sequenzo 0.1.17__cp311-cp311-win_amd64.whl → 0.1.19__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (475) hide show
  1. sequenzo/__init__.py +64 -8
  2. sequenzo/big_data/clara/clara.py +1 -1
  3. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  4. sequenzo/big_data/clara/utils/get_weighted_diss.cp311-win_amd64.pyd +0 -0
  5. sequenzo/clustering/KMedoids.py +39 -0
  6. sequenzo/clustering/clustering_c_code.cp311-win_amd64.pyd +0 -0
  7. sequenzo/clustering/hierarchical_clustering.py +304 -8
  8. sequenzo/define_sequence_data.py +44 -3
  9. sequenzo/dissimilarity_measures/c_code.cp311-win_amd64.pyd +0 -0
  10. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  11. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  12. sequenzo/dissimilarity_measures/src/DHDdistance.cpp +13 -37
  13. sequenzo/dissimilarity_measures/src/LCPdistance.cpp +13 -37
  14. sequenzo/dissimilarity_measures/src/OMdistance.cpp +12 -47
  15. sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +103 -67
  16. sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
  17. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +41 -16
  18. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +4 -0
  19. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +7 -0
  20. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +10 -0
  21. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +127 -43
  22. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +30 -2
  23. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
  24. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +14 -5
  25. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +111 -54
  26. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +131 -9
  27. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +11 -113
  28. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +39 -7
  29. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +336 -30
  30. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +9 -37
  31. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +58 -0
  32. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +1 -0
  33. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +35 -2
  34. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +3 -1
  35. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +17 -0
  36. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +13 -0
  37. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +18 -0
  38. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +13 -0
  39. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +8 -0
  40. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +363 -34
  41. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +7 -0
  42. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +13 -0
  43. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +41 -4
  44. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +252 -16
  45. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +9 -0
  46. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +12 -1
  47. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +7 -0
  48. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
  49. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +78 -1
  50. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +3 -1
  51. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +13 -2
  52. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +5 -0
  53. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +5 -1
  54. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +2 -0
  55. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +64 -1
  56. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +36 -0
  57. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +40 -31
  58. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +8 -0
  59. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
  60. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +6 -0
  61. sequenzo/dissimilarity_measures/src/xsimd/test/test_basic_math.cpp +6 -0
  62. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch.cpp +54 -2
  63. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_bool.cpp +8 -0
  64. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_cast.cpp +11 -4
  65. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_complex.cpp +18 -0
  66. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_int.cpp +8 -14
  67. sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_manip.cpp +216 -173
  68. sequenzo/dissimilarity_measures/src/xsimd/test/test_load_store.cpp +6 -0
  69. sequenzo/dissimilarity_measures/src/xsimd/test/test_memory.cpp +1 -1
  70. sequenzo/dissimilarity_measures/src/xsimd/test/test_power.cpp +7 -4
  71. sequenzo/dissimilarity_measures/src/xsimd/test/test_select.cpp +6 -2
  72. sequenzo/dissimilarity_measures/src/xsimd/test/test_shuffle.cpp +32 -18
  73. sequenzo/dissimilarity_measures/src/xsimd/test/test_utils.hpp +21 -24
  74. sequenzo/dissimilarity_measures/src/xsimd/test/test_xsimd_api.cpp +69 -9
  75. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  76. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp311-win_amd64.pyd +0 -0
  77. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  78. sequenzo/dissimilarity_measures/utils/seqconc.cp311-win_amd64.pyd +0 -0
  79. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  80. sequenzo/dissimilarity_measures/utils/seqdss.cp311-win_amd64.pyd +0 -0
  81. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  82. sequenzo/dissimilarity_measures/utils/seqdur.cp311-win_amd64.pyd +0 -0
  83. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  84. sequenzo/dissimilarity_measures/utils/seqlength.cp311-win_amd64.pyd +0 -0
  85. sequenzo/multidomain/cat.py +0 -53
  86. sequenzo/multidomain/idcd.py +0 -1
  87. sequenzo/openmp_setup.py +233 -0
  88. sequenzo/sequence_characteristics/__init__.py +4 -0
  89. sequenzo/sequence_characteristics/complexity_index.py +17 -57
  90. sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +177 -111
  91. sequenzo/sequence_characteristics/plot_characteristics.py +30 -11
  92. sequenzo/sequence_characteristics/simple_characteristics.py +1 -0
  93. sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +9 -3
  94. sequenzo/sequence_characteristics/turbulence.py +47 -67
  95. sequenzo/sequence_characteristics/variance_of_spell_durations.py +19 -9
  96. sequenzo/sequence_characteristics/within_sequence_entropy.py +5 -58
  97. sequenzo/visualization/plot_sequence_index.py +58 -35
  98. sequenzo/visualization/plot_state_distribution.py +57 -36
  99. sequenzo/visualization/plot_transition_matrix.py +21 -22
  100. sequenzo/with_event_history_analysis/__init__.py +35 -0
  101. sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
  102. sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
  103. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/METADATA +48 -14
  104. sequenzo-0.1.19.dist-info/RECORD +272 -0
  105. sequenzo/dissimilarity_measures/setup.py +0 -35
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  172. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  173. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  174. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  175. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  176. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  177. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  178. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  179. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  180. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  181. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  182. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  183. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  184. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  185. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  186. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  187. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  188. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  189. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  190. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  191. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  192. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  193. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  194. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  195. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  196. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  197. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  198. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  199. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  200. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  201. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  202. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  203. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  204. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  205. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  206. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  207. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  208. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  209. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  210. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  211. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  212. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  213. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  214. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  215. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  216. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  217. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  218. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  219. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  220. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  221. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  222. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  223. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  224. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  225. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  226. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  227. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  228. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  229. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  230. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  231. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  232. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  233. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  234. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  235. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  236. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  237. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  238. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  239. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  240. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  241. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  242. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  243. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  244. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  245. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  246. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  247. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  248. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  249. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  250. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  251. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  252. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  253. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  254. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  255. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  256. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  257. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  258. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  259. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  260. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  261. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  262. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  263. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  264. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  265. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  266. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  267. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  268. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  269. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  270. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  271. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  272. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  273. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  274. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  275. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  276. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  277. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  278. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  279. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  280. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  281. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  282. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  283. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  284. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  285. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  286. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  287. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  288. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  289. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  290. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  291. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  292. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  293. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  294. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  295. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  296. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  297. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  298. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  299. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  300. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  301. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  302. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  396. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  397. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  398. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  399. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  400. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  401. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  402. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  403. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  404. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  405. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  406. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  407. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  408. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  409. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  410. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  411. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  412. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  413. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  414. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  415. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  416. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  417. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  418. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  419. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  420. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  421. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  422. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  423. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  424. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  425. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  426. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  427. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  428. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  429. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  430. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  431. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  432. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  433. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  434. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  435. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  436. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  437. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  438. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  439. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  440. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  441. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  442. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  443. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  444. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  445. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  446. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  447. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  448. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  449. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  450. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  451. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  452. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  453. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  454. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  455. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  456. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  457. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  458. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  459. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  460. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  461. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  462. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  463. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  464. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  465. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  466. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  467. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  468. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  469. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  470. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  471. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  472. sequenzo-0.1.17.dist-info/RECORD +0 -631
  473. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  474. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  475. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,1132 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
11
- #define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
12
-
13
- namespace Eigen {
14
-
15
- /** \class TensorConvolution
16
- * \ingroup CXX11_Tensor_Module
17
- *
18
- * \brief Tensor convolution class.
19
- *
20
- *
21
- */
22
- namespace internal {
23
-
24
- template <typename Index, typename InputDims, int NumKernelDims, int Layout>
25
- class IndexMapper {
26
- public:
27
- IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims,
28
- const array<Index, NumKernelDims>& indices) {
29
-
30
- array<Index, NumDims> dimensions = input_dims;
31
- for (int i = 0; i < NumKernelDims; ++i) {
32
- const Index index = indices[i];
33
- const Index input_dim = input_dims[index];
34
- const Index kernel_dim = kernel_dims[i];
35
- const Index result_dim = input_dim - kernel_dim + 1;
36
- dimensions[index] = result_dim;
37
- }
38
-
39
- array<Index, NumDims> inputStrides;
40
- array<Index, NumDims> outputStrides;
41
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
42
- inputStrides[0] = 1;
43
- outputStrides[0] = 1;
44
- for (int i = 1; i < NumDims; ++i) {
45
- inputStrides[i] = inputStrides[i-1] * input_dims[i-1];
46
- outputStrides[i] = outputStrides[i-1] * dimensions[i-1];
47
- }
48
- } else {
49
- inputStrides[NumDims - 1] = 1;
50
- outputStrides[NumDims - 1] = 1;
51
- for (int i = static_cast<int>(NumDims) - 2; i >= 0; --i) {
52
- inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
53
- outputStrides[i] = outputStrides[i + 1] * dimensions[i + 1];
54
- }
55
- }
56
-
57
- array<Index, NumDims> gpuInputDimensions;
58
- array<Index, NumDims> gpuOutputDimensions;
59
- array<Index, NumDims> tmp = dimensions;
60
- array<Index, NumDims> ordering;
61
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
62
- ? 0
63
- : NumDims - NumKernelDims;
64
- for (int i = 0; i < NumKernelDims; ++i) {
65
- const Index index = i + offset;
66
- ordering[index] = indices[i];
67
- tmp[indices[i]] = -1;
68
- gpuInputDimensions[index] = input_dims[indices[i]];
69
- gpuOutputDimensions[index] = dimensions[indices[i]];
70
- }
71
-
72
- int written = static_cast<int>(Layout) == static_cast<int>(ColMajor)
73
- ? NumKernelDims
74
- : 0;
75
- for (int i = 0; i < NumDims; ++i) {
76
- if (tmp[i] >= 0) {
77
- ordering[written] = i;
78
- gpuInputDimensions[written] = input_dims[i];
79
- gpuOutputDimensions[written] = dimensions[i];
80
- ++written;
81
- }
82
- }
83
-
84
- for (int i = 0; i < NumDims; ++i) {
85
- m_inputStrides[i] = inputStrides[ordering[i]];
86
- m_outputStrides[i] = outputStrides[ordering[i]];
87
- }
88
-
89
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
90
- for (int i = 0; i < NumDims; ++i) {
91
- if (i > NumKernelDims) {
92
- m_gpuInputStrides[i] =
93
- m_gpuInputStrides[i - 1] * gpuInputDimensions[i - 1];
94
- m_gpuOutputStrides[i] =
95
- m_gpuOutputStrides[i - 1] * gpuOutputDimensions[i - 1];
96
- } else {
97
- m_gpuInputStrides[i] = 1;
98
- m_gpuOutputStrides[i] = 1;
99
- }
100
- }
101
- } else {
102
- for (int i = NumDims - 1; i >= 0; --i) {
103
- if (static_cast<size_t>(i + 1) < offset) {
104
- m_gpuInputStrides[i] =
105
- m_gpuInputStrides[i + 1] * gpuInputDimensions[i + 1];
106
- m_gpuOutputStrides[i] =
107
- m_gpuOutputStrides[i + 1] * gpuOutputDimensions[i + 1];
108
- } else {
109
- m_gpuInputStrides[i] = 1;
110
- m_gpuOutputStrides[i] = 1;
111
- }
112
- }
113
- }
114
- }
115
-
116
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputPlaneToTensorInputOffset(Index p) const {
117
- Index inputIndex = 0;
118
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
119
- for (int d = NumDims - 1; d > NumKernelDims; --d) {
120
- const Index idx = p / m_gpuInputStrides[d];
121
- inputIndex += idx * m_inputStrides[d];
122
- p -= idx * m_gpuInputStrides[d];
123
- }
124
- inputIndex += p * m_inputStrides[NumKernelDims];
125
- } else {
126
- std::ptrdiff_t limit = 0;
127
- if (NumKernelDims < NumDims) {
128
- limit = NumDims - NumKernelDims - 1;
129
- }
130
- for (int d = 0; d < limit; ++d) {
131
- const Index idx = p / m_gpuInputStrides[d];
132
- inputIndex += idx * m_inputStrides[d];
133
- p -= idx * m_gpuInputStrides[d];
134
- }
135
- inputIndex += p * m_inputStrides[limit];
136
- }
137
- return inputIndex;
138
- }
139
-
140
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputPlaneToTensorOutputOffset(Index p) const {
141
- Index outputIndex = 0;
142
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
143
- for (int d = NumDims - 1; d > NumKernelDims; --d) {
144
- const Index idx = p / m_gpuOutputStrides[d];
145
- outputIndex += idx * m_outputStrides[d];
146
- p -= idx * m_gpuOutputStrides[d];
147
- }
148
- outputIndex += p * m_outputStrides[NumKernelDims];
149
- } else {
150
- std::ptrdiff_t limit = 0;
151
- if (NumKernelDims < NumDims) {
152
- limit = NumDims - NumKernelDims - 1;
153
- }
154
- for (int d = 0; d < limit; ++d) {
155
- const Index idx = p / m_gpuOutputStrides[d];
156
- outputIndex += idx * m_outputStrides[d];
157
- p -= idx * m_gpuOutputStrides[d];
158
- }
159
- outputIndex += p * m_outputStrides[limit];
160
- }
161
- return outputIndex;
162
- }
163
-
164
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i) const {
165
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
166
- ? 0
167
- : NumDims - NumKernelDims;
168
- return i * m_inputStrides[offset];
169
- }
170
-
171
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i) const {
172
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
173
- ? 0
174
- : NumDims - NumKernelDims;
175
- return i * m_outputStrides[offset];
176
- }
177
-
178
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j) const {
179
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
180
- ? 0
181
- : NumDims - NumKernelDims;
182
- return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1];
183
- }
184
-
185
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j) const {
186
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
187
- ? 0
188
- : NumDims - NumKernelDims;
189
- return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1];
190
- }
191
-
192
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
193
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
194
- ? 0
195
- : NumDims - NumKernelDims;
196
- return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1] +
197
- k * m_inputStrides[offset + 2];
198
- }
199
-
200
- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
201
- const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
202
- ? 0
203
- : NumDims - NumKernelDims;
204
- return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1] +
205
- k * m_outputStrides[offset + 2];
206
- }
207
-
208
- private:
209
- static const int NumDims = internal::array_size<InputDims>::value;
210
- array<Index, NumDims> m_inputStrides;
211
- array<Index, NumDims> m_outputStrides;
212
- array<Index, NumDims> m_gpuInputStrides;
213
- array<Index, NumDims> m_gpuOutputStrides;
214
- };
215
-
216
-
217
-
218
- template<typename Dimensions, typename InputXprType, typename KernelXprType>
219
- struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
220
- {
221
- // Type promotion to handle the case where the types of the lhs and the rhs are different.
222
- typedef typename promote_storage_type<typename InputXprType::Scalar,
223
- typename KernelXprType::Scalar>::ret Scalar;
224
- typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
225
- typename traits<KernelXprType>::StorageKind>::ret StorageKind;
226
- typedef typename promote_index_type<typename traits<InputXprType>::Index,
227
- typename traits<KernelXprType>::Index>::type Index;
228
- typedef typename InputXprType::Nested LhsNested;
229
- typedef typename KernelXprType::Nested RhsNested;
230
- typedef typename remove_reference<LhsNested>::type _LhsNested;
231
- typedef typename remove_reference<RhsNested>::type _RhsNested;
232
- static const int NumDimensions = traits<InputXprType>::NumDimensions;
233
- static const int Layout = traits<InputXprType>::Layout;
234
- typedef typename conditional<Pointer_type_promotion<typename InputXprType::Scalar, Scalar>::val,
235
- typename traits<InputXprType>::PointerType, typename traits<KernelXprType>::PointerType>::type PointerType;
236
-
237
- enum {
238
- Flags = 0
239
- };
240
- };
241
-
242
- template<typename Dimensions, typename InputXprType, typename KernelXprType>
243
- struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense>
244
- {
245
- typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type;
246
- };
247
-
248
- template<typename Dimensions, typename InputXprType, typename KernelXprType>
249
- struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type>
250
- {
251
- typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type;
252
- };
253
-
254
- } // end namespace internal
255
-
256
-
257
-
258
- template<typename Indices, typename InputXprType, typename KernelXprType>
259
- class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType>, ReadOnlyAccessors>
260
- {
261
- public:
262
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar;
263
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
264
- typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType,
265
- typename KernelXprType::CoeffReturnType>::ret CoeffReturnType;
266
- typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested;
267
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind;
268
- typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index;
269
-
270
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims)
271
- : m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {}
272
-
273
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
274
- const Indices& indices() const { return m_indices; }
275
-
276
- /** \returns the nested expressions */
277
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
278
- const typename internal::remove_all<typename InputXprType::Nested>::type&
279
- inputExpression() const { return m_input_xpr; }
280
-
281
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
282
- const typename internal::remove_all<typename KernelXprType::Nested>::type&
283
- kernelExpression() const { return m_kernel_xpr; }
284
-
285
- protected:
286
- typename InputXprType::Nested m_input_xpr;
287
- typename KernelXprType::Nested m_kernel_xpr;
288
- const Indices m_indices;
289
- };
290
-
291
-
292
- template<typename Indices, typename InputArgType, typename KernelArgType, typename Device>
293
- struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Device>
294
- {
295
- typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
296
-
297
- static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value;
298
- static const int NumKernelDims = internal::array_size<Indices>::value;
299
- typedef typename XprType::Index Index;
300
- typedef DSizes<Index, NumDims> Dimensions;
301
-
302
- typedef typename XprType::Scalar Scalar;
303
- typedef typename XprType::CoeffReturnType CoeffReturnType;
304
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
305
- static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
306
- typedef StorageMemory<Scalar, Device> Storage;
307
- typedef typename Storage::Type EvaluatorPointerType;
308
-
309
- enum {
310
- IsAligned = int(TensorEvaluator<InputArgType, Device>::IsAligned) & int(TensorEvaluator<KernelArgType, Device>::IsAligned),
311
- PacketAccess = int(TensorEvaluator<InputArgType, Device>::PacketAccess) & int(TensorEvaluator<KernelArgType, Device>::PacketAccess),
312
- BlockAccess = false,
313
- PreferBlockAccess = false,
314
- Layout = TensorEvaluator<InputArgType, Device>::Layout,
315
- CoordAccess = false, // to be implemented
316
- RawAccess = false
317
- };
318
-
319
- //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
320
- typedef internal::TensorBlockNotImplemented TensorBlock;
321
- //===--------------------------------------------------------------------===//
322
-
323
- EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
324
- : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device)
325
- {
326
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
327
-
328
- const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
329
- const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
330
-
331
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
332
- m_inputStride[0] = 1;
333
- for (int i = 1; i < NumDims; ++i) {
334
- m_inputStride[i] = m_inputStride[i - 1] * input_dims[i - 1];
335
- }
336
- } else {
337
- m_inputStride[NumDims - 1] = 1;
338
- for (int i = NumDims - 2; i >= 0; --i) {
339
- m_inputStride[i] = m_inputStride[i + 1] * input_dims[i + 1];
340
- }
341
- }
342
-
343
- m_dimensions = m_inputImpl.dimensions();
344
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
345
- for (int i = 0; i < NumKernelDims; ++i) {
346
- const Index index = op.indices()[i];
347
- const Index input_dim = input_dims[index];
348
- const Index kernel_dim = kernel_dims[i];
349
- const Index result_dim = input_dim - kernel_dim + 1;
350
- m_dimensions[index] = result_dim;
351
- if (i > 0) {
352
- m_kernelStride[i] = m_kernelStride[i - 1] * kernel_dims[i - 1];
353
- } else {
354
- m_kernelStride[0] = 1;
355
- }
356
- m_indexStride[i] = m_inputStride[index];
357
- }
358
-
359
- m_outputStride[0] = 1;
360
- for (int i = 1; i < NumDims; ++i) {
361
- m_outputStride[i] = m_outputStride[i - 1] * m_dimensions[i - 1];
362
- }
363
- } else {
364
- for (int i = NumKernelDims - 1; i >= 0; --i) {
365
- const Index index = op.indices()[i];
366
- const Index input_dim = input_dims[index];
367
- const Index kernel_dim = kernel_dims[i];
368
- const Index result_dim = input_dim - kernel_dim + 1;
369
- m_dimensions[index] = result_dim;
370
- if (i < NumKernelDims - 1) {
371
- m_kernelStride[i] = m_kernelStride[i + 1] * kernel_dims[i + 1];
372
- } else {
373
- m_kernelStride[NumKernelDims - 1] = 1;
374
- }
375
- m_indexStride[i] = m_inputStride[index];
376
- }
377
-
378
- m_outputStride[NumDims - 1] = 1;
379
- for (int i = NumDims - 2; i >= 0; --i) {
380
- m_outputStride[i] = m_outputStride[i + 1] * m_dimensions[i + 1];
381
- }
382
- }
383
- }
384
-
385
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
386
-
387
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
388
- m_inputImpl.evalSubExprsIfNeeded(NULL);
389
- preloadKernel();
390
- return true;
391
- }
392
- EIGEN_STRONG_INLINE void cleanup() {
393
- m_inputImpl.cleanup();
394
- if (m_local_kernel) {
395
- m_device.deallocate((void*)m_kernel);
396
- m_local_kernel = false;
397
- }
398
- m_kernel = NULL;
399
- }
400
-
401
- void evalTo(typename XprType::Scalar* buffer) {
402
- evalSubExprsIfNeeded(NULL);
403
- for (int i = 0; i < dimensions().TotalSize(); ++i) {
404
- buffer[i] += coeff(i);
405
- }
406
- cleanup();
407
- }
408
-
409
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
410
- {
411
- CoeffReturnType result = CoeffReturnType(0);
412
- convolve(firstInput(index), 0, NumKernelDims-1, result);
413
- return result;
414
- }
415
-
416
- template<int LoadMode>
417
- EIGEN_DEVICE_FUNC PacketReturnType packet(const Index index) const
418
- {
419
- Index indices[2] = {index, index+PacketSize-1};
420
- Index startInputs[2] = {0, 0};
421
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
422
- for (int i = NumDims - 1; i > 0; --i) {
423
- const Index idx0 = indices[0] / m_outputStride[i];
424
- const Index idx1 = indices[1] / m_outputStride[i];
425
- startInputs[0] += idx0 * m_inputStride[i];
426
- startInputs[1] += idx1 * m_inputStride[i];
427
- indices[0] -= idx0 * m_outputStride[i];
428
- indices[1] -= idx1 * m_outputStride[i];
429
- }
430
- } else {
431
- for (int i = 0; i < NumDims - 1; ++i) {
432
- const Index idx0 = indices[0] / m_outputStride[i];
433
- const Index idx1 = indices[1] / m_outputStride[i];
434
- startInputs[0] += idx0 * m_inputStride[i];
435
- startInputs[1] += idx1 * m_inputStride[i];
436
- indices[0] -= idx0 * m_outputStride[i];
437
- indices[1] -= idx1 * m_outputStride[i];
438
- }
439
- }
440
- startInputs[0] += indices[0];
441
- startInputs[1] += indices[1];
442
-
443
- if (startInputs[1]-startInputs[0] == PacketSize-1) {
444
- PacketReturnType result = internal::pset1<PacketReturnType>(0);
445
- convolvePacket(startInputs[0], 0, NumKernelDims-1, result);
446
- return result;
447
- } else {
448
- EIGEN_ALIGN_MAX Scalar data[PacketSize];
449
- data[0] = Scalar(0);
450
- convolve(startInputs[0], 0, NumKernelDims-1, data[0]);
451
- for (int i = 1; i < PacketSize-1; ++i) {
452
- data[i] = Scalar(0);
453
- convolve(firstInput(index+i), 0, NumKernelDims-1, data[i]);
454
- }
455
- data[PacketSize-1] = Scalar(0);
456
- convolve(startInputs[1], 0, NumKernelDims-1, data[PacketSize-1]);
457
- return internal::pload<PacketReturnType>(data);
458
- }
459
- }
460
-
461
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
462
- costPerCoeff(bool vectorized) const {
463
- const double kernel_size = m_kernelImpl.dimensions().TotalSize();
464
- // We ignore the use of fused multiply-add.
465
- const double convolve_compute_cost =
466
- TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
467
- const double firstIndex_compute_cost =
468
- NumDims *
469
- (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
470
- TensorOpCost::DivCost<Index>());
471
- return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
472
- kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
473
- m_kernelImpl.costPerCoeff(vectorized) +
474
- TensorOpCost(0, 0, convolve_compute_cost, vectorized,
475
- PacketSize));
476
- }
477
-
478
- EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
479
-
480
- private:
481
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
482
- Index startInput = 0;
483
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
484
- for (int i = NumDims - 1; i > 0; --i) {
485
- const Index idx = index / m_outputStride[i];
486
- startInput += idx * m_inputStride[i];
487
- index -= idx * m_outputStride[i];
488
- }
489
- } else {
490
- for (int i = 0; i < NumDims - 1; ++i) {
491
- const Index idx = index / m_outputStride[i];
492
- startInput += idx * m_inputStride[i];
493
- index -= idx * m_outputStride[i];
494
- }
495
- }
496
- startInput += index;
497
- return startInput;
498
- }
499
-
500
- EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const {
501
- for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
502
- const Index input = firstIndex + j * m_indexStride[DimIndex];
503
- const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
504
- if (DimIndex > 0) {
505
- convolve(input, kernel, DimIndex-1, accum);
506
- } else {
507
- accum += m_inputImpl.coeff(input) * m_kernel[kernel];
508
- }
509
- }
510
- }
511
-
512
- template <typename Packet>
513
- EIGEN_DEVICE_FUNC void convolvePacket(Index firstIndex, Index firstKernel, int DimIndex, Packet& accum) const {
514
- for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
515
- const Index input = firstIndex + j * m_indexStride[DimIndex];
516
- const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
517
- if (DimIndex > 0) {
518
- convolvePacket(input, kernel, DimIndex-1, accum);
519
- } else {
520
- accum = internal::pmadd<Packet>(m_inputImpl.template packet<Unaligned>(input), internal::pset1<Packet>(m_kernel[kernel]), accum);
521
- }
522
- }
523
- }
524
-
525
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
526
- // Don't make a local copy of the kernel unless we have to (i.e. it's an
527
- // expression that needs to be evaluated)
528
- const Scalar* in_place = m_kernelImpl.data();
529
- if (in_place) {
530
- m_kernel = in_place;
531
- m_local_kernel = false;
532
- } else {
533
- size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
534
- Scalar* local = (Scalar*)m_device.allocate_temp(kernel_sz);
535
- typedef TensorEvalToOp<const KernelArgType> EvalTo;
536
- EvalTo evalToTmp(local, m_kernelArg);
537
- const bool Vectorize = internal::IsVectorizable<Device, KernelArgType>::value;
538
- internal::TensorExecutor<const EvalTo, Device, Vectorize>::run(evalToTmp, m_device);
539
-
540
- m_kernel = local;
541
- m_local_kernel = true;
542
- }
543
- }
544
-
545
- array<Index, NumDims> m_inputStride;
546
- array<Index, NumDims> m_outputStride;
547
-
548
- array<Index, NumKernelDims> m_indexStride;
549
- array<Index, NumKernelDims> m_kernelStride;
550
- TensorEvaluator<InputArgType, Device> m_inputImpl;
551
- TensorEvaluator<KernelArgType, Device> m_kernelImpl;
552
- Dimensions m_dimensions;
553
-
554
- KernelArgType m_kernelArg;
555
- const Scalar* m_kernel;
556
- bool m_local_kernel;
557
- const Device EIGEN_DEVICE_REF m_device;
558
- };
559
-
560
-
561
-
562
-
563
- // Use an optimized implementation of the evaluation code for GPUs whenever possible.
564
- #if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
565
-
566
- template <int StaticKernelSize>
567
- struct GetKernelSize {
568
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const {
569
- return StaticKernelSize;
570
- }
571
- };
572
- template <>
573
- struct GetKernelSize<Dynamic> {
574
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
575
- return kernelSize;
576
- }
577
- };
578
-
579
- template <typename InputEvaluator, typename Index, typename InputDims,
580
- int StaticKernelSize>
581
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel1D(
582
- InputEvaluator eval,
583
- const internal::IndexMapper<Index, InputDims, 1, InputEvaluator::Layout>
584
- indexMapper,
585
- const float* __restrict kernel, const int numPlanes, const int numX,
586
- const int maxX, const int kernelSize, float* buffer) {
587
- #if defined(EIGEN_HIPCC)
588
- HIP_DYNAMIC_SHARED(float, s)
589
- #else
590
- extern __shared__ float s[];
591
- #endif
592
-
593
- const int first_x = blockIdx.x * maxX;
594
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
595
- const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize);
596
- const int num_x_output = last_x - first_x + 1;
597
-
598
- const int first_plane = blockIdx.y * blockDim.y;
599
- const int plane_stride = blockDim.y * gridDim.y;
600
-
601
- for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) {
602
- // Load inputs to shared memory
603
- const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
604
- const int plane_kernel_offset = threadIdx.y * num_x_input;
605
- #pragma unroll
606
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
607
- const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x);
608
- s[i + plane_kernel_offset] = eval.coeff(tensor_index);
609
- }
610
-
611
- __syncthreads();
612
-
613
- // Compute the convolution
614
- const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
615
-
616
- #pragma unroll
617
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
618
- const int kernel_offset = plane_kernel_offset + i;
619
- float result = 0.0f;
620
- #pragma unroll
621
- for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) {
622
- result += s[k + kernel_offset] * kernel[k];
623
- }
624
- const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x);
625
- buffer[tensor_index] = result;
626
- }
627
- __syncthreads();
628
- }
629
- };
630
-
631
- template <typename InputEvaluator, typename Index, typename InputDims,
632
- int StaticKernelSizeX, int StaticKernelSizeY>
633
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel2D(
634
- InputEvaluator eval,
635
- const internal::IndexMapper<Index, InputDims, 2, InputEvaluator::Layout>
636
- indexMapper,
637
- const float* __restrict kernel, const int numPlanes, const int numX,
638
- const int maxX, const int numY, const int maxY, const int kernelSizeX,
639
- const int kernelSizeY, float* buffer) {
640
- #if defined(EIGEN_HIPCC)
641
- HIP_DYNAMIC_SHARED(float, s)
642
- #else
643
- extern __shared__ float s[];
644
- #endif
645
-
646
- const int first_x = blockIdx.x * maxX;
647
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
648
- const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX);
649
- const int num_x_output = last_x - first_x + 1;
650
-
651
- const int first_y = blockIdx.y * maxY;
652
- const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
653
- const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY);
654
- const int num_y_output = last_y - first_y + 1;
655
-
656
- const int first_plane = blockIdx.z * blockDim.z;
657
- const int plane_stride = blockDim.z * gridDim.z;
658
-
659
- for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) {
660
-
661
- const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
662
- const int plane_kernel_offset = threadIdx.z * num_y_input;
663
-
664
- // Load inputs to shared memory
665
- #pragma unroll
666
- for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
667
- const int input_offset = num_x_input * (j + plane_kernel_offset);
668
- #pragma unroll
669
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
670
- const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y);
671
- s[i + input_offset] = eval.coeff(tensor_index);
672
- }
673
- }
674
-
675
- __syncthreads();
676
-
677
- // Convolution
678
- const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
679
-
680
- #pragma unroll
681
- for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
682
- #pragma unroll
683
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
684
- float result = 0.0f;
685
- #pragma unroll
686
- for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) {
687
- const int kernel_offset = kernelSizeX * l;
688
- const int input_offset = i + num_x_input * (j + l + plane_kernel_offset);
689
- #pragma unroll
690
- for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) {
691
- result += s[k + input_offset] * kernel[k + kernel_offset];
692
- }
693
- }
694
- const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
695
- buffer[tensor_index] = result;
696
- }
697
- }
698
-
699
- __syncthreads();
700
- }
701
- };
702
-
703
- template <typename InputEvaluator, typename Index, typename InputDims>
704
- __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel3D(
705
- InputEvaluator eval,
706
- const internal::IndexMapper<Index, InputDims, 3, InputEvaluator::Layout>
707
- indexMapper,
708
- const float* __restrict kernel, const size_t numPlanes, const size_t numX,
709
- const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ,
710
- const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY,
711
- const size_t kernelSizeZ, float* buffer) {
712
- #if defined(EIGEN_HIPCC)
713
- HIP_DYNAMIC_SHARED(float, s)
714
- #else
715
- extern __shared__ float s[];
716
- #endif
717
-
718
- // Load inputs to shared memory
719
- const int first_x = blockIdx.x * maxX;
720
- const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
721
- const int num_x_input = last_x - first_x + kernelSizeX;
722
-
723
- const int first_y = blockIdx.y * maxY;
724
- const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
725
- const int num_y_input = last_y - first_y + kernelSizeY;
726
-
727
- const int first_z = blockIdx.z * maxZ;
728
- const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1;
729
- const int num_z_input = last_z - first_z + kernelSizeZ;
730
-
731
- for (int p = 0; p < numPlanes; ++p) {
732
-
733
- const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
734
- const int plane_kernel_offset = 0;
735
-
736
- for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) {
737
- for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
738
- for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
739
- const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
740
- s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index);
741
- }
742
- }
743
- }
744
-
745
- __syncthreads();
746
-
747
- // Convolution
748
- const int num_z_output = last_z - first_z + 1;
749
- const int num_y_output = last_y - first_y + 1;
750
- const int num_x_output = last_x - first_x + 1;
751
- const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
752
-
753
- for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) {
754
- for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
755
- for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
756
- float result = 0.0f;
757
- for (int n = 0; n < kernelSizeZ; ++n) {
758
- for (int m = 0; m < kernelSizeY; ++m) {
759
- for (int l = 0; l < kernelSizeX; ++l) {
760
- result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)];
761
- }
762
- }
763
- }
764
- const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
765
- buffer[tensor_index] = result;
766
- }
767
- }
768
- }
769
- __syncthreads();
770
- }
771
- };
772
-
773
-
774
-
775
- template<typename Indices, typename InputArgType, typename KernelArgType>
776
- struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice>
777
- {
778
- typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
779
-
780
- static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value;
781
- static const int NumKernelDims = internal::array_size<Indices>::value;
782
- typedef typename XprType::Index Index;
783
- typedef DSizes<Index, NumDims> Dimensions;
784
- typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions;
785
-
786
- enum {
787
- IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
788
- PacketAccess = false,
789
- BlockAccess = false,
790
- PreferBlockAccess = false,
791
- Layout = TensorEvaluator<InputArgType, GpuDevice>::Layout,
792
- CoordAccess = false, // to be implemented
793
- RawAccess = false
794
- };
795
-
796
- //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
797
- typedef internal::TensorBlockNotImplemented TensorBlock;
798
- //===--------------------------------------------------------------------===//
799
-
800
- TensorEvaluator(const XprType& op, const GpuDevice& device)
801
- : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
802
- {
803
- EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, GpuDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, GpuDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
804
-
805
- const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
806
- const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
807
-
808
- m_dimensions = m_inputImpl.dimensions();
809
- for (int i = 0; i < NumKernelDims; ++i) {
810
- const Index index = op.indices()[i];
811
- const Index input_dim = input_dims[index];
812
- const Index kernel_dim = kernel_dims[i];
813
- const Index result_dim = input_dim - kernel_dim + 1;
814
- m_dimensions[index] = result_dim;
815
- }
816
- }
817
-
818
- typedef typename XprType::CoeffReturnType CoeffReturnType;
819
- typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType;
820
- typedef typename InputArgType::Scalar Scalar;
821
- static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
822
-
823
- EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
824
-
825
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
826
- preloadKernel();
827
- m_inputImpl.evalSubExprsIfNeeded(NULL);
828
- if (data) {
829
- executeEval(data);
830
- return false;
831
- } else {
832
- m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
833
- executeEval(m_buf);
834
- return true;
835
- }
836
- }
837
-
838
- EIGEN_STRONG_INLINE void cleanup() {
839
- m_inputImpl.cleanup();
840
- if (m_buf) {
841
- m_device.deallocate(m_buf);
842
- m_buf = NULL;
843
- }
844
- if (m_local_kernel) {
845
- m_device.deallocate((void*)m_kernel);
846
- m_local_kernel = false;
847
- }
848
- m_kernel = NULL;
849
- }
850
-
851
- EIGEN_STRONG_INLINE void preloadKernel() {
852
- // Don't make a local copy of the kernel unless we have to (i.e. it's an
853
- // expression that needs to be evaluated)
854
- const Scalar* in_place = m_kernelImpl.data();
855
- if (in_place) {
856
- m_kernel = in_place;
857
- m_local_kernel = false;
858
- } else {
859
- size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
860
- Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
861
- typedef TensorEvalToOp<const KernelArgType> EvalTo;
862
- EvalTo evalToTmp(local, m_kernelArg);
863
- const bool PacketAccess = internal::IsVectorizable<GpuDevice, KernelArgType>::value;
864
- internal::TensorExecutor<const EvalTo, GpuDevice, PacketAccess>::run(evalToTmp, m_device);
865
-
866
- m_kernel = local;
867
- m_local_kernel = true;
868
- }
869
- }
870
-
871
- static unsigned int ceil(unsigned int num, unsigned int denom) {
872
- const unsigned int rounded_toward_zero = num / denom;
873
- if (num > rounded_toward_zero * denom) {
874
- return rounded_toward_zero + 1;
875
- }
876
- return rounded_toward_zero;
877
- }
878
-
879
- void executeEval(Scalar* data) const {
880
- typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims;
881
-
882
- const int maxSharedMem = m_device.sharedMemPerBlock();
883
- const int maxThreadsPerBlock = m_device.maxGpuThreadsPerBlock();
884
- const int maxBlocksPerProcessor = m_device.maxGpuThreadsPerMultiProcessor() / maxThreadsPerBlock;
885
- const int numMultiProcessors = m_device.getNumGpuMultiProcessors();
886
- const int warpSize = 32;
887
-
888
- switch (NumKernelDims) {
889
- case 1: {
890
- const int kernel_size = m_kernelImpl.dimensions().TotalSize();
891
-
892
- const int numX = dimensions()[m_indices[0]];
893
- const int numP = dimensions().TotalSize() / numX;
894
- int maxX;
895
- dim3 block_size;
896
-
897
- const int single_stride_dim =
898
- static_cast<int>(Layout) == static_cast<int>(ColMajor)
899
- ? 0
900
- : m_inputImpl.dimensions().rank() - 1;
901
- if (m_indices[0] == single_stride_dim) {
902
- // Maximum the reuse
903
- const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32;
904
- maxX = numext::mini<int>(inner_dim, numX);
905
- const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP);
906
- block_size.x = numext::mini(maxThreadsPerBlock, maxX);
907
- block_size.y = numext::mini<int>(maxThreadsPerBlock / block_size.x, maxP);
908
- }
909
- else {
910
- // Read as much as possible alongside the inner most dimension, that is the plane
911
- const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar));
912
- const int maxP = numext::mini<int>(inner_dim, numP);
913
- maxX = numext::mini<int>(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX);
914
-
915
- block_size.x = numext::mini(warpSize, maxX);
916
- block_size.y = numext::mini<int>(maxThreadsPerBlock/block_size.x, maxP);
917
- }
918
-
919
- const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar);
920
- gpu_assert(shared_mem <= maxSharedMem);
921
-
922
- const int num_x_blocks = ceil(numX, maxX);
923
- const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
924
- const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks);
925
-
926
- dim3 num_blocks(num_x_blocks, numext::mini<int>(num_y_blocks, ceil(numP, block_size.y)));
927
-
928
-
929
- //cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
930
-
931
- const array<Index, 1> indices(m_indices[0]);
932
- const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]);
933
- internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(
934
- m_inputImpl.dimensions(), kernel_dims, indices);
935
- switch(kernel_size) {
936
- case 4: {
937
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
938
- break;
939
- }
940
- case 7: {
941
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
942
- break;
943
- }
944
- default: {
945
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
946
- }
947
- }
948
- break;
949
- }
950
-
951
- case 2: {
952
- const int idxX =
953
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1;
954
- const int idxY =
955
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0;
956
- const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
957
- const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
958
-
959
- const int numX = dimensions()[m_indices[idxX]];
960
- const int numY = dimensions()[m_indices[idxY]];
961
- const int numP = dimensions().TotalSize() / (numX*numY);
962
-
963
- const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x));
964
-
965
- // Snap maxX to warp size
966
- int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32;
967
- const int maxX = numext::mini<int>(inner_dim, numX);
968
- const int maxY = numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY);
969
- const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP);
970
-
971
- dim3 block_size;
972
- block_size.x = numext::mini(1024, maxX);
973
- block_size.y = numext::mini<int>(1024/block_size.x, maxY);
974
- block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxP);
975
-
976
- const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar);
977
- gpu_assert(shared_mem <= maxSharedMem);
978
-
979
- const int num_x_blocks = ceil(numX, maxX);
980
- const int num_y_blocks = ceil(numY, maxY);
981
- const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
982
- const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks);
983
-
984
- dim3 num_blocks(num_x_blocks, num_y_blocks, numext::mini<int>(num_z_blocks, ceil(numP, block_size.z)));
985
-
986
-
987
- //cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
988
-
989
- const array<Index, 2> indices(m_indices[idxX], m_indices[idxY]);
990
- const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[idxX],
991
- m_kernelImpl.dimensions()[idxY]);
992
- internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(
993
- m_inputImpl.dimensions(), kernel_dims, indices);
994
- switch (kernel_size_x) {
995
- case 4: {
996
- switch (kernel_size_y) {
997
- case 7: {
998
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
999
- break;
1000
- }
1001
- default: {
1002
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
1003
- break;
1004
- }
1005
- }
1006
- break;
1007
- }
1008
- case 7: {
1009
- switch (kernel_size_y) {
1010
- case 4: {
1011
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
1012
- break;
1013
- }
1014
- default: {
1015
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
1016
- break;
1017
- }
1018
- }
1019
- break;
1020
- }
1021
- default: {
1022
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
1023
- break;
1024
- }
1025
- }
1026
- break;
1027
- }
1028
-
1029
- case 3: {
1030
- const int idxX =
1031
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2;
1032
- const int idxY =
1033
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1;
1034
- const int idxZ =
1035
- static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0;
1036
-
1037
- const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
1038
- const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
1039
- const int kernel_size_z = m_kernelImpl.dimensions()[idxZ];
1040
-
1041
- const int numX = dimensions()[m_indices[idxX]];
1042
- const int numY = dimensions()[m_indices[idxY]];
1043
- const int numZ = dimensions()[m_indices[idxZ]];
1044
- const int numP = dimensions().TotalSize() / (numX*numY*numZ);
1045
-
1046
- const int maxX = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX));
1047
- const int maxY = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY));
1048
- const int maxZ = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ));
1049
-
1050
- dim3 block_size;
1051
- block_size.x = numext::mini(32, maxX);
1052
- block_size.y = numext::mini(32, maxY);
1053
- block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxZ);
1054
- dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ));
1055
-
1056
- const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar);
1057
- gpu_assert(shared_mem <= maxSharedMem);
1058
-
1059
- //cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
1060
- const array<Index, 3> indices(m_indices[idxX], m_indices[idxY],
1061
- m_indices[idxZ]);
1062
- const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[idxX],
1063
- m_kernelImpl.dimensions()[idxY],
1064
- m_kernelImpl.dimensions()[idxZ]);
1065
- internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(
1066
- m_inputImpl.dimensions(), kernel_dims, indices);
1067
-
1068
- LAUNCH_GPU_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
1069
- break;
1070
- }
1071
-
1072
- default: {
1073
- EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
1074
- }
1075
- }
1076
- }
1077
-
1078
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
1079
- {
1080
- eigen_assert(m_buf);
1081
- eigen_assert(index < m_dimensions.TotalSize());
1082
- return m_buf[index];
1083
- }
1084
-
1085
- template<int LoadMode>
1086
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const
1087
- {
1088
- eigen_assert(m_buf);
1089
- eigen_assert(index < m_dimensions.TotalSize());
1090
- return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index);
1091
- }
1092
-
1093
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
1094
- costPerCoeff(bool vectorized) const {
1095
- // TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
1096
- // model.
1097
- const double kernel_size = m_kernelImpl.dimensions().TotalSize();
1098
- // We ignore the use of fused multiply-add.
1099
- const double convolve_compute_cost =
1100
- TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
1101
- const double firstIndex_compute_cost =
1102
- NumDims *
1103
- (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
1104
- TensorOpCost::DivCost<Index>());
1105
- return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
1106
- kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
1107
- m_kernelImpl.costPerCoeff(vectorized) +
1108
- TensorOpCost(0, 0, convolve_compute_cost, vectorized,
1109
- PacketSize));
1110
- }
1111
-
1112
- private:
1113
- // No assignment (copies are needed by the kernels)
1114
- TensorEvaluator& operator = (const TensorEvaluator&);
1115
-
1116
- TensorEvaluator<InputArgType, GpuDevice> m_inputImpl;
1117
- TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl;
1118
- KernelArgType m_kernelArg;
1119
- Indices m_indices;
1120
- Dimensions m_dimensions;
1121
- Scalar* m_buf;
1122
- const Scalar* m_kernel;
1123
- bool m_local_kernel;
1124
-
1125
- const GpuDevice& m_device;
1126
- };
1127
- #endif
1128
-
1129
-
1130
- } // end namespace Eigen
1131
-
1132
- #endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H