sequenzo 0.1.17__cp311-cp311-win_amd64.whl → 0.1.19__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (475) hide show
  1. sequenzo/__init__.py +64 -8
  2. sequenzo/big_data/clara/clara.py +1 -1
  3. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  4. sequenzo/big_data/clara/utils/get_weighted_diss.cp311-win_amd64.pyd +0 -0
  5. sequenzo/clustering/KMedoids.py +39 -0
  6. sequenzo/clustering/clustering_c_code.cp311-win_amd64.pyd +0 -0
  7. sequenzo/clustering/hierarchical_clustering.py +304 -8
  8. sequenzo/define_sequence_data.py +44 -3
  9. sequenzo/dissimilarity_measures/c_code.cp311-win_amd64.pyd +0 -0
  10. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  11. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  12. sequenzo/dissimilarity_measures/src/DHDdistance.cpp +13 -37
  13. sequenzo/dissimilarity_measures/src/LCPdistance.cpp +13 -37
  14. sequenzo/dissimilarity_measures/src/OMdistance.cpp +12 -47
  15. sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +103 -67
  16. sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
  17. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +41 -16
  18. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +4 -0
  19. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +7 -0
  20. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +10 -0
  21. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +127 -43
  22. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +30 -2
  23. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
  24. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +14 -5
  25. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +111 -54
  26. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +131 -9
  27. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +11 -113
  28. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +39 -7
  29. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +336 -30
  30. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +9 -37
  31. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +58 -0
  32. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +1 -0
  33. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +35 -2
  34. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +3 -1
  35. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +17 -0
  36. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +13 -0
  37. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +18 -0
  38. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +13 -0
  39. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +8 -0
  40. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +363 -34
  41. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +7 -0
  42. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +13 -0
  43. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +41 -4
  44. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +252 -16
  45. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +9 -0
  46. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +12 -1
  47. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +7 -0
  48. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
  49. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +78 -1
  50. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +3 -1
  51. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +13 -2
  52. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +5 -0
  53. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +5 -1
  54. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +2 -0
  55. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +64 -1
  56. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +36 -0
  57. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +40 -31
  58. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +8 -0
  59. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
  60. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +6 -0
  61. sequenzo/dissimilarity_measures/src/xsimd/test/test_basic_math.cpp +6 -0
  62. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch.cpp +54 -2
  63. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_bool.cpp +8 -0
  64. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_cast.cpp +11 -4
  65. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_complex.cpp +18 -0
  66. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_int.cpp +8 -14
  67. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_manip.cpp +216 -173
  68. sequenzo/dissimilarity_measures/src/xsimd/test/test_load_store.cpp +6 -0
  69. sequenzo/dissimilarity_measures/src/xsimd/test/test_memory.cpp +1 -1
  70. sequenzo/dissimilarity_measures/src/xsimd/test/test_power.cpp +7 -4
  71. sequenzo/dissimilarity_measures/src/xsimd/test/test_select.cpp +6 -2
  72. sequenzo/dissimilarity_measures/src/xsimd/test/test_shuffle.cpp +32 -18
  73. sequenzo/dissimilarity_measures/src/xsimd/test/test_utils.hpp +21 -24
  74. sequenzo/dissimilarity_measures/src/xsimd/test/test_xsimd_api.cpp +69 -9
  75. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  76. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp311-win_amd64.pyd +0 -0
  77. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  78. sequenzo/dissimilarity_measures/utils/seqconc.cp311-win_amd64.pyd +0 -0
  79. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  80. sequenzo/dissimilarity_measures/utils/seqdss.cp311-win_amd64.pyd +0 -0
  81. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  82. sequenzo/dissimilarity_measures/utils/seqdur.cp311-win_amd64.pyd +0 -0
  83. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  84. sequenzo/dissimilarity_measures/utils/seqlength.cp311-win_amd64.pyd +0 -0
  85. sequenzo/multidomain/cat.py +0 -53
  86. sequenzo/multidomain/idcd.py +0 -1
  87. sequenzo/openmp_setup.py +233 -0
  88. sequenzo/sequence_characteristics/__init__.py +4 -0
  89. sequenzo/sequence_characteristics/complexity_index.py +17 -57
  90. sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +177 -111
  91. sequenzo/sequence_characteristics/plot_characteristics.py +30 -11
  92. sequenzo/sequence_characteristics/simple_characteristics.py +1 -0
  93. sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +9 -3
  94. sequenzo/sequence_characteristics/turbulence.py +47 -67
  95. sequenzo/sequence_characteristics/variance_of_spell_durations.py +19 -9
  96. sequenzo/sequence_characteristics/within_sequence_entropy.py +5 -58
  97. sequenzo/visualization/plot_sequence_index.py +58 -35
  98. sequenzo/visualization/plot_state_distribution.py +57 -36
  99. sequenzo/visualization/plot_transition_matrix.py +21 -22
  100. sequenzo/with_event_history_analysis/__init__.py +35 -0
  101. sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
  102. sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
  103. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/METADATA +48 -14
  104. sequenzo-0.1.19.dist-info/RECORD +272 -0
  105. sequenzo/dissimilarity_measures/setup.py +0 -35
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  172. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  173. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  174. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  175. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  176. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  177. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  178. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  179. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  180. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  181. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  182. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  183. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  184. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  185. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  186. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  187. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  188. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  189. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  190. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  191. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  192. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  193. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  194. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  195. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  196. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  197. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  198. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  199. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  200. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  201. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  202. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  203. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  204. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  205. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  206. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  207. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  208. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  209. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  210. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  211. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  212. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  213. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  214. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  215. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  216. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  217. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  218. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  219. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  220. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  221. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  222. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  223. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  224. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  225. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  226. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  227. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  228. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  229. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  230. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  231. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  232. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  233. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  234. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  235. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  236. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  237. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  238. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  239. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  240. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  241. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  242. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  243. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  244. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  245. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  246. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  247. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  248. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  249. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  250. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  251. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  252. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  253. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  254. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  255. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  256. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  257. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  258. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  259. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  260. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  261. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  262. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  263. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  264. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  265. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  266. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  267. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  268. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  269. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  270. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  271. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  272. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  273. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  274. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  275. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  276. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  277. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  278. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  279. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  280. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  281. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  282. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  283. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  284. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  285. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  286. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  287. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  288. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  289. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  290. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  291. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  292. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  293. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  294. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  295. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  296. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  297. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  298. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  299. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  300. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  301. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  302. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  396. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  397. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  398. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  399. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  400. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  401. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  402. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  403. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  404. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  405. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  406. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  407. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  408. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  409. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  410. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  411. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  412. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  413. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  414. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  415. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  416. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  417. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  418. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  419. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  420. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  421. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  422. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  423. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  424. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  425. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  426. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  427. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  428. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  429. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  430. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  431. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  432. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  433. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  434. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  435. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  436. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  437. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  438. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  439. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  440. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  441. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  442. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  443. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  444. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  445. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  446. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  447. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  448. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  449. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  450. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  451. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  452. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  453. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  454. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  455. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  456. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  457. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  458. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  459. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  460. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  461. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  462. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  463. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  464. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  465. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  466. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  467. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  468. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  469. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  470. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  471. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  472. sequenzo-0.1.17.dist-info/RECORD +0 -631
  473. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  474. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  475. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,904 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
- // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
- #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12
- #define EIGEN_SELFADJOINTEIGENSOLVER_H
13
-
14
- #include "./Tridiagonalization.h"
15
-
16
- namespace Eigen {
17
-
18
- template<typename _MatrixType>
19
- class GeneralizedSelfAdjointEigenSolver;
20
-
21
- namespace internal {
22
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23
-
24
- template<typename MatrixType, typename DiagType, typename SubDiagType>
25
- EIGEN_DEVICE_FUNC
26
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
27
- }
28
-
29
- /** \eigenvalues_module \ingroup Eigenvalues_Module
30
- *
31
- *
32
- * \class SelfAdjointEigenSolver
33
- *
34
- * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
35
- *
36
- * \tparam _MatrixType the type of the matrix of which we are computing the
37
- * eigendecomposition; this is expected to be an instantiation of the Matrix
38
- * class template.
39
- *
40
- * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
41
- * matrices, this means that the matrix is symmetric: it equals its
42
- * transpose. This class computes the eigenvalues and eigenvectors of a
43
- * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
44
- * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
45
- * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
46
- * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
47
- * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
48
- * eigendecomposition.
49
- *
50
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
51
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
52
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
53
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
54
- *
55
- * The algorithm exploits the fact that the matrix is selfadjoint, making it
56
- * faster and more accurate than the general purpose eigenvalue algorithms
57
- * implemented in EigenSolver and ComplexEigenSolver.
58
- *
59
- * Only the \b lower \b triangular \b part of the input matrix is referenced.
60
- *
61
- * Call the function compute() to compute the eigenvalues and eigenvectors of
62
- * a given matrix. Alternatively, you can use the
63
- * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
64
- * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
65
- * and eigenvectors are computed, they can be retrieved with the eigenvalues()
66
- * and eigenvectors() functions.
67
- *
68
- * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
69
- * contains an example of the typical use of this class.
70
- *
71
- * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
72
- * the likes, see the class GeneralizedSelfAdjointEigenSolver.
73
- *
74
- * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
75
- */
76
- template<typename _MatrixType> class SelfAdjointEigenSolver
77
- {
78
- public:
79
-
80
- typedef _MatrixType MatrixType;
81
- enum {
82
- Size = MatrixType::RowsAtCompileTime,
83
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
84
- Options = MatrixType::Options,
85
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
86
- };
87
-
88
- /** \brief Scalar type for matrices of type \p _MatrixType. */
89
- typedef typename MatrixType::Scalar Scalar;
90
- typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
91
-
92
- typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
93
-
94
- /** \brief Real scalar type for \p _MatrixType.
95
- *
96
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
97
- * \c double), and the type of the real part of \c Scalar if #Scalar is
98
- * complex.
99
- */
100
- typedef typename NumTraits<Scalar>::Real RealScalar;
101
-
102
- friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
103
-
104
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
105
- *
106
- * This is a column vector with entries of type #RealScalar.
107
- * The length of the vector is the size of \p _MatrixType.
108
- */
109
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
110
- typedef Tridiagonalization<MatrixType> TridiagonalizationType;
111
- typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
112
-
113
- /** \brief Default constructor for fixed-size matrices.
114
- *
115
- * The default constructor is useful in cases in which the user intends to
116
- * perform decompositions via compute(). This constructor
117
- * can only be used if \p _MatrixType is a fixed-size matrix; use
118
- * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
119
- *
120
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
121
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
122
- */
123
- EIGEN_DEVICE_FUNC
124
- SelfAdjointEigenSolver()
125
- : m_eivec(),
126
- m_eivalues(),
127
- m_subdiag(),
128
- m_hcoeffs(),
129
- m_info(InvalidInput),
130
- m_isInitialized(false),
131
- m_eigenvectorsOk(false)
132
- { }
133
-
134
- /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
135
- *
136
- * \param [in] size Positive integer, size of the matrix whose
137
- * eigenvalues and eigenvectors will be computed.
138
- *
139
- * This constructor is useful for dynamic-size matrices, when the user
140
- * intends to perform decompositions via compute(). The \p size
141
- * parameter is only used as a hint. It is not an error to give a wrong
142
- * \p size, but it may impair performance.
143
- *
144
- * \sa compute() for an example
145
- */
146
- EIGEN_DEVICE_FUNC
147
- explicit SelfAdjointEigenSolver(Index size)
148
- : m_eivec(size, size),
149
- m_eivalues(size),
150
- m_subdiag(size > 1 ? size - 1 : 1),
151
- m_hcoeffs(size > 1 ? size - 1 : 1),
152
- m_isInitialized(false),
153
- m_eigenvectorsOk(false)
154
- {}
155
-
156
- /** \brief Constructor; computes eigendecomposition of given matrix.
157
- *
158
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
159
- * be computed. Only the lower triangular part of the matrix is referenced.
160
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
161
- *
162
- * This constructor calls compute(const MatrixType&, int) to compute the
163
- * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
164
- * \p options equals #ComputeEigenvectors.
165
- *
166
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
167
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
168
- *
169
- * \sa compute(const MatrixType&, int)
170
- */
171
- template<typename InputType>
172
- EIGEN_DEVICE_FUNC
173
- explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
174
- : m_eivec(matrix.rows(), matrix.cols()),
175
- m_eivalues(matrix.cols()),
176
- m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
177
- m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
178
- m_isInitialized(false),
179
- m_eigenvectorsOk(false)
180
- {
181
- compute(matrix.derived(), options);
182
- }
183
-
184
- /** \brief Computes eigendecomposition of given matrix.
185
- *
186
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
187
- * be computed. Only the lower triangular part of the matrix is referenced.
188
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
189
- * \returns Reference to \c *this
190
- *
191
- * This function computes the eigenvalues of \p matrix. The eigenvalues()
192
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
193
- * then the eigenvectors are also computed and can be retrieved by
194
- * calling eigenvectors().
195
- *
196
- * This implementation uses a symmetric QR algorithm. The matrix is first
197
- * reduced to tridiagonal form using the Tridiagonalization class. The
198
- * tridiagonal matrix is then brought to diagonal form with implicit
199
- * symmetric QR steps with Wilkinson shift. Details can be found in
200
- * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
201
- *
202
- * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
203
- * are required and \f$ 4n^3/3 \f$ if they are not required.
204
- *
205
- * This method reuses the memory in the SelfAdjointEigenSolver object that
206
- * was allocated when the object was constructed, if the size of the
207
- * matrix does not change.
208
- *
209
- * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
210
- * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
211
- *
212
- * \sa SelfAdjointEigenSolver(const MatrixType&, int)
213
- */
214
- template<typename InputType>
215
- EIGEN_DEVICE_FUNC
216
- SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
217
-
218
- /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
219
- *
220
- * This is a variant of compute(const MatrixType&, int options) which
221
- * directly solves the underlying polynomial equation.
222
- *
223
- * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
224
- *
225
- * This method is usually significantly faster than the QR iterative algorithm
226
- * but it might also be less accurate. It is also worth noting that
227
- * for 3x3 matrices it involves trigonometric operations which are
228
- * not necessarily available for all scalar types.
229
- *
230
- * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
231
- * - double: 1e-8
232
- * - float: 1e-3
233
- *
234
- * \sa compute(const MatrixType&, int options)
235
- */
236
- EIGEN_DEVICE_FUNC
237
- SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
238
-
239
- /**
240
- *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
241
- *
242
- * \param[in] diag The vector containing the diagonal of the matrix.
243
- * \param[in] subdiag The subdiagonal of the matrix.
244
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
245
- * \returns Reference to \c *this
246
- *
247
- * This function assumes that the matrix has been reduced to tridiagonal form.
248
- *
249
- * \sa compute(const MatrixType&, int) for more information
250
- */
251
- SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
252
-
253
- /** \brief Returns the eigenvectors of given matrix.
254
- *
255
- * \returns A const reference to the matrix whose columns are the eigenvectors.
256
- *
257
- * \pre The eigenvectors have been computed before.
258
- *
259
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
260
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
261
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
262
- * this object was used to solve the eigenproblem for the selfadjoint
263
- * matrix \f$ A \f$, then the matrix returned by this function is the
264
- * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
265
- *
266
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
267
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
268
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
269
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
270
- *
271
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
272
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
273
- *
274
- * \sa eigenvalues()
275
- */
276
- EIGEN_DEVICE_FUNC
277
- const EigenvectorsType& eigenvectors() const
278
- {
279
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
280
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
281
- return m_eivec;
282
- }
283
-
284
- /** \brief Returns the eigenvalues of given matrix.
285
- *
286
- * \returns A const reference to the column vector containing the eigenvalues.
287
- *
288
- * \pre The eigenvalues have been computed before.
289
- *
290
- * The eigenvalues are repeated according to their algebraic multiplicity,
291
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
292
- * are sorted in increasing order.
293
- *
294
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
295
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
296
- *
297
- * \sa eigenvectors(), MatrixBase::eigenvalues()
298
- */
299
- EIGEN_DEVICE_FUNC
300
- const RealVectorType& eigenvalues() const
301
- {
302
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
303
- return m_eivalues;
304
- }
305
-
306
- /** \brief Computes the positive-definite square root of the matrix.
307
- *
308
- * \returns the positive-definite square root of the matrix
309
- *
310
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
311
- * have been computed before.
312
- *
313
- * The square root of a positive-definite matrix \f$ A \f$ is the
314
- * positive-definite matrix whose square equals \f$ A \f$. This function
315
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
316
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
317
- *
318
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
319
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
320
- *
321
- * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
322
- */
323
- EIGEN_DEVICE_FUNC
324
- MatrixType operatorSqrt() const
325
- {
326
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
327
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
328
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
329
- }
330
-
331
- /** \brief Computes the inverse square root of the matrix.
332
- *
333
- * \returns the inverse positive-definite square root of the matrix
334
- *
335
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
336
- * have been computed before.
337
- *
338
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
339
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
340
- * cheaper than first computing the square root with operatorSqrt() and
341
- * then its inverse with MatrixBase::inverse().
342
- *
343
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
344
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
345
- *
346
- * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
347
- */
348
- EIGEN_DEVICE_FUNC
349
- MatrixType operatorInverseSqrt() const
350
- {
351
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
352
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
353
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
354
- }
355
-
356
- /** \brief Reports whether previous computation was successful.
357
- *
358
- * \returns \c Success if computation was successful, \c NoConvergence otherwise.
359
- */
360
- EIGEN_DEVICE_FUNC
361
- ComputationInfo info() const
362
- {
363
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
364
- return m_info;
365
- }
366
-
367
- /** \brief Maximum number of iterations.
368
- *
369
- * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
370
- * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
371
- */
372
- static const int m_maxIterations = 30;
373
-
374
- protected:
375
- static EIGEN_DEVICE_FUNC
376
- void check_template_parameters()
377
- {
378
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
379
- }
380
-
381
- EigenvectorsType m_eivec;
382
- RealVectorType m_eivalues;
383
- typename TridiagonalizationType::SubDiagonalType m_subdiag;
384
- typename TridiagonalizationType::CoeffVectorType m_hcoeffs;
385
- ComputationInfo m_info;
386
- bool m_isInitialized;
387
- bool m_eigenvectorsOk;
388
- };
389
-
390
- namespace internal {
391
- /** \internal
392
- *
393
- * \eigenvalues_module \ingroup Eigenvalues_Module
394
- *
395
- * Performs a QR step on a tridiagonal symmetric matrix represented as a
396
- * pair of two vectors \a diag and \a subdiag.
397
- *
398
- * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
399
- * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
400
- * \param start starting index of the submatrix to work on
401
- * \param end last+1 index of the submatrix to work on
402
- * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
403
- * \param n size of the input matrix
404
- *
405
- * For compilation efficiency reasons, this procedure does not use eigen expression
406
- * for its arguments.
407
- *
408
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
409
- * "implicit symmetric QR step with Wilkinson shift"
410
- */
411
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
412
- EIGEN_DEVICE_FUNC
413
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
414
- }
415
-
416
- template<typename MatrixType>
417
- template<typename InputType>
418
- EIGEN_DEVICE_FUNC
419
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
420
- ::compute(const EigenBase<InputType>& a_matrix, int options)
421
- {
422
- check_template_parameters();
423
-
424
- const InputType &matrix(a_matrix.derived());
425
-
426
- EIGEN_USING_STD(abs);
427
- eigen_assert(matrix.cols() == matrix.rows());
428
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
429
- && (options&EigVecMask)!=EigVecMask
430
- && "invalid option parameter");
431
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
432
- Index n = matrix.cols();
433
- m_eivalues.resize(n,1);
434
-
435
- if(n==1)
436
- {
437
- m_eivec = matrix;
438
- m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
439
- if(computeEigenvectors)
440
- m_eivec.setOnes(n,n);
441
- m_info = Success;
442
- m_isInitialized = true;
443
- m_eigenvectorsOk = computeEigenvectors;
444
- return *this;
445
- }
446
-
447
- // declare some aliases
448
- RealVectorType& diag = m_eivalues;
449
- EigenvectorsType& mat = m_eivec;
450
-
451
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
452
- mat = matrix.template triangularView<Lower>();
453
- RealScalar scale = mat.cwiseAbs().maxCoeff();
454
- if(scale==RealScalar(0)) scale = RealScalar(1);
455
- mat.template triangularView<Lower>() /= scale;
456
- m_subdiag.resize(n-1);
457
- m_hcoeffs.resize(n-1);
458
- internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
459
-
460
- m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
461
-
462
- // scale back the eigen values
463
- m_eivalues *= scale;
464
-
465
- m_isInitialized = true;
466
- m_eigenvectorsOk = computeEigenvectors;
467
- return *this;
468
- }
469
-
470
- template<typename MatrixType>
471
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
472
- ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
473
- {
474
- //TODO : Add an option to scale the values beforehand
475
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
476
-
477
- m_eivalues = diag;
478
- m_subdiag = subdiag;
479
- if (computeEigenvectors)
480
- {
481
- m_eivec.setIdentity(diag.size(), diag.size());
482
- }
483
- m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
484
-
485
- m_isInitialized = true;
486
- m_eigenvectorsOk = computeEigenvectors;
487
- return *this;
488
- }
489
-
490
- namespace internal {
491
- /**
492
- * \internal
493
- * \brief Compute the eigendecomposition from a tridiagonal matrix
494
- *
495
- * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
496
- * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
497
- * \param[in] maxIterations : the maximum number of iterations
498
- * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
499
- * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
500
- * \returns \c Success or \c NoConvergence
501
- */
502
- template<typename MatrixType, typename DiagType, typename SubDiagType>
503
- EIGEN_DEVICE_FUNC
504
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
505
- {
506
- ComputationInfo info;
507
- typedef typename MatrixType::Scalar Scalar;
508
-
509
- Index n = diag.size();
510
- Index end = n-1;
511
- Index start = 0;
512
- Index iter = 0; // total number of iterations
513
-
514
- typedef typename DiagType::RealScalar RealScalar;
515
- const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
516
- const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
517
- while (end>0)
518
- {
519
- for (Index i = start; i<end; ++i) {
520
- if (numext::abs(subdiag[i]) < considerAsZero) {
521
- subdiag[i] = RealScalar(0);
522
- } else {
523
- // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
524
- // Scaled to prevent underflows.
525
- const RealScalar scaled_subdiag = precision_inv * subdiag[i];
526
- if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
527
- subdiag[i] = RealScalar(0);
528
- }
529
- }
530
- }
531
-
532
- // find the largest unreduced block at the end of the matrix.
533
- while (end>0 && subdiag[end-1]==RealScalar(0))
534
- {
535
- end--;
536
- }
537
- if (end<=0)
538
- break;
539
-
540
- // if we spent too many iterations, we give up
541
- iter++;
542
- if(iter > maxIterations * n) break;
543
-
544
- start = end - 1;
545
- while (start>0 && subdiag[start-1]!=0)
546
- start--;
547
-
548
- internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
549
- }
550
- if (iter <= maxIterations * n)
551
- info = Success;
552
- else
553
- info = NoConvergence;
554
-
555
- // Sort eigenvalues and corresponding vectors.
556
- // TODO make the sort optional ?
557
- // TODO use a better sort algorithm !!
558
- if (info == Success)
559
- {
560
- for (Index i = 0; i < n-1; ++i)
561
- {
562
- Index k;
563
- diag.segment(i,n-i).minCoeff(&k);
564
- if (k > 0)
565
- {
566
- numext::swap(diag[i], diag[k+i]);
567
- if(computeEigenvectors)
568
- eivec.col(i).swap(eivec.col(k+i));
569
- }
570
- }
571
- }
572
- return info;
573
- }
574
-
575
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
576
- {
577
- EIGEN_DEVICE_FUNC
578
- static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
579
- { eig.compute(A,options); }
580
- };
581
-
582
- template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
583
- {
584
- typedef typename SolverType::MatrixType MatrixType;
585
- typedef typename SolverType::RealVectorType VectorType;
586
- typedef typename SolverType::Scalar Scalar;
587
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
588
-
589
-
590
- /** \internal
591
- * Computes the roots of the characteristic polynomial of \a m.
592
- * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
593
- */
594
- EIGEN_DEVICE_FUNC
595
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
596
- {
597
- EIGEN_USING_STD(sqrt)
598
- EIGEN_USING_STD(atan2)
599
- EIGEN_USING_STD(cos)
600
- EIGEN_USING_STD(sin)
601
- const Scalar s_inv3 = Scalar(1)/Scalar(3);
602
- const Scalar s_sqrt3 = sqrt(Scalar(3));
603
-
604
- // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
605
- // eigenvalues are the roots to this equation, all guaranteed to be
606
- // real-valued, because the matrix is symmetric.
607
- Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
608
- Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
609
- Scalar c2 = m(0,0) + m(1,1) + m(2,2);
610
-
611
- // Construct the parameters used in classifying the roots of the equation
612
- // and in solving the equation for the roots in closed form.
613
- Scalar c2_over_3 = c2*s_inv3;
614
- Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
615
- a_over_3 = numext::maxi(a_over_3, Scalar(0));
616
-
617
- Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
618
-
619
- Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
620
- q = numext::maxi(q, Scalar(0));
621
-
622
- // Compute the eigenvalues by solving for the roots of the polynomial.
623
- Scalar rho = sqrt(a_over_3);
624
- Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
625
- Scalar cos_theta = cos(theta);
626
- Scalar sin_theta = sin(theta);
627
- // roots are already sorted, since cos is monotonically decreasing on [0, pi]
628
- roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
629
- roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
630
- roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
631
- }
632
-
633
- EIGEN_DEVICE_FUNC
634
- static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
635
- {
636
- EIGEN_USING_STD(abs);
637
- EIGEN_USING_STD(sqrt);
638
- Index i0;
639
- // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
640
- mat.diagonal().cwiseAbs().maxCoeff(&i0);
641
- // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
642
- // so let's save it:
643
- representative = mat.col(i0);
644
- Scalar n0, n1;
645
- VectorType c0, c1;
646
- n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
647
- n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
648
- if(n0>n1) res = c0/sqrt(n0);
649
- else res = c1/sqrt(n1);
650
-
651
- return true;
652
- }
653
-
654
- EIGEN_DEVICE_FUNC
655
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
656
- {
657
- eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
658
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
659
- && (options&EigVecMask)!=EigVecMask
660
- && "invalid option parameter");
661
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
662
-
663
- EigenvectorsType& eivecs = solver.m_eivec;
664
- VectorType& eivals = solver.m_eivalues;
665
-
666
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
667
- Scalar shift = mat.trace() / Scalar(3);
668
- // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
669
- MatrixType scaledMat = mat.template selfadjointView<Lower>();
670
- scaledMat.diagonal().array() -= shift;
671
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
672
- if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
673
-
674
- // compute the eigenvalues
675
- computeRoots(scaledMat,eivals);
676
-
677
- // compute the eigenvectors
678
- if(computeEigenvectors)
679
- {
680
- if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
681
- {
682
- // All three eigenvalues are numerically the same
683
- eivecs.setIdentity();
684
- }
685
- else
686
- {
687
- MatrixType tmp;
688
- tmp = scaledMat;
689
-
690
- // Compute the eigenvector of the most distinct eigenvalue
691
- Scalar d0 = eivals(2) - eivals(1);
692
- Scalar d1 = eivals(1) - eivals(0);
693
- Index k(0), l(2);
694
- if(d0 > d1)
695
- {
696
- numext::swap(k,l);
697
- d0 = d1;
698
- }
699
-
700
- // Compute the eigenvector of index k
701
- {
702
- tmp.diagonal().array () -= eivals(k);
703
- // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
704
- extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
705
- }
706
-
707
- // Compute eigenvector of index l
708
- if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
709
- {
710
- // If d0 is too small, then the two other eigenvalues are numerically the same,
711
- // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
712
- eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
713
- eivecs.col(l).normalize();
714
- }
715
- else
716
- {
717
- tmp = scaledMat;
718
- tmp.diagonal().array () -= eivals(l);
719
-
720
- VectorType dummy;
721
- extract_kernel(tmp, eivecs.col(l), dummy);
722
- }
723
-
724
- // Compute last eigenvector from the other two
725
- eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
726
- }
727
- }
728
-
729
- // Rescale back to the original size.
730
- eivals *= scale;
731
- eivals.array() += shift;
732
-
733
- solver.m_info = Success;
734
- solver.m_isInitialized = true;
735
- solver.m_eigenvectorsOk = computeEigenvectors;
736
- }
737
- };
738
-
739
- // 2x2 direct eigenvalues decomposition, code from Hauke Heibel
740
- template<typename SolverType>
741
- struct direct_selfadjoint_eigenvalues<SolverType,2,false>
742
- {
743
- typedef typename SolverType::MatrixType MatrixType;
744
- typedef typename SolverType::RealVectorType VectorType;
745
- typedef typename SolverType::Scalar Scalar;
746
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
747
-
748
- EIGEN_DEVICE_FUNC
749
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
750
- {
751
- EIGEN_USING_STD(sqrt);
752
- const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
753
- const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
754
- roots(0) = t1 - t0;
755
- roots(1) = t1 + t0;
756
- }
757
-
758
- EIGEN_DEVICE_FUNC
759
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
760
- {
761
- EIGEN_USING_STD(sqrt);
762
- EIGEN_USING_STD(abs);
763
-
764
- eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
765
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
766
- && (options&EigVecMask)!=EigVecMask
767
- && "invalid option parameter");
768
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
769
-
770
- EigenvectorsType& eivecs = solver.m_eivec;
771
- VectorType& eivals = solver.m_eivalues;
772
-
773
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
774
- Scalar shift = mat.trace() / Scalar(2);
775
- MatrixType scaledMat = mat;
776
- scaledMat.coeffRef(0,1) = mat.coeff(1,0);
777
- scaledMat.diagonal().array() -= shift;
778
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
779
- if(scale > Scalar(0))
780
- scaledMat /= scale;
781
-
782
- // Compute the eigenvalues
783
- computeRoots(scaledMat,eivals);
784
-
785
- // compute the eigen vectors
786
- if(computeEigenvectors)
787
- {
788
- if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
789
- {
790
- eivecs.setIdentity();
791
- }
792
- else
793
- {
794
- scaledMat.diagonal().array () -= eivals(1);
795
- Scalar a2 = numext::abs2(scaledMat(0,0));
796
- Scalar c2 = numext::abs2(scaledMat(1,1));
797
- Scalar b2 = numext::abs2(scaledMat(1,0));
798
- if(a2>c2)
799
- {
800
- eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
801
- eivecs.col(1) /= sqrt(a2+b2);
802
- }
803
- else
804
- {
805
- eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
806
- eivecs.col(1) /= sqrt(c2+b2);
807
- }
808
-
809
- eivecs.col(0) << eivecs.col(1).unitOrthogonal();
810
- }
811
- }
812
-
813
- // Rescale back to the original size.
814
- eivals *= scale;
815
- eivals.array() += shift;
816
-
817
- solver.m_info = Success;
818
- solver.m_isInitialized = true;
819
- solver.m_eigenvectorsOk = computeEigenvectors;
820
- }
821
- };
822
-
823
- }
824
-
825
- template<typename MatrixType>
826
- EIGEN_DEVICE_FUNC
827
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
828
- ::computeDirect(const MatrixType& matrix, int options)
829
- {
830
- internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
831
- return *this;
832
- }
833
-
834
- namespace internal {
835
-
836
- // Francis implicit QR step.
837
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
838
- EIGEN_DEVICE_FUNC
839
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
840
- {
841
- // Wilkinson Shift.
842
- RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
843
- RealScalar e = subdiag[end-1];
844
- // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
845
- // underflow thus leading to inf/NaN values when using the following commented code:
846
- // RealScalar e2 = numext::abs2(subdiag[end-1]);
847
- // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
848
- // This explain the following, somewhat more complicated, version:
849
- RealScalar mu = diag[end];
850
- if(td==RealScalar(0)) {
851
- mu -= numext::abs(e);
852
- } else if (e != RealScalar(0)) {
853
- const RealScalar e2 = numext::abs2(e);
854
- const RealScalar h = numext::hypot(td,e);
855
- if(e2 == RealScalar(0)) {
856
- mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
857
- } else {
858
- mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
859
- }
860
- }
861
-
862
- RealScalar x = diag[start] - mu;
863
- RealScalar z = subdiag[start];
864
- // If z ever becomes zero, the Givens rotation will be the identity and
865
- // z will stay zero for all future iterations.
866
- for (Index k = start; k < end && z != RealScalar(0); ++k)
867
- {
868
- JacobiRotation<RealScalar> rot;
869
- rot.makeGivens(x, z);
870
-
871
- // do T = G' T G
872
- RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
873
- RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
874
-
875
- diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
876
- diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
877
- subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
878
-
879
- if (k > start)
880
- subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
881
-
882
- // "Chasing the bulge" to return to triangular form.
883
- x = subdiag[k];
884
- if (k < end - 1)
885
- {
886
- z = -rot.s() * subdiag[k+1];
887
- subdiag[k + 1] = rot.c() * subdiag[k+1];
888
- }
889
-
890
- // apply the givens rotation to the unit matrix Q = Q * G
891
- if (matrixQ)
892
- {
893
- // FIXME if StorageOrder == RowMajor this operation is not very efficient
894
- Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
895
- q.applyOnTheRight(k,k+1,rot);
896
- }
897
- }
898
- }
899
-
900
- } // end namespace internal
901
-
902
- } // end namespace Eigen
903
-
904
- #endif // EIGEN_SELFADJOINTEIGENSOLVER_H