scipy 1.16.2__cp314-cp314-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1530) hide show
  1. scipy/__config__.py +161 -0
  2. scipy/__init__.py +150 -0
  3. scipy/_cyutility.cp314-win_arm64.lib +0 -0
  4. scipy/_cyutility.cp314-win_arm64.pyd +0 -0
  5. scipy/_distributor_init.py +18 -0
  6. scipy/_lib/__init__.py +14 -0
  7. scipy/_lib/_array_api.py +931 -0
  8. scipy/_lib/_array_api_compat_vendor.py +9 -0
  9. scipy/_lib/_array_api_no_0d.py +103 -0
  10. scipy/_lib/_bunch.py +229 -0
  11. scipy/_lib/_ccallback.py +251 -0
  12. scipy/_lib/_ccallback_c.cp314-win_arm64.lib +0 -0
  13. scipy/_lib/_ccallback_c.cp314-win_arm64.pyd +0 -0
  14. scipy/_lib/_disjoint_set.py +254 -0
  15. scipy/_lib/_docscrape.py +761 -0
  16. scipy/_lib/_elementwise_iterative_method.py +346 -0
  17. scipy/_lib/_fpumode.cp314-win_arm64.lib +0 -0
  18. scipy/_lib/_fpumode.cp314-win_arm64.pyd +0 -0
  19. scipy/_lib/_gcutils.py +105 -0
  20. scipy/_lib/_pep440.py +487 -0
  21. scipy/_lib/_sparse.py +41 -0
  22. scipy/_lib/_test_ccallback.cp314-win_arm64.lib +0 -0
  23. scipy/_lib/_test_ccallback.cp314-win_arm64.pyd +0 -0
  24. scipy/_lib/_test_deprecation_call.cp314-win_arm64.lib +0 -0
  25. scipy/_lib/_test_deprecation_call.cp314-win_arm64.pyd +0 -0
  26. scipy/_lib/_test_deprecation_def.cp314-win_arm64.lib +0 -0
  27. scipy/_lib/_test_deprecation_def.cp314-win_arm64.pyd +0 -0
  28. scipy/_lib/_testutils.py +373 -0
  29. scipy/_lib/_threadsafety.py +58 -0
  30. scipy/_lib/_tmpdirs.py +86 -0
  31. scipy/_lib/_uarray/LICENSE +29 -0
  32. scipy/_lib/_uarray/__init__.py +116 -0
  33. scipy/_lib/_uarray/_backend.py +707 -0
  34. scipy/_lib/_uarray/_uarray.cp314-win_arm64.lib +0 -0
  35. scipy/_lib/_uarray/_uarray.cp314-win_arm64.pyd +0 -0
  36. scipy/_lib/_util.py +1283 -0
  37. scipy/_lib/array_api_compat/__init__.py +22 -0
  38. scipy/_lib/array_api_compat/_internal.py +59 -0
  39. scipy/_lib/array_api_compat/common/__init__.py +1 -0
  40. scipy/_lib/array_api_compat/common/_aliases.py +727 -0
  41. scipy/_lib/array_api_compat/common/_fft.py +213 -0
  42. scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
  43. scipy/_lib/array_api_compat/common/_linalg.py +232 -0
  44. scipy/_lib/array_api_compat/common/_typing.py +192 -0
  45. scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
  46. scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
  47. scipy/_lib/array_api_compat/cupy/_info.py +336 -0
  48. scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
  49. scipy/_lib/array_api_compat/cupy/fft.py +36 -0
  50. scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
  51. scipy/_lib/array_api_compat/dask/__init__.py +0 -0
  52. scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
  53. scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
  54. scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
  55. scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
  56. scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
  57. scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
  58. scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
  59. scipy/_lib/array_api_compat/numpy/_info.py +366 -0
  60. scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
  61. scipy/_lib/array_api_compat/numpy/fft.py +35 -0
  62. scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
  63. scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  64. scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
  65. scipy/_lib/array_api_compat/torch/_info.py +369 -0
  66. scipy/_lib/array_api_compat/torch/_typing.py +3 -0
  67. scipy/_lib/array_api_compat/torch/fft.py +85 -0
  68. scipy/_lib/array_api_compat/torch/linalg.py +121 -0
  69. scipy/_lib/array_api_extra/__init__.py +38 -0
  70. scipy/_lib/array_api_extra/_delegation.py +171 -0
  71. scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
  72. scipy/_lib/array_api_extra/_lib/_at.py +463 -0
  73. scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
  74. scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
  75. scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
  76. scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
  77. scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
  78. scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
  79. scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
  80. scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
  81. scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
  82. scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
  83. scipy/_lib/array_api_extra/testing.py +359 -0
  84. scipy/_lib/cobyqa/__init__.py +20 -0
  85. scipy/_lib/cobyqa/framework.py +1240 -0
  86. scipy/_lib/cobyqa/main.py +1506 -0
  87. scipy/_lib/cobyqa/models.py +1529 -0
  88. scipy/_lib/cobyqa/problem.py +1296 -0
  89. scipy/_lib/cobyqa/settings.py +132 -0
  90. scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
  91. scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
  92. scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
  93. scipy/_lib/cobyqa/utils/__init__.py +18 -0
  94. scipy/_lib/cobyqa/utils/exceptions.py +22 -0
  95. scipy/_lib/cobyqa/utils/math.py +77 -0
  96. scipy/_lib/cobyqa/utils/versions.py +67 -0
  97. scipy/_lib/decorator.py +399 -0
  98. scipy/_lib/deprecation.py +274 -0
  99. scipy/_lib/doccer.py +366 -0
  100. scipy/_lib/messagestream.cp314-win_arm64.lib +0 -0
  101. scipy/_lib/messagestream.cp314-win_arm64.pyd +0 -0
  102. scipy/_lib/pyprima/__init__.py +212 -0
  103. scipy/_lib/pyprima/cobyla/__init__.py +0 -0
  104. scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
  105. scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
  106. scipy/_lib/pyprima/cobyla/geometry.py +226 -0
  107. scipy/_lib/pyprima/cobyla/initialize.py +215 -0
  108. scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
  109. scipy/_lib/pyprima/cobyla/update.py +289 -0
  110. scipy/_lib/pyprima/common/__init__.py +0 -0
  111. scipy/_lib/pyprima/common/_bounds.py +34 -0
  112. scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
  113. scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
  114. scipy/_lib/pyprima/common/_project.py +173 -0
  115. scipy/_lib/pyprima/common/checkbreak.py +93 -0
  116. scipy/_lib/pyprima/common/consts.py +47 -0
  117. scipy/_lib/pyprima/common/evaluate.py +99 -0
  118. scipy/_lib/pyprima/common/history.py +38 -0
  119. scipy/_lib/pyprima/common/infos.py +30 -0
  120. scipy/_lib/pyprima/common/linalg.py +435 -0
  121. scipy/_lib/pyprima/common/message.py +290 -0
  122. scipy/_lib/pyprima/common/powalg.py +131 -0
  123. scipy/_lib/pyprima/common/preproc.py +277 -0
  124. scipy/_lib/pyprima/common/present.py +5 -0
  125. scipy/_lib/pyprima/common/ratio.py +54 -0
  126. scipy/_lib/pyprima/common/redrho.py +47 -0
  127. scipy/_lib/pyprima/common/selectx.py +296 -0
  128. scipy/_lib/tests/__init__.py +0 -0
  129. scipy/_lib/tests/test__gcutils.py +110 -0
  130. scipy/_lib/tests/test__pep440.py +67 -0
  131. scipy/_lib/tests/test__testutils.py +32 -0
  132. scipy/_lib/tests/test__threadsafety.py +51 -0
  133. scipy/_lib/tests/test__util.py +641 -0
  134. scipy/_lib/tests/test_array_api.py +322 -0
  135. scipy/_lib/tests/test_bunch.py +169 -0
  136. scipy/_lib/tests/test_ccallback.py +196 -0
  137. scipy/_lib/tests/test_config.py +45 -0
  138. scipy/_lib/tests/test_deprecation.py +10 -0
  139. scipy/_lib/tests/test_doccer.py +143 -0
  140. scipy/_lib/tests/test_import_cycles.py +18 -0
  141. scipy/_lib/tests/test_public_api.py +482 -0
  142. scipy/_lib/tests/test_scipy_version.py +28 -0
  143. scipy/_lib/tests/test_tmpdirs.py +48 -0
  144. scipy/_lib/tests/test_warnings.py +137 -0
  145. scipy/_lib/uarray.py +31 -0
  146. scipy/cluster/__init__.py +31 -0
  147. scipy/cluster/_hierarchy.cp314-win_arm64.lib +0 -0
  148. scipy/cluster/_hierarchy.cp314-win_arm64.pyd +0 -0
  149. scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.lib +0 -0
  150. scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.pyd +0 -0
  151. scipy/cluster/_vq.cp314-win_arm64.lib +0 -0
  152. scipy/cluster/_vq.cp314-win_arm64.pyd +0 -0
  153. scipy/cluster/hierarchy.py +4348 -0
  154. scipy/cluster/tests/__init__.py +0 -0
  155. scipy/cluster/tests/hierarchy_test_data.py +145 -0
  156. scipy/cluster/tests/test_disjoint_set.py +202 -0
  157. scipy/cluster/tests/test_hierarchy.py +1238 -0
  158. scipy/cluster/tests/test_vq.py +434 -0
  159. scipy/cluster/vq.py +832 -0
  160. scipy/conftest.py +683 -0
  161. scipy/constants/__init__.py +358 -0
  162. scipy/constants/_codata.py +2266 -0
  163. scipy/constants/_constants.py +369 -0
  164. scipy/constants/codata.py +21 -0
  165. scipy/constants/constants.py +53 -0
  166. scipy/constants/tests/__init__.py +0 -0
  167. scipy/constants/tests/test_codata.py +78 -0
  168. scipy/constants/tests/test_constants.py +83 -0
  169. scipy/datasets/__init__.py +90 -0
  170. scipy/datasets/_download_all.py +71 -0
  171. scipy/datasets/_fetchers.py +225 -0
  172. scipy/datasets/_registry.py +26 -0
  173. scipy/datasets/_utils.py +81 -0
  174. scipy/datasets/tests/__init__.py +0 -0
  175. scipy/datasets/tests/test_data.py +128 -0
  176. scipy/differentiate/__init__.py +27 -0
  177. scipy/differentiate/_differentiate.py +1129 -0
  178. scipy/differentiate/tests/__init__.py +0 -0
  179. scipy/differentiate/tests/test_differentiate.py +694 -0
  180. scipy/fft/__init__.py +114 -0
  181. scipy/fft/_backend.py +196 -0
  182. scipy/fft/_basic.py +1650 -0
  183. scipy/fft/_basic_backend.py +197 -0
  184. scipy/fft/_debug_backends.py +22 -0
  185. scipy/fft/_fftlog.py +223 -0
  186. scipy/fft/_fftlog_backend.py +200 -0
  187. scipy/fft/_helper.py +348 -0
  188. scipy/fft/_pocketfft/LICENSE.md +25 -0
  189. scipy/fft/_pocketfft/__init__.py +9 -0
  190. scipy/fft/_pocketfft/basic.py +251 -0
  191. scipy/fft/_pocketfft/helper.py +249 -0
  192. scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.lib +0 -0
  193. scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.pyd +0 -0
  194. scipy/fft/_pocketfft/realtransforms.py +109 -0
  195. scipy/fft/_pocketfft/tests/__init__.py +0 -0
  196. scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
  197. scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
  198. scipy/fft/_realtransforms.py +706 -0
  199. scipy/fft/_realtransforms_backend.py +63 -0
  200. scipy/fft/tests/__init__.py +0 -0
  201. scipy/fft/tests/mock_backend.py +96 -0
  202. scipy/fft/tests/test_backend.py +98 -0
  203. scipy/fft/tests/test_basic.py +504 -0
  204. scipy/fft/tests/test_fftlog.py +215 -0
  205. scipy/fft/tests/test_helper.py +558 -0
  206. scipy/fft/tests/test_multithreading.py +84 -0
  207. scipy/fft/tests/test_real_transforms.py +247 -0
  208. scipy/fftpack/__init__.py +103 -0
  209. scipy/fftpack/_basic.py +428 -0
  210. scipy/fftpack/_helper.py +115 -0
  211. scipy/fftpack/_pseudo_diffs.py +554 -0
  212. scipy/fftpack/_realtransforms.py +598 -0
  213. scipy/fftpack/basic.py +20 -0
  214. scipy/fftpack/convolve.cp314-win_arm64.lib +0 -0
  215. scipy/fftpack/convolve.cp314-win_arm64.pyd +0 -0
  216. scipy/fftpack/helper.py +19 -0
  217. scipy/fftpack/pseudo_diffs.py +22 -0
  218. scipy/fftpack/realtransforms.py +19 -0
  219. scipy/fftpack/tests/__init__.py +0 -0
  220. scipy/fftpack/tests/fftw_double_ref.npz +0 -0
  221. scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
  222. scipy/fftpack/tests/fftw_single_ref.npz +0 -0
  223. scipy/fftpack/tests/test.npz +0 -0
  224. scipy/fftpack/tests/test_basic.py +877 -0
  225. scipy/fftpack/tests/test_helper.py +54 -0
  226. scipy/fftpack/tests/test_import.py +33 -0
  227. scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
  228. scipy/fftpack/tests/test_real_transforms.py +836 -0
  229. scipy/integrate/__init__.py +122 -0
  230. scipy/integrate/_bvp.py +1160 -0
  231. scipy/integrate/_cubature.py +729 -0
  232. scipy/integrate/_dop.cp314-win_arm64.lib +0 -0
  233. scipy/integrate/_dop.cp314-win_arm64.pyd +0 -0
  234. scipy/integrate/_ivp/__init__.py +8 -0
  235. scipy/integrate/_ivp/base.py +290 -0
  236. scipy/integrate/_ivp/bdf.py +478 -0
  237. scipy/integrate/_ivp/common.py +451 -0
  238. scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  239. scipy/integrate/_ivp/ivp.py +755 -0
  240. scipy/integrate/_ivp/lsoda.py +224 -0
  241. scipy/integrate/_ivp/radau.py +572 -0
  242. scipy/integrate/_ivp/rk.py +601 -0
  243. scipy/integrate/_ivp/tests/__init__.py +0 -0
  244. scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
  245. scipy/integrate/_ivp/tests/test_rk.py +37 -0
  246. scipy/integrate/_lebedev.py +5450 -0
  247. scipy/integrate/_lsoda.cp314-win_arm64.lib +0 -0
  248. scipy/integrate/_lsoda.cp314-win_arm64.pyd +0 -0
  249. scipy/integrate/_ode.py +1395 -0
  250. scipy/integrate/_odepack.cp314-win_arm64.lib +0 -0
  251. scipy/integrate/_odepack.cp314-win_arm64.pyd +0 -0
  252. scipy/integrate/_odepack_py.py +273 -0
  253. scipy/integrate/_quad_vec.py +674 -0
  254. scipy/integrate/_quadpack.cp314-win_arm64.lib +0 -0
  255. scipy/integrate/_quadpack.cp314-win_arm64.pyd +0 -0
  256. scipy/integrate/_quadpack_py.py +1283 -0
  257. scipy/integrate/_quadrature.py +1336 -0
  258. scipy/integrate/_rules/__init__.py +12 -0
  259. scipy/integrate/_rules/_base.py +518 -0
  260. scipy/integrate/_rules/_gauss_kronrod.py +202 -0
  261. scipy/integrate/_rules/_gauss_legendre.py +62 -0
  262. scipy/integrate/_rules/_genz_malik.py +210 -0
  263. scipy/integrate/_tanhsinh.py +1385 -0
  264. scipy/integrate/_test_multivariate.cp314-win_arm64.lib +0 -0
  265. scipy/integrate/_test_multivariate.cp314-win_arm64.pyd +0 -0
  266. scipy/integrate/_test_odeint_banded.cp314-win_arm64.lib +0 -0
  267. scipy/integrate/_test_odeint_banded.cp314-win_arm64.pyd +0 -0
  268. scipy/integrate/_vode.cp314-win_arm64.lib +0 -0
  269. scipy/integrate/_vode.cp314-win_arm64.pyd +0 -0
  270. scipy/integrate/dop.py +15 -0
  271. scipy/integrate/lsoda.py +15 -0
  272. scipy/integrate/odepack.py +17 -0
  273. scipy/integrate/quadpack.py +23 -0
  274. scipy/integrate/tests/__init__.py +0 -0
  275. scipy/integrate/tests/test__quad_vec.py +211 -0
  276. scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
  277. scipy/integrate/tests/test_bvp.py +714 -0
  278. scipy/integrate/tests/test_cubature.py +1375 -0
  279. scipy/integrate/tests/test_integrate.py +840 -0
  280. scipy/integrate/tests/test_odeint_jac.py +74 -0
  281. scipy/integrate/tests/test_quadpack.py +680 -0
  282. scipy/integrate/tests/test_quadrature.py +730 -0
  283. scipy/integrate/tests/test_tanhsinh.py +1171 -0
  284. scipy/integrate/vode.py +15 -0
  285. scipy/interpolate/__init__.py +228 -0
  286. scipy/interpolate/_bary_rational.py +715 -0
  287. scipy/interpolate/_bsplines.py +2469 -0
  288. scipy/interpolate/_cubic.py +973 -0
  289. scipy/interpolate/_dfitpack.cp314-win_arm64.lib +0 -0
  290. scipy/interpolate/_dfitpack.cp314-win_arm64.pyd +0 -0
  291. scipy/interpolate/_dierckx.cp314-win_arm64.lib +0 -0
  292. scipy/interpolate/_dierckx.cp314-win_arm64.pyd +0 -0
  293. scipy/interpolate/_fitpack.cp314-win_arm64.lib +0 -0
  294. scipy/interpolate/_fitpack.cp314-win_arm64.pyd +0 -0
  295. scipy/interpolate/_fitpack2.py +2397 -0
  296. scipy/interpolate/_fitpack_impl.py +811 -0
  297. scipy/interpolate/_fitpack_py.py +898 -0
  298. scipy/interpolate/_fitpack_repro.py +996 -0
  299. scipy/interpolate/_interpnd.cp314-win_arm64.lib +0 -0
  300. scipy/interpolate/_interpnd.cp314-win_arm64.pyd +0 -0
  301. scipy/interpolate/_interpolate.py +2266 -0
  302. scipy/interpolate/_ndbspline.py +415 -0
  303. scipy/interpolate/_ndgriddata.py +329 -0
  304. scipy/interpolate/_pade.py +67 -0
  305. scipy/interpolate/_polyint.py +1025 -0
  306. scipy/interpolate/_ppoly.cp314-win_arm64.lib +0 -0
  307. scipy/interpolate/_ppoly.cp314-win_arm64.pyd +0 -0
  308. scipy/interpolate/_rbf.py +290 -0
  309. scipy/interpolate/_rbfinterp.py +550 -0
  310. scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.lib +0 -0
  311. scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.pyd +0 -0
  312. scipy/interpolate/_rgi.py +764 -0
  313. scipy/interpolate/_rgi_cython.cp314-win_arm64.lib +0 -0
  314. scipy/interpolate/_rgi_cython.cp314-win_arm64.pyd +0 -0
  315. scipy/interpolate/dfitpack.py +24 -0
  316. scipy/interpolate/fitpack.py +31 -0
  317. scipy/interpolate/fitpack2.py +29 -0
  318. scipy/interpolate/interpnd.py +24 -0
  319. scipy/interpolate/interpolate.py +30 -0
  320. scipy/interpolate/ndgriddata.py +23 -0
  321. scipy/interpolate/polyint.py +24 -0
  322. scipy/interpolate/rbf.py +18 -0
  323. scipy/interpolate/tests/__init__.py +0 -0
  324. scipy/interpolate/tests/data/bug-1310.npz +0 -0
  325. scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
  326. scipy/interpolate/tests/data/gcvspl.npz +0 -0
  327. scipy/interpolate/tests/test_bary_rational.py +368 -0
  328. scipy/interpolate/tests/test_bsplines.py +3754 -0
  329. scipy/interpolate/tests/test_fitpack.py +519 -0
  330. scipy/interpolate/tests/test_fitpack2.py +1431 -0
  331. scipy/interpolate/tests/test_gil.py +64 -0
  332. scipy/interpolate/tests/test_interpnd.py +452 -0
  333. scipy/interpolate/tests/test_interpolate.py +2630 -0
  334. scipy/interpolate/tests/test_ndgriddata.py +308 -0
  335. scipy/interpolate/tests/test_pade.py +107 -0
  336. scipy/interpolate/tests/test_polyint.py +972 -0
  337. scipy/interpolate/tests/test_rbf.py +246 -0
  338. scipy/interpolate/tests/test_rbfinterp.py +534 -0
  339. scipy/interpolate/tests/test_rgi.py +1151 -0
  340. scipy/io/__init__.py +116 -0
  341. scipy/io/_fast_matrix_market/__init__.py +600 -0
  342. scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.lib +0 -0
  343. scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.pyd +0 -0
  344. scipy/io/_fortran.py +354 -0
  345. scipy/io/_harwell_boeing/__init__.py +7 -0
  346. scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
  347. scipy/io/_harwell_boeing/hb.py +571 -0
  348. scipy/io/_harwell_boeing/tests/__init__.py +0 -0
  349. scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
  350. scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
  351. scipy/io/_idl.py +917 -0
  352. scipy/io/_mmio.py +968 -0
  353. scipy/io/_netcdf.py +1104 -0
  354. scipy/io/_test_fortran.cp314-win_arm64.lib +0 -0
  355. scipy/io/_test_fortran.cp314-win_arm64.pyd +0 -0
  356. scipy/io/arff/__init__.py +28 -0
  357. scipy/io/arff/_arffread.py +873 -0
  358. scipy/io/arff/arffread.py +19 -0
  359. scipy/io/arff/tests/__init__.py +0 -0
  360. scipy/io/arff/tests/data/iris.arff +225 -0
  361. scipy/io/arff/tests/data/missing.arff +8 -0
  362. scipy/io/arff/tests/data/nodata.arff +11 -0
  363. scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
  364. scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
  365. scipy/io/arff/tests/data/test1.arff +10 -0
  366. scipy/io/arff/tests/data/test10.arff +8 -0
  367. scipy/io/arff/tests/data/test11.arff +11 -0
  368. scipy/io/arff/tests/data/test2.arff +15 -0
  369. scipy/io/arff/tests/data/test3.arff +6 -0
  370. scipy/io/arff/tests/data/test4.arff +11 -0
  371. scipy/io/arff/tests/data/test5.arff +26 -0
  372. scipy/io/arff/tests/data/test6.arff +12 -0
  373. scipy/io/arff/tests/data/test7.arff +15 -0
  374. scipy/io/arff/tests/data/test8.arff +12 -0
  375. scipy/io/arff/tests/data/test9.arff +14 -0
  376. scipy/io/arff/tests/test_arffread.py +421 -0
  377. scipy/io/harwell_boeing.py +17 -0
  378. scipy/io/idl.py +17 -0
  379. scipy/io/matlab/__init__.py +66 -0
  380. scipy/io/matlab/_byteordercodes.py +75 -0
  381. scipy/io/matlab/_mio.py +375 -0
  382. scipy/io/matlab/_mio4.py +632 -0
  383. scipy/io/matlab/_mio5.py +901 -0
  384. scipy/io/matlab/_mio5_params.py +281 -0
  385. scipy/io/matlab/_mio5_utils.cp314-win_arm64.lib +0 -0
  386. scipy/io/matlab/_mio5_utils.cp314-win_arm64.pyd +0 -0
  387. scipy/io/matlab/_mio_utils.cp314-win_arm64.lib +0 -0
  388. scipy/io/matlab/_mio_utils.cp314-win_arm64.pyd +0 -0
  389. scipy/io/matlab/_miobase.py +435 -0
  390. scipy/io/matlab/_streams.cp314-win_arm64.lib +0 -0
  391. scipy/io/matlab/_streams.cp314-win_arm64.pyd +0 -0
  392. scipy/io/matlab/byteordercodes.py +17 -0
  393. scipy/io/matlab/mio.py +16 -0
  394. scipy/io/matlab/mio4.py +17 -0
  395. scipy/io/matlab/mio5.py +19 -0
  396. scipy/io/matlab/mio5_params.py +18 -0
  397. scipy/io/matlab/mio5_utils.py +17 -0
  398. scipy/io/matlab/mio_utils.py +17 -0
  399. scipy/io/matlab/miobase.py +16 -0
  400. scipy/io/matlab/streams.py +16 -0
  401. scipy/io/matlab/tests/__init__.py +0 -0
  402. scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  403. scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
  404. scipy/io/matlab/tests/data/big_endian.mat +0 -0
  405. scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
  406. scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
  407. scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  408. scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
  409. scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
  410. scipy/io/matlab/tests/data/little_endian.mat +0 -0
  411. scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  412. scipy/io/matlab/tests/data/malformed1.mat +0 -0
  413. scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  414. scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  415. scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  416. scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
  417. scipy/io/matlab/tests/data/parabola.mat +0 -0
  418. scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
  419. scipy/io/matlab/tests/data/some_functions.mat +0 -0
  420. scipy/io/matlab/tests/data/sqr.mat +0 -0
  421. scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
  422. scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
  423. scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
  424. scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  425. scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
  426. scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
  427. scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  428. scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
  429. scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  430. scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
  431. scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
  432. scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
  433. scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  434. scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  435. scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
  436. scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
  437. scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
  438. scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
  439. scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
  440. scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
  441. scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
  442. scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
  443. scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
  444. scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
  445. scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
  446. scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
  447. scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
  448. scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
  449. scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
  450. scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
  451. scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
  452. scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
  453. scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
  454. scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
  455. scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
  456. scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
  457. scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
  458. scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
  459. scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
  460. scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
  461. scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
  462. scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
  463. scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
  464. scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
  465. scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
  466. scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
  467. scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
  468. scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
  469. scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
  470. scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
  471. scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
  472. scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
  473. scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
  474. scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
  475. scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
  476. scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
  477. scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
  478. scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
  479. scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
  480. scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
  481. scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
  482. scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
  483. scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
  484. scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
  485. scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
  486. scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
  487. scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
  488. scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
  489. scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
  490. scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
  491. scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
  492. scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
  493. scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
  494. scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
  495. scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
  496. scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
  497. scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
  498. scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
  499. scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
  500. scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
  501. scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
  502. scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
  503. scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
  504. scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
  505. scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
  506. scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
  507. scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
  508. scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
  509. scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
  510. scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
  511. scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
  512. scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
  513. scipy/io/matlab/tests/test_byteordercodes.py +29 -0
  514. scipy/io/matlab/tests/test_mio.py +1399 -0
  515. scipy/io/matlab/tests/test_mio5_utils.py +179 -0
  516. scipy/io/matlab/tests/test_mio_funcs.py +51 -0
  517. scipy/io/matlab/tests/test_mio_utils.py +45 -0
  518. scipy/io/matlab/tests/test_miobase.py +32 -0
  519. scipy/io/matlab/tests/test_pathological.py +33 -0
  520. scipy/io/matlab/tests/test_streams.py +241 -0
  521. scipy/io/mmio.py +17 -0
  522. scipy/io/netcdf.py +17 -0
  523. scipy/io/tests/__init__.py +0 -0
  524. scipy/io/tests/data/Transparent Busy.ani +0 -0
  525. scipy/io/tests/data/array_float32_1d.sav +0 -0
  526. scipy/io/tests/data/array_float32_2d.sav +0 -0
  527. scipy/io/tests/data/array_float32_3d.sav +0 -0
  528. scipy/io/tests/data/array_float32_4d.sav +0 -0
  529. scipy/io/tests/data/array_float32_5d.sav +0 -0
  530. scipy/io/tests/data/array_float32_6d.sav +0 -0
  531. scipy/io/tests/data/array_float32_7d.sav +0 -0
  532. scipy/io/tests/data/array_float32_8d.sav +0 -0
  533. scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
  534. scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
  535. scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
  536. scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
  537. scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
  538. scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
  539. scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
  540. scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
  541. scipy/io/tests/data/example_1.nc +0 -0
  542. scipy/io/tests/data/example_2.nc +0 -0
  543. scipy/io/tests/data/example_3_maskedvals.nc +0 -0
  544. scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
  545. scipy/io/tests/data/fortran-mixed.dat +0 -0
  546. scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
  547. scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
  548. scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
  549. scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
  550. scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
  551. scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
  552. scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
  553. scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
  554. scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
  555. scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
  556. scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
  557. scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
  558. scipy/io/tests/data/invalid_pointer.sav +0 -0
  559. scipy/io/tests/data/null_pointer.sav +0 -0
  560. scipy/io/tests/data/scalar_byte.sav +0 -0
  561. scipy/io/tests/data/scalar_byte_descr.sav +0 -0
  562. scipy/io/tests/data/scalar_complex32.sav +0 -0
  563. scipy/io/tests/data/scalar_complex64.sav +0 -0
  564. scipy/io/tests/data/scalar_float32.sav +0 -0
  565. scipy/io/tests/data/scalar_float64.sav +0 -0
  566. scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
  567. scipy/io/tests/data/scalar_int16.sav +0 -0
  568. scipy/io/tests/data/scalar_int32.sav +0 -0
  569. scipy/io/tests/data/scalar_int64.sav +0 -0
  570. scipy/io/tests/data/scalar_string.sav +0 -0
  571. scipy/io/tests/data/scalar_uint16.sav +0 -0
  572. scipy/io/tests/data/scalar_uint32.sav +0 -0
  573. scipy/io/tests/data/scalar_uint64.sav +0 -0
  574. scipy/io/tests/data/struct_arrays.sav +0 -0
  575. scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
  576. scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
  577. scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
  578. scipy/io/tests/data/struct_inherit.sav +0 -0
  579. scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
  580. scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
  581. scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
  582. scipy/io/tests/data/struct_pointers.sav +0 -0
  583. scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
  584. scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
  585. scipy/io/tests/data/struct_scalars.sav +0 -0
  586. scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
  587. scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
  588. scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
  589. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
  590. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
  591. scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
  592. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
  593. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
  594. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
  595. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
  596. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
  597. scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
  598. scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
  599. scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
  600. scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
  601. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
  602. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
  603. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
  604. scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
  605. scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
  606. scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
  607. scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
  608. scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
  609. scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
  610. scipy/io/tests/data/various_compressed.sav +0 -0
  611. scipy/io/tests/test_fortran.py +264 -0
  612. scipy/io/tests/test_idl.py +483 -0
  613. scipy/io/tests/test_mmio.py +831 -0
  614. scipy/io/tests/test_netcdf.py +550 -0
  615. scipy/io/tests/test_paths.py +93 -0
  616. scipy/io/tests/test_wavfile.py +501 -0
  617. scipy/io/wavfile.py +938 -0
  618. scipy/linalg/__init__.pxd +1 -0
  619. scipy/linalg/__init__.py +236 -0
  620. scipy/linalg/_basic.py +2146 -0
  621. scipy/linalg/_blas_subroutines.h +164 -0
  622. scipy/linalg/_cythonized_array_utils.cp314-win_arm64.lib +0 -0
  623. scipy/linalg/_cythonized_array_utils.cp314-win_arm64.pyd +0 -0
  624. scipy/linalg/_cythonized_array_utils.pxd +40 -0
  625. scipy/linalg/_cythonized_array_utils.pyi +16 -0
  626. scipy/linalg/_decomp.py +1645 -0
  627. scipy/linalg/_decomp_cholesky.py +413 -0
  628. scipy/linalg/_decomp_cossin.py +236 -0
  629. scipy/linalg/_decomp_interpolative.cp314-win_arm64.lib +0 -0
  630. scipy/linalg/_decomp_interpolative.cp314-win_arm64.pyd +0 -0
  631. scipy/linalg/_decomp_ldl.py +356 -0
  632. scipy/linalg/_decomp_lu.py +401 -0
  633. scipy/linalg/_decomp_lu_cython.cp314-win_arm64.lib +0 -0
  634. scipy/linalg/_decomp_lu_cython.cp314-win_arm64.pyd +0 -0
  635. scipy/linalg/_decomp_lu_cython.pyi +6 -0
  636. scipy/linalg/_decomp_polar.py +113 -0
  637. scipy/linalg/_decomp_qr.py +494 -0
  638. scipy/linalg/_decomp_qz.py +452 -0
  639. scipy/linalg/_decomp_schur.py +336 -0
  640. scipy/linalg/_decomp_svd.py +545 -0
  641. scipy/linalg/_decomp_update.cp314-win_arm64.lib +0 -0
  642. scipy/linalg/_decomp_update.cp314-win_arm64.pyd +0 -0
  643. scipy/linalg/_expm_frechet.py +417 -0
  644. scipy/linalg/_fblas.cp314-win_arm64.lib +0 -0
  645. scipy/linalg/_fblas.cp314-win_arm64.pyd +0 -0
  646. scipy/linalg/_flapack.cp314-win_arm64.lib +0 -0
  647. scipy/linalg/_flapack.cp314-win_arm64.pyd +0 -0
  648. scipy/linalg/_lapack_subroutines.h +1521 -0
  649. scipy/linalg/_linalg_pythran.cp314-win_arm64.lib +0 -0
  650. scipy/linalg/_linalg_pythran.cp314-win_arm64.pyd +0 -0
  651. scipy/linalg/_matfuncs.py +1050 -0
  652. scipy/linalg/_matfuncs_expm.cp314-win_arm64.lib +0 -0
  653. scipy/linalg/_matfuncs_expm.cp314-win_arm64.pyd +0 -0
  654. scipy/linalg/_matfuncs_expm.pyi +6 -0
  655. scipy/linalg/_matfuncs_inv_ssq.py +886 -0
  656. scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.lib +0 -0
  657. scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.pyd +0 -0
  658. scipy/linalg/_matfuncs_sqrtm.py +107 -0
  659. scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.lib +0 -0
  660. scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.pyd +0 -0
  661. scipy/linalg/_misc.py +191 -0
  662. scipy/linalg/_procrustes.py +113 -0
  663. scipy/linalg/_sketches.py +189 -0
  664. scipy/linalg/_solve_toeplitz.cp314-win_arm64.lib +0 -0
  665. scipy/linalg/_solve_toeplitz.cp314-win_arm64.pyd +0 -0
  666. scipy/linalg/_solvers.py +862 -0
  667. scipy/linalg/_special_matrices.py +1322 -0
  668. scipy/linalg/_testutils.py +65 -0
  669. scipy/linalg/basic.py +23 -0
  670. scipy/linalg/blas.py +495 -0
  671. scipy/linalg/cython_blas.cp314-win_arm64.lib +0 -0
  672. scipy/linalg/cython_blas.cp314-win_arm64.pyd +0 -0
  673. scipy/linalg/cython_blas.pxd +169 -0
  674. scipy/linalg/cython_blas.pyx +1432 -0
  675. scipy/linalg/cython_lapack.cp314-win_arm64.lib +0 -0
  676. scipy/linalg/cython_lapack.cp314-win_arm64.pyd +0 -0
  677. scipy/linalg/cython_lapack.pxd +1528 -0
  678. scipy/linalg/cython_lapack.pyx +12045 -0
  679. scipy/linalg/decomp.py +23 -0
  680. scipy/linalg/decomp_cholesky.py +21 -0
  681. scipy/linalg/decomp_lu.py +21 -0
  682. scipy/linalg/decomp_qr.py +20 -0
  683. scipy/linalg/decomp_schur.py +21 -0
  684. scipy/linalg/decomp_svd.py +21 -0
  685. scipy/linalg/interpolative.py +989 -0
  686. scipy/linalg/lapack.py +1081 -0
  687. scipy/linalg/matfuncs.py +23 -0
  688. scipy/linalg/misc.py +21 -0
  689. scipy/linalg/special_matrices.py +22 -0
  690. scipy/linalg/tests/__init__.py +0 -0
  691. scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
  692. scipy/linalg/tests/_cython_examples/meson.build +34 -0
  693. scipy/linalg/tests/data/carex_15_data.npz +0 -0
  694. scipy/linalg/tests/data/carex_18_data.npz +0 -0
  695. scipy/linalg/tests/data/carex_19_data.npz +0 -0
  696. scipy/linalg/tests/data/carex_20_data.npz +0 -0
  697. scipy/linalg/tests/data/carex_6_data.npz +0 -0
  698. scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
  699. scipy/linalg/tests/test_basic.py +2074 -0
  700. scipy/linalg/tests/test_batch.py +588 -0
  701. scipy/linalg/tests/test_blas.py +1127 -0
  702. scipy/linalg/tests/test_cython_blas.py +118 -0
  703. scipy/linalg/tests/test_cython_lapack.py +22 -0
  704. scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
  705. scipy/linalg/tests/test_decomp.py +3189 -0
  706. scipy/linalg/tests/test_decomp_cholesky.py +268 -0
  707. scipy/linalg/tests/test_decomp_cossin.py +314 -0
  708. scipy/linalg/tests/test_decomp_ldl.py +137 -0
  709. scipy/linalg/tests/test_decomp_lu.py +308 -0
  710. scipy/linalg/tests/test_decomp_polar.py +110 -0
  711. scipy/linalg/tests/test_decomp_update.py +1701 -0
  712. scipy/linalg/tests/test_extending.py +46 -0
  713. scipy/linalg/tests/test_fblas.py +607 -0
  714. scipy/linalg/tests/test_interpolative.py +232 -0
  715. scipy/linalg/tests/test_lapack.py +3620 -0
  716. scipy/linalg/tests/test_matfuncs.py +1125 -0
  717. scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
  718. scipy/linalg/tests/test_procrustes.py +214 -0
  719. scipy/linalg/tests/test_sketches.py +118 -0
  720. scipy/linalg/tests/test_solve_toeplitz.py +150 -0
  721. scipy/linalg/tests/test_solvers.py +844 -0
  722. scipy/linalg/tests/test_special_matrices.py +636 -0
  723. scipy/misc/__init__.py +6 -0
  724. scipy/misc/common.py +6 -0
  725. scipy/misc/doccer.py +6 -0
  726. scipy/ndimage/__init__.py +174 -0
  727. scipy/ndimage/_ctest.cp314-win_arm64.lib +0 -0
  728. scipy/ndimage/_ctest.cp314-win_arm64.pyd +0 -0
  729. scipy/ndimage/_cytest.cp314-win_arm64.lib +0 -0
  730. scipy/ndimage/_cytest.cp314-win_arm64.pyd +0 -0
  731. scipy/ndimage/_delegators.py +303 -0
  732. scipy/ndimage/_filters.py +2422 -0
  733. scipy/ndimage/_fourier.py +306 -0
  734. scipy/ndimage/_interpolation.py +1033 -0
  735. scipy/ndimage/_measurements.py +1689 -0
  736. scipy/ndimage/_morphology.py +2634 -0
  737. scipy/ndimage/_nd_image.cp314-win_arm64.lib +0 -0
  738. scipy/ndimage/_nd_image.cp314-win_arm64.pyd +0 -0
  739. scipy/ndimage/_ndimage_api.py +16 -0
  740. scipy/ndimage/_ni_docstrings.py +214 -0
  741. scipy/ndimage/_ni_label.cp314-win_arm64.lib +0 -0
  742. scipy/ndimage/_ni_label.cp314-win_arm64.pyd +0 -0
  743. scipy/ndimage/_ni_support.py +139 -0
  744. scipy/ndimage/_rank_filter_1d.cp314-win_arm64.lib +0 -0
  745. scipy/ndimage/_rank_filter_1d.cp314-win_arm64.pyd +0 -0
  746. scipy/ndimage/_support_alternative_backends.py +84 -0
  747. scipy/ndimage/filters.py +27 -0
  748. scipy/ndimage/fourier.py +21 -0
  749. scipy/ndimage/interpolation.py +22 -0
  750. scipy/ndimage/measurements.py +24 -0
  751. scipy/ndimage/morphology.py +27 -0
  752. scipy/ndimage/tests/__init__.py +12 -0
  753. scipy/ndimage/tests/data/label_inputs.txt +21 -0
  754. scipy/ndimage/tests/data/label_results.txt +294 -0
  755. scipy/ndimage/tests/data/label_strels.txt +42 -0
  756. scipy/ndimage/tests/dots.png +0 -0
  757. scipy/ndimage/tests/test_c_api.py +102 -0
  758. scipy/ndimage/tests/test_datatypes.py +67 -0
  759. scipy/ndimage/tests/test_filters.py +3083 -0
  760. scipy/ndimage/tests/test_fourier.py +187 -0
  761. scipy/ndimage/tests/test_interpolation.py +1491 -0
  762. scipy/ndimage/tests/test_measurements.py +1592 -0
  763. scipy/ndimage/tests/test_morphology.py +2950 -0
  764. scipy/ndimage/tests/test_ni_support.py +78 -0
  765. scipy/ndimage/tests/test_splines.py +70 -0
  766. scipy/odr/__init__.py +131 -0
  767. scipy/odr/__odrpack.cp314-win_arm64.lib +0 -0
  768. scipy/odr/__odrpack.cp314-win_arm64.pyd +0 -0
  769. scipy/odr/_add_newdocs.py +34 -0
  770. scipy/odr/_models.py +315 -0
  771. scipy/odr/_odrpack.py +1154 -0
  772. scipy/odr/models.py +20 -0
  773. scipy/odr/odrpack.py +21 -0
  774. scipy/odr/tests/__init__.py +0 -0
  775. scipy/odr/tests/test_odr.py +607 -0
  776. scipy/optimize/__init__.pxd +1 -0
  777. scipy/optimize/__init__.py +460 -0
  778. scipy/optimize/_basinhopping.py +741 -0
  779. scipy/optimize/_bglu_dense.cp314-win_arm64.lib +0 -0
  780. scipy/optimize/_bglu_dense.cp314-win_arm64.pyd +0 -0
  781. scipy/optimize/_bracket.py +706 -0
  782. scipy/optimize/_chandrupatla.py +551 -0
  783. scipy/optimize/_cobyla_py.py +297 -0
  784. scipy/optimize/_cobyqa_py.py +72 -0
  785. scipy/optimize/_constraints.py +598 -0
  786. scipy/optimize/_dcsrch.py +728 -0
  787. scipy/optimize/_differentiable_functions.py +835 -0
  788. scipy/optimize/_differentialevolution.py +1970 -0
  789. scipy/optimize/_direct.cp314-win_arm64.lib +0 -0
  790. scipy/optimize/_direct.cp314-win_arm64.pyd +0 -0
  791. scipy/optimize/_direct_py.py +280 -0
  792. scipy/optimize/_dual_annealing.py +732 -0
  793. scipy/optimize/_elementwise.py +798 -0
  794. scipy/optimize/_group_columns.cp314-win_arm64.lib +0 -0
  795. scipy/optimize/_group_columns.cp314-win_arm64.pyd +0 -0
  796. scipy/optimize/_hessian_update_strategy.py +479 -0
  797. scipy/optimize/_highspy/__init__.py +0 -0
  798. scipy/optimize/_highspy/_core.cp314-win_arm64.lib +0 -0
  799. scipy/optimize/_highspy/_core.cp314-win_arm64.pyd +0 -0
  800. scipy/optimize/_highspy/_highs_options.cp314-win_arm64.lib +0 -0
  801. scipy/optimize/_highspy/_highs_options.cp314-win_arm64.pyd +0 -0
  802. scipy/optimize/_highspy/_highs_wrapper.py +338 -0
  803. scipy/optimize/_isotonic.py +157 -0
  804. scipy/optimize/_lbfgsb.cp314-win_arm64.lib +0 -0
  805. scipy/optimize/_lbfgsb.cp314-win_arm64.pyd +0 -0
  806. scipy/optimize/_lbfgsb_py.py +634 -0
  807. scipy/optimize/_linesearch.py +896 -0
  808. scipy/optimize/_linprog.py +733 -0
  809. scipy/optimize/_linprog_doc.py +1434 -0
  810. scipy/optimize/_linprog_highs.py +422 -0
  811. scipy/optimize/_linprog_ip.py +1141 -0
  812. scipy/optimize/_linprog_rs.py +572 -0
  813. scipy/optimize/_linprog_simplex.py +663 -0
  814. scipy/optimize/_linprog_util.py +1521 -0
  815. scipy/optimize/_lsap.cp314-win_arm64.lib +0 -0
  816. scipy/optimize/_lsap.cp314-win_arm64.pyd +0 -0
  817. scipy/optimize/_lsq/__init__.py +5 -0
  818. scipy/optimize/_lsq/bvls.py +183 -0
  819. scipy/optimize/_lsq/common.py +731 -0
  820. scipy/optimize/_lsq/dogbox.py +345 -0
  821. scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.lib +0 -0
  822. scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.pyd +0 -0
  823. scipy/optimize/_lsq/least_squares.py +1044 -0
  824. scipy/optimize/_lsq/lsq_linear.py +361 -0
  825. scipy/optimize/_lsq/trf.py +587 -0
  826. scipy/optimize/_lsq/trf_linear.py +249 -0
  827. scipy/optimize/_milp.py +394 -0
  828. scipy/optimize/_minimize.py +1199 -0
  829. scipy/optimize/_minpack.cp314-win_arm64.lib +0 -0
  830. scipy/optimize/_minpack.cp314-win_arm64.pyd +0 -0
  831. scipy/optimize/_minpack_py.py +1178 -0
  832. scipy/optimize/_moduleTNC.cp314-win_arm64.lib +0 -0
  833. scipy/optimize/_moduleTNC.cp314-win_arm64.pyd +0 -0
  834. scipy/optimize/_nnls.py +96 -0
  835. scipy/optimize/_nonlin.py +1634 -0
  836. scipy/optimize/_numdiff.py +963 -0
  837. scipy/optimize/_optimize.py +4169 -0
  838. scipy/optimize/_pava_pybind.cp314-win_arm64.lib +0 -0
  839. scipy/optimize/_pava_pybind.cp314-win_arm64.pyd +0 -0
  840. scipy/optimize/_qap.py +760 -0
  841. scipy/optimize/_remove_redundancy.py +522 -0
  842. scipy/optimize/_root.py +732 -0
  843. scipy/optimize/_root_scalar.py +538 -0
  844. scipy/optimize/_shgo.py +1606 -0
  845. scipy/optimize/_shgo_lib/__init__.py +0 -0
  846. scipy/optimize/_shgo_lib/_complex.py +1225 -0
  847. scipy/optimize/_shgo_lib/_vertex.py +460 -0
  848. scipy/optimize/_slsqp_py.py +603 -0
  849. scipy/optimize/_slsqplib.cp314-win_arm64.lib +0 -0
  850. scipy/optimize/_slsqplib.cp314-win_arm64.pyd +0 -0
  851. scipy/optimize/_spectral.py +260 -0
  852. scipy/optimize/_tnc.py +438 -0
  853. scipy/optimize/_trlib/__init__.py +12 -0
  854. scipy/optimize/_trlib/_trlib.cp314-win_arm64.lib +0 -0
  855. scipy/optimize/_trlib/_trlib.cp314-win_arm64.pyd +0 -0
  856. scipy/optimize/_trustregion.py +318 -0
  857. scipy/optimize/_trustregion_constr/__init__.py +6 -0
  858. scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
  859. scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
  860. scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
  861. scipy/optimize/_trustregion_constr/projections.py +411 -0
  862. scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
  863. scipy/optimize/_trustregion_constr/report.py +49 -0
  864. scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
  865. scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
  866. scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
  867. scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
  868. scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
  869. scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
  870. scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
  871. scipy/optimize/_trustregion_dogleg.py +122 -0
  872. scipy/optimize/_trustregion_exact.py +437 -0
  873. scipy/optimize/_trustregion_krylov.py +65 -0
  874. scipy/optimize/_trustregion_ncg.py +126 -0
  875. scipy/optimize/_tstutils.py +972 -0
  876. scipy/optimize/_zeros.cp314-win_arm64.lib +0 -0
  877. scipy/optimize/_zeros.cp314-win_arm64.pyd +0 -0
  878. scipy/optimize/_zeros_py.py +1475 -0
  879. scipy/optimize/cobyla.py +19 -0
  880. scipy/optimize/cython_optimize/__init__.py +133 -0
  881. scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.lib +0 -0
  882. scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.pyd +0 -0
  883. scipy/optimize/cython_optimize/_zeros.pxd +33 -0
  884. scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
  885. scipy/optimize/cython_optimize.pxd +11 -0
  886. scipy/optimize/elementwise.py +38 -0
  887. scipy/optimize/lbfgsb.py +23 -0
  888. scipy/optimize/linesearch.py +18 -0
  889. scipy/optimize/minpack.py +27 -0
  890. scipy/optimize/minpack2.py +17 -0
  891. scipy/optimize/moduleTNC.py +19 -0
  892. scipy/optimize/nonlin.py +29 -0
  893. scipy/optimize/optimize.py +40 -0
  894. scipy/optimize/slsqp.py +22 -0
  895. scipy/optimize/tests/__init__.py +0 -0
  896. scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
  897. scipy/optimize/tests/_cython_examples/meson.build +32 -0
  898. scipy/optimize/tests/test__basinhopping.py +535 -0
  899. scipy/optimize/tests/test__differential_evolution.py +1703 -0
  900. scipy/optimize/tests/test__dual_annealing.py +416 -0
  901. scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
  902. scipy/optimize/tests/test__numdiff.py +885 -0
  903. scipy/optimize/tests/test__remove_redundancy.py +228 -0
  904. scipy/optimize/tests/test__root.py +124 -0
  905. scipy/optimize/tests/test__shgo.py +1164 -0
  906. scipy/optimize/tests/test__spectral.py +226 -0
  907. scipy/optimize/tests/test_bracket.py +896 -0
  908. scipy/optimize/tests/test_chandrupatla.py +982 -0
  909. scipy/optimize/tests/test_cobyla.py +195 -0
  910. scipy/optimize/tests/test_cobyqa.py +252 -0
  911. scipy/optimize/tests/test_constraint_conversion.py +286 -0
  912. scipy/optimize/tests/test_constraints.py +255 -0
  913. scipy/optimize/tests/test_cython_optimize.py +92 -0
  914. scipy/optimize/tests/test_differentiable_functions.py +1025 -0
  915. scipy/optimize/tests/test_direct.py +321 -0
  916. scipy/optimize/tests/test_extending.py +28 -0
  917. scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
  918. scipy/optimize/tests/test_isotonic_regression.py +167 -0
  919. scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
  920. scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
  921. scipy/optimize/tests/test_least_squares.py +986 -0
  922. scipy/optimize/tests/test_linear_assignment.py +116 -0
  923. scipy/optimize/tests/test_linesearch.py +328 -0
  924. scipy/optimize/tests/test_linprog.py +2577 -0
  925. scipy/optimize/tests/test_lsq_common.py +297 -0
  926. scipy/optimize/tests/test_lsq_linear.py +287 -0
  927. scipy/optimize/tests/test_milp.py +459 -0
  928. scipy/optimize/tests/test_minimize_constrained.py +845 -0
  929. scipy/optimize/tests/test_minpack.py +1194 -0
  930. scipy/optimize/tests/test_nnls.py +469 -0
  931. scipy/optimize/tests/test_nonlin.py +572 -0
  932. scipy/optimize/tests/test_optimize.py +3344 -0
  933. scipy/optimize/tests/test_quadratic_assignment.py +455 -0
  934. scipy/optimize/tests/test_regression.py +40 -0
  935. scipy/optimize/tests/test_slsqp.py +645 -0
  936. scipy/optimize/tests/test_tnc.py +345 -0
  937. scipy/optimize/tests/test_trustregion.py +110 -0
  938. scipy/optimize/tests/test_trustregion_exact.py +351 -0
  939. scipy/optimize/tests/test_trustregion_krylov.py +170 -0
  940. scipy/optimize/tests/test_zeros.py +998 -0
  941. scipy/optimize/tnc.py +22 -0
  942. scipy/optimize/zeros.py +26 -0
  943. scipy/signal/__init__.py +316 -0
  944. scipy/signal/_arraytools.py +264 -0
  945. scipy/signal/_czt.py +575 -0
  946. scipy/signal/_delegators.py +568 -0
  947. scipy/signal/_filter_design.py +5893 -0
  948. scipy/signal/_fir_filter_design.py +1458 -0
  949. scipy/signal/_lti_conversion.py +534 -0
  950. scipy/signal/_ltisys.py +3546 -0
  951. scipy/signal/_max_len_seq.py +139 -0
  952. scipy/signal/_max_len_seq_inner.cp314-win_arm64.lib +0 -0
  953. scipy/signal/_max_len_seq_inner.cp314-win_arm64.pyd +0 -0
  954. scipy/signal/_peak_finding.py +1310 -0
  955. scipy/signal/_peak_finding_utils.cp314-win_arm64.lib +0 -0
  956. scipy/signal/_peak_finding_utils.cp314-win_arm64.pyd +0 -0
  957. scipy/signal/_polyutils.py +172 -0
  958. scipy/signal/_savitzky_golay.py +357 -0
  959. scipy/signal/_short_time_fft.py +2228 -0
  960. scipy/signal/_signal_api.py +30 -0
  961. scipy/signal/_signaltools.py +5309 -0
  962. scipy/signal/_sigtools.cp314-win_arm64.lib +0 -0
  963. scipy/signal/_sigtools.cp314-win_arm64.pyd +0 -0
  964. scipy/signal/_sosfilt.cp314-win_arm64.lib +0 -0
  965. scipy/signal/_sosfilt.cp314-win_arm64.pyd +0 -0
  966. scipy/signal/_spectral_py.py +2471 -0
  967. scipy/signal/_spline.cp314-win_arm64.lib +0 -0
  968. scipy/signal/_spline.cp314-win_arm64.pyd +0 -0
  969. scipy/signal/_spline.pyi +34 -0
  970. scipy/signal/_spline_filters.py +848 -0
  971. scipy/signal/_support_alternative_backends.py +73 -0
  972. scipy/signal/_upfirdn.py +219 -0
  973. scipy/signal/_upfirdn_apply.cp314-win_arm64.lib +0 -0
  974. scipy/signal/_upfirdn_apply.cp314-win_arm64.pyd +0 -0
  975. scipy/signal/_waveforms.py +687 -0
  976. scipy/signal/_wavelets.py +29 -0
  977. scipy/signal/bsplines.py +21 -0
  978. scipy/signal/filter_design.py +28 -0
  979. scipy/signal/fir_filter_design.py +21 -0
  980. scipy/signal/lti_conversion.py +20 -0
  981. scipy/signal/ltisys.py +25 -0
  982. scipy/signal/signaltools.py +27 -0
  983. scipy/signal/spectral.py +21 -0
  984. scipy/signal/spline.py +18 -0
  985. scipy/signal/tests/__init__.py +0 -0
  986. scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
  987. scipy/signal/tests/mpsig.py +122 -0
  988. scipy/signal/tests/test_array_tools.py +111 -0
  989. scipy/signal/tests/test_bsplines.py +365 -0
  990. scipy/signal/tests/test_cont2discrete.py +424 -0
  991. scipy/signal/tests/test_czt.py +221 -0
  992. scipy/signal/tests/test_dltisys.py +599 -0
  993. scipy/signal/tests/test_filter_design.py +4744 -0
  994. scipy/signal/tests/test_fir_filter_design.py +851 -0
  995. scipy/signal/tests/test_ltisys.py +1225 -0
  996. scipy/signal/tests/test_max_len_seq.py +71 -0
  997. scipy/signal/tests/test_peak_finding.py +915 -0
  998. scipy/signal/tests/test_result_type.py +51 -0
  999. scipy/signal/tests/test_savitzky_golay.py +363 -0
  1000. scipy/signal/tests/test_short_time_fft.py +1107 -0
  1001. scipy/signal/tests/test_signaltools.py +4735 -0
  1002. scipy/signal/tests/test_spectral.py +2141 -0
  1003. scipy/signal/tests/test_splines.py +427 -0
  1004. scipy/signal/tests/test_upfirdn.py +322 -0
  1005. scipy/signal/tests/test_waveforms.py +400 -0
  1006. scipy/signal/tests/test_wavelets.py +59 -0
  1007. scipy/signal/tests/test_windows.py +987 -0
  1008. scipy/signal/waveforms.py +20 -0
  1009. scipy/signal/wavelets.py +17 -0
  1010. scipy/signal/windows/__init__.py +52 -0
  1011. scipy/signal/windows/_windows.py +2513 -0
  1012. scipy/signal/windows/windows.py +23 -0
  1013. scipy/sparse/__init__.py +350 -0
  1014. scipy/sparse/_base.py +1613 -0
  1015. scipy/sparse/_bsr.py +880 -0
  1016. scipy/sparse/_compressed.py +1328 -0
  1017. scipy/sparse/_construct.py +1454 -0
  1018. scipy/sparse/_coo.py +1581 -0
  1019. scipy/sparse/_csc.py +367 -0
  1020. scipy/sparse/_csparsetools.cp314-win_arm64.lib +0 -0
  1021. scipy/sparse/_csparsetools.cp314-win_arm64.pyd +0 -0
  1022. scipy/sparse/_csr.py +558 -0
  1023. scipy/sparse/_data.py +569 -0
  1024. scipy/sparse/_dia.py +677 -0
  1025. scipy/sparse/_dok.py +669 -0
  1026. scipy/sparse/_extract.py +178 -0
  1027. scipy/sparse/_index.py +444 -0
  1028. scipy/sparse/_lil.py +632 -0
  1029. scipy/sparse/_matrix.py +169 -0
  1030. scipy/sparse/_matrix_io.py +167 -0
  1031. scipy/sparse/_sparsetools.cp314-win_arm64.lib +0 -0
  1032. scipy/sparse/_sparsetools.cp314-win_arm64.pyd +0 -0
  1033. scipy/sparse/_spfuncs.py +76 -0
  1034. scipy/sparse/_sputils.py +632 -0
  1035. scipy/sparse/base.py +24 -0
  1036. scipy/sparse/bsr.py +22 -0
  1037. scipy/sparse/compressed.py +20 -0
  1038. scipy/sparse/construct.py +38 -0
  1039. scipy/sparse/coo.py +23 -0
  1040. scipy/sparse/csc.py +22 -0
  1041. scipy/sparse/csgraph/__init__.py +210 -0
  1042. scipy/sparse/csgraph/_flow.cp314-win_arm64.lib +0 -0
  1043. scipy/sparse/csgraph/_flow.cp314-win_arm64.pyd +0 -0
  1044. scipy/sparse/csgraph/_laplacian.py +563 -0
  1045. scipy/sparse/csgraph/_matching.cp314-win_arm64.lib +0 -0
  1046. scipy/sparse/csgraph/_matching.cp314-win_arm64.pyd +0 -0
  1047. scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.lib +0 -0
  1048. scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.pyd +0 -0
  1049. scipy/sparse/csgraph/_reordering.cp314-win_arm64.lib +0 -0
  1050. scipy/sparse/csgraph/_reordering.cp314-win_arm64.pyd +0 -0
  1051. scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.lib +0 -0
  1052. scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.pyd +0 -0
  1053. scipy/sparse/csgraph/_tools.cp314-win_arm64.lib +0 -0
  1054. scipy/sparse/csgraph/_tools.cp314-win_arm64.pyd +0 -0
  1055. scipy/sparse/csgraph/_traversal.cp314-win_arm64.lib +0 -0
  1056. scipy/sparse/csgraph/_traversal.cp314-win_arm64.pyd +0 -0
  1057. scipy/sparse/csgraph/_validation.py +66 -0
  1058. scipy/sparse/csgraph/tests/__init__.py +0 -0
  1059. scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
  1060. scipy/sparse/csgraph/tests/test_conversions.py +61 -0
  1061. scipy/sparse/csgraph/tests/test_flow.py +209 -0
  1062. scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
  1063. scipy/sparse/csgraph/tests/test_matching.py +307 -0
  1064. scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
  1065. scipy/sparse/csgraph/tests/test_reordering.py +70 -0
  1066. scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
  1067. scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
  1068. scipy/sparse/csgraph/tests/test_traversal.py +148 -0
  1069. scipy/sparse/csr.py +22 -0
  1070. scipy/sparse/data.py +18 -0
  1071. scipy/sparse/dia.py +22 -0
  1072. scipy/sparse/dok.py +22 -0
  1073. scipy/sparse/extract.py +23 -0
  1074. scipy/sparse/lil.py +22 -0
  1075. scipy/sparse/linalg/__init__.py +148 -0
  1076. scipy/sparse/linalg/_dsolve/__init__.py +71 -0
  1077. scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
  1078. scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.lib +0 -0
  1079. scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.pyd +0 -0
  1080. scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
  1081. scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
  1082. scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
  1083. scipy/sparse/linalg/_eigen/__init__.py +22 -0
  1084. scipy/sparse/linalg/_eigen/_svds.py +540 -0
  1085. scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
  1086. scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
  1087. scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
  1088. scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.lib +0 -0
  1089. scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.pyd +0 -0
  1090. scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
  1091. scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
  1092. scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
  1093. scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
  1094. scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
  1095. scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
  1096. scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
  1097. scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
  1098. scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
  1099. scipy/sparse/linalg/_expm_multiply.py +816 -0
  1100. scipy/sparse/linalg/_interface.py +920 -0
  1101. scipy/sparse/linalg/_isolve/__init__.py +20 -0
  1102. scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
  1103. scipy/sparse/linalg/_isolve/iterative.py +1051 -0
  1104. scipy/sparse/linalg/_isolve/lgmres.py +230 -0
  1105. scipy/sparse/linalg/_isolve/lsmr.py +486 -0
  1106. scipy/sparse/linalg/_isolve/lsqr.py +589 -0
  1107. scipy/sparse/linalg/_isolve/minres.py +372 -0
  1108. scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
  1109. scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
  1110. scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
  1111. scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
  1112. scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
  1113. scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
  1114. scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
  1115. scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
  1116. scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
  1117. scipy/sparse/linalg/_isolve/utils.py +121 -0
  1118. scipy/sparse/linalg/_matfuncs.py +940 -0
  1119. scipy/sparse/linalg/_norm.py +195 -0
  1120. scipy/sparse/linalg/_onenormest.py +467 -0
  1121. scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.lib +0 -0
  1122. scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.pyd +0 -0
  1123. scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.lib +0 -0
  1124. scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.pyd +0 -0
  1125. scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.lib +0 -0
  1126. scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.pyd +0 -0
  1127. scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.lib +0 -0
  1128. scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.pyd +0 -0
  1129. scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
  1130. scipy/sparse/linalg/_svdp.py +309 -0
  1131. scipy/sparse/linalg/dsolve.py +22 -0
  1132. scipy/sparse/linalg/eigen.py +21 -0
  1133. scipy/sparse/linalg/interface.py +20 -0
  1134. scipy/sparse/linalg/isolve.py +22 -0
  1135. scipy/sparse/linalg/matfuncs.py +18 -0
  1136. scipy/sparse/linalg/tests/__init__.py +0 -0
  1137. scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
  1138. scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
  1139. scipy/sparse/linalg/tests/test_interface.py +561 -0
  1140. scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
  1141. scipy/sparse/linalg/tests/test_norm.py +154 -0
  1142. scipy/sparse/linalg/tests/test_onenormest.py +252 -0
  1143. scipy/sparse/linalg/tests/test_propack.py +165 -0
  1144. scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
  1145. scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
  1146. scipy/sparse/sparsetools.py +17 -0
  1147. scipy/sparse/spfuncs.py +17 -0
  1148. scipy/sparse/sputils.py +17 -0
  1149. scipy/sparse/tests/__init__.py +0 -0
  1150. scipy/sparse/tests/data/csc_py2.npz +0 -0
  1151. scipy/sparse/tests/data/csc_py3.npz +0 -0
  1152. scipy/sparse/tests/test_arithmetic1d.py +341 -0
  1153. scipy/sparse/tests/test_array_api.py +561 -0
  1154. scipy/sparse/tests/test_base.py +5870 -0
  1155. scipy/sparse/tests/test_common1d.py +447 -0
  1156. scipy/sparse/tests/test_construct.py +872 -0
  1157. scipy/sparse/tests/test_coo.py +1119 -0
  1158. scipy/sparse/tests/test_csc.py +98 -0
  1159. scipy/sparse/tests/test_csr.py +214 -0
  1160. scipy/sparse/tests/test_dok.py +209 -0
  1161. scipy/sparse/tests/test_extract.py +51 -0
  1162. scipy/sparse/tests/test_indexing1d.py +603 -0
  1163. scipy/sparse/tests/test_matrix_io.py +109 -0
  1164. scipy/sparse/tests/test_minmax1d.py +128 -0
  1165. scipy/sparse/tests/test_sparsetools.py +344 -0
  1166. scipy/sparse/tests/test_spfuncs.py +97 -0
  1167. scipy/sparse/tests/test_sputils.py +424 -0
  1168. scipy/spatial/__init__.py +129 -0
  1169. scipy/spatial/_ckdtree.cp314-win_arm64.lib +0 -0
  1170. scipy/spatial/_ckdtree.cp314-win_arm64.pyd +0 -0
  1171. scipy/spatial/_distance_pybind.cp314-win_arm64.lib +0 -0
  1172. scipy/spatial/_distance_pybind.cp314-win_arm64.pyd +0 -0
  1173. scipy/spatial/_distance_wrap.cp314-win_arm64.lib +0 -0
  1174. scipy/spatial/_distance_wrap.cp314-win_arm64.pyd +0 -0
  1175. scipy/spatial/_geometric_slerp.py +238 -0
  1176. scipy/spatial/_hausdorff.cp314-win_arm64.lib +0 -0
  1177. scipy/spatial/_hausdorff.cp314-win_arm64.pyd +0 -0
  1178. scipy/spatial/_kdtree.py +920 -0
  1179. scipy/spatial/_plotutils.py +274 -0
  1180. scipy/spatial/_procrustes.py +132 -0
  1181. scipy/spatial/_qhull.cp314-win_arm64.lib +0 -0
  1182. scipy/spatial/_qhull.cp314-win_arm64.pyd +0 -0
  1183. scipy/spatial/_qhull.pyi +213 -0
  1184. scipy/spatial/_spherical_voronoi.py +341 -0
  1185. scipy/spatial/_voronoi.cp314-win_arm64.lib +0 -0
  1186. scipy/spatial/_voronoi.cp314-win_arm64.pyd +0 -0
  1187. scipy/spatial/_voronoi.pyi +4 -0
  1188. scipy/spatial/ckdtree.py +18 -0
  1189. scipy/spatial/distance.py +3147 -0
  1190. scipy/spatial/distance.pyi +210 -0
  1191. scipy/spatial/kdtree.py +25 -0
  1192. scipy/spatial/qhull.py +25 -0
  1193. scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
  1194. scipy/spatial/tests/__init__.py +0 -0
  1195. scipy/spatial/tests/data/cdist-X1.txt +10 -0
  1196. scipy/spatial/tests/data/cdist-X2.txt +20 -0
  1197. scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
  1198. scipy/spatial/tests/data/iris.txt +150 -0
  1199. scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  1200. scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
  1201. scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  1202. scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
  1203. scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  1204. scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
  1205. scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  1206. scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
  1207. scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  1208. scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  1209. scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
  1210. scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  1211. scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  1212. scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  1213. scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
  1214. scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  1215. scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
  1216. scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  1217. scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
  1218. scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
  1219. scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
  1220. scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
  1221. scipy/spatial/tests/data/random-bool-data.txt +100 -0
  1222. scipy/spatial/tests/data/random-double-data.txt +100 -0
  1223. scipy/spatial/tests/data/random-int-data.txt +100 -0
  1224. scipy/spatial/tests/data/random-uint-data.txt +100 -0
  1225. scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
  1226. scipy/spatial/tests/test__plotutils.py +91 -0
  1227. scipy/spatial/tests/test__procrustes.py +116 -0
  1228. scipy/spatial/tests/test_distance.py +2389 -0
  1229. scipy/spatial/tests/test_hausdorff.py +199 -0
  1230. scipy/spatial/tests/test_kdtree.py +1536 -0
  1231. scipy/spatial/tests/test_qhull.py +1313 -0
  1232. scipy/spatial/tests/test_slerp.py +417 -0
  1233. scipy/spatial/tests/test_spherical_voronoi.py +358 -0
  1234. scipy/spatial/transform/__init__.py +31 -0
  1235. scipy/spatial/transform/_rigid_transform.cp314-win_arm64.lib +0 -0
  1236. scipy/spatial/transform/_rigid_transform.cp314-win_arm64.pyd +0 -0
  1237. scipy/spatial/transform/_rotation.cp314-win_arm64.lib +0 -0
  1238. scipy/spatial/transform/_rotation.cp314-win_arm64.pyd +0 -0
  1239. scipy/spatial/transform/_rotation_groups.py +140 -0
  1240. scipy/spatial/transform/_rotation_spline.py +460 -0
  1241. scipy/spatial/transform/rotation.py +21 -0
  1242. scipy/spatial/transform/tests/__init__.py +0 -0
  1243. scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
  1244. scipy/spatial/transform/tests/test_rotation.py +2569 -0
  1245. scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
  1246. scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
  1247. scipy/special/__init__.pxd +1 -0
  1248. scipy/special/__init__.py +841 -0
  1249. scipy/special/_add_newdocs.py +9961 -0
  1250. scipy/special/_basic.py +3576 -0
  1251. scipy/special/_comb.cp314-win_arm64.lib +0 -0
  1252. scipy/special/_comb.cp314-win_arm64.pyd +0 -0
  1253. scipy/special/_ellip_harm.py +214 -0
  1254. scipy/special/_ellip_harm_2.cp314-win_arm64.lib +0 -0
  1255. scipy/special/_ellip_harm_2.cp314-win_arm64.pyd +0 -0
  1256. scipy/special/_gufuncs.cp314-win_arm64.lib +0 -0
  1257. scipy/special/_gufuncs.cp314-win_arm64.pyd +0 -0
  1258. scipy/special/_input_validation.py +17 -0
  1259. scipy/special/_lambertw.py +149 -0
  1260. scipy/special/_logsumexp.py +426 -0
  1261. scipy/special/_mptestutils.py +453 -0
  1262. scipy/special/_multiufuncs.py +610 -0
  1263. scipy/special/_orthogonal.py +2592 -0
  1264. scipy/special/_orthogonal.pyi +330 -0
  1265. scipy/special/_precompute/__init__.py +0 -0
  1266. scipy/special/_precompute/cosine_cdf.py +17 -0
  1267. scipy/special/_precompute/expn_asy.py +54 -0
  1268. scipy/special/_precompute/gammainc_asy.py +116 -0
  1269. scipy/special/_precompute/gammainc_data.py +124 -0
  1270. scipy/special/_precompute/hyp2f1_data.py +484 -0
  1271. scipy/special/_precompute/lambertw.py +68 -0
  1272. scipy/special/_precompute/loggamma.py +43 -0
  1273. scipy/special/_precompute/struve_convergence.py +131 -0
  1274. scipy/special/_precompute/utils.py +38 -0
  1275. scipy/special/_precompute/wright_bessel.py +342 -0
  1276. scipy/special/_precompute/wright_bessel_data.py +152 -0
  1277. scipy/special/_precompute/wrightomega.py +41 -0
  1278. scipy/special/_precompute/zetac.py +27 -0
  1279. scipy/special/_sf_error.py +15 -0
  1280. scipy/special/_specfun.cp314-win_arm64.lib +0 -0
  1281. scipy/special/_specfun.cp314-win_arm64.pyd +0 -0
  1282. scipy/special/_special_ufuncs.cp314-win_arm64.lib +0 -0
  1283. scipy/special/_special_ufuncs.cp314-win_arm64.pyd +0 -0
  1284. scipy/special/_spfun_stats.py +106 -0
  1285. scipy/special/_spherical_bessel.py +397 -0
  1286. scipy/special/_support_alternative_backends.py +295 -0
  1287. scipy/special/_test_internal.cp314-win_arm64.lib +0 -0
  1288. scipy/special/_test_internal.cp314-win_arm64.pyd +0 -0
  1289. scipy/special/_test_internal.pyi +9 -0
  1290. scipy/special/_testutils.py +321 -0
  1291. scipy/special/_ufuncs.cp314-win_arm64.lib +0 -0
  1292. scipy/special/_ufuncs.cp314-win_arm64.pyd +0 -0
  1293. scipy/special/_ufuncs.pyi +522 -0
  1294. scipy/special/_ufuncs.pyx +13173 -0
  1295. scipy/special/_ufuncs_cxx.cp314-win_arm64.lib +0 -0
  1296. scipy/special/_ufuncs_cxx.cp314-win_arm64.pyd +0 -0
  1297. scipy/special/_ufuncs_cxx.pxd +142 -0
  1298. scipy/special/_ufuncs_cxx.pyx +427 -0
  1299. scipy/special/_ufuncs_cxx_defs.h +147 -0
  1300. scipy/special/_ufuncs_defs.h +57 -0
  1301. scipy/special/add_newdocs.py +15 -0
  1302. scipy/special/basic.py +87 -0
  1303. scipy/special/cython_special.cp314-win_arm64.lib +0 -0
  1304. scipy/special/cython_special.cp314-win_arm64.pyd +0 -0
  1305. scipy/special/cython_special.pxd +259 -0
  1306. scipy/special/cython_special.pyi +3 -0
  1307. scipy/special/orthogonal.py +45 -0
  1308. scipy/special/sf_error.py +20 -0
  1309. scipy/special/specfun.py +24 -0
  1310. scipy/special/spfun_stats.py +17 -0
  1311. scipy/special/tests/__init__.py +0 -0
  1312. scipy/special/tests/_cython_examples/extending.pyx +12 -0
  1313. scipy/special/tests/_cython_examples/meson.build +34 -0
  1314. scipy/special/tests/data/__init__.py +0 -0
  1315. scipy/special/tests/data/boost.npz +0 -0
  1316. scipy/special/tests/data/gsl.npz +0 -0
  1317. scipy/special/tests/data/local.npz +0 -0
  1318. scipy/special/tests/test_basic.py +4815 -0
  1319. scipy/special/tests/test_bdtr.py +112 -0
  1320. scipy/special/tests/test_boost_ufuncs.py +64 -0
  1321. scipy/special/tests/test_boxcox.py +125 -0
  1322. scipy/special/tests/test_cdflib.py +712 -0
  1323. scipy/special/tests/test_cdft_asymptotic.py +49 -0
  1324. scipy/special/tests/test_cephes_intp_cast.py +29 -0
  1325. scipy/special/tests/test_cosine_distr.py +83 -0
  1326. scipy/special/tests/test_cython_special.py +363 -0
  1327. scipy/special/tests/test_data.py +719 -0
  1328. scipy/special/tests/test_dd.py +42 -0
  1329. scipy/special/tests/test_digamma.py +45 -0
  1330. scipy/special/tests/test_ellip_harm.py +278 -0
  1331. scipy/special/tests/test_erfinv.py +89 -0
  1332. scipy/special/tests/test_exponential_integrals.py +118 -0
  1333. scipy/special/tests/test_extending.py +28 -0
  1334. scipy/special/tests/test_faddeeva.py +85 -0
  1335. scipy/special/tests/test_gamma.py +12 -0
  1336. scipy/special/tests/test_gammainc.py +152 -0
  1337. scipy/special/tests/test_hyp2f1.py +2566 -0
  1338. scipy/special/tests/test_hypergeometric.py +234 -0
  1339. scipy/special/tests/test_iv_ratio.py +249 -0
  1340. scipy/special/tests/test_kolmogorov.py +491 -0
  1341. scipy/special/tests/test_lambertw.py +109 -0
  1342. scipy/special/tests/test_legendre.py +1518 -0
  1343. scipy/special/tests/test_log1mexp.py +85 -0
  1344. scipy/special/tests/test_loggamma.py +70 -0
  1345. scipy/special/tests/test_logit.py +162 -0
  1346. scipy/special/tests/test_logsumexp.py +469 -0
  1347. scipy/special/tests/test_mpmath.py +2293 -0
  1348. scipy/special/tests/test_nan_inputs.py +65 -0
  1349. scipy/special/tests/test_ndtr.py +77 -0
  1350. scipy/special/tests/test_ndtri_exp.py +94 -0
  1351. scipy/special/tests/test_orthogonal.py +821 -0
  1352. scipy/special/tests/test_orthogonal_eval.py +275 -0
  1353. scipy/special/tests/test_owens_t.py +53 -0
  1354. scipy/special/tests/test_pcf.py +24 -0
  1355. scipy/special/tests/test_pdtr.py +48 -0
  1356. scipy/special/tests/test_powm1.py +65 -0
  1357. scipy/special/tests/test_precompute_expn_asy.py +24 -0
  1358. scipy/special/tests/test_precompute_gammainc.py +108 -0
  1359. scipy/special/tests/test_precompute_utils.py +36 -0
  1360. scipy/special/tests/test_round.py +18 -0
  1361. scipy/special/tests/test_sf_error.py +146 -0
  1362. scipy/special/tests/test_sici.py +36 -0
  1363. scipy/special/tests/test_specfun.py +48 -0
  1364. scipy/special/tests/test_spence.py +32 -0
  1365. scipy/special/tests/test_spfun_stats.py +61 -0
  1366. scipy/special/tests/test_sph_harm.py +85 -0
  1367. scipy/special/tests/test_spherical_bessel.py +400 -0
  1368. scipy/special/tests/test_support_alternative_backends.py +248 -0
  1369. scipy/special/tests/test_trig.py +72 -0
  1370. scipy/special/tests/test_ufunc_signatures.py +46 -0
  1371. scipy/special/tests/test_wright_bessel.py +205 -0
  1372. scipy/special/tests/test_wrightomega.py +117 -0
  1373. scipy/special/tests/test_zeta.py +301 -0
  1374. scipy/stats/__init__.py +670 -0
  1375. scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.lib +0 -0
  1376. scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.pyd +0 -0
  1377. scipy/stats/_axis_nan_policy.py +692 -0
  1378. scipy/stats/_biasedurn.cp314-win_arm64.lib +0 -0
  1379. scipy/stats/_biasedurn.cp314-win_arm64.pyd +0 -0
  1380. scipy/stats/_biasedurn.pxd +27 -0
  1381. scipy/stats/_binned_statistic.py +795 -0
  1382. scipy/stats/_binomtest.py +375 -0
  1383. scipy/stats/_bws_test.py +177 -0
  1384. scipy/stats/_censored_data.py +459 -0
  1385. scipy/stats/_common.py +5 -0
  1386. scipy/stats/_constants.py +42 -0
  1387. scipy/stats/_continued_fraction.py +387 -0
  1388. scipy/stats/_continuous_distns.py +12486 -0
  1389. scipy/stats/_correlation.py +210 -0
  1390. scipy/stats/_covariance.py +636 -0
  1391. scipy/stats/_crosstab.py +204 -0
  1392. scipy/stats/_discrete_distns.py +2098 -0
  1393. scipy/stats/_distn_infrastructure.py +4201 -0
  1394. scipy/stats/_distr_params.py +299 -0
  1395. scipy/stats/_distribution_infrastructure.py +5750 -0
  1396. scipy/stats/_entropy.py +428 -0
  1397. scipy/stats/_finite_differences.py +145 -0
  1398. scipy/stats/_fit.py +1351 -0
  1399. scipy/stats/_hypotests.py +2060 -0
  1400. scipy/stats/_kde.py +732 -0
  1401. scipy/stats/_ksstats.py +600 -0
  1402. scipy/stats/_levy_stable/__init__.py +1231 -0
  1403. scipy/stats/_levy_stable/levyst.cp314-win_arm64.lib +0 -0
  1404. scipy/stats/_levy_stable/levyst.cp314-win_arm64.pyd +0 -0
  1405. scipy/stats/_mannwhitneyu.py +492 -0
  1406. scipy/stats/_mgc.py +550 -0
  1407. scipy/stats/_morestats.py +4626 -0
  1408. scipy/stats/_mstats_basic.py +3658 -0
  1409. scipy/stats/_mstats_extras.py +521 -0
  1410. scipy/stats/_multicomp.py +449 -0
  1411. scipy/stats/_multivariate.py +7281 -0
  1412. scipy/stats/_new_distributions.py +452 -0
  1413. scipy/stats/_odds_ratio.py +466 -0
  1414. scipy/stats/_page_trend_test.py +486 -0
  1415. scipy/stats/_probability_distribution.py +1964 -0
  1416. scipy/stats/_qmc.py +2956 -0
  1417. scipy/stats/_qmc_cy.cp314-win_arm64.lib +0 -0
  1418. scipy/stats/_qmc_cy.cp314-win_arm64.pyd +0 -0
  1419. scipy/stats/_qmc_cy.pyi +54 -0
  1420. scipy/stats/_qmvnt.py +454 -0
  1421. scipy/stats/_qmvnt_cy.cp314-win_arm64.lib +0 -0
  1422. scipy/stats/_qmvnt_cy.cp314-win_arm64.pyd +0 -0
  1423. scipy/stats/_quantile.py +335 -0
  1424. scipy/stats/_rcont/__init__.py +4 -0
  1425. scipy/stats/_rcont/rcont.cp314-win_arm64.lib +0 -0
  1426. scipy/stats/_rcont/rcont.cp314-win_arm64.pyd +0 -0
  1427. scipy/stats/_relative_risk.py +263 -0
  1428. scipy/stats/_resampling.py +2352 -0
  1429. scipy/stats/_result_classes.py +40 -0
  1430. scipy/stats/_sampling.py +1314 -0
  1431. scipy/stats/_sensitivity_analysis.py +713 -0
  1432. scipy/stats/_sobol.cp314-win_arm64.lib +0 -0
  1433. scipy/stats/_sobol.cp314-win_arm64.pyd +0 -0
  1434. scipy/stats/_sobol.pyi +54 -0
  1435. scipy/stats/_sobol_direction_numbers.npz +0 -0
  1436. scipy/stats/_stats.cp314-win_arm64.lib +0 -0
  1437. scipy/stats/_stats.cp314-win_arm64.pyd +0 -0
  1438. scipy/stats/_stats.pxd +10 -0
  1439. scipy/stats/_stats_mstats_common.py +322 -0
  1440. scipy/stats/_stats_py.py +11089 -0
  1441. scipy/stats/_stats_pythran.cp314-win_arm64.lib +0 -0
  1442. scipy/stats/_stats_pythran.cp314-win_arm64.pyd +0 -0
  1443. scipy/stats/_survival.py +683 -0
  1444. scipy/stats/_tukeylambda_stats.py +199 -0
  1445. scipy/stats/_unuran/__init__.py +0 -0
  1446. scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.lib +0 -0
  1447. scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.pyd +0 -0
  1448. scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
  1449. scipy/stats/_variation.py +126 -0
  1450. scipy/stats/_warnings_errors.py +38 -0
  1451. scipy/stats/_wilcoxon.py +265 -0
  1452. scipy/stats/biasedurn.py +16 -0
  1453. scipy/stats/contingency.py +521 -0
  1454. scipy/stats/distributions.py +24 -0
  1455. scipy/stats/kde.py +18 -0
  1456. scipy/stats/morestats.py +27 -0
  1457. scipy/stats/mstats.py +140 -0
  1458. scipy/stats/mstats_basic.py +42 -0
  1459. scipy/stats/mstats_extras.py +25 -0
  1460. scipy/stats/mvn.py +17 -0
  1461. scipy/stats/qmc.py +236 -0
  1462. scipy/stats/sampling.py +73 -0
  1463. scipy/stats/stats.py +41 -0
  1464. scipy/stats/tests/__init__.py +0 -0
  1465. scipy/stats/tests/common_tests.py +356 -0
  1466. scipy/stats/tests/data/_mvt.py +171 -0
  1467. scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  1468. scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
  1469. scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
  1470. scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
  1471. scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
  1472. scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  1473. scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  1474. scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  1475. scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  1476. scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
  1477. scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  1478. scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  1479. scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
  1480. scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  1481. scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  1482. scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
  1483. scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  1484. scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
  1485. scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  1486. scipy/stats/tests/test_axis_nan_policy.py +1388 -0
  1487. scipy/stats/tests/test_binned_statistic.py +568 -0
  1488. scipy/stats/tests/test_censored_data.py +152 -0
  1489. scipy/stats/tests/test_contingency.py +294 -0
  1490. scipy/stats/tests/test_continued_fraction.py +173 -0
  1491. scipy/stats/tests/test_continuous.py +2198 -0
  1492. scipy/stats/tests/test_continuous_basic.py +1053 -0
  1493. scipy/stats/tests/test_continuous_fit_censored.py +683 -0
  1494. scipy/stats/tests/test_correlation.py +80 -0
  1495. scipy/stats/tests/test_crosstab.py +115 -0
  1496. scipy/stats/tests/test_discrete_basic.py +580 -0
  1497. scipy/stats/tests/test_discrete_distns.py +700 -0
  1498. scipy/stats/tests/test_distributions.py +10413 -0
  1499. scipy/stats/tests/test_entropy.py +322 -0
  1500. scipy/stats/tests/test_fast_gen_inversion.py +435 -0
  1501. scipy/stats/tests/test_fit.py +1090 -0
  1502. scipy/stats/tests/test_hypotests.py +1991 -0
  1503. scipy/stats/tests/test_kdeoth.py +676 -0
  1504. scipy/stats/tests/test_marray.py +289 -0
  1505. scipy/stats/tests/test_mgc.py +217 -0
  1506. scipy/stats/tests/test_morestats.py +3259 -0
  1507. scipy/stats/tests/test_mstats_basic.py +2071 -0
  1508. scipy/stats/tests/test_mstats_extras.py +172 -0
  1509. scipy/stats/tests/test_multicomp.py +405 -0
  1510. scipy/stats/tests/test_multivariate.py +4381 -0
  1511. scipy/stats/tests/test_odds_ratio.py +148 -0
  1512. scipy/stats/tests/test_qmc.py +1492 -0
  1513. scipy/stats/tests/test_quantile.py +199 -0
  1514. scipy/stats/tests/test_rank.py +345 -0
  1515. scipy/stats/tests/test_relative_risk.py +95 -0
  1516. scipy/stats/tests/test_resampling.py +2000 -0
  1517. scipy/stats/tests/test_sampling.py +1450 -0
  1518. scipy/stats/tests/test_sensitivity_analysis.py +310 -0
  1519. scipy/stats/tests/test_stats.py +9707 -0
  1520. scipy/stats/tests/test_survival.py +466 -0
  1521. scipy/stats/tests/test_tukeylambda_stats.py +85 -0
  1522. scipy/stats/tests/test_variation.py +216 -0
  1523. scipy/version.py +12 -0
  1524. scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
  1525. scipy-1.16.2.dist-info/LICENSE.txt +912 -0
  1526. scipy-1.16.2.dist-info/METADATA +1061 -0
  1527. scipy-1.16.2.dist-info/RECORD +1530 -0
  1528. scipy-1.16.2.dist-info/WHEEL +4 -0
  1529. scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  1530. scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,2071 @@
1
+ """
2
+ Tests for the stats.mstats module (support for masked arrays)
3
+ """
4
+ import warnings
5
+ import platform
6
+
7
+ import numpy as np
8
+ from numpy import nan
9
+ import numpy.ma as ma
10
+ from numpy.ma import masked, nomask
11
+
12
+ import scipy.stats.mstats as mstats
13
+ from scipy import stats
14
+ from .common_tests import check_named_results
15
+ import pytest
16
+ from pytest import raises as assert_raises
17
+ from numpy.ma.testutils import (assert_equal, assert_almost_equal,
18
+ assert_array_almost_equal,
19
+ assert_array_almost_equal_nulp, assert_,
20
+ assert_allclose, assert_array_equal)
21
+ from numpy.testing import suppress_warnings
22
+ from scipy.stats import _mstats_basic, _stats_py
23
+ from scipy.conftest import skip_xp_invalid_arg
24
+ from scipy.stats._axis_nan_policy import SmallSampleWarning, too_small_1d_not_omit
25
+
26
+ class TestMquantiles:
27
+ def test_mquantiles_limit_keyword(self):
28
+ # Regression test for Trac ticket #867
29
+ data = np.array([[6., 7., 1.],
30
+ [47., 15., 2.],
31
+ [49., 36., 3.],
32
+ [15., 39., 4.],
33
+ [42., 40., -999.],
34
+ [41., 41., -999.],
35
+ [7., -999., -999.],
36
+ [39., -999., -999.],
37
+ [43., -999., -999.],
38
+ [40., -999., -999.],
39
+ [36., -999., -999.]])
40
+ desired = [[19.2, 14.6, 1.45],
41
+ [40.0, 37.5, 2.5],
42
+ [42.8, 40.05, 3.55]]
43
+ quants = mstats.mquantiles(data, axis=0, limit=(0, 50))
44
+ assert_almost_equal(quants, desired)
45
+
46
+
47
+ def check_equal_gmean(array_like, desired, axis=None, dtype=None, rtol=1e-7):
48
+ # Note this doesn't test when axis is not specified
49
+ x = mstats.gmean(array_like, axis=axis, dtype=dtype)
50
+ assert_allclose(x, desired, rtol=rtol)
51
+ assert_equal(x.dtype, dtype)
52
+
53
+
54
+ def check_equal_hmean(array_like, desired, axis=None, dtype=None, rtol=1e-7):
55
+ x = stats.hmean(array_like, axis=axis, dtype=dtype)
56
+ assert_allclose(x, desired, rtol=rtol)
57
+ assert_equal(x.dtype, dtype)
58
+
59
+
60
+ @skip_xp_invalid_arg
61
+ class TestGeoMean:
62
+ def test_1d(self):
63
+ a = [1, 2, 3, 4]
64
+ desired = np.power(1*2*3*4, 1./4.)
65
+ check_equal_gmean(a, desired, rtol=1e-14)
66
+
67
+ def test_1d_ma(self):
68
+ # Test a 1d masked array
69
+ a = ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
70
+ desired = 45.2872868812
71
+ check_equal_gmean(a, desired)
72
+
73
+ a = ma.array([1, 2, 3, 4], mask=[0, 0, 0, 1])
74
+ desired = np.power(1*2*3, 1./3.)
75
+ check_equal_gmean(a, desired, rtol=1e-14)
76
+
77
+ def test_1d_ma_value(self):
78
+ # Test a 1d masked array with a masked value
79
+ a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
80
+ mask=[0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
81
+ desired = 41.4716627439
82
+ check_equal_gmean(a, desired)
83
+
84
+ def test_1d_ma0(self):
85
+ # Test a 1d masked array with zero element
86
+ a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 0])
87
+ desired = 0
88
+ check_equal_gmean(a, desired)
89
+
90
+ def test_1d_ma_inf(self):
91
+ # Test a 1d masked array with negative element
92
+ a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, -1])
93
+ desired = np.nan
94
+ with np.errstate(invalid='ignore'):
95
+ check_equal_gmean(a, desired)
96
+
97
+ @pytest.mark.skipif(not hasattr(np, 'float96'),
98
+ reason='cannot find float96 so skipping')
99
+ def test_1d_float96(self):
100
+ a = ma.array([1, 2, 3, 4], mask=[0, 0, 0, 1])
101
+ desired_dt = np.power(1*2*3, 1./3.).astype(np.float96)
102
+ check_equal_gmean(a, desired_dt, dtype=np.float96, rtol=1e-14)
103
+
104
+ def test_2d_ma(self):
105
+ a = ma.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]],
106
+ mask=[[0, 0, 0, 0], [1, 0, 0, 1], [0, 1, 1, 0]])
107
+ desired = np.array([1, 2, 3, 4])
108
+ check_equal_gmean(a, desired, axis=0, rtol=1e-14)
109
+
110
+ desired = ma.array([np.power(1*2*3*4, 1./4.),
111
+ np.power(2*3, 1./2.),
112
+ np.power(1*4, 1./2.)])
113
+ check_equal_gmean(a, desired, axis=-1, rtol=1e-14)
114
+
115
+ # Test a 2d masked array
116
+ a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
117
+ desired = 52.8885199
118
+ check_equal_gmean(np.ma.array(a), desired)
119
+
120
+
121
+ @skip_xp_invalid_arg
122
+ class TestHarMean:
123
+ def test_1d(self):
124
+ a = ma.array([1, 2, 3, 4], mask=[0, 0, 0, 1])
125
+ desired = 3. / (1./1 + 1./2 + 1./3)
126
+ check_equal_hmean(a, desired, rtol=1e-14)
127
+
128
+ a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
129
+ desired = 34.1417152147
130
+ check_equal_hmean(a, desired)
131
+
132
+ a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
133
+ mask=[0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
134
+ desired = 31.8137186141
135
+ check_equal_hmean(a, desired)
136
+
137
+ @pytest.mark.skipif(not hasattr(np, 'float96'),
138
+ reason='cannot find float96 so skipping')
139
+ def test_1d_float96(self):
140
+ a = ma.array([1, 2, 3, 4], mask=[0, 0, 0, 1])
141
+ desired_dt = np.asarray(3. / (1./1 + 1./2 + 1./3), dtype=np.float96)
142
+ check_equal_hmean(a, desired_dt, dtype=np.float96)
143
+
144
+ def test_2d(self):
145
+ a = ma.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]],
146
+ mask=[[0, 0, 0, 0], [1, 0, 0, 1], [0, 1, 1, 0]])
147
+ desired = ma.array([1, 2, 3, 4])
148
+ check_equal_hmean(a, desired, axis=0, rtol=1e-14)
149
+
150
+ desired = [4./(1/1.+1/2.+1/3.+1/4.), 2./(1/2.+1/3.), 2./(1/1.+1/4.)]
151
+ check_equal_hmean(a, desired, axis=-1, rtol=1e-14)
152
+
153
+ a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
154
+ desired = 38.6696271841
155
+ check_equal_hmean(np.ma.array(a), desired)
156
+
157
+
158
+ class TestRanking:
159
+ def test_ranking(self):
160
+ x = ma.array([0,1,1,1,2,3,4,5,5,6,])
161
+ assert_almost_equal(mstats.rankdata(x),
162
+ [1,3,3,3,5,6,7,8.5,8.5,10])
163
+ x[[3,4]] = masked
164
+ assert_almost_equal(mstats.rankdata(x),
165
+ [1,2.5,2.5,0,0,4,5,6.5,6.5,8])
166
+ assert_almost_equal(mstats.rankdata(x, use_missing=True),
167
+ [1,2.5,2.5,4.5,4.5,4,5,6.5,6.5,8])
168
+ x = ma.array([0,1,5,1,2,4,3,5,1,6,])
169
+ assert_almost_equal(mstats.rankdata(x),
170
+ [1,3,8.5,3,5,7,6,8.5,3,10])
171
+ x = ma.array([[0,1,1,1,2], [3,4,5,5,6,]])
172
+ assert_almost_equal(mstats.rankdata(x),
173
+ [[1,3,3,3,5], [6,7,8.5,8.5,10]])
174
+ assert_almost_equal(mstats.rankdata(x, axis=1),
175
+ [[1,3,3,3,5], [1,2,3.5,3.5,5]])
176
+ assert_almost_equal(mstats.rankdata(x,axis=0),
177
+ [[1,1,1,1,1], [2,2,2,2,2,]])
178
+
179
+
180
+ class TestCorr:
181
+ def test_pearsonr(self):
182
+ # Tests some computations of Pearson's r
183
+ x = ma.arange(10)
184
+ with warnings.catch_warnings():
185
+ # The tests in this context are edge cases, with perfect
186
+ # correlation or anticorrelation, or totally masked data.
187
+ # None of these should trigger a RuntimeWarning.
188
+ warnings.simplefilter("error", RuntimeWarning)
189
+
190
+ assert_almost_equal(mstats.pearsonr(x, x)[0], 1.0)
191
+ assert_almost_equal(mstats.pearsonr(x, x[::-1])[0], -1.0)
192
+
193
+ x = ma.array(x, mask=True)
194
+ pr = mstats.pearsonr(x, x)
195
+ assert_(pr[0] is masked)
196
+ assert_(pr[1] is masked)
197
+
198
+ x1 = ma.array([-1.0, 0.0, 1.0])
199
+ y1 = ma.array([0, 0, 3])
200
+ r, p = mstats.pearsonr(x1, y1)
201
+ assert_almost_equal(r, np.sqrt(3)/2)
202
+ assert_almost_equal(p, 1.0/3)
203
+
204
+ # (x2, y2) have the same unmasked data as (x1, y1).
205
+ mask = [False, False, False, True]
206
+ x2 = ma.array([-1.0, 0.0, 1.0, 99.0], mask=mask)
207
+ y2 = ma.array([0, 0, 3, -1], mask=mask)
208
+ r, p = mstats.pearsonr(x2, y2)
209
+ assert_almost_equal(r, np.sqrt(3)/2)
210
+ assert_almost_equal(p, 1.0/3)
211
+
212
+ def test_pearsonr_misaligned_mask(self):
213
+ mx = np.ma.masked_array([1, 2, 3, 4, 5, 6], mask=[0, 1, 0, 0, 0, 0])
214
+ my = np.ma.masked_array([9, 8, 7, 6, 5, 9], mask=[0, 0, 1, 0, 0, 0])
215
+ x = np.array([1, 4, 5, 6])
216
+ y = np.array([9, 6, 5, 9])
217
+ mr, mp = mstats.pearsonr(mx, my)
218
+ r, p = stats.pearsonr(x, y)
219
+ assert_equal(mr, r)
220
+ assert_equal(mp, p)
221
+
222
+ def test_spearmanr(self):
223
+ # Tests some computations of Spearman's rho
224
+ (x, y) = ([5.05,6.75,3.21,2.66], [1.65,2.64,2.64,6.95])
225
+ assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
226
+ (x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan])
227
+ (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
228
+ assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
229
+
230
+ x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
231
+ 1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
232
+ y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
233
+ 0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
234
+ assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
235
+ x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
236
+ 1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
237
+ y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
238
+ 0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
239
+ (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
240
+ assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
241
+ # Next test is to make sure calculation uses sufficient precision.
242
+ # The denominator's value is ~n^3 and used to be represented as an
243
+ # int. 2000**3 > 2**32 so these arrays would cause overflow on
244
+ # some machines.
245
+ x = list(range(2000))
246
+ y = list(range(2000))
247
+ y[0], y[9] = y[9], y[0]
248
+ y[10], y[434] = y[434], y[10]
249
+ y[435], y[1509] = y[1509], y[435]
250
+ # rho = 1 - 6 * (2 * (9^2 + 424^2 + 1074^2))/(2000 * (2000^2 - 1))
251
+ # = 1 - (1 / 500)
252
+ # = 0.998
253
+ assert_almost_equal(mstats.spearmanr(x,y)[0], 0.998)
254
+
255
+ # test for namedtuple attributes
256
+ res = mstats.spearmanr(x, y)
257
+ attributes = ('correlation', 'pvalue')
258
+ check_named_results(res, attributes, ma=True)
259
+
260
+ def test_spearmanr_alternative(self):
261
+ # check against R
262
+ # options(digits=16)
263
+ # cor.test(c(2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
264
+ # 1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7),
265
+ # c(22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
266
+ # 0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4),
267
+ # alternative='two.sided', method='spearman')
268
+ x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
269
+ 1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
270
+ y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
271
+ 0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
272
+
273
+ r_exp = 0.6887298747763864 # from cor.test
274
+
275
+ r, p = mstats.spearmanr(x, y)
276
+ assert_allclose(r, r_exp)
277
+ assert_allclose(p, 0.004519192910756)
278
+
279
+ r, p = mstats.spearmanr(x, y, alternative='greater')
280
+ assert_allclose(r, r_exp)
281
+ assert_allclose(p, 0.002259596455378)
282
+
283
+ r, p = mstats.spearmanr(x, y, alternative='less')
284
+ assert_allclose(r, r_exp)
285
+ assert_allclose(p, 0.9977404035446)
286
+
287
+ # intuitive test (with obvious positive correlation)
288
+ n = 100
289
+ x = np.linspace(0, 5, n)
290
+ y = 0.1*x + np.random.rand(n) # y is positively correlated w/ x
291
+
292
+ stat1, p1 = mstats.spearmanr(x, y)
293
+
294
+ stat2, p2 = mstats.spearmanr(x, y, alternative="greater")
295
+ assert_allclose(p2, p1 / 2) # positive correlation -> small p
296
+
297
+ stat3, p3 = mstats.spearmanr(x, y, alternative="less")
298
+ assert_allclose(p3, 1 - p1 / 2) # positive correlation -> large p
299
+
300
+ assert stat1 == stat2 == stat3
301
+
302
+ with pytest.raises(ValueError, match="alternative must be 'less'..."):
303
+ mstats.spearmanr(x, y, alternative="ekki-ekki")
304
+
305
+ @pytest.mark.skipif(platform.machine() == 'ppc64le',
306
+ reason="fails/crashes on ppc64le")
307
+ def test_kendalltau(self):
308
+ # check case with maximum disorder and p=1
309
+ x = ma.array(np.array([9, 2, 5, 6]))
310
+ y = ma.array(np.array([4, 7, 9, 11]))
311
+ # Cross-check with exact result from R:
312
+ # cor.test(x,y,method="kendall",exact=1)
313
+ expected = [0.0, 1.0]
314
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y)), expected)
315
+
316
+ # simple case without ties
317
+ x = ma.array(np.arange(10))
318
+ y = ma.array(np.arange(10))
319
+ # Cross-check with exact result from R:
320
+ # cor.test(x,y,method="kendall",exact=1)
321
+ expected = [1.0, 5.511463844797e-07]
322
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y)), expected)
323
+
324
+ # check exception in case of invalid method keyword
325
+ assert_raises(ValueError, mstats.kendalltau, x, y, method='banana')
326
+
327
+ # swap a couple of values
328
+ b = y[1]
329
+ y[1] = y[2]
330
+ y[2] = b
331
+ # Cross-check with exact result from R:
332
+ # cor.test(x,y,method="kendall",exact=1)
333
+ expected = [0.9555555555555556, 5.511463844797e-06]
334
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y)), expected)
335
+
336
+ # swap a couple more
337
+ b = y[5]
338
+ y[5] = y[6]
339
+ y[6] = b
340
+ # Cross-check with exact result from R:
341
+ # cor.test(x,y,method="kendall",exact=1)
342
+ expected = [0.9111111111111111, 2.976190476190e-05]
343
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y)), expected)
344
+
345
+ # same in opposite direction
346
+ x = ma.array(np.arange(10))
347
+ y = ma.array(np.arange(10)[::-1])
348
+ # Cross-check with exact result from R:
349
+ # cor.test(x,y,method="kendall",exact=1)
350
+ expected = [-1.0, 5.511463844797e-07]
351
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y)), expected)
352
+
353
+ # swap a couple of values
354
+ b = y[1]
355
+ y[1] = y[2]
356
+ y[2] = b
357
+ # Cross-check with exact result from R:
358
+ # cor.test(x,y,method="kendall",exact=1)
359
+ expected = [-0.9555555555555556, 5.511463844797e-06]
360
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y)), expected)
361
+
362
+ # swap a couple more
363
+ b = y[5]
364
+ y[5] = y[6]
365
+ y[6] = b
366
+ # Cross-check with exact result from R:
367
+ # cor.test(x,y,method="kendall",exact=1)
368
+ expected = [-0.9111111111111111, 2.976190476190e-05]
369
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y)), expected)
370
+
371
+ # Tests some computations of Kendall's tau
372
+ x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66, np.nan])
373
+ y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
374
+ z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
375
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y)),
376
+ [+0.3333333, 0.75])
377
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, y, method='asymptotic')),
378
+ [+0.3333333, 0.4969059])
379
+ assert_almost_equal(np.asarray(mstats.kendalltau(x, z)),
380
+ [-0.5477226, 0.2785987])
381
+ #
382
+ x = ma.fix_invalid([0, 0, 0, 0, 20, 20, 0, 60, 0, 20,
383
+ 10, 10, 0, 40, 0, 20, 0, 0, 0, 0, 0, np.nan])
384
+ y = ma.fix_invalid([0, 80, 80, 80, 10, 33, 60, 0, 67, 27,
385
+ 25, 80, 80, 80, 80, 80, 80, 0, 10, 45, np.nan, 0])
386
+ result = mstats.kendalltau(x, y)
387
+ assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009])
388
+
389
+ # test for namedtuple attributes
390
+ attributes = ('correlation', 'pvalue')
391
+ check_named_results(result, attributes, ma=True)
392
+
393
+ @pytest.mark.skipif(platform.machine() == 'ppc64le',
394
+ reason="fails/crashes on ppc64le")
395
+ @pytest.mark.slow
396
+ def test_kendalltau_large(self):
397
+ # make sure internal variable use correct precision with
398
+ # larger arrays
399
+ x = np.arange(2000, dtype=float)
400
+ x = ma.masked_greater(x, 1995)
401
+ y = np.arange(2000, dtype=float)
402
+ y = np.concatenate((y[1000:], y[:1000]))
403
+ assert_(np.isfinite(mstats.kendalltau(x, y)[1]))
404
+
405
+ def test_kendalltau_seasonal(self):
406
+ # Tests the seasonal Kendall tau.
407
+ x = [[nan, nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
408
+ [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
409
+ [3, 2, 5, 6, 18, 4, 9, 1, 1, nan, 1, 1, nan],
410
+ [nan, 6, 11, 4, 17, nan, 6, 1, 1, 2, 5, 1, 1]]
411
+ x = ma.fix_invalid(x).T
412
+ output = mstats.kendalltau_seasonal(x)
413
+ assert_almost_equal(output['global p-value (indep)'], 0.008, 3)
414
+ assert_almost_equal(output['seasonal p-value'].round(2),
415
+ [0.18,0.53,0.20,0.04])
416
+
417
+ @pytest.mark.parametrize("method", ("exact", "asymptotic"))
418
+ @pytest.mark.parametrize("alternative", ("two-sided", "greater", "less"))
419
+ def test_kendalltau_mstats_vs_stats(self, method, alternative):
420
+ # Test that mstats.kendalltau and stats.kendalltau with
421
+ # nan_policy='omit' matches behavior of stats.kendalltau
422
+ # Accuracy of the alternatives is tested in stats/tests/test_stats.py
423
+
424
+ np.random.seed(0)
425
+ n = 50
426
+ x = np.random.rand(n)
427
+ y = np.random.rand(n)
428
+ mask = np.random.rand(n) > 0.5
429
+
430
+ x_masked = ma.array(x, mask=mask)
431
+ y_masked = ma.array(y, mask=mask)
432
+ res_masked = mstats.kendalltau(
433
+ x_masked, y_masked, method=method, alternative=alternative)
434
+
435
+ x_compressed = x_masked.compressed()
436
+ y_compressed = y_masked.compressed()
437
+ res_compressed = stats.kendalltau(
438
+ x_compressed, y_compressed, method=method, alternative=alternative)
439
+
440
+ x[mask] = np.nan
441
+ y[mask] = np.nan
442
+ res_nan = stats.kendalltau(
443
+ x, y, method=method, nan_policy='omit', alternative=alternative)
444
+
445
+ assert_allclose(res_masked, res_compressed)
446
+ assert_allclose(res_nan, res_compressed)
447
+
448
+ def test_kendall_p_exact_medium(self):
449
+ # Test for the exact method with medium samples (some n >= 171)
450
+ # expected values generated using SymPy
451
+ expectations = {(100, 2393): 0.62822615287956040664,
452
+ (101, 2436): 0.60439525773513602669,
453
+ (170, 0): 2.755801935583541e-307,
454
+ (171, 0): 0.0,
455
+ (171, 1): 2.755801935583541e-307,
456
+ (172, 1): 0.0,
457
+ (200, 9797): 0.74753983745929675209,
458
+ (201, 9656): 0.40959218958120363618}
459
+ for nc, expected in expectations.items():
460
+ res = _mstats_basic._kendall_p_exact(nc[0], nc[1])
461
+ assert_almost_equal(res, expected)
462
+
463
+ @pytest.mark.xslow
464
+ def test_kendall_p_exact_large(self):
465
+ # Test for the exact method with large samples (n >= 171)
466
+ # expected values generated using SymPy
467
+ expectations = {(400, 38965): 0.48444283672113314099,
468
+ (401, 39516): 0.66363159823474837662,
469
+ (800, 156772): 0.42265448483120932055,
470
+ (801, 157849): 0.53437553412194416236,
471
+ (1600, 637472): 0.84200727400323538419,
472
+ (1601, 630304): 0.34465255088058593946}
473
+
474
+ for nc, expected in expectations.items():
475
+ res = _mstats_basic._kendall_p_exact(nc[0], nc[1])
476
+ assert_almost_equal(res, expected)
477
+
478
+ @skip_xp_invalid_arg
479
+ # mstats.pointbiserialr returns a NumPy float for the statistic, but converts
480
+ # it to a masked array with no masked elements before calling `special.betainc`,
481
+ # which won't accept masked arrays when `SCIPY_ARRAY_API=1`.
482
+ def test_pointbiserial(self):
483
+ x = [1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0,
484
+ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, -1]
485
+ y = [14.8, 13.8, 12.4, 10.1, 7.1, 6.1, 5.8, 4.6, 4.3, 3.5, 3.3, 3.2,
486
+ 3.0, 2.8, 2.8, 2.5, 2.4, 2.3, 2.1, 1.7, 1.7, 1.5, 1.3, 1.3, 1.2,
487
+ 1.2, 1.1, 0.8, 0.7, 0.6, 0.5, 0.2, 0.2, 0.1, np.nan]
488
+ assert_almost_equal(mstats.pointbiserialr(x, y)[0], 0.36149, 5)
489
+
490
+ # test for namedtuple attributes
491
+ res = mstats.pointbiserialr(x, y)
492
+ attributes = ('correlation', 'pvalue')
493
+ check_named_results(res, attributes, ma=True)
494
+
495
+
496
+ @skip_xp_invalid_arg
497
+ class TestTrimming:
498
+
499
+ def test_trim(self):
500
+ a = ma.arange(10)
501
+ assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
502
+ a = ma.arange(10)
503
+ assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None])
504
+ a = ma.arange(10)
505
+ assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)),
506
+ [None,None,None,3,4,5,6,7,None,None])
507
+ a = ma.arange(10)
508
+ assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
509
+ [None,1,2,3,4,5,6,7,None,None])
510
+
511
+ a = ma.arange(12)
512
+ a[[0,-1]] = a[5] = masked
513
+ assert_equal(mstats.trim(a, (2,8)),
514
+ [None, None, 2, 3, 4, None, 6, 7, 8, None, None, None])
515
+
516
+ x = ma.arange(100).reshape(10, 10)
517
+ expected = [1]*10 + [0]*70 + [1]*20
518
+ trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=None)
519
+ assert_equal(trimx._mask.ravel(), expected)
520
+ trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=0)
521
+ assert_equal(trimx._mask.ravel(), expected)
522
+ trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=-1)
523
+ assert_equal(trimx._mask.T.ravel(), expected)
524
+
525
+ # same as above, but with an extra masked row inserted
526
+ x = ma.arange(110).reshape(11, 10)
527
+ x[1] = masked
528
+ expected = [1]*20 + [0]*70 + [1]*20
529
+ trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=None)
530
+ assert_equal(trimx._mask.ravel(), expected)
531
+ trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=0)
532
+ assert_equal(trimx._mask.ravel(), expected)
533
+ trimx = mstats.trim(x.T, (0.1,0.2), relative=True, axis=-1)
534
+ assert_equal(trimx.T._mask.ravel(), expected)
535
+
536
+ def test_trim_old(self):
537
+ x = ma.arange(100)
538
+ assert_equal(mstats.trimboth(x).count(), 60)
539
+ assert_equal(mstats.trimtail(x,tail='r').count(), 80)
540
+ x[50:70] = masked
541
+ trimx = mstats.trimboth(x)
542
+ assert_equal(trimx.count(), 48)
543
+ assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16)
544
+ x._mask = nomask
545
+ x.shape = (10,10)
546
+ assert_equal(mstats.trimboth(x).count(), 60)
547
+ assert_equal(mstats.trimtail(x).count(), 80)
548
+
549
+ def test_trimr(self):
550
+ x = ma.arange(10)
551
+ result = mstats.trimr(x, limits=(0.15, 0.14), inclusive=(False, False))
552
+ expected = ma.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
553
+ mask=[1, 1, 0, 0, 0, 0, 0, 0, 0, 1])
554
+ assert_equal(result, expected)
555
+ assert_equal(result.mask, expected.mask)
556
+
557
+ def test_trimmedmean(self):
558
+ data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
559
+ 296,299,306,376,428,515,666,1310,2611])
560
+ assert_almost_equal(mstats.trimmed_mean(data,0.1), 343, 0)
561
+ assert_almost_equal(mstats.trimmed_mean(data,(0.1,0.1)), 343, 0)
562
+ assert_almost_equal(mstats.trimmed_mean(data,(0.2,0.2)), 283, 0)
563
+
564
+ def test_trimmedvar(self):
565
+ # Basic test. Additional tests of all arguments, edge cases,
566
+ # input validation, and proper treatment of masked arrays are needed.
567
+ rng = np.random.default_rng(3262323289434724460)
568
+ data_orig = rng.random(size=20)
569
+ data = np.sort(data_orig)
570
+ data = ma.array(data, mask=[1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
571
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1])
572
+ assert_allclose(mstats.trimmed_var(data_orig, 0.1), data.var())
573
+
574
+ def test_trimmedstd(self):
575
+ # Basic test. Additional tests of all arguments, edge cases,
576
+ # input validation, and proper treatment of masked arrays are needed.
577
+ rng = np.random.default_rng(7121029245207162780)
578
+ data_orig = rng.random(size=20)
579
+ data = np.sort(data_orig)
580
+ data = ma.array(data, mask=[1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
581
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1])
582
+ assert_allclose(mstats.trimmed_std(data_orig, 0.1), data.std())
583
+
584
+ def test_trimmed_stde(self):
585
+ data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
586
+ 296,299,306,376,428,515,666,1310,2611])
587
+ assert_almost_equal(mstats.trimmed_stde(data,(0.2,0.2)), 56.13193, 5)
588
+ assert_almost_equal(mstats.trimmed_stde(data,0.2), 56.13193, 5)
589
+
590
+ def test_winsorization(self):
591
+ data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
592
+ 296,299,306,376,428,515,666,1310,2611])
593
+ assert_almost_equal(mstats.winsorize(data,(0.2,0.2)).var(ddof=1),
594
+ 21551.4, 1)
595
+ assert_almost_equal(
596
+ mstats.winsorize(data, (0.2,0.2),(False,False)).var(ddof=1),
597
+ 11887.3, 1)
598
+ data[5] = masked
599
+ winsorized = mstats.winsorize(data)
600
+ assert_equal(winsorized.mask, data.mask)
601
+
602
+ def test_winsorization_nan(self):
603
+ data = ma.array([np.nan, np.nan, 0, 1, 2])
604
+ assert_raises(ValueError, mstats.winsorize, data, (0.05, 0.05),
605
+ nan_policy='raise')
606
+ # Testing propagate (default behavior)
607
+ assert_equal(mstats.winsorize(data, (0.4, 0.4)),
608
+ ma.array([2, 2, 2, 2, 2]))
609
+ assert_equal(mstats.winsorize(data, (0.8, 0.8)),
610
+ ma.array([np.nan, np.nan, np.nan, np.nan, np.nan]))
611
+ assert_equal(mstats.winsorize(data, (0.4, 0.4), nan_policy='omit'),
612
+ ma.array([np.nan, np.nan, 2, 2, 2]))
613
+ assert_equal(mstats.winsorize(data, (0.8, 0.8), nan_policy='omit'),
614
+ ma.array([np.nan, np.nan, 2, 2, 2]))
615
+
616
+
617
+ @skip_xp_invalid_arg
618
+ class TestMoments:
619
+ # Comparison numbers are found using R v.1.5.1
620
+ # note that length(testcase) = 4
621
+ # testmathworks comes from documentation for the
622
+ # Statistics Toolbox for Matlab and can be found at both
623
+ # https://www.mathworks.com/help/stats/kurtosis.html
624
+ # https://www.mathworks.com/help/stats/skewness.html
625
+ # Note that both test cases came from here.
626
+ testcase = [1,2,3,4]
627
+ testmathworks = ma.fix_invalid([1.165, 0.6268, 0.0751, 0.3516, -0.6965,
628
+ np.nan])
629
+ testcase_2d = ma.array(
630
+ np.array([[0.05245846, 0.50344235, 0.86589117, 0.36936353, 0.46961149],
631
+ [0.11574073, 0.31299969, 0.45925772, 0.72618805, 0.75194407],
632
+ [0.67696689, 0.91878127, 0.09769044, 0.04645137, 0.37615733],
633
+ [0.05903624, 0.29908861, 0.34088298, 0.66216337, 0.83160998],
634
+ [0.64619526, 0.94894632, 0.27855892, 0.0706151, 0.39962917]]),
635
+ mask=np.array([[True, False, False, True, False],
636
+ [True, True, True, False, True],
637
+ [False, False, False, False, False],
638
+ [True, True, True, True, True],
639
+ [False, False, True, False, False]], dtype=bool))
640
+
641
+ def _assert_equal(self, actual, expect, *, shape=None, dtype=None):
642
+ expect = np.asarray(expect)
643
+ if shape is not None:
644
+ expect = np.broadcast_to(expect, shape)
645
+ assert_array_equal(actual, expect)
646
+ if dtype is None:
647
+ dtype = expect.dtype
648
+ assert actual.dtype == dtype
649
+
650
+ def test_moment(self):
651
+ y = mstats.moment(self.testcase,1)
652
+ assert_almost_equal(y,0.0,10)
653
+ y = mstats.moment(self.testcase,2)
654
+ assert_almost_equal(y,1.25)
655
+ y = mstats.moment(self.testcase,3)
656
+ assert_almost_equal(y,0.0)
657
+ y = mstats.moment(self.testcase,4)
658
+ assert_almost_equal(y,2.5625)
659
+
660
+ # check array_like input for moment
661
+ y = mstats.moment(self.testcase, [1, 2, 3, 4])
662
+ assert_allclose(y, [0, 1.25, 0, 2.5625])
663
+
664
+ # check moment input consists only of integers
665
+ y = mstats.moment(self.testcase, 0.0)
666
+ assert_allclose(y, 1.0)
667
+ assert_raises(ValueError, mstats.moment, self.testcase, 1.2)
668
+ y = mstats.moment(self.testcase, [1.0, 2, 3, 4.0])
669
+ assert_allclose(y, [0, 1.25, 0, 2.5625])
670
+
671
+ # test empty input
672
+ y = mstats.moment([])
673
+ self._assert_equal(y, np.nan, dtype=np.float64)
674
+ y = mstats.moment(np.array([], dtype=np.float32))
675
+ self._assert_equal(y, np.nan, dtype=np.float32)
676
+ y = mstats.moment(np.zeros((1, 0)), axis=0)
677
+ self._assert_equal(y, [], shape=(0,), dtype=np.float64)
678
+ y = mstats.moment([[]], axis=1)
679
+ self._assert_equal(y, np.nan, shape=(1,), dtype=np.float64)
680
+ y = mstats.moment([[]], moment=[0, 1], axis=0)
681
+ self._assert_equal(y, [], shape=(2, 0))
682
+
683
+ x = np.arange(10.)
684
+ x[9] = np.nan
685
+ assert_equal(mstats.moment(x, 2), ma.masked) # NaN value is ignored
686
+
687
+ def test_variation(self):
688
+ y = mstats.variation(self.testcase)
689
+ assert_almost_equal(y,0.44721359549996, 10)
690
+
691
+ def test_variation_ddof(self):
692
+ # test variation with delta degrees of freedom
693
+ # regression test for gh-13341
694
+ a = np.array([1, 2, 3, 4, 5])
695
+ y = mstats.variation(a, ddof=1)
696
+ assert_almost_equal(y, 0.5270462766947299)
697
+
698
+ def test_skewness(self):
699
+ y = mstats.skew(self.testmathworks)
700
+ assert_almost_equal(y,-0.29322304336607,10)
701
+ y = mstats.skew(self.testmathworks,bias=0)
702
+ assert_almost_equal(y,-0.437111105023940,10)
703
+ y = mstats.skew(self.testcase)
704
+ assert_almost_equal(y,0.0,10)
705
+
706
+ # test that skew works on multidimensional masked arrays
707
+ correct_2d = ma.array(
708
+ np.array([0.6882870394455785, 0, 0.2665647526856708,
709
+ 0, -0.05211472114254485]),
710
+ mask=np.array([False, False, False, True, False], dtype=bool)
711
+ )
712
+ assert_allclose(mstats.skew(self.testcase_2d, 1), correct_2d)
713
+ for i, row in enumerate(self.testcase_2d):
714
+ assert_almost_equal(mstats.skew(row), correct_2d[i])
715
+
716
+ correct_2d_bias_corrected = ma.array(
717
+ np.array([1.685952043212545, 0.0, 0.3973712716070531, 0,
718
+ -0.09026534484117164]),
719
+ mask=np.array([False, False, False, True, False], dtype=bool)
720
+ )
721
+ assert_allclose(mstats.skew(self.testcase_2d, 1, bias=False),
722
+ correct_2d_bias_corrected)
723
+ for i, row in enumerate(self.testcase_2d):
724
+ assert_almost_equal(mstats.skew(row, bias=False),
725
+ correct_2d_bias_corrected[i])
726
+
727
+ # Check consistency between stats and mstats implementations
728
+ assert_allclose(mstats.skew(self.testcase_2d[2, :]),
729
+ stats.skew(self.testcase_2d[2, :]))
730
+
731
+ def test_kurtosis(self):
732
+ # Set flags for axis = 0 and fisher=0 (Pearson's definition of kurtosis
733
+ # for compatibility with Matlab)
734
+ y = mstats.kurtosis(self.testmathworks, 0, fisher=0, bias=1)
735
+ assert_almost_equal(y, 2.1658856802973, 10)
736
+ # Note that MATLAB has confusing docs for the following case
737
+ # kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
738
+ # kurtosis(x) gives a biased estimate of Fisher's skewness (Pearson-3)
739
+ # The MATLAB docs imply that both should give Fisher's
740
+ y = mstats.kurtosis(self.testmathworks, fisher=0, bias=0)
741
+ assert_almost_equal(y, 3.663542721189047, 10)
742
+ y = mstats.kurtosis(self.testcase, 0, 0)
743
+ assert_almost_equal(y, 1.64)
744
+
745
+ # test that kurtosis works on multidimensional masked arrays
746
+ correct_2d = ma.array(np.array([-1.5, -3., -1.47247052385, 0.,
747
+ -1.26979517952]),
748
+ mask=np.array([False, False, False, True,
749
+ False], dtype=bool))
750
+ assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1),
751
+ correct_2d)
752
+ for i, row in enumerate(self.testcase_2d):
753
+ assert_almost_equal(mstats.kurtosis(row), correct_2d[i])
754
+
755
+ correct_2d_bias_corrected = ma.array(
756
+ np.array([-1.5, -3., -1.88988209538, 0., -0.5234638463918877]),
757
+ mask=np.array([False, False, False, True, False], dtype=bool))
758
+ assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1,
759
+ bias=False),
760
+ correct_2d_bias_corrected)
761
+ for i, row in enumerate(self.testcase_2d):
762
+ assert_almost_equal(mstats.kurtosis(row, bias=False),
763
+ correct_2d_bias_corrected[i])
764
+
765
+ # Check consistency between stats and mstats implementations
766
+ assert_array_almost_equal_nulp(mstats.kurtosis(self.testcase_2d[2, :]),
767
+ stats.kurtosis(self.testcase_2d[2, :]),
768
+ nulp=4)
769
+
770
+
771
+ class TestMode:
772
+ def test_mode(self):
773
+ a1 = [0,0,0,1,1,1,2,3,3,3,3,4,5,6,7]
774
+ a2 = np.reshape(a1, (3,5))
775
+ a3 = np.array([1,2,3,4,5,6])
776
+ a4 = np.reshape(a3, (3,2))
777
+ ma1 = ma.masked_where(ma.array(a1) > 2, a1)
778
+ ma2 = ma.masked_where(a2 > 2, a2)
779
+ ma3 = ma.masked_where(a3 < 2, a3)
780
+ ma4 = ma.masked_where(ma.array(a4) < 2, a4)
781
+ assert_equal(mstats.mode(a1, axis=None), (3,4))
782
+ assert_equal(mstats.mode(a1, axis=0), (3,4))
783
+ assert_equal(mstats.mode(ma1, axis=None), (0,3))
784
+ assert_equal(mstats.mode(a2, axis=None), (3,4))
785
+ assert_equal(mstats.mode(ma2, axis=None), (0,3))
786
+ assert_equal(mstats.mode(a3, axis=None), (1,1))
787
+ assert_equal(mstats.mode(ma3, axis=None), (2,1))
788
+ assert_equal(mstats.mode(a2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]]))
789
+ assert_equal(mstats.mode(ma2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]]))
790
+ assert_equal(mstats.mode(a2, axis=-1), ([[0],[3],[3]], [[3],[3],[1]]))
791
+ assert_equal(mstats.mode(ma2, axis=-1), ([[0],[1],[0]], [[3],[1],[0]]))
792
+ assert_equal(mstats.mode(ma4, axis=0), ([[3,2]], [[1,1]]))
793
+ assert_equal(mstats.mode(ma4, axis=-1), ([[2],[3],[5]], [[1],[1],[1]]))
794
+
795
+ a1_res = mstats.mode(a1, axis=None)
796
+
797
+ # test for namedtuple attributes
798
+ attributes = ('mode', 'count')
799
+ check_named_results(a1_res, attributes, ma=True)
800
+
801
+ def test_mode_modifies_input(self):
802
+ # regression test for gh-6428: mode(..., axis=None) may not modify
803
+ # the input array
804
+ im = np.zeros((100, 100))
805
+ im[:50, :] += 1
806
+ im[:, :50] += 1
807
+ cp = im.copy()
808
+ mstats.mode(im, None)
809
+ assert_equal(im, cp)
810
+
811
+
812
+ class TestPercentile:
813
+ def setup_method(self):
814
+ self.a1 = [3, 4, 5, 10, -3, -5, 6]
815
+ self.a2 = [3, -6, -2, 8, 7, 4, 2, 1]
816
+ self.a3 = [3., 4, 5, 10, -3, -5, -6, 7.0]
817
+
818
+ def test_percentile(self):
819
+ x = np.arange(8) * 0.5
820
+ assert_equal(mstats.scoreatpercentile(x, 0), 0.)
821
+ assert_equal(mstats.scoreatpercentile(x, 100), 3.5)
822
+ assert_equal(mstats.scoreatpercentile(x, 50), 1.75)
823
+
824
+ def test_2D(self):
825
+ x = ma.array([[1, 1, 1],
826
+ [1, 1, 1],
827
+ [4, 4, 3],
828
+ [1, 1, 1],
829
+ [1, 1, 1]])
830
+ assert_equal(mstats.scoreatpercentile(x, 50), [1, 1, 1])
831
+
832
+
833
+ @skip_xp_invalid_arg
834
+ class TestVariability:
835
+ """ Comparison numbers are found using R v.1.5.1
836
+ note that length(testcase) = 4
837
+ """
838
+ testcase = ma.fix_invalid([1,2,3,4,np.nan])
839
+
840
+ def test_sem(self):
841
+ # This is not in R, so used: sqrt(var(testcase)*3/4) / sqrt(3)
842
+ y = mstats.sem(self.testcase)
843
+ assert_almost_equal(y, 0.6454972244)
844
+ n = self.testcase.count()
845
+ assert_allclose(mstats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)),
846
+ mstats.sem(self.testcase, ddof=2))
847
+
848
+ def test_zmap(self):
849
+ # This is not in R, so tested by using:
850
+ # (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4)
851
+ y = mstats.zmap(self.testcase, self.testcase)
852
+ desired_unmaskedvals = ([-1.3416407864999, -0.44721359549996,
853
+ 0.44721359549996, 1.3416407864999])
854
+ assert_array_almost_equal(desired_unmaskedvals,
855
+ y.data[y.mask == False], decimal=12) # noqa: E712
856
+
857
+ def test_zscore(self):
858
+ # This is not in R, so tested by using:
859
+ # (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4)
860
+ y = mstats.zscore(self.testcase)
861
+ desired = ma.fix_invalid([-1.3416407864999, -0.44721359549996,
862
+ 0.44721359549996, 1.3416407864999, np.nan])
863
+ assert_almost_equal(desired, y, decimal=12)
864
+
865
+
866
+ @skip_xp_invalid_arg
867
+ class TestMisc:
868
+
869
+ def test_obrientransform(self):
870
+ args = [[5]*5+[6]*11+[7]*9+[8]*3+[9]*2+[10]*2,
871
+ [6]+[7]*2+[8]*4+[9]*9+[10]*16]
872
+ result = [5*[3.1828]+11*[0.5591]+9*[0.0344]+3*[1.6086]+2*[5.2817]+2*[11.0538],
873
+ [10.4352]+2*[4.8599]+4*[1.3836]+9*[0.0061]+16*[0.7277]]
874
+ assert_almost_equal(np.round(mstats.obrientransform(*args).T, 4),
875
+ result, 4)
876
+
877
+ def test_ks_2samp(self):
878
+ x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
879
+ [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
880
+ [3, 2, 5, 6, 18, 4, 9, 1, 1, nan, 1, 1, nan],
881
+ [nan, 6, 11, 4, 17, nan, 6, 1, 1, 2, 5, 1, 1]]
882
+ x = ma.fix_invalid(x).T
883
+ (winter, spring, summer, fall) = x.T
884
+
885
+ assert_almost_equal(np.round(mstats.ks_2samp(winter, spring), 4),
886
+ (0.1818, 0.9628))
887
+ assert_almost_equal(np.round(mstats.ks_2samp(winter, spring, 'g'), 4),
888
+ (0.1469, 0.6886))
889
+ assert_almost_equal(np.round(mstats.ks_2samp(winter, spring, 'l'), 4),
890
+ (0.1818, 0.6011))
891
+
892
+ def test_friedmanchisq(self):
893
+ # No missing values
894
+ args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0],
895
+ [7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0],
896
+ [6.0,8.0,4.0,6.0,7.0,6.5,6.0,4.0,6.5,3.0])
897
+ result = mstats.friedmanchisquare(*args)
898
+ assert_almost_equal(result[0], 10.4737, 4)
899
+ assert_almost_equal(result[1], 0.005317, 6)
900
+ # Missing values
901
+ x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
902
+ [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
903
+ [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
904
+ [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
905
+ x = ma.fix_invalid(x)
906
+ result = mstats.friedmanchisquare(*x)
907
+ assert_almost_equal(result[0], 2.0156, 4)
908
+ assert_almost_equal(result[1], 0.5692, 4)
909
+
910
+ # test for namedtuple attributes
911
+ attributes = ('statistic', 'pvalue')
912
+ check_named_results(result, attributes, ma=True)
913
+
914
+
915
+ def test_regress_simple():
916
+ # Regress a line with sinusoidal noise. Test for #1273.
917
+ x = np.linspace(0, 100, 100)
918
+ y = 0.2 * np.linspace(0, 100, 100) + 10
919
+ y += np.sin(np.linspace(0, 20, 100))
920
+
921
+ result = mstats.linregress(x, y)
922
+
923
+ # Result is of a correct class and with correct fields
924
+ lr = _stats_py.LinregressResult
925
+ assert_(isinstance(result, lr))
926
+ attributes = ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')
927
+ check_named_results(result, attributes, ma=True)
928
+ assert 'intercept_stderr' in dir(result)
929
+
930
+ # Slope and intercept are estimated correctly
931
+ assert_almost_equal(result.slope, 0.19644990055858422)
932
+ assert_almost_equal(result.intercept, 10.211269918932341)
933
+ assert_almost_equal(result.stderr, 0.002395781449783862)
934
+ assert_almost_equal(result.intercept_stderr, 0.13866936078570702)
935
+
936
+
937
+ def test_linregress_identical_x():
938
+ x = np.zeros(10)
939
+ y = np.random.random(10)
940
+ msg = "Cannot calculate a linear regression if all x values are identical"
941
+ with assert_raises(ValueError, match=msg):
942
+ mstats.linregress(x, y)
943
+
944
+
945
+ class TestTheilslopes:
946
+ def test_theilslopes(self):
947
+ # Test for basic slope and intercept.
948
+ slope, intercept, lower, upper = mstats.theilslopes([0, 1, 1])
949
+ assert_almost_equal(slope, 0.5)
950
+ assert_almost_equal(intercept, 0.5)
951
+
952
+ slope, intercept, lower, upper = mstats.theilslopes([0, 1, 1],
953
+ method='joint')
954
+ assert_almost_equal(slope, 0.5)
955
+ assert_almost_equal(intercept, 0.0)
956
+
957
+ # Test for correct masking.
958
+ y = np.ma.array([0, 1, 100, 1], mask=[False, False, True, False])
959
+ slope, intercept, lower, upper = mstats.theilslopes(y)
960
+ assert_almost_equal(slope, 1./3)
961
+ assert_almost_equal(intercept, 2./3)
962
+
963
+ slope, intercept, lower, upper = mstats.theilslopes(y,
964
+ method='joint')
965
+ assert_almost_equal(slope, 1./3)
966
+ assert_almost_equal(intercept, 0.0)
967
+
968
+ # Test of confidence intervals from example in Sen (1968).
969
+ x = [1, 2, 3, 4, 10, 12, 18]
970
+ y = [9, 15, 19, 20, 45, 55, 78]
971
+ slope, intercept, lower, upper = mstats.theilslopes(y, x, 0.07)
972
+ assert_almost_equal(slope, 4)
973
+ assert_almost_equal(intercept, 4.0)
974
+ assert_almost_equal(upper, 4.38, decimal=2)
975
+ assert_almost_equal(lower, 3.71, decimal=2)
976
+
977
+ slope, intercept, lower, upper = mstats.theilslopes(y, x, 0.07,
978
+ method='joint')
979
+ assert_almost_equal(slope, 4)
980
+ assert_almost_equal(intercept, 6.0)
981
+ assert_almost_equal(upper, 4.38, decimal=2)
982
+ assert_almost_equal(lower, 3.71, decimal=2)
983
+
984
+
985
+ def test_theilslopes_warnings(self):
986
+ # Test `theilslopes` with degenerate input; see gh-15943
987
+ msg = "All `x` coordinates.*|Mean of empty slice.|invalid value encountered.*"
988
+ with pytest.warns(RuntimeWarning, match=msg):
989
+ res = mstats.theilslopes([0, 1], [0, 0])
990
+ assert np.all(np.isnan(res))
991
+ with suppress_warnings() as sup:
992
+ sup.filter(RuntimeWarning, "invalid value encountered...")
993
+ res = mstats.theilslopes([0, 0, 0], [0, 1, 0])
994
+ assert_allclose(res, (0, 0, np.nan, np.nan))
995
+
996
+
997
+ def test_theilslopes_namedtuple_consistency(self):
998
+ """
999
+ Simple test to ensure tuple backwards-compatibility of the returned
1000
+ TheilslopesResult object
1001
+ """
1002
+ y = [1, 2, 4]
1003
+ x = [4, 6, 8]
1004
+ slope, intercept, low_slope, high_slope = mstats.theilslopes(y, x)
1005
+ result = mstats.theilslopes(y, x)
1006
+
1007
+ # note all four returned values are distinct here
1008
+ assert_equal(slope, result.slope)
1009
+ assert_equal(intercept, result.intercept)
1010
+ assert_equal(low_slope, result.low_slope)
1011
+ assert_equal(high_slope, result.high_slope)
1012
+
1013
+ def test_gh19678_uint8(self):
1014
+ # `theilslopes` returned unexpected results when `y` was an unsigned type.
1015
+ # Check that this is resolved.
1016
+ rng = np.random.default_rng(2549824598234528)
1017
+ y = rng.integers(0, 255, size=10, dtype=np.uint8)
1018
+ res = stats.theilslopes(y, y)
1019
+ np.testing.assert_allclose(res.slope, 1)
1020
+
1021
+
1022
+ def test_siegelslopes():
1023
+ # method should be exact for straight line
1024
+ y = 2 * np.arange(10) + 0.5
1025
+ assert_equal(mstats.siegelslopes(y), (2.0, 0.5))
1026
+ assert_equal(mstats.siegelslopes(y, method='separate'), (2.0, 0.5))
1027
+
1028
+ x = 2 * np.arange(10)
1029
+ y = 5 * x - 3.0
1030
+ assert_equal(mstats.siegelslopes(y, x), (5.0, -3.0))
1031
+ assert_equal(mstats.siegelslopes(y, x, method='separate'), (5.0, -3.0))
1032
+
1033
+ # method is robust to outliers: brekdown point of 50%
1034
+ y[:4] = 1000
1035
+ assert_equal(mstats.siegelslopes(y, x), (5.0, -3.0))
1036
+
1037
+ # if there are no outliers, results should be comparable to linregress
1038
+ x = np.arange(10)
1039
+ y = -2.3 + 0.3*x + stats.norm.rvs(size=10, random_state=231)
1040
+ slope_ols, intercept_ols, _, _, _ = stats.linregress(x, y)
1041
+
1042
+ slope, intercept = mstats.siegelslopes(y, x)
1043
+ assert_allclose(slope, slope_ols, rtol=0.1)
1044
+ assert_allclose(intercept, intercept_ols, rtol=0.1)
1045
+
1046
+ slope, intercept = mstats.siegelslopes(y, x, method='separate')
1047
+ assert_allclose(slope, slope_ols, rtol=0.1)
1048
+ assert_allclose(intercept, intercept_ols, rtol=0.1)
1049
+
1050
+
1051
+ def test_siegelslopes_namedtuple_consistency():
1052
+ """
1053
+ Simple test to ensure tuple backwards-compatibility of the returned
1054
+ SiegelslopesResult object.
1055
+ """
1056
+ y = [1, 2, 4]
1057
+ x = [4, 6, 8]
1058
+ slope, intercept = mstats.siegelslopes(y, x)
1059
+ result = mstats.siegelslopes(y, x)
1060
+
1061
+ # note both returned values are distinct here
1062
+ assert_equal(slope, result.slope)
1063
+ assert_equal(intercept, result.intercept)
1064
+
1065
+
1066
+ def test_sen_seasonal_slopes():
1067
+ rng = np.random.default_rng(5765986256978575148)
1068
+ x = rng.random(size=(100, 4))
1069
+ intra_slope, inter_slope = mstats.sen_seasonal_slopes(x)
1070
+
1071
+ # reference implementation from the `sen_seasonal_slopes` documentation
1072
+ def dijk(yi):
1073
+ n = len(yi)
1074
+ x = np.arange(n)
1075
+ dy = yi - yi[:, np.newaxis]
1076
+ dx = x - x[:, np.newaxis]
1077
+ mask = np.triu(np.ones((n, n), dtype=bool), k=1)
1078
+ return dy[mask]/dx[mask]
1079
+
1080
+ for i in range(4):
1081
+ assert_allclose(np.median(dijk(x[:, i])), intra_slope[i])
1082
+
1083
+ all_slopes = np.concatenate([dijk(x[:, i]) for i in range(x.shape[1])])
1084
+ assert_allclose(np.median(all_slopes), inter_slope)
1085
+
1086
+
1087
+ def test_plotting_positions():
1088
+ # Regression test for #1256
1089
+ pos = mstats.plotting_positions(np.arange(3), 0, 0)
1090
+ assert_array_almost_equal(pos.data, np.array([0.25, 0.5, 0.75]))
1091
+
1092
+
1093
+ @skip_xp_invalid_arg
1094
+ class TestNormalitytests:
1095
+
1096
+ def test_vs_nonmasked(self):
1097
+ x = np.array((-2, -1, 0, 1, 2, 3)*4)**2
1098
+ assert_array_almost_equal(mstats.normaltest(x),
1099
+ stats.normaltest(x))
1100
+ assert_array_almost_equal(mstats.skewtest(x),
1101
+ stats.skewtest(x))
1102
+ assert_array_almost_equal(mstats.kurtosistest(x),
1103
+ stats.kurtosistest(x))
1104
+
1105
+ funcs = [stats.normaltest, stats.skewtest, stats.kurtosistest]
1106
+ mfuncs = [mstats.normaltest, mstats.skewtest, mstats.kurtosistest]
1107
+ x = [1, 2, 3, 4]
1108
+ for func, mfunc in zip(funcs, mfuncs):
1109
+ with pytest.warns(SmallSampleWarning, match=too_small_1d_not_omit):
1110
+ res = func(x)
1111
+ assert np.isnan(res.statistic)
1112
+ assert np.isnan(res.pvalue)
1113
+ assert_raises(ValueError, mfunc, x)
1114
+
1115
+ def test_axis_None(self):
1116
+ # Test axis=None (equal to axis=0 for 1-D input)
1117
+ x = np.array((-2,-1,0,1,2,3)*4)**2
1118
+ assert_allclose(mstats.normaltest(x, axis=None), mstats.normaltest(x))
1119
+ assert_allclose(mstats.skewtest(x, axis=None), mstats.skewtest(x))
1120
+ assert_allclose(mstats.kurtosistest(x, axis=None),
1121
+ mstats.kurtosistest(x))
1122
+
1123
+ def test_maskedarray_input(self):
1124
+ # Add some masked values, test result doesn't change
1125
+ x = np.array((-2, -1, 0, 1, 2, 3)*4)**2
1126
+ xm = np.ma.array(np.r_[np.inf, x, 10],
1127
+ mask=np.r_[True, [False] * x.size, True])
1128
+ assert_allclose(mstats.normaltest(xm), stats.normaltest(x))
1129
+ assert_allclose(mstats.skewtest(xm), stats.skewtest(x))
1130
+ assert_allclose(mstats.kurtosistest(xm), stats.kurtosistest(x))
1131
+
1132
+ def test_nd_input(self):
1133
+ x = np.array((-2, -1, 0, 1, 2, 3)*4)**2
1134
+ x_2d = np.vstack([x] * 2).T
1135
+ for func in [mstats.normaltest, mstats.skewtest, mstats.kurtosistest]:
1136
+ res_1d = func(x)
1137
+ res_2d = func(x_2d)
1138
+ assert_allclose(res_2d[0], [res_1d[0]] * 2)
1139
+ assert_allclose(res_2d[1], [res_1d[1]] * 2)
1140
+
1141
+ def test_normaltest_result_attributes(self):
1142
+ x = np.array((-2, -1, 0, 1, 2, 3)*4)**2
1143
+ res = mstats.normaltest(x)
1144
+ attributes = ('statistic', 'pvalue')
1145
+ check_named_results(res, attributes, ma=True)
1146
+
1147
+ def test_kurtosistest_result_attributes(self):
1148
+ x = np.array((-2, -1, 0, 1, 2, 3)*4)**2
1149
+ res = mstats.kurtosistest(x)
1150
+ attributes = ('statistic', 'pvalue')
1151
+ check_named_results(res, attributes, ma=True)
1152
+
1153
+ def test_regression_9033(self):
1154
+ # x clearly non-normal but power of negative denom needs
1155
+ # to be handled correctly to reject normality
1156
+ counts = [128, 0, 58, 7, 0, 41, 16, 0, 0, 167]
1157
+ x = np.hstack([np.full(c, i) for i, c in enumerate(counts)])
1158
+ assert_equal(mstats.kurtosistest(x)[1] < 0.01, True)
1159
+
1160
+ @pytest.mark.parametrize("test", ["skewtest", "kurtosistest"])
1161
+ @pytest.mark.parametrize("alternative", ["less", "greater"])
1162
+ def test_alternative(self, test, alternative):
1163
+ x = stats.norm.rvs(loc=10, scale=2.5, size=30, random_state=123)
1164
+
1165
+ stats_test = getattr(stats, test)
1166
+ mstats_test = getattr(mstats, test)
1167
+
1168
+ z_ex, p_ex = stats_test(x, alternative=alternative)
1169
+ z, p = mstats_test(x, alternative=alternative)
1170
+ assert_allclose(z, z_ex, atol=1e-12)
1171
+ assert_allclose(p, p_ex, atol=1e-12)
1172
+
1173
+ # test with masked arrays
1174
+ x[1:5] = np.nan
1175
+ x = np.ma.masked_array(x, mask=np.isnan(x))
1176
+ z_ex, p_ex = stats_test(x.compressed(), alternative=alternative)
1177
+ z, p = mstats_test(x, alternative=alternative)
1178
+ assert_allclose(z, z_ex, atol=1e-12)
1179
+ assert_allclose(p, p_ex, atol=1e-12)
1180
+
1181
+ def test_bad_alternative(self):
1182
+ x = stats.norm.rvs(size=20, random_state=123)
1183
+ msg = r"`alternative` must be..."
1184
+
1185
+ with pytest.raises(ValueError, match=msg):
1186
+ mstats.skewtest(x, alternative='error')
1187
+
1188
+ with pytest.raises(ValueError, match=msg):
1189
+ mstats.kurtosistest(x, alternative='error')
1190
+
1191
+
1192
+ class TestFOneway:
1193
+ def test_result_attributes(self):
1194
+ a = np.array([655, 788], dtype=np.uint16)
1195
+ b = np.array([789, 772], dtype=np.uint16)
1196
+ res = mstats.f_oneway(a, b)
1197
+ attributes = ('statistic', 'pvalue')
1198
+ check_named_results(res, attributes, ma=True)
1199
+
1200
+
1201
+ class TestMannwhitneyu:
1202
+ # data from gh-1428
1203
+ x = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1204
+ 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.,
1205
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1206
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1207
+ 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.,
1208
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1209
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2.,
1210
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1211
+ 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1., 2.,
1212
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1213
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1.,
1214
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1215
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1216
+ 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.,
1217
+ 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1218
+ 1., 1., 1., 1., 1., 1., 1., 1., 3., 1., 1., 1., 1., 1.,
1219
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1220
+ 1., 1., 1., 1., 1., 1.])
1221
+
1222
+ y = np.array([1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1.,
1223
+ 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 1., 1., 3.,
1224
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1.,
1225
+ 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1.,
1226
+ 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2.,
1227
+ 2., 1., 1., 2., 1., 1., 2., 1., 2., 1., 1., 1., 1., 2.,
1228
+ 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1229
+ 1., 2., 1., 1., 1., 1., 1., 2., 2., 2., 1., 1., 1., 1.,
1230
+ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1231
+ 2., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1.,
1232
+ 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1.,
1233
+ 1., 1., 1., 1.])
1234
+
1235
+ def test_result_attributes(self):
1236
+ res = mstats.mannwhitneyu(self.x, self.y)
1237
+ attributes = ('statistic', 'pvalue')
1238
+ check_named_results(res, attributes, ma=True)
1239
+
1240
+ def test_against_stats(self):
1241
+ # gh-4641 reported that stats.mannwhitneyu returned half the p-value
1242
+ # of mstats.mannwhitneyu. Default alternative of stats.mannwhitneyu
1243
+ # is now two-sided, so they match.
1244
+ res1 = mstats.mannwhitneyu(self.x, self.y)
1245
+ res2 = stats.mannwhitneyu(self.x, self.y)
1246
+ assert res1.statistic == res2.statistic
1247
+ assert_allclose(res1.pvalue, res2.pvalue)
1248
+
1249
+
1250
+ class TestKruskal:
1251
+ def test_result_attributes(self):
1252
+ x = [1, 3, 5, 7, 9]
1253
+ y = [2, 4, 6, 8, 10]
1254
+
1255
+ res = mstats.kruskal(x, y)
1256
+ attributes = ('statistic', 'pvalue')
1257
+ check_named_results(res, attributes, ma=True)
1258
+
1259
+
1260
+ # TODO: for all ttest functions, add tests with masked array inputs
1261
+ class TestTtest_rel:
1262
+ def test_vs_nonmasked(self):
1263
+ np.random.seed(1234567)
1264
+ outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
1265
+
1266
+ # 1-D inputs
1267
+ res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1])
1268
+ res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1])
1269
+ assert_allclose(res1, res2)
1270
+
1271
+ # 2-D inputs
1272
+ res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None)
1273
+ res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None)
1274
+ assert_allclose(res1, res2)
1275
+ res1 = stats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0)
1276
+ res2 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0)
1277
+ assert_allclose(res1, res2)
1278
+
1279
+ # Check default is axis=0
1280
+ res3 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:])
1281
+ assert_allclose(res2, res3)
1282
+
1283
+ def test_fully_masked(self):
1284
+ np.random.seed(1234567)
1285
+ outcome = ma.masked_array(np.random.randn(3, 2),
1286
+ mask=[[1, 1, 1], [0, 0, 0]])
1287
+ with suppress_warnings() as sup:
1288
+ sup.filter(RuntimeWarning, "invalid value encountered in absolute")
1289
+ for pair in [(outcome[:, 0], outcome[:, 1]),
1290
+ ([np.nan, np.nan], [1.0, 2.0])]:
1291
+ t, p = mstats.ttest_rel(*pair)
1292
+ assert_array_equal(t, (np.nan, np.nan))
1293
+ assert_array_equal(p, (np.nan, np.nan))
1294
+
1295
+ def test_result_attributes(self):
1296
+ np.random.seed(1234567)
1297
+ outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
1298
+
1299
+ res = mstats.ttest_rel(outcome[:, 0], outcome[:, 1])
1300
+ attributes = ('statistic', 'pvalue')
1301
+ check_named_results(res, attributes, ma=True)
1302
+
1303
+ def test_invalid_input_size(self):
1304
+ assert_raises(ValueError, mstats.ttest_rel,
1305
+ np.arange(10), np.arange(11))
1306
+ x = np.arange(24)
1307
+ assert_raises(ValueError, mstats.ttest_rel,
1308
+ x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=1)
1309
+ assert_raises(ValueError, mstats.ttest_rel,
1310
+ x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=2)
1311
+
1312
+ def test_empty(self):
1313
+ res1 = mstats.ttest_rel([], [])
1314
+ assert_(np.all(np.isnan(res1)))
1315
+
1316
+ def test_zero_division(self):
1317
+ t, p = mstats.ttest_ind([0, 0, 0], [1, 1, 1])
1318
+ assert_equal((np.abs(t), p), (np.inf, 0))
1319
+
1320
+ with suppress_warnings() as sup:
1321
+ sup.filter(RuntimeWarning, "invalid value encountered in absolute")
1322
+ t, p = mstats.ttest_ind([0, 0, 0], [0, 0, 0])
1323
+ assert_array_equal(t, np.array([np.nan, np.nan]))
1324
+ assert_array_equal(p, np.array([np.nan, np.nan]))
1325
+
1326
+ def test_bad_alternative(self):
1327
+ msg = r"alternative must be 'less', 'greater' or 'two-sided'"
1328
+ with pytest.raises(ValueError, match=msg):
1329
+ mstats.ttest_ind([1, 2, 3], [4, 5, 6], alternative='foo')
1330
+
1331
+ @pytest.mark.parametrize("alternative", ["less", "greater"])
1332
+ def test_alternative(self, alternative):
1333
+ x = stats.norm.rvs(loc=10, scale=5, size=25, random_state=42)
1334
+ y = stats.norm.rvs(loc=8, scale=2, size=25, random_state=42)
1335
+
1336
+ t_ex, p_ex = stats.ttest_rel(x, y, alternative=alternative)
1337
+ t, p = mstats.ttest_rel(x, y, alternative=alternative)
1338
+ assert_allclose(t, t_ex, rtol=1e-14)
1339
+ assert_allclose(p, p_ex, rtol=1e-14)
1340
+
1341
+ # test with masked arrays
1342
+ x[1:10] = np.nan
1343
+ y[1:10] = np.nan
1344
+ x = np.ma.masked_array(x, mask=np.isnan(x))
1345
+ y = np.ma.masked_array(y, mask=np.isnan(y))
1346
+ t, p = mstats.ttest_rel(x, y, alternative=alternative)
1347
+ t_ex, p_ex = stats.ttest_rel(x.compressed(), y.compressed(),
1348
+ alternative=alternative)
1349
+ assert_allclose(t, t_ex, rtol=1e-14)
1350
+ assert_allclose(p, p_ex, rtol=1e-14)
1351
+
1352
+
1353
+ class TestTtest_ind:
1354
+ def test_vs_nonmasked(self):
1355
+ np.random.seed(1234567)
1356
+ outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
1357
+
1358
+ # 1-D inputs
1359
+ res1 = stats.ttest_ind(outcome[:, 0], outcome[:, 1])
1360
+ res2 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1])
1361
+ assert_allclose(res1, res2)
1362
+
1363
+ # 2-D inputs
1364
+ res1 = stats.ttest_ind(outcome[:, 0], outcome[:, 1], axis=None)
1365
+ res2 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1], axis=None)
1366
+ assert_allclose(res1, res2)
1367
+ res1 = stats.ttest_ind(outcome[:, :2], outcome[:, 2:], axis=0)
1368
+ res2 = mstats.ttest_ind(outcome[:, :2], outcome[:, 2:], axis=0)
1369
+ assert_allclose(res1, res2)
1370
+
1371
+ # Check default is axis=0
1372
+ res3 = mstats.ttest_ind(outcome[:, :2], outcome[:, 2:])
1373
+ assert_allclose(res2, res3)
1374
+
1375
+ # Check equal_var
1376
+ res4 = stats.ttest_ind(outcome[:, 0], outcome[:, 1], equal_var=True)
1377
+ res5 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1], equal_var=True)
1378
+ assert_allclose(res4, res5)
1379
+ res4 = stats.ttest_ind(outcome[:, 0], outcome[:, 1], equal_var=False)
1380
+ res5 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1], equal_var=False)
1381
+ assert_allclose(res4, res5)
1382
+
1383
+ def test_fully_masked(self):
1384
+ np.random.seed(1234567)
1385
+ outcome = ma.masked_array(np.random.randn(3, 2), mask=[[1, 1, 1], [0, 0, 0]])
1386
+ with suppress_warnings() as sup:
1387
+ sup.filter(RuntimeWarning, "invalid value encountered in absolute")
1388
+ for pair in [(outcome[:, 0], outcome[:, 1]),
1389
+ ([np.nan, np.nan], [1.0, 2.0])]:
1390
+ t, p = mstats.ttest_ind(*pair)
1391
+ assert_array_equal(t, (np.nan, np.nan))
1392
+ assert_array_equal(p, (np.nan, np.nan))
1393
+
1394
+ def test_result_attributes(self):
1395
+ np.random.seed(1234567)
1396
+ outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
1397
+
1398
+ res = mstats.ttest_ind(outcome[:, 0], outcome[:, 1])
1399
+ attributes = ('statistic', 'pvalue')
1400
+ check_named_results(res, attributes, ma=True)
1401
+
1402
+ def test_empty(self):
1403
+ res1 = mstats.ttest_ind([], [])
1404
+ assert_(np.all(np.isnan(res1)))
1405
+
1406
+ def test_zero_division(self):
1407
+ t, p = mstats.ttest_ind([0, 0, 0], [1, 1, 1])
1408
+ assert_equal((np.abs(t), p), (np.inf, 0))
1409
+
1410
+ with suppress_warnings() as sup:
1411
+ sup.filter(RuntimeWarning, "invalid value encountered in absolute")
1412
+ t, p = mstats.ttest_ind([0, 0, 0], [0, 0, 0])
1413
+ assert_array_equal(t, (np.nan, np.nan))
1414
+ assert_array_equal(p, (np.nan, np.nan))
1415
+
1416
+ t, p = mstats.ttest_ind([0, 0, 0], [1, 1, 1], equal_var=False)
1417
+ assert_equal((np.abs(t), p), (np.inf, 0))
1418
+ assert_array_equal(mstats.ttest_ind([0, 0, 0], [0, 0, 0],
1419
+ equal_var=False), (np.nan, np.nan))
1420
+
1421
+ def test_bad_alternative(self):
1422
+ msg = r"alternative must be 'less', 'greater' or 'two-sided'"
1423
+ with pytest.raises(ValueError, match=msg):
1424
+ mstats.ttest_ind([1, 2, 3], [4, 5, 6], alternative='foo')
1425
+
1426
+ @pytest.mark.parametrize("alternative", ["less", "greater"])
1427
+ def test_alternative(self, alternative):
1428
+ x = stats.norm.rvs(loc=10, scale=2, size=100, random_state=123)
1429
+ y = stats.norm.rvs(loc=8, scale=2, size=100, random_state=123)
1430
+
1431
+ t_ex, p_ex = stats.ttest_ind(x, y, alternative=alternative)
1432
+ t, p = mstats.ttest_ind(x, y, alternative=alternative)
1433
+ assert_allclose(t, t_ex, rtol=1e-14)
1434
+ assert_allclose(p, p_ex, rtol=1e-14)
1435
+
1436
+ # test with masked arrays
1437
+ x[1:10] = np.nan
1438
+ y[80:90] = np.nan
1439
+ x = np.ma.masked_array(x, mask=np.isnan(x))
1440
+ y = np.ma.masked_array(y, mask=np.isnan(y))
1441
+ t_ex, p_ex = stats.ttest_ind(x.compressed(), y.compressed(),
1442
+ alternative=alternative)
1443
+ t, p = mstats.ttest_ind(x, y, alternative=alternative)
1444
+ assert_allclose(t, t_ex, rtol=1e-14)
1445
+ assert_allclose(p, p_ex, rtol=1e-14)
1446
+
1447
+
1448
+ class TestTtest_1samp:
1449
+ def test_vs_nonmasked(self):
1450
+ np.random.seed(1234567)
1451
+ outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
1452
+
1453
+ # 1-D inputs
1454
+ res1 = stats.ttest_1samp(outcome[:, 0], 1)
1455
+ res2 = mstats.ttest_1samp(outcome[:, 0], 1)
1456
+ assert_allclose(res1, res2)
1457
+
1458
+ def test_fully_masked(self):
1459
+ np.random.seed(1234567)
1460
+ outcome = ma.masked_array(np.random.randn(3), mask=[1, 1, 1])
1461
+ expected = (np.nan, np.nan)
1462
+ with suppress_warnings() as sup:
1463
+ sup.filter(RuntimeWarning, "invalid value encountered in absolute")
1464
+ for pair in [((np.nan, np.nan), 0.0), (outcome, 0.0)]:
1465
+ t, p = mstats.ttest_1samp(*pair)
1466
+ assert_array_equal(p, expected)
1467
+ assert_array_equal(t, expected)
1468
+
1469
+ def test_result_attributes(self):
1470
+ np.random.seed(1234567)
1471
+ outcome = np.random.randn(20, 4) + [0, 0, 1, 2]
1472
+
1473
+ res = mstats.ttest_1samp(outcome[:, 0], 1)
1474
+ attributes = ('statistic', 'pvalue')
1475
+ check_named_results(res, attributes, ma=True)
1476
+
1477
+ def test_empty(self):
1478
+ res1 = mstats.ttest_1samp([], 1)
1479
+ assert_(np.all(np.isnan(res1)))
1480
+
1481
+ def test_zero_division(self):
1482
+ t, p = mstats.ttest_1samp([0, 0, 0], 1)
1483
+ assert_equal((np.abs(t), p), (np.inf, 0))
1484
+
1485
+ with suppress_warnings() as sup:
1486
+ sup.filter(RuntimeWarning, "invalid value encountered in absolute")
1487
+ t, p = mstats.ttest_1samp([0, 0, 0], 0)
1488
+ assert_(np.isnan(t))
1489
+ assert_array_equal(p, (np.nan, np.nan))
1490
+
1491
+ def test_bad_alternative(self):
1492
+ msg = r"alternative must be 'less', 'greater' or 'two-sided'"
1493
+ with pytest.raises(ValueError, match=msg):
1494
+ mstats.ttest_1samp([1, 2, 3], 4, alternative='foo')
1495
+
1496
+ @pytest.mark.parametrize("alternative", ["less", "greater"])
1497
+ def test_alternative(self, alternative):
1498
+ x = stats.norm.rvs(loc=10, scale=2, size=100, random_state=123)
1499
+
1500
+ t_ex, p_ex = stats.ttest_1samp(x, 9, alternative=alternative)
1501
+ t, p = mstats.ttest_1samp(x, 9, alternative=alternative)
1502
+ assert_allclose(t, t_ex, rtol=1e-14)
1503
+ assert_allclose(p, p_ex, rtol=1e-14)
1504
+
1505
+ # test with masked arrays
1506
+ x[1:10] = np.nan
1507
+ x = np.ma.masked_array(x, mask=np.isnan(x))
1508
+ t_ex, p_ex = stats.ttest_1samp(x.compressed(), 9,
1509
+ alternative=alternative)
1510
+ t, p = mstats.ttest_1samp(x, 9, alternative=alternative)
1511
+ assert_allclose(t, t_ex, rtol=1e-14)
1512
+ assert_allclose(p, p_ex, rtol=1e-14)
1513
+
1514
+
1515
+ class TestDescribe:
1516
+ """
1517
+ Tests for mstats.describe.
1518
+
1519
+ Note that there are also tests for `mstats.describe` in the
1520
+ class TestCompareWithStats.
1521
+ """
1522
+ def test_basic_with_axis(self):
1523
+ # This is a basic test that is also a regression test for gh-7303.
1524
+ a = np.ma.masked_array([[0, 1, 2, 3, 4, 9],
1525
+ [5, 5, 0, 9, 3, 3]],
1526
+ mask=[[0, 0, 0, 0, 0, 1],
1527
+ [0, 0, 1, 1, 0, 0]])
1528
+ result = mstats.describe(a, axis=1)
1529
+ assert_equal(result.nobs, [5, 4])
1530
+ amin, amax = result.minmax
1531
+ assert_equal(amin, [0, 3])
1532
+ assert_equal(amax, [4, 5])
1533
+ assert_equal(result.mean, [2.0, 4.0])
1534
+ assert_equal(result.variance, [2.0, 1.0])
1535
+ assert_equal(result.skewness, [0.0, 0.0])
1536
+ assert_allclose(result.kurtosis, [-1.3, -2.0])
1537
+
1538
+
1539
+ @skip_xp_invalid_arg
1540
+ class TestCompareWithStats:
1541
+ """
1542
+ Class to compare mstats results with stats results.
1543
+
1544
+ It is in general assumed that scipy.stats is at a more mature stage than
1545
+ stats.mstats. If a routine in mstats results in similar results like in
1546
+ scipy.stats, this is considered also as a proper validation of scipy.mstats
1547
+ routine.
1548
+
1549
+ Different sample sizes are used for testing, as some problems between stats
1550
+ and mstats are dependent on sample size.
1551
+
1552
+ Author: Alexander Loew
1553
+
1554
+ NOTE that some tests fail. This might be caused by
1555
+ a) actual differences or bugs between stats and mstats
1556
+ b) numerical inaccuracies
1557
+ c) different definitions of routine interfaces
1558
+
1559
+ These failures need to be checked. Current workaround is to have disabled these
1560
+ tests, but issuing reports on scipy-dev
1561
+
1562
+ """
1563
+ def get_n(self):
1564
+ """ Returns list of sample sizes to be used for comparison. """
1565
+ return [1000, 100, 10, 5]
1566
+
1567
+ def generate_xy_sample(self, n):
1568
+ # This routine generates numpy arrays and corresponding masked arrays
1569
+ # with the same data, but additional masked values
1570
+ rng = np.random.RandomState(1234567)
1571
+ x = rng.randn(n)
1572
+ y = x + rng.randn(n)
1573
+ xm = np.full(len(x) + 5, 1e16)
1574
+ ym = np.full(len(y) + 5, 1e16)
1575
+ xm[0:len(x)] = x
1576
+ ym[0:len(y)] = y
1577
+ mask = xm > 9e15
1578
+ xm = np.ma.array(xm, mask=mask)
1579
+ ym = np.ma.array(ym, mask=mask)
1580
+ return x, y, xm, ym
1581
+
1582
+ def generate_xy_sample2D(self, n, nx):
1583
+ x = np.full((n, nx), np.nan)
1584
+ y = np.full((n, nx), np.nan)
1585
+ xm = np.full((n+5, nx), np.nan)
1586
+ ym = np.full((n+5, nx), np.nan)
1587
+
1588
+ for i in range(nx):
1589
+ x[:, i], y[:, i], dx, dy = self.generate_xy_sample(n)
1590
+
1591
+ xm[0:n, :] = x[0:n]
1592
+ ym[0:n, :] = y[0:n]
1593
+ xm = np.ma.array(xm, mask=np.isnan(xm))
1594
+ ym = np.ma.array(ym, mask=np.isnan(ym))
1595
+ return x, y, xm, ym
1596
+
1597
+ def test_linregress(self):
1598
+ for n in self.get_n():
1599
+ x, y, xm, ym = self.generate_xy_sample(n)
1600
+ result1 = stats.linregress(x, y)
1601
+ result2 = stats.mstats.linregress(xm, ym)
1602
+ assert_allclose(np.asarray(result1), np.asarray(result2))
1603
+
1604
+ def test_pearsonr(self):
1605
+ for n in self.get_n():
1606
+ x, y, xm, ym = self.generate_xy_sample(n)
1607
+ r, p = stats.pearsonr(x, y)
1608
+ rm, pm = stats.mstats.pearsonr(xm, ym)
1609
+
1610
+ assert_almost_equal(r, rm, decimal=14)
1611
+ assert_almost_equal(p, pm, decimal=14)
1612
+
1613
+ def test_spearmanr(self):
1614
+ for n in self.get_n():
1615
+ x, y, xm, ym = self.generate_xy_sample(n)
1616
+ r, p = stats.spearmanr(x, y)
1617
+ rm, pm = stats.mstats.spearmanr(xm, ym)
1618
+ assert_almost_equal(r, rm, 14)
1619
+ assert_almost_equal(p, pm, 14)
1620
+
1621
+ def test_spearmanr_backcompat_useties(self):
1622
+ # A regression test to ensure we don't break backwards compat
1623
+ # more than we have to (see gh-9204).
1624
+ x = np.arange(6)
1625
+ assert_raises(ValueError, mstats.spearmanr, x, x, False)
1626
+
1627
+ def test_gmean(self):
1628
+ for n in self.get_n():
1629
+ x, y, xm, ym = self.generate_xy_sample(n)
1630
+ r = stats.gmean(abs(x))
1631
+ rm = stats.mstats.gmean(abs(xm))
1632
+ assert_allclose(r, rm, rtol=1e-13)
1633
+
1634
+ r = stats.gmean(abs(y))
1635
+ rm = stats.mstats.gmean(abs(ym))
1636
+ assert_allclose(r, rm, rtol=1e-13)
1637
+
1638
+ def test_hmean(self):
1639
+ for n in self.get_n():
1640
+ x, y, xm, ym = self.generate_xy_sample(n)
1641
+
1642
+ r = stats.hmean(abs(x))
1643
+ rm = stats.mstats.hmean(abs(xm))
1644
+ assert_almost_equal(r, rm, 10)
1645
+
1646
+ r = stats.hmean(abs(y))
1647
+ rm = stats.mstats.hmean(abs(ym))
1648
+ assert_almost_equal(r, rm, 10)
1649
+
1650
+ def test_skew(self):
1651
+ for n in self.get_n():
1652
+ x, y, xm, ym = self.generate_xy_sample(n)
1653
+
1654
+ r = stats.skew(x)
1655
+ rm = stats.mstats.skew(xm)
1656
+ assert_almost_equal(r, rm, 10)
1657
+
1658
+ r = stats.skew(y)
1659
+ rm = stats.mstats.skew(ym)
1660
+ assert_almost_equal(r, rm, 10)
1661
+
1662
+ def test_moment(self):
1663
+ for n in self.get_n():
1664
+ x, y, xm, ym = self.generate_xy_sample(n)
1665
+
1666
+ r = stats.moment(x)
1667
+ rm = stats.mstats.moment(xm)
1668
+ assert_almost_equal(r, rm, 10)
1669
+
1670
+ r = stats.moment(y)
1671
+ rm = stats.mstats.moment(ym)
1672
+ assert_almost_equal(r, rm, 10)
1673
+
1674
+ def test_zscore(self):
1675
+ for n in self.get_n():
1676
+ x, y, xm, ym = self.generate_xy_sample(n)
1677
+
1678
+ # reference solution
1679
+ zx = (x - x.mean()) / x.std()
1680
+ zy = (y - y.mean()) / y.std()
1681
+
1682
+ # validate stats
1683
+ assert_allclose(stats.zscore(x), zx, rtol=1e-10)
1684
+ assert_allclose(stats.zscore(y), zy, rtol=1e-10)
1685
+
1686
+ # compare stats and mstats
1687
+ assert_allclose(stats.zscore(x), stats.mstats.zscore(xm[0:len(x)]),
1688
+ rtol=1e-10)
1689
+ assert_allclose(stats.zscore(y), stats.mstats.zscore(ym[0:len(y)]),
1690
+ rtol=1e-10)
1691
+
1692
+ def test_kurtosis(self):
1693
+ for n in self.get_n():
1694
+ x, y, xm, ym = self.generate_xy_sample(n)
1695
+ r = stats.kurtosis(x)
1696
+ rm = stats.mstats.kurtosis(xm)
1697
+ assert_almost_equal(r, rm, 10)
1698
+
1699
+ r = stats.kurtosis(y)
1700
+ rm = stats.mstats.kurtosis(ym)
1701
+ assert_almost_equal(r, rm, 10)
1702
+
1703
+ def test_sem(self):
1704
+ # example from stats.sem doc
1705
+ a = np.arange(20).reshape(5, 4)
1706
+ am = np.ma.array(a)
1707
+ r = stats.sem(a, ddof=1)
1708
+ rm = stats.mstats.sem(am, ddof=1)
1709
+
1710
+ assert_allclose(r, 2.82842712, atol=1e-5)
1711
+ assert_allclose(rm, 2.82842712, atol=1e-5)
1712
+
1713
+ for n in self.get_n():
1714
+ x, y, xm, ym = self.generate_xy_sample(n)
1715
+ assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=0),
1716
+ stats.sem(x, axis=None, ddof=0), decimal=13)
1717
+ assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=0),
1718
+ stats.sem(y, axis=None, ddof=0), decimal=13)
1719
+ assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=1),
1720
+ stats.sem(x, axis=None, ddof=1), decimal=13)
1721
+ assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=1),
1722
+ stats.sem(y, axis=None, ddof=1), decimal=13)
1723
+
1724
+ def test_describe(self):
1725
+ for n in self.get_n():
1726
+ x, y, xm, ym = self.generate_xy_sample(n)
1727
+ r = stats.describe(x, ddof=1)
1728
+ rm = stats.mstats.describe(xm, ddof=1)
1729
+ for ii in range(6):
1730
+ assert_almost_equal(np.asarray(r[ii]),
1731
+ np.asarray(rm[ii]),
1732
+ decimal=12)
1733
+
1734
+ def test_describe_result_attributes(self):
1735
+ actual = mstats.describe(np.arange(5))
1736
+ attributes = ('nobs', 'minmax', 'mean', 'variance', 'skewness',
1737
+ 'kurtosis')
1738
+ check_named_results(actual, attributes, ma=True)
1739
+
1740
+ def test_rankdata(self):
1741
+ for n in self.get_n():
1742
+ x, y, xm, ym = self.generate_xy_sample(n)
1743
+ r = stats.rankdata(x)
1744
+ rm = stats.mstats.rankdata(x)
1745
+ assert_allclose(r, rm)
1746
+
1747
+ def test_tmean(self):
1748
+ for n in self.get_n():
1749
+ x, y, xm, ym = self.generate_xy_sample(n)
1750
+ assert_almost_equal(stats.tmean(x),stats.mstats.tmean(xm), 14)
1751
+ assert_almost_equal(stats.tmean(y),stats.mstats.tmean(ym), 14)
1752
+
1753
+ def test_tmax(self):
1754
+ for n in self.get_n():
1755
+ x, y, xm, ym = self.generate_xy_sample(n)
1756
+ assert_almost_equal(stats.tmax(x,2.),
1757
+ stats.mstats.tmax(xm,2.), 10)
1758
+ assert_almost_equal(stats.tmax(y,2.),
1759
+ stats.mstats.tmax(ym,2.), 10)
1760
+
1761
+ assert_almost_equal(stats.tmax(x, upperlimit=3.),
1762
+ stats.mstats.tmax(xm, upperlimit=3.), 10)
1763
+ assert_almost_equal(stats.tmax(y, upperlimit=3.),
1764
+ stats.mstats.tmax(ym, upperlimit=3.), 10)
1765
+
1766
+ def test_tmin(self):
1767
+ for n in self.get_n():
1768
+ x, y, xm, ym = self.generate_xy_sample(n)
1769
+ assert_equal(stats.tmin(x), stats.mstats.tmin(xm))
1770
+ assert_equal(stats.tmin(y), stats.mstats.tmin(ym))
1771
+
1772
+ assert_almost_equal(stats.tmin(x, lowerlimit=-1.),
1773
+ stats.mstats.tmin(xm, lowerlimit=-1.), 10)
1774
+ assert_almost_equal(stats.tmin(y, lowerlimit=-1.),
1775
+ stats.mstats.tmin(ym, lowerlimit=-1.), 10)
1776
+
1777
+ def test_zmap(self):
1778
+ for n in self.get_n():
1779
+ x, y, xm, ym = self.generate_xy_sample(n)
1780
+ z = stats.zmap(x, y)
1781
+ zm = stats.mstats.zmap(xm, ym)
1782
+ assert_allclose(z, zm[0:len(z)], atol=1e-10)
1783
+
1784
+ def test_variation(self):
1785
+ for n in self.get_n():
1786
+ x, y, xm, ym = self.generate_xy_sample(n)
1787
+ assert_almost_equal(stats.variation(x), stats.mstats.variation(xm),
1788
+ decimal=12)
1789
+ assert_almost_equal(stats.variation(y), stats.mstats.variation(ym),
1790
+ decimal=12)
1791
+
1792
+ def test_tvar(self):
1793
+ for n in self.get_n():
1794
+ x, y, xm, ym = self.generate_xy_sample(n)
1795
+ assert_almost_equal(stats.tvar(x), stats.mstats.tvar(xm),
1796
+ decimal=12)
1797
+ assert_almost_equal(stats.tvar(y), stats.mstats.tvar(ym),
1798
+ decimal=12)
1799
+
1800
+ def test_trimboth(self):
1801
+ a = np.arange(20)
1802
+ b = stats.trimboth(a, 0.1)
1803
+ bm = stats.mstats.trimboth(a, 0.1)
1804
+ assert_allclose(np.sort(b), bm.data[~bm.mask])
1805
+
1806
+ def test_tsem(self):
1807
+ for n in self.get_n():
1808
+ x, y, xm, ym = self.generate_xy_sample(n)
1809
+ assert_almost_equal(stats.tsem(x), stats.mstats.tsem(xm),
1810
+ decimal=14)
1811
+ assert_almost_equal(stats.tsem(y), stats.mstats.tsem(ym),
1812
+ decimal=14)
1813
+ assert_almost_equal(stats.tsem(x, limits=(-2., 2.)),
1814
+ stats.mstats.tsem(xm, limits=(-2., 2.)),
1815
+ decimal=14)
1816
+
1817
+ def test_skewtest(self):
1818
+ # this test is for 1D data
1819
+ for n in self.get_n():
1820
+ if n > 8:
1821
+ x, y, xm, ym = self.generate_xy_sample(n)
1822
+ r = stats.skewtest(x)
1823
+ rm = stats.mstats.skewtest(xm)
1824
+ assert_allclose(r, rm)
1825
+
1826
+ def test_skewtest_result_attributes(self):
1827
+ x = np.array((-2, -1, 0, 1, 2, 3)*4)**2
1828
+ res = mstats.skewtest(x)
1829
+ attributes = ('statistic', 'pvalue')
1830
+ check_named_results(res, attributes, ma=True)
1831
+
1832
+ def test_skewtest_2D_notmasked(self):
1833
+ # a normal ndarray is passed to the masked function
1834
+ x = np.random.random((20, 2)) * 20.
1835
+ r = stats.skewtest(x)
1836
+ rm = stats.mstats.skewtest(x)
1837
+ assert_allclose(np.asarray(r), np.asarray(rm))
1838
+
1839
+ def test_skewtest_2D_WithMask(self):
1840
+ nx = 2
1841
+ for n in self.get_n():
1842
+ if n > 8:
1843
+ x, y, xm, ym = self.generate_xy_sample2D(n, nx)
1844
+ r = stats.skewtest(x)
1845
+ rm = stats.mstats.skewtest(xm)
1846
+
1847
+ assert_allclose(r[0][0], rm[0][0], rtol=1e-14)
1848
+ assert_allclose(r[0][1], rm[0][1], rtol=1e-14)
1849
+
1850
+ def test_normaltest(self):
1851
+ with np.errstate(over='raise'), suppress_warnings() as sup:
1852
+ sup.filter(UserWarning, "`kurtosistest` p-value may be inaccurate")
1853
+ sup.filter(UserWarning, "kurtosistest only valid for n>=20")
1854
+ for n in self.get_n():
1855
+ if n > 8:
1856
+ x, y, xm, ym = self.generate_xy_sample(n)
1857
+ r = stats.normaltest(x)
1858
+ rm = stats.mstats.normaltest(xm)
1859
+ assert_allclose(np.asarray(r), np.asarray(rm))
1860
+
1861
+ def test_find_repeats(self):
1862
+ x = np.asarray([1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4]).astype('float')
1863
+ tmp = np.asarray([1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5]).astype('float')
1864
+ mask = (tmp == 5.)
1865
+ xm = np.ma.array(tmp, mask=mask)
1866
+ x_orig, xm_orig = x.copy(), xm.copy()
1867
+
1868
+ unique, unique_counts = np.unique(x, return_counts=True)
1869
+ r = unique[unique_counts > 1], unique_counts[unique_counts > 1]
1870
+ rm = stats.mstats.find_repeats(xm)
1871
+
1872
+ assert_equal(r, rm)
1873
+ assert_equal(x, x_orig)
1874
+ assert_equal(xm, xm_orig)
1875
+
1876
+ # This crazy behavior is expected by count_tied_groups, but is not
1877
+ # in the docstring...
1878
+ _, counts = stats.mstats.find_repeats([])
1879
+ assert_equal(counts, np.array(0, dtype=np.intp))
1880
+
1881
+ def test_kendalltau(self):
1882
+ for n in self.get_n():
1883
+ x, y, xm, ym = self.generate_xy_sample(n)
1884
+ r = stats.kendalltau(x, y)
1885
+ rm = stats.mstats.kendalltau(xm, ym)
1886
+ assert_almost_equal(r[0], rm[0], decimal=10)
1887
+ assert_almost_equal(r[1], rm[1], decimal=7)
1888
+
1889
+ def test_obrientransform(self):
1890
+ for n in self.get_n():
1891
+ x, y, xm, ym = self.generate_xy_sample(n)
1892
+ r = stats.obrientransform(x)
1893
+ rm = stats.mstats.obrientransform(xm)
1894
+ assert_almost_equal(r.T, rm[0:len(x)])
1895
+
1896
+ def test_ks_1samp(self):
1897
+ """Checks that mstats.ks_1samp and stats.ks_1samp agree on masked arrays."""
1898
+ for mode in ['auto', 'exact', 'asymp']:
1899
+ with suppress_warnings():
1900
+ for alternative in ['less', 'greater', 'two-sided']:
1901
+ for n in self.get_n():
1902
+ x, y, xm, ym = self.generate_xy_sample(n)
1903
+ res1 = stats.ks_1samp(x, stats.norm.cdf,
1904
+ alternative=alternative, mode=mode)
1905
+ res2 = stats.mstats.ks_1samp(xm, stats.norm.cdf,
1906
+ alternative=alternative, mode=mode)
1907
+ assert_equal(np.asarray(res1), np.asarray(res2))
1908
+ res3 = stats.ks_1samp(xm, stats.norm.cdf,
1909
+ alternative=alternative, mode=mode)
1910
+ assert_equal(np.asarray(res1), np.asarray(res3))
1911
+
1912
+ def test_kstest_1samp(self):
1913
+ """
1914
+ Checks that 1-sample mstats.kstest and stats.kstest agree on masked arrays.
1915
+ """
1916
+ for mode in ['auto', 'exact', 'asymp']:
1917
+ with suppress_warnings():
1918
+ for alternative in ['less', 'greater', 'two-sided']:
1919
+ for n in self.get_n():
1920
+ x, y, xm, ym = self.generate_xy_sample(n)
1921
+ res1 = stats.kstest(x, 'norm',
1922
+ alternative=alternative, mode=mode)
1923
+ res2 = stats.mstats.kstest(xm, 'norm',
1924
+ alternative=alternative, mode=mode)
1925
+ assert_equal(np.asarray(res1), np.asarray(res2))
1926
+ res3 = stats.kstest(xm, 'norm',
1927
+ alternative=alternative, mode=mode)
1928
+ assert_equal(np.asarray(res1), np.asarray(res3))
1929
+
1930
+ def test_ks_2samp(self):
1931
+ """Checks that mstats.ks_2samp and stats.ks_2samp agree on masked arrays.
1932
+ gh-8431"""
1933
+ for mode in ['auto', 'exact', 'asymp']:
1934
+ with suppress_warnings() as sup:
1935
+ if mode in ['auto', 'exact']:
1936
+ message = "ks_2samp: Exact calculation unsuccessful."
1937
+ sup.filter(RuntimeWarning, message)
1938
+ for alternative in ['less', 'greater', 'two-sided']:
1939
+ for n in self.get_n():
1940
+ x, y, xm, ym = self.generate_xy_sample(n)
1941
+ res1 = stats.ks_2samp(x, y,
1942
+ alternative=alternative, mode=mode)
1943
+ res2 = stats.mstats.ks_2samp(xm, ym,
1944
+ alternative=alternative, mode=mode)
1945
+ assert_equal(np.asarray(res1), np.asarray(res2))
1946
+ res3 = stats.ks_2samp(xm, y,
1947
+ alternative=alternative, mode=mode)
1948
+ assert_equal(np.asarray(res1), np.asarray(res3))
1949
+
1950
+ def test_kstest_2samp(self):
1951
+ """
1952
+ Checks that 2-sample mstats.kstest and stats.kstest agree on masked arrays.
1953
+ """
1954
+ for mode in ['auto', 'exact', 'asymp']:
1955
+ with suppress_warnings() as sup:
1956
+ if mode in ['auto', 'exact']:
1957
+ message = "ks_2samp: Exact calculation unsuccessful."
1958
+ sup.filter(RuntimeWarning, message)
1959
+ for alternative in ['less', 'greater', 'two-sided']:
1960
+ for n in self.get_n():
1961
+ x, y, xm, ym = self.generate_xy_sample(n)
1962
+ res1 = stats.kstest(x, y,
1963
+ alternative=alternative, mode=mode)
1964
+ res2 = stats.mstats.kstest(xm, ym,
1965
+ alternative=alternative, mode=mode)
1966
+ assert_equal(np.asarray(res1), np.asarray(res2))
1967
+ res3 = stats.kstest(xm, y,
1968
+ alternative=alternative, mode=mode)
1969
+ assert_equal(np.asarray(res1), np.asarray(res3))
1970
+
1971
+
1972
+ class TestBrunnerMunzel:
1973
+ # Data from (Lumley, 1996)
1974
+ X = np.ma.masked_invalid([1, 2, 1, 1, 1, np.nan, 1, 1,
1975
+ 1, 1, 1, 2, 4, 1, 1, np.nan])
1976
+ Y = np.ma.masked_invalid([3, 3, 4, 3, np.nan, 1, 2, 3, 1, 1, 5, 4])
1977
+ significant = 14
1978
+
1979
+ def test_brunnermunzel_one_sided(self):
1980
+ # Results are compared with R's lawstat package.
1981
+ u1, p1 = mstats.brunnermunzel(self.X, self.Y, alternative='less')
1982
+ u2, p2 = mstats.brunnermunzel(self.Y, self.X, alternative='greater')
1983
+ u3, p3 = mstats.brunnermunzel(self.X, self.Y, alternative='greater')
1984
+ u4, p4 = mstats.brunnermunzel(self.Y, self.X, alternative='less')
1985
+
1986
+ assert_almost_equal(p1, p2, decimal=self.significant)
1987
+ assert_almost_equal(p3, p4, decimal=self.significant)
1988
+ assert_(p1 != p3)
1989
+ assert_almost_equal(u1, 3.1374674823029505,
1990
+ decimal=self.significant)
1991
+ assert_almost_equal(u2, -3.1374674823029505,
1992
+ decimal=self.significant)
1993
+ assert_almost_equal(u3, 3.1374674823029505,
1994
+ decimal=self.significant)
1995
+ assert_almost_equal(u4, -3.1374674823029505,
1996
+ decimal=self.significant)
1997
+ assert_almost_equal(p1, 0.0028931043330757342,
1998
+ decimal=self.significant)
1999
+ assert_almost_equal(p3, 0.99710689566692423,
2000
+ decimal=self.significant)
2001
+
2002
+ def test_brunnermunzel_two_sided(self):
2003
+ # Results are compared with R's lawstat package.
2004
+ u1, p1 = mstats.brunnermunzel(self.X, self.Y, alternative='two-sided')
2005
+ u2, p2 = mstats.brunnermunzel(self.Y, self.X, alternative='two-sided')
2006
+
2007
+ assert_almost_equal(p1, p2, decimal=self.significant)
2008
+ assert_almost_equal(u1, 3.1374674823029505,
2009
+ decimal=self.significant)
2010
+ assert_almost_equal(u2, -3.1374674823029505,
2011
+ decimal=self.significant)
2012
+ assert_almost_equal(p1, 0.0057862086661515377,
2013
+ decimal=self.significant)
2014
+
2015
+ def test_brunnermunzel_default(self):
2016
+ # The default value for alternative is two-sided
2017
+ u1, p1 = mstats.brunnermunzel(self.X, self.Y)
2018
+ u2, p2 = mstats.brunnermunzel(self.Y, self.X)
2019
+
2020
+ assert_almost_equal(p1, p2, decimal=self.significant)
2021
+ assert_almost_equal(u1, 3.1374674823029505,
2022
+ decimal=self.significant)
2023
+ assert_almost_equal(u2, -3.1374674823029505,
2024
+ decimal=self.significant)
2025
+ assert_almost_equal(p1, 0.0057862086661515377,
2026
+ decimal=self.significant)
2027
+
2028
+ def test_brunnermunzel_alternative_error(self):
2029
+ alternative = "error"
2030
+ distribution = "t"
2031
+ assert_(alternative not in ["two-sided", "greater", "less"])
2032
+ assert_raises(ValueError,
2033
+ mstats.brunnermunzel,
2034
+ self.X,
2035
+ self.Y,
2036
+ alternative,
2037
+ distribution)
2038
+
2039
+ def test_brunnermunzel_distribution_norm(self):
2040
+ u1, p1 = mstats.brunnermunzel(self.X, self.Y, distribution="normal")
2041
+ u2, p2 = mstats.brunnermunzel(self.Y, self.X, distribution="normal")
2042
+ assert_almost_equal(p1, p2, decimal=self.significant)
2043
+ assert_almost_equal(u1, 3.1374674823029505,
2044
+ decimal=self.significant)
2045
+ assert_almost_equal(u2, -3.1374674823029505,
2046
+ decimal=self.significant)
2047
+ assert_almost_equal(p1, 0.0017041417600383024,
2048
+ decimal=self.significant)
2049
+
2050
+ def test_brunnermunzel_distribution_error(self):
2051
+ alternative = "two-sided"
2052
+ distribution = "error"
2053
+ assert_(alternative not in ["t", "normal"])
2054
+ assert_raises(ValueError,
2055
+ mstats.brunnermunzel,
2056
+ self.X,
2057
+ self.Y,
2058
+ alternative,
2059
+ distribution)
2060
+
2061
+ def test_brunnermunzel_empty_imput(self):
2062
+ u1, p1 = mstats.brunnermunzel(self.X, [])
2063
+ u2, p2 = mstats.brunnermunzel([], self.Y)
2064
+ u3, p3 = mstats.brunnermunzel([], [])
2065
+
2066
+ assert_(np.isnan(u1))
2067
+ assert_(np.isnan(p1))
2068
+ assert_(np.isnan(u2))
2069
+ assert_(np.isnan(p2))
2070
+ assert_(np.isnan(u3))
2071
+ assert_(np.isnan(p3))