sequenzo 0.1.17__cp39-cp39-macosx_10_9_universal2.whl → 0.1.19__cp39-cp39-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (423) hide show
  1. sequenzo/__init__.py +64 -8
  2. sequenzo/big_data/clara/clara.py +1 -1
  3. sequenzo/big_data/clara/utils/get_weighted_diss.c +157 -157
  4. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so +0 -0
  5. sequenzo/clustering/KMedoids.py +39 -0
  6. sequenzo/clustering/hierarchical_clustering.py +304 -8
  7. sequenzo/define_sequence_data.py +44 -3
  8. sequenzo/dissimilarity_measures/c_code.cpython-39-darwin.so +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/src/DHDdistance.cpp +13 -37
  12. sequenzo/dissimilarity_measures/src/LCPdistance.cpp +13 -37
  13. sequenzo/dissimilarity_measures/src/OMdistance.cpp +12 -47
  14. sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +103 -67
  15. sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
  16. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +41 -16
  17. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +4 -0
  18. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +7 -0
  19. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +10 -0
  20. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +127 -43
  21. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +30 -2
  22. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
  23. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +14 -5
  24. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +111 -54
  25. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +131 -9
  26. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +11 -113
  27. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +39 -7
  28. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +336 -30
  29. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +9 -37
  30. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +58 -0
  31. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +1 -0
  32. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +35 -2
  33. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +3 -1
  34. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +17 -0
  35. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +13 -0
  36. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +18 -0
  37. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +13 -0
  38. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +8 -0
  39. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +363 -34
  40. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +7 -0
  41. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +13 -0
  42. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +41 -4
  43. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +252 -16
  44. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +9 -0
  45. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +12 -1
  46. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +7 -0
  47. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
  48. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +78 -1
  49. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +3 -1
  50. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +13 -2
  51. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +5 -0
  52. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +5 -1
  53. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +2 -0
  54. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +64 -1
  55. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +36 -0
  56. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +40 -31
  57. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +8 -0
  58. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
  59. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +6 -0
  60. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +157 -157
  61. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so +0 -0
  62. sequenzo/dissimilarity_measures/utils/seqconc.c +157 -157
  63. sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so +0 -0
  64. sequenzo/dissimilarity_measures/utils/seqdss.c +157 -157
  65. sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so +0 -0
  66. sequenzo/dissimilarity_measures/utils/seqdur.c +157 -157
  67. sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so +0 -0
  68. sequenzo/dissimilarity_measures/utils/seqlength.c +157 -157
  69. sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so +0 -0
  70. sequenzo/multidomain/cat.py +0 -53
  71. sequenzo/multidomain/idcd.py +0 -1
  72. sequenzo/openmp_setup.py +233 -0
  73. sequenzo/sequence_characteristics/__init__.py +4 -0
  74. sequenzo/sequence_characteristics/complexity_index.py +17 -57
  75. sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +177 -111
  76. sequenzo/sequence_characteristics/plot_characteristics.py +30 -11
  77. sequenzo/sequence_characteristics/simple_characteristics.py +1 -0
  78. sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +9 -3
  79. sequenzo/sequence_characteristics/turbulence.py +47 -67
  80. sequenzo/sequence_characteristics/variance_of_spell_durations.py +19 -9
  81. sequenzo/sequence_characteristics/within_sequence_entropy.py +5 -58
  82. sequenzo/visualization/plot_sequence_index.py +58 -35
  83. sequenzo/visualization/plot_state_distribution.py +57 -36
  84. sequenzo/visualization/plot_transition_matrix.py +21 -22
  85. sequenzo/with_event_history_analysis/__init__.py +35 -0
  86. sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
  87. sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
  88. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/METADATA +48 -14
  89. sequenzo-0.1.19.dist-info/RECORD +215 -0
  90. sequenzo/dissimilarity_measures/setup.py +0 -35
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  172. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  173. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  174. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  175. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  176. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  177. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  178. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  179. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  180. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  181. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  182. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  183. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  184. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  185. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  186. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  187. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  188. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  189. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  190. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  191. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  192. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  193. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  194. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  195. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  196. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  197. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  198. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  199. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  200. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  201. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  202. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  203. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  204. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  205. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  206. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  207. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  208. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  209. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  210. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  211. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  212. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  213. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  214. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  215. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  216. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  217. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  218. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  219. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  220. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  221. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  222. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  223. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  224. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  225. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  226. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  227. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  228. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  229. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  230. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  231. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  232. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  233. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  234. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  235. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  236. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  237. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  238. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  239. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  240. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  241. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  242. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  243. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  244. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  245. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  246. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  247. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  248. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  249. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  250. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  251. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  396. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  397. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  398. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  399. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  400. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  401. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  402. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  403. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  404. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  405. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  406. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  407. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  408. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  409. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  410. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  411. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  412. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  413. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  414. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  415. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  416. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  417. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  418. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  419. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  420. sequenzo-0.1.17.dist-info/RECORD +0 -537
  421. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  422. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  423. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,923 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5
- // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
-
12
- #ifndef EIGEN_SPARSE_LU_H
13
- #define EIGEN_SPARSE_LU_H
14
-
15
- namespace Eigen {
16
-
17
- template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18
- template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19
- template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
-
21
- template <bool Conjugate,class SparseLUType>
22
- class SparseLUTransposeView : public SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> >
23
- {
24
- protected:
25
- typedef SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> > APIBase;
26
- using APIBase::m_isInitialized;
27
- public:
28
- typedef typename SparseLUType::Scalar Scalar;
29
- typedef typename SparseLUType::StorageIndex StorageIndex;
30
- typedef typename SparseLUType::MatrixType MatrixType;
31
- typedef typename SparseLUType::OrderingType OrderingType;
32
-
33
- enum {
34
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
35
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
36
- };
37
-
38
- SparseLUTransposeView() : m_sparseLU(NULL) {}
39
- SparseLUTransposeView(const SparseLUTransposeView& view) {
40
- this->m_sparseLU = view.m_sparseLU;
41
- }
42
- void setIsInitialized(const bool isInitialized) {this->m_isInitialized = isInitialized;}
43
- void setSparseLU(SparseLUType* sparseLU) {m_sparseLU = sparseLU;}
44
- using APIBase::_solve_impl;
45
- template<typename Rhs, typename Dest>
46
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
47
- {
48
- Dest& X(X_base.derived());
49
- eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first");
50
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
51
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
52
-
53
-
54
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
55
- for(Index j = 0; j < B.cols(); ++j){
56
- X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j);
57
- }
58
- //Forward substitution with transposed or adjoint of U
59
- m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X);
60
-
61
- //Backward substitution with transposed or adjoint of L
62
- m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X);
63
-
64
- // Permute back the solution
65
- for (Index j = 0; j < B.cols(); ++j)
66
- X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j);
67
- return true;
68
- }
69
- inline Index rows() const { return m_sparseLU->rows(); }
70
- inline Index cols() const { return m_sparseLU->cols(); }
71
-
72
- private:
73
- SparseLUType *m_sparseLU;
74
- SparseLUTransposeView& operator=(const SparseLUTransposeView&);
75
- };
76
-
77
-
78
- /** \ingroup SparseLU_Module
79
- * \class SparseLU
80
- *
81
- * \brief Sparse supernodal LU factorization for general matrices
82
- *
83
- * This class implements the supernodal LU factorization for general matrices.
84
- * It uses the main techniques from the sequential SuperLU package
85
- * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
86
- * and complex arithmetic with single and double precision, depending on the
87
- * scalar type of your input matrix.
88
- * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
89
- * It benefits directly from the built-in high-performant Eigen BLAS routines.
90
- * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
91
- * enable a better optimization from the compiler. For best performance,
92
- * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
93
- *
94
- * An important parameter of this class is the ordering method. It is used to reorder the columns
95
- * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
96
- * numerical factorization. The cheapest method available is COLAMD.
97
- * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
98
- * built-in and external ordering methods.
99
- *
100
- * Simple example with key steps
101
- * \code
102
- * VectorXd x(n), b(n);
103
- * SparseMatrix<double> A;
104
- * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver;
105
- * // fill A and b;
106
- * // Compute the ordering permutation vector from the structural pattern of A
107
- * solver.analyzePattern(A);
108
- * // Compute the numerical factorization
109
- * solver.factorize(A);
110
- * //Use the factors to solve the linear system
111
- * x = solver.solve(b);
112
- * \endcode
113
- *
114
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
115
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
116
- *
117
- * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
118
- * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
119
- * If this is the case for your matrices, you can try the basic scaling method at
120
- * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
121
- *
122
- * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
123
- * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
124
- *
125
- * \implsparsesolverconcept
126
- *
127
- * \sa \ref TutorialSparseSolverConcept
128
- * \sa \ref OrderingMethods_Module
129
- */
130
- template <typename _MatrixType, typename _OrderingType>
131
- class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
132
- {
133
- protected:
134
- typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
135
- using APIBase::m_isInitialized;
136
- public:
137
- using APIBase::_solve_impl;
138
-
139
- typedef _MatrixType MatrixType;
140
- typedef _OrderingType OrderingType;
141
- typedef typename MatrixType::Scalar Scalar;
142
- typedef typename MatrixType::RealScalar RealScalar;
143
- typedef typename MatrixType::StorageIndex StorageIndex;
144
- typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
145
- typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
146
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
147
- typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
148
- typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
149
- typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
150
-
151
- enum {
152
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
153
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
154
- };
155
-
156
- public:
157
-
158
- SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
159
- {
160
- initperfvalues();
161
- }
162
- explicit SparseLU(const MatrixType& matrix)
163
- : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
164
- {
165
- initperfvalues();
166
- compute(matrix);
167
- }
168
-
169
- ~SparseLU()
170
- {
171
- // Free all explicit dynamic pointers
172
- }
173
-
174
- void analyzePattern (const MatrixType& matrix);
175
- void factorize (const MatrixType& matrix);
176
- void simplicialfactorize(const MatrixType& matrix);
177
-
178
- /**
179
- * Compute the symbolic and numeric factorization of the input sparse matrix.
180
- * The input matrix should be in column-major storage.
181
- */
182
- void compute (const MatrixType& matrix)
183
- {
184
- // Analyze
185
- analyzePattern(matrix);
186
- //Factorize
187
- factorize(matrix);
188
- }
189
-
190
- /** \returns an expression of the transposed of the factored matrix.
191
- *
192
- * A typical usage is to solve for the transposed problem A^T x = b:
193
- * \code
194
- * solver.compute(A);
195
- * x = solver.transpose().solve(b);
196
- * \endcode
197
- *
198
- * \sa adjoint(), solve()
199
- */
200
- const SparseLUTransposeView<false,SparseLU<_MatrixType,_OrderingType> > transpose()
201
- {
202
- SparseLUTransposeView<false, SparseLU<_MatrixType,_OrderingType> > transposeView;
203
- transposeView.setSparseLU(this);
204
- transposeView.setIsInitialized(this->m_isInitialized);
205
- return transposeView;
206
- }
207
-
208
-
209
- /** \returns an expression of the adjoint of the factored matrix
210
- *
211
- * A typical usage is to solve for the adjoint problem A' x = b:
212
- * \code
213
- * solver.compute(A);
214
- * x = solver.adjoint().solve(b);
215
- * \endcode
216
- *
217
- * For real scalar types, this function is equivalent to transpose().
218
- *
219
- * \sa transpose(), solve()
220
- */
221
- const SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjoint()
222
- {
223
- SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjointView;
224
- adjointView.setSparseLU(this);
225
- adjointView.setIsInitialized(this->m_isInitialized);
226
- return adjointView;
227
- }
228
-
229
- inline Index rows() const { return m_mat.rows(); }
230
- inline Index cols() const { return m_mat.cols(); }
231
- /** Indicate that the pattern of the input matrix is symmetric */
232
- void isSymmetric(bool sym)
233
- {
234
- m_symmetricmode = sym;
235
- }
236
-
237
- /** \returns an expression of the matrix L, internally stored as supernodes
238
- * The only operation available with this expression is the triangular solve
239
- * \code
240
- * y = b; matrixL().solveInPlace(y);
241
- * \endcode
242
- */
243
- SparseLUMatrixLReturnType<SCMatrix> matrixL() const
244
- {
245
- return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
246
- }
247
- /** \returns an expression of the matrix U,
248
- * The only operation available with this expression is the triangular solve
249
- * \code
250
- * y = b; matrixU().solveInPlace(y);
251
- * \endcode
252
- */
253
- SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
254
- {
255
- return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
256
- }
257
-
258
- /**
259
- * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
260
- * \sa colsPermutation()
261
- */
262
- inline const PermutationType& rowsPermutation() const
263
- {
264
- return m_perm_r;
265
- }
266
- /**
267
- * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
268
- * \sa rowsPermutation()
269
- */
270
- inline const PermutationType& colsPermutation() const
271
- {
272
- return m_perm_c;
273
- }
274
- /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
275
- void setPivotThreshold(const RealScalar& thresh)
276
- {
277
- m_diagpivotthresh = thresh;
278
- }
279
-
280
- #ifdef EIGEN_PARSED_BY_DOXYGEN
281
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
282
- *
283
- * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
284
- *
285
- * \sa compute()
286
- */
287
- template<typename Rhs>
288
- inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
289
- #endif // EIGEN_PARSED_BY_DOXYGEN
290
-
291
- /** \brief Reports whether previous computation was successful.
292
- *
293
- * \returns \c Success if computation was successful,
294
- * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
295
- * \c InvalidInput if the input matrix is invalid
296
- *
297
- * \sa iparm()
298
- */
299
- ComputationInfo info() const
300
- {
301
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
302
- return m_info;
303
- }
304
-
305
- /**
306
- * \returns A string describing the type of error
307
- */
308
- std::string lastErrorMessage() const
309
- {
310
- return m_lastError;
311
- }
312
-
313
- template<typename Rhs, typename Dest>
314
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
315
- {
316
- Dest& X(X_base.derived());
317
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
318
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
319
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
320
-
321
- // Permute the right hand side to form X = Pr*B
322
- // on return, X is overwritten by the computed solution
323
- X.resize(B.rows(),B.cols());
324
-
325
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
326
- for(Index j = 0; j < B.cols(); ++j)
327
- X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
328
-
329
- //Forward substitution with L
330
- this->matrixL().solveInPlace(X);
331
- this->matrixU().solveInPlace(X);
332
-
333
- // Permute back the solution
334
- for (Index j = 0; j < B.cols(); ++j)
335
- X.col(j) = colsPermutation().inverse() * X.col(j);
336
-
337
- return true;
338
- }
339
-
340
- /**
341
- * \returns the absolute value of the determinant of the matrix of which
342
- * *this is the QR decomposition.
343
- *
344
- * \warning a determinant can be very big or small, so for matrices
345
- * of large enough dimension, there is a risk of overflow/underflow.
346
- * One way to work around that is to use logAbsDeterminant() instead.
347
- *
348
- * \sa logAbsDeterminant(), signDeterminant()
349
- */
350
- Scalar absDeterminant()
351
- {
352
- using std::abs;
353
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
354
- // Initialize with the determinant of the row matrix
355
- Scalar det = Scalar(1.);
356
- // Note that the diagonal blocks of U are stored in supernodes,
357
- // which are available in the L part :)
358
- for (Index j = 0; j < this->cols(); ++j)
359
- {
360
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
361
- {
362
- if(it.index() == j)
363
- {
364
- det *= abs(it.value());
365
- break;
366
- }
367
- }
368
- }
369
- return det;
370
- }
371
-
372
- /** \returns the natural log of the absolute value of the determinant of the matrix
373
- * of which **this is the QR decomposition
374
- *
375
- * \note This method is useful to work around the risk of overflow/underflow that's
376
- * inherent to the determinant computation.
377
- *
378
- * \sa absDeterminant(), signDeterminant()
379
- */
380
- Scalar logAbsDeterminant() const
381
- {
382
- using std::log;
383
- using std::abs;
384
-
385
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
386
- Scalar det = Scalar(0.);
387
- for (Index j = 0; j < this->cols(); ++j)
388
- {
389
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
390
- {
391
- if(it.row() < j) continue;
392
- if(it.row() == j)
393
- {
394
- det += log(abs(it.value()));
395
- break;
396
- }
397
- }
398
- }
399
- return det;
400
- }
401
-
402
- /** \returns A number representing the sign of the determinant
403
- *
404
- * \sa absDeterminant(), logAbsDeterminant()
405
- */
406
- Scalar signDeterminant()
407
- {
408
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
409
- // Initialize with the determinant of the row matrix
410
- Index det = 1;
411
- // Note that the diagonal blocks of U are stored in supernodes,
412
- // which are available in the L part :)
413
- for (Index j = 0; j < this->cols(); ++j)
414
- {
415
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
416
- {
417
- if(it.index() == j)
418
- {
419
- if(it.value()<0)
420
- det = -det;
421
- else if(it.value()==0)
422
- return 0;
423
- break;
424
- }
425
- }
426
- }
427
- return det * m_detPermR * m_detPermC;
428
- }
429
-
430
- /** \returns The determinant of the matrix.
431
- *
432
- * \sa absDeterminant(), logAbsDeterminant()
433
- */
434
- Scalar determinant()
435
- {
436
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
437
- // Initialize with the determinant of the row matrix
438
- Scalar det = Scalar(1.);
439
- // Note that the diagonal blocks of U are stored in supernodes,
440
- // which are available in the L part :)
441
- for (Index j = 0; j < this->cols(); ++j)
442
- {
443
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
444
- {
445
- if(it.index() == j)
446
- {
447
- det *= it.value();
448
- break;
449
- }
450
- }
451
- }
452
- return (m_detPermR * m_detPermC) > 0 ? det : -det;
453
- }
454
-
455
- Index nnzL() const { return m_nnzL; };
456
- Index nnzU() const { return m_nnzU; };
457
-
458
- protected:
459
- // Functions
460
- void initperfvalues()
461
- {
462
- m_perfv.panel_size = 16;
463
- m_perfv.relax = 1;
464
- m_perfv.maxsuper = 128;
465
- m_perfv.rowblk = 16;
466
- m_perfv.colblk = 8;
467
- m_perfv.fillfactor = 20;
468
- }
469
-
470
- // Variables
471
- mutable ComputationInfo m_info;
472
- bool m_factorizationIsOk;
473
- bool m_analysisIsOk;
474
- std::string m_lastError;
475
- NCMatrix m_mat; // The input (permuted ) matrix
476
- SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
477
- MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
478
- PermutationType m_perm_c; // Column permutation
479
- PermutationType m_perm_r ; // Row permutation
480
- IndexVector m_etree; // Column elimination tree
481
-
482
- typename Base::GlobalLU_t m_glu;
483
-
484
- // SparseLU options
485
- bool m_symmetricmode;
486
- // values for performance
487
- internal::perfvalues m_perfv;
488
- RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
489
- Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
490
- Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
491
- private:
492
- // Disable copy constructor
493
- SparseLU (const SparseLU& );
494
- }; // End class SparseLU
495
-
496
-
497
-
498
- // Functions needed by the anaysis phase
499
- /**
500
- * Compute the column permutation to minimize the fill-in
501
- *
502
- * - Apply this permutation to the input matrix -
503
- *
504
- * - Compute the column elimination tree on the permuted matrix
505
- *
506
- * - Postorder the elimination tree and the column permutation
507
- *
508
- */
509
- template <typename MatrixType, typename OrderingType>
510
- void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
511
- {
512
-
513
- //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
514
-
515
- // Firstly, copy the whole input matrix.
516
- m_mat = mat;
517
-
518
- // Compute fill-in ordering
519
- OrderingType ord;
520
- ord(m_mat,m_perm_c);
521
-
522
- // Apply the permutation to the column of the input matrix
523
- if (m_perm_c.size())
524
- {
525
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
526
- // Then, permute only the column pointers
527
- ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
528
-
529
- // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
530
- if(!mat.isCompressed())
531
- IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
532
-
533
- // Apply the permutation and compute the nnz per column.
534
- for (Index i = 0; i < mat.cols(); i++)
535
- {
536
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
537
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
538
- }
539
- }
540
-
541
- // Compute the column elimination tree of the permuted matrix
542
- IndexVector firstRowElt;
543
- internal::coletree(m_mat, m_etree,firstRowElt);
544
-
545
- // In symmetric mode, do not do postorder here
546
- if (!m_symmetricmode) {
547
- IndexVector post, iwork;
548
- // Post order etree
549
- internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
550
-
551
-
552
- // Renumber etree in postorder
553
- Index m = m_mat.cols();
554
- iwork.resize(m+1);
555
- for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
556
- m_etree = iwork;
557
-
558
- // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
559
- PermutationType post_perm(m);
560
- for (Index i = 0; i < m; i++)
561
- post_perm.indices()(i) = post(i);
562
-
563
- // Combine the two permutations : postorder the permutation for future use
564
- if(m_perm_c.size()) {
565
- m_perm_c = post_perm * m_perm_c;
566
- }
567
-
568
- } // end postordering
569
-
570
- m_analysisIsOk = true;
571
- }
572
-
573
- // Functions needed by the numerical factorization phase
574
-
575
-
576
- /**
577
- * - Numerical factorization
578
- * - Interleaved with the symbolic factorization
579
- * On exit, info is
580
- *
581
- * = 0: successful factorization
582
- *
583
- * > 0: if info = i, and i is
584
- *
585
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
586
- * been completed, but the factor U is exactly singular,
587
- * and division by zero will occur if it is used to solve a
588
- * system of equations.
589
- *
590
- * > A->ncol: number of bytes allocated when memory allocation
591
- * failure occurred, plus A->ncol. If lwork = -1, it is
592
- * the estimated amount of space needed, plus A->ncol.
593
- */
594
- template <typename MatrixType, typename OrderingType>
595
- void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
596
- {
597
- using internal::emptyIdxLU;
598
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
599
- eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
600
-
601
- m_isInitialized = true;
602
-
603
- // Apply the column permutation computed in analyzepattern()
604
- // m_mat = matrix * m_perm_c.inverse();
605
- m_mat = matrix;
606
- if (m_perm_c.size())
607
- {
608
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
609
- //Then, permute only the column pointers
610
- const StorageIndex * outerIndexPtr;
611
- if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
612
- else
613
- {
614
- StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
615
- for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
616
- outerIndexPtr = outerIndexPtr_t;
617
- }
618
- for (Index i = 0; i < matrix.cols(); i++)
619
- {
620
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
621
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
622
- }
623
- if(!matrix.isCompressed()) delete[] outerIndexPtr;
624
- }
625
- else
626
- { //FIXME This should not be needed if the empty permutation is handled transparently
627
- m_perm_c.resize(matrix.cols());
628
- for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
629
- }
630
-
631
- Index m = m_mat.rows();
632
- Index n = m_mat.cols();
633
- Index nnz = m_mat.nonZeros();
634
- Index maxpanel = m_perfv.panel_size * m;
635
- // Allocate working storage common to the factor routines
636
- Index lwork = 0;
637
- Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
638
- if (info)
639
- {
640
- m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
641
- m_factorizationIsOk = false;
642
- return ;
643
- }
644
-
645
- // Set up pointers for integer working arrays
646
- IndexVector segrep(m); segrep.setZero();
647
- IndexVector parent(m); parent.setZero();
648
- IndexVector xplore(m); xplore.setZero();
649
- IndexVector repfnz(maxpanel);
650
- IndexVector panel_lsub(maxpanel);
651
- IndexVector xprune(n); xprune.setZero();
652
- IndexVector marker(m*internal::LUNoMarker); marker.setZero();
653
-
654
- repfnz.setConstant(-1);
655
- panel_lsub.setConstant(-1);
656
-
657
- // Set up pointers for scalar working arrays
658
- ScalarVector dense;
659
- dense.setZero(maxpanel);
660
- ScalarVector tempv;
661
- tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
662
-
663
- // Compute the inverse of perm_c
664
- PermutationType iperm_c(m_perm_c.inverse());
665
-
666
- // Identify initial relaxed snodes
667
- IndexVector relax_end(n);
668
- if ( m_symmetricmode == true )
669
- Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
670
- else
671
- Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
672
-
673
-
674
- m_perm_r.resize(m);
675
- m_perm_r.indices().setConstant(-1);
676
- marker.setConstant(-1);
677
- m_detPermR = 1; // Record the determinant of the row permutation
678
-
679
- m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
680
- m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
681
-
682
- // Work on one 'panel' at a time. A panel is one of the following :
683
- // (a) a relaxed supernode at the bottom of the etree, or
684
- // (b) panel_size contiguous columns, <panel_size> defined by the user
685
- Index jcol;
686
- Index pivrow; // Pivotal row number in the original row matrix
687
- Index nseg1; // Number of segments in U-column above panel row jcol
688
- Index nseg; // Number of segments in each U-column
689
- Index irep;
690
- Index i, k, jj;
691
- for (jcol = 0; jcol < n; )
692
- {
693
- // Adjust panel size so that a panel won't overlap with the next relaxed snode.
694
- Index panel_size = m_perfv.panel_size; // upper bound on panel width
695
- for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
696
- {
697
- if (relax_end(k) != emptyIdxLU)
698
- {
699
- panel_size = k - jcol;
700
- break;
701
- }
702
- }
703
- if (k == n)
704
- panel_size = n - jcol;
705
-
706
- // Symbolic outer factorization on a panel of columns
707
- Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
708
-
709
- // Numeric sup-panel updates in topological order
710
- Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
711
-
712
- // Sparse LU within the panel, and below the panel diagonal
713
- for ( jj = jcol; jj< jcol + panel_size; jj++)
714
- {
715
- k = (jj - jcol) * m; // Column index for w-wide arrays
716
-
717
- nseg = nseg1; // begin after all the panel segments
718
- //Depth-first-search for the current column
719
- VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
720
- VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
721
- info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
722
- if ( info )
723
- {
724
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
725
- m_info = NumericalIssue;
726
- m_factorizationIsOk = false;
727
- return;
728
- }
729
- // Numeric updates to this column
730
- VectorBlock<ScalarVector> dense_k(dense, k, m);
731
- VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
732
- info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
733
- if ( info )
734
- {
735
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
736
- m_info = NumericalIssue;
737
- m_factorizationIsOk = false;
738
- return;
739
- }
740
-
741
- // Copy the U-segments to ucol(*)
742
- info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
743
- if ( info )
744
- {
745
- m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
746
- m_info = NumericalIssue;
747
- m_factorizationIsOk = false;
748
- return;
749
- }
750
-
751
- // Form the L-segment
752
- info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
753
- if ( info )
754
- {
755
- m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
756
- std::ostringstream returnInfo;
757
- returnInfo << info;
758
- m_lastError += returnInfo.str();
759
- m_info = NumericalIssue;
760
- m_factorizationIsOk = false;
761
- return;
762
- }
763
-
764
- // Update the determinant of the row permutation matrix
765
- // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
766
- if (pivrow != jj) m_detPermR = -m_detPermR;
767
-
768
- // Prune columns (0:jj-1) using column jj
769
- Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
770
-
771
- // Reset repfnz for this column
772
- for (i = 0; i < nseg; i++)
773
- {
774
- irep = segrep(i);
775
- repfnz_k(irep) = emptyIdxLU;
776
- }
777
- } // end SparseLU within the panel
778
- jcol += panel_size; // Move to the next panel
779
- } // end for -- end elimination
780
-
781
- m_detPermR = m_perm_r.determinant();
782
- m_detPermC = m_perm_c.determinant();
783
-
784
- // Count the number of nonzeros in factors
785
- Base::countnz(n, m_nnzL, m_nnzU, m_glu);
786
- // Apply permutation to the L subscripts
787
- Base::fixupL(n, m_perm_r.indices(), m_glu);
788
-
789
- // Create supernode matrix L
790
- m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
791
- // Create the column major upper sparse matrix U;
792
- new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
793
-
794
- m_info = Success;
795
- m_factorizationIsOk = true;
796
- }
797
-
798
- template<typename MappedSupernodalType>
799
- struct SparseLUMatrixLReturnType : internal::no_assignment_operator
800
- {
801
- typedef typename MappedSupernodalType::Scalar Scalar;
802
- explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
803
- { }
804
- Index rows() const { return m_mapL.rows(); }
805
- Index cols() const { return m_mapL.cols(); }
806
- template<typename Dest>
807
- void solveInPlace( MatrixBase<Dest> &X) const
808
- {
809
- m_mapL.solveInPlace(X);
810
- }
811
- template<bool Conjugate, typename Dest>
812
- void solveTransposedInPlace( MatrixBase<Dest> &X) const
813
- {
814
- m_mapL.template solveTransposedInPlace<Conjugate>(X);
815
- }
816
-
817
- const MappedSupernodalType& m_mapL;
818
- };
819
-
820
- template<typename MatrixLType, typename MatrixUType>
821
- struct SparseLUMatrixUReturnType : internal::no_assignment_operator
822
- {
823
- typedef typename MatrixLType::Scalar Scalar;
824
- SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
825
- : m_mapL(mapL),m_mapU(mapU)
826
- { }
827
- Index rows() const { return m_mapL.rows(); }
828
- Index cols() const { return m_mapL.cols(); }
829
-
830
- template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
831
- {
832
- Index nrhs = X.cols();
833
- Index n = X.rows();
834
- // Backward solve with U
835
- for (Index k = m_mapL.nsuper(); k >= 0; k--)
836
- {
837
- Index fsupc = m_mapL.supToCol()[k];
838
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
839
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
840
- Index luptr = m_mapL.colIndexPtr()[fsupc];
841
-
842
- if (nsupc == 1)
843
- {
844
- for (Index j = 0; j < nrhs; j++)
845
- {
846
- X(fsupc, j) /= m_mapL.valuePtr()[luptr];
847
- }
848
- }
849
- else
850
- {
851
- // FIXME: the following lines should use Block expressions and not Map!
852
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
853
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X.coeffRef(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
854
- U = A.template triangularView<Upper>().solve(U);
855
- }
856
-
857
- for (Index j = 0; j < nrhs; ++j)
858
- {
859
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
860
- {
861
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
862
- for ( ; it; ++it)
863
- {
864
- Index irow = it.index();
865
- X(irow, j) -= X(jcol, j) * it.value();
866
- }
867
- }
868
- }
869
- } // End For U-solve
870
- }
871
-
872
- template<bool Conjugate, typename Dest> void solveTransposedInPlace(MatrixBase<Dest> &X) const
873
- {
874
- using numext::conj;
875
- Index nrhs = X.cols();
876
- Index n = X.rows();
877
- // Forward solve with U
878
- for (Index k = 0; k <= m_mapL.nsuper(); k++)
879
- {
880
- Index fsupc = m_mapL.supToCol()[k];
881
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
882
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
883
- Index luptr = m_mapL.colIndexPtr()[fsupc];
884
-
885
- for (Index j = 0; j < nrhs; ++j)
886
- {
887
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
888
- {
889
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
890
- for ( ; it; ++it)
891
- {
892
- Index irow = it.index();
893
- X(jcol, j) -= X(irow, j) * (Conjugate? conj(it.value()): it.value());
894
- }
895
- }
896
- }
897
- if (nsupc == 1)
898
- {
899
- for (Index j = 0; j < nrhs; j++)
900
- {
901
- X(fsupc, j) /= (Conjugate? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]);
902
- }
903
- }
904
- else
905
- {
906
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
907
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
908
- if(Conjugate)
909
- U = A.adjoint().template triangularView<Lower>().solve(U);
910
- else
911
- U = A.transpose().template triangularView<Lower>().solve(U);
912
- }
913
- }// End For U-solve
914
- }
915
-
916
-
917
- const MatrixLType& m_mapL;
918
- const MatrixUType& m_mapU;
919
- };
920
-
921
- } // End namespace Eigen
922
-
923
- #endif