... }
|
|
427
|
+
>>> plot_system_indicators_multiple_comparison(
|
|
428
|
+
... groups_data=data,
|
|
429
|
+
... x_label="Years",
|
|
430
|
+
... legend_loc='upper right',
|
|
431
|
+
... save_as="multi_country_comparison"
|
|
432
|
+
... )
|
|
433
|
+
|
|
434
|
+
>>> # With custom subplot titles
|
|
435
|
+
>>> plot_system_indicators_multiple_comparison(
|
|
436
|
+
... groups_data=data,
|
|
437
|
+
... subplot_titles=["印度发展轨迹", "美国发展轨迹"],
|
|
438
|
+
... x_label="年份",
|
|
439
|
+
... save_as="custom_titles_comparison"
|
|
440
|
+
... )
|
|
441
|
+
"""
|
|
442
|
+
|
|
443
|
+
# Validate input
|
|
444
|
+
if not groups_data:
|
|
445
|
+
raise ValueError("groups_data cannot be empty")
|
|
446
|
+
|
|
447
|
+
# Get group names
|
|
448
|
+
if group_names is None:
|
|
449
|
+
group_names = list(groups_data.keys())
|
|
450
|
+
|
|
451
|
+
if len(group_names) != len(groups_data):
|
|
452
|
+
raise ValueError("Length of group_names must match number of groups in groups_data")
|
|
453
|
+
|
|
454
|
+
# Validate subplot_titles
|
|
455
|
+
if subplot_titles is not None and len(subplot_titles) != len(groups_data):
|
|
456
|
+
raise ValueError("Length of subplot_titles must match number of groups in groups_data")
|
|
457
|
+
|
|
458
|
+
# Get first group to determine data length
|
|
459
|
+
first_group_data = list(groups_data.values())[0]
|
|
460
|
+
T = len(first_group_data['prefix_counts'])
|
|
461
|
+
|
|
462
|
+
# Set x values
|
|
463
|
+
if x_values is None:
|
|
464
|
+
x_values = list(range(1, T + 1))
|
|
465
|
+
|
|
466
|
+
if len(x_values) != T:
|
|
467
|
+
raise ValueError("Length of x_values must match data length")
|
|
468
|
+
|
|
469
|
+
# Color settings - Monet-inspired watercolor palette for divergence analysis
|
|
470
|
+
color_defaults = {
|
|
471
|
+
"Prefix Count": "#6BB6FF", # Soft sky blue (like Monet's water lilies)
|
|
472
|
+
"Branching Factor": "#FFB347", # Warm peach/coral (like sunset reflections)
|
|
473
|
+
"JS Divergence": "#F4A6CD", # Soft rose pink (divergence = different paths)
|
|
474
|
+
}
|
|
475
|
+
colors = {**color_defaults, **(custom_colors or {})}
|
|
476
|
+
|
|
477
|
+
# Calculate figure size
|
|
478
|
+
n_groups = len(groups_data)
|
|
479
|
+
if figsize is None:
|
|
480
|
+
figsize = (12, 4 * n_groups + 2) # Dynamic height based on number of groups
|
|
481
|
+
|
|
482
|
+
# Apply style if specified
|
|
483
|
+
if style is not None:
|
|
484
|
+
# Check if it's a seaborn style
|
|
485
|
+
seaborn_styles = ['whitegrid', 'darkgrid', 'white', 'dark', 'ticks']
|
|
486
|
+
if style in seaborn_styles:
|
|
487
|
+
sns.set_style(style)
|
|
488
|
+
else:
|
|
489
|
+
plt.style.use(style)
|
|
490
|
+
|
|
491
|
+
# Create subplots
|
|
492
|
+
fig, axes = plt.subplots(n_groups, 1, figsize=figsize)
|
|
493
|
+
|
|
494
|
+
# Handle single group case
|
|
495
|
+
if n_groups == 1:
|
|
496
|
+
axes = [axes]
|
|
497
|
+
|
|
498
|
+
# Plot each group
|
|
499
|
+
for i, (group_key, group_name) in enumerate(zip(groups_data.keys(), group_names)):
|
|
500
|
+
data = groups_data[group_key]
|
|
501
|
+
ax = axes[i]
|
|
502
|
+
|
|
503
|
+
# Validate data completeness
|
|
504
|
+
required_keys = ['prefix_counts', 'branching_factors', 'js_divergence']
|
|
505
|
+
for key in required_keys:
|
|
506
|
+
if key not in data:
|
|
507
|
+
raise ValueError(f"Missing '{key}' in data for group '{group_key}'")
|
|
508
|
+
|
|
509
|
+
# Normalize data (z-score)
|
|
510
|
+
bf_z = zscore(array(data['branching_factors']))
|
|
511
|
+
js_z = zscore(array(data['js_divergence']))
|
|
512
|
+
|
|
513
|
+
# Left y-axis: raw prefix counts
|
|
514
|
+
ax.set_ylabel("Prefix Count", color=colors["Prefix Count"])
|
|
515
|
+
ax.plot(x_values, data['prefix_counts'], marker='o',
|
|
516
|
+
color=colors["Prefix Count"], label="Prefix Count")
|
|
517
|
+
ax.tick_params(axis='y', labelcolor=colors["Prefix Count"])
|
|
518
|
+
|
|
519
|
+
# Right y-axis: normalized indicators
|
|
520
|
+
ax_twin = ax.twinx()
|
|
521
|
+
ax_twin.set_ylabel("Z-score (Other Indicators)")
|
|
522
|
+
ax_twin.plot(x_values, bf_z, marker='s',
|
|
523
|
+
label='Branching Factor (z)', color=colors["Branching Factor"])
|
|
524
|
+
ax_twin.plot(x_values, js_z, marker='^',
|
|
525
|
+
label='JS Divergence (z)', color=colors["JS Divergence"])
|
|
526
|
+
|
|
527
|
+
# Legend
|
|
528
|
+
lines1, labels1 = ax.get_legend_handles_labels()
|
|
529
|
+
lines2, labels2 = ax_twin.get_legend_handles_labels()
|
|
530
|
+
ax_twin.legend(lines1 + lines2, labels1 + labels2, loc=legend_loc, fontsize=legend_fontsize)
|
|
531
|
+
|
|
532
|
+
# Title and labels
|
|
533
|
+
if subplot_titles is not None:
|
|
534
|
+
title = subplot_titles[i]
|
|
535
|
+
else:
|
|
536
|
+
title = f"{group_name} - System-Level Trajectory Indicators: Raw vs. Normalized"
|
|
537
|
+
ax.set_title(title)
|
|
538
|
+
|
|
539
|
+
# Only set x-label for the bottom subplot
|
|
540
|
+
if i == n_groups - 1:
|
|
541
|
+
ax.set_xlabel(x_label)
|
|
542
|
+
|
|
543
|
+
plt.tight_layout()
|
|
544
|
+
save_and_show_results(save_as=save_as, dpi=dpi, show=show)
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
"""
|
|
2
|
+
@Author : Yuqi Liang 梁彧祺
|
|
3
|
+
@File : utils.py
|
|
4
|
+
@Time : 02/05/2025 12:26
|
|
5
|
+
@Desc :
|
|
6
|
+
"""
|
|
7
|
+
import pandas as pd
|
|
8
|
+
from typing import List, Tuple
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def extract_sequences(df: pd.DataFrame, time_cols: List[str]) -> List[List[str]]:
|
|
12
|
+
"""
|
|
13
|
+
Efficiently extracts sequences from specified time columns.
|
|
14
|
+
|
|
15
|
+
Parameters:
|
|
16
|
+
df (pd.DataFrame): Input DataFrame.
|
|
17
|
+
time_cols (List[str]): Columns representing the sequence over time.
|
|
18
|
+
|
|
19
|
+
Returns:
|
|
20
|
+
List[List[str]]: List of sequences (each sequence is a list of states).
|
|
21
|
+
"""
|
|
22
|
+
return df[time_cols].values.tolist()
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_state_space(sequences: List[List[str]]) -> List[str]:
|
|
26
|
+
"""
|
|
27
|
+
Efficiently extracts unique states from a list of sequences.
|
|
28
|
+
|
|
29
|
+
Parameters:
|
|
30
|
+
sequences (List[List[str]]): Sequence data.
|
|
31
|
+
|
|
32
|
+
Returns:
|
|
33
|
+
List[str]: Sorted list of unique states.
|
|
34
|
+
"""
|
|
35
|
+
seen = set()
|
|
36
|
+
for seq in sequences:
|
|
37
|
+
seen.update(seq)
|
|
38
|
+
return sorted(seen)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def convert_to_prefix_tree_data(df: pd.DataFrame, time_cols: List[str]) -> Tuple[List[List[str]], List[str]]:
|
|
42
|
+
"""
|
|
43
|
+
Wrapper to extract sequences and their state space from a DataFrame.
|
|
44
|
+
|
|
45
|
+
Parameters:
|
|
46
|
+
df (pd.DataFrame): Input DataFrame.
|
|
47
|
+
time_cols (List[str]): Sequence columns (e.g., ['C1', ..., 'C10'])
|
|
48
|
+
|
|
49
|
+
Returns:
|
|
50
|
+
Tuple[List[List[str]], List[str]]: sequences, unique states
|
|
51
|
+
"""
|
|
52
|
+
sequences = df[time_cols].values.tolist()
|
|
53
|
+
states = get_state_space(sequences)
|
|
54
|
+
return sequences, states
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
"""
|
|
2
|
+
@Author : Yuqi Liang 梁彧祺
|
|
3
|
+
@File : __init__.py
|
|
4
|
+
@Time : 2025-11-13 19:27
|
|
5
|
+
@Desc : Hidden Markov Models for sequence analysis in Sequenzo
|
|
6
|
+
|
|
7
|
+
This module provides Hidden Markov Model (HMM) functionality for sequence analysis,
|
|
8
|
+
inspired by the seqHMM R package but implemented natively in Python using hmmlearn.
|
|
9
|
+
|
|
10
|
+
Main features:
|
|
11
|
+
- Basic HMM: Standard hidden Markov models for sequence data
|
|
12
|
+
- Model building: Create HMM models from SequenceData
|
|
13
|
+
- Parameter estimation: Fit models using EM algorithm
|
|
14
|
+
- Prediction: Predict hidden states and compute posterior probabilities
|
|
15
|
+
- Visualization: Plot HMM models and results
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
from .hmm import HMM
|
|
19
|
+
from .build_hmm import build_hmm
|
|
20
|
+
from .fit_model import fit_model
|
|
21
|
+
from .predict import predict, posterior_probs
|
|
22
|
+
from .visualization import plot_hmm
|
|
23
|
+
|
|
24
|
+
# Mixture HMM
|
|
25
|
+
from .mhmm import MHMM
|
|
26
|
+
from .build_mhmm import build_mhmm
|
|
27
|
+
from .fit_mhmm import fit_mhmm
|
|
28
|
+
from .predict_mhmm import predict_mhmm, posterior_probs_mhmm
|
|
29
|
+
from .visualization import plot_mhmm
|
|
30
|
+
|
|
31
|
+
# Non-homogeneous HMM
|
|
32
|
+
from .nhmm import NHMM
|
|
33
|
+
from .build_nhmm import build_nhmm
|
|
34
|
+
from .fit_nhmm import fit_nhmm
|
|
35
|
+
|
|
36
|
+
# Model comparison and simulation
|
|
37
|
+
from .model_comparison import aic, bic, compare_models, compute_n_parameters, compute_n_observations
|
|
38
|
+
from .simulate import simulate_hmm, simulate_mhmm, simulate_nhmm
|
|
39
|
+
from .bootstrap import bootstrap_model
|
|
40
|
+
|
|
41
|
+
# Forward-backward for NHMM
|
|
42
|
+
from .forward_backward_nhmm import forward_backward_nhmm, log_likelihood_nhmm
|
|
43
|
+
|
|
44
|
+
# Gradients for NHMM
|
|
45
|
+
from .gradients_nhmm import compute_gradient_nhmm
|
|
46
|
+
|
|
47
|
+
# Formulas for NHMM and MHMM simulation
|
|
48
|
+
from .formulas import Formula, create_model_matrix, create_model_matrix_time_constant
|
|
49
|
+
|
|
50
|
+
# Advanced optimization
|
|
51
|
+
from .advanced_optimization import fit_model_advanced
|
|
52
|
+
|
|
53
|
+
__all__ = [
|
|
54
|
+
# Basic HMM
|
|
55
|
+
'HMM',
|
|
56
|
+
'build_hmm',
|
|
57
|
+
'fit_model',
|
|
58
|
+
'predict',
|
|
59
|
+
'posterior_probs',
|
|
60
|
+
'plot_hmm',
|
|
61
|
+
# Mixture HMM
|
|
62
|
+
'MHMM',
|
|
63
|
+
'build_mhmm',
|
|
64
|
+
'fit_mhmm',
|
|
65
|
+
'predict_mhmm',
|
|
66
|
+
'posterior_probs_mhmm',
|
|
67
|
+
'plot_mhmm',
|
|
68
|
+
# Non-homogeneous HMM
|
|
69
|
+
'NHMM',
|
|
70
|
+
'build_nhmm',
|
|
71
|
+
'fit_nhmm',
|
|
72
|
+
# Model comparison
|
|
73
|
+
'aic',
|
|
74
|
+
'bic',
|
|
75
|
+
'compare_models',
|
|
76
|
+
'compute_n_parameters',
|
|
77
|
+
'compute_n_observations',
|
|
78
|
+
# Simulation
|
|
79
|
+
'simulate_hmm',
|
|
80
|
+
'simulate_mhmm',
|
|
81
|
+
'simulate_nhmm',
|
|
82
|
+
# Bootstrap
|
|
83
|
+
'bootstrap_model',
|
|
84
|
+
# Forward-backward for NHMM
|
|
85
|
+
'forward_backward_nhmm',
|
|
86
|
+
'log_likelihood_nhmm',
|
|
87
|
+
# Gradients for NHMM
|
|
88
|
+
'compute_gradient_nhmm',
|
|
89
|
+
# Formulas for NHMM and MHMM simulation
|
|
90
|
+
'Formula',
|
|
91
|
+
'create_model_matrix',
|
|
92
|
+
'create_model_matrix_time_constant',
|
|
93
|
+
# Advanced optimization
|
|
94
|
+
'fit_model_advanced',
|
|
95
|
+
]
|