scipy 1.16.2__cp314-cp314-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/__config__.py +161 -0
- scipy/__init__.py +150 -0
- scipy/_cyutility.cp314-win_arm64.lib +0 -0
- scipy/_cyutility.cp314-win_arm64.pyd +0 -0
- scipy/_distributor_init.py +18 -0
- scipy/_lib/__init__.py +14 -0
- scipy/_lib/_array_api.py +931 -0
- scipy/_lib/_array_api_compat_vendor.py +9 -0
- scipy/_lib/_array_api_no_0d.py +103 -0
- scipy/_lib/_bunch.py +229 -0
- scipy/_lib/_ccallback.py +251 -0
- scipy/_lib/_ccallback_c.cp314-win_arm64.lib +0 -0
- scipy/_lib/_ccallback_c.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_disjoint_set.py +254 -0
- scipy/_lib/_docscrape.py +761 -0
- scipy/_lib/_elementwise_iterative_method.py +346 -0
- scipy/_lib/_fpumode.cp314-win_arm64.lib +0 -0
- scipy/_lib/_fpumode.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_gcutils.py +105 -0
- scipy/_lib/_pep440.py +487 -0
- scipy/_lib/_sparse.py +41 -0
- scipy/_lib/_test_ccallback.cp314-win_arm64.lib +0 -0
- scipy/_lib/_test_ccallback.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_call.cp314-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_call.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_def.cp314-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_def.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_testutils.py +373 -0
- scipy/_lib/_threadsafety.py +58 -0
- scipy/_lib/_tmpdirs.py +86 -0
- scipy/_lib/_uarray/LICENSE +29 -0
- scipy/_lib/_uarray/__init__.py +116 -0
- scipy/_lib/_uarray/_backend.py +707 -0
- scipy/_lib/_uarray/_uarray.cp314-win_arm64.lib +0 -0
- scipy/_lib/_uarray/_uarray.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_util.py +1283 -0
- scipy/_lib/array_api_compat/__init__.py +22 -0
- scipy/_lib/array_api_compat/_internal.py +59 -0
- scipy/_lib/array_api_compat/common/__init__.py +1 -0
- scipy/_lib/array_api_compat/common/_aliases.py +727 -0
- scipy/_lib/array_api_compat/common/_fft.py +213 -0
- scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
- scipy/_lib/array_api_compat/common/_linalg.py +232 -0
- scipy/_lib/array_api_compat/common/_typing.py +192 -0
- scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
- scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
- scipy/_lib/array_api_compat/cupy/_info.py +336 -0
- scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
- scipy/_lib/array_api_compat/cupy/fft.py +36 -0
- scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
- scipy/_lib/array_api_compat/dask/__init__.py +0 -0
- scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
- scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
- scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
- scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
- scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
- scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
- scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
- scipy/_lib/array_api_compat/numpy/_info.py +366 -0
- scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
- scipy/_lib/array_api_compat/numpy/fft.py +35 -0
- scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
- scipy/_lib/array_api_compat/torch/__init__.py +22 -0
- scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
- scipy/_lib/array_api_compat/torch/_info.py +369 -0
- scipy/_lib/array_api_compat/torch/_typing.py +3 -0
- scipy/_lib/array_api_compat/torch/fft.py +85 -0
- scipy/_lib/array_api_compat/torch/linalg.py +121 -0
- scipy/_lib/array_api_extra/__init__.py +38 -0
- scipy/_lib/array_api_extra/_delegation.py +171 -0
- scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_at.py +463 -0
- scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
- scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
- scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
- scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
- scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
- scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
- scipy/_lib/array_api_extra/testing.py +359 -0
- scipy/_lib/cobyqa/__init__.py +20 -0
- scipy/_lib/cobyqa/framework.py +1240 -0
- scipy/_lib/cobyqa/main.py +1506 -0
- scipy/_lib/cobyqa/models.py +1529 -0
- scipy/_lib/cobyqa/problem.py +1296 -0
- scipy/_lib/cobyqa/settings.py +132 -0
- scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
- scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
- scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
- scipy/_lib/cobyqa/utils/__init__.py +18 -0
- scipy/_lib/cobyqa/utils/exceptions.py +22 -0
- scipy/_lib/cobyqa/utils/math.py +77 -0
- scipy/_lib/cobyqa/utils/versions.py +67 -0
- scipy/_lib/decorator.py +399 -0
- scipy/_lib/deprecation.py +274 -0
- scipy/_lib/doccer.py +366 -0
- scipy/_lib/messagestream.cp314-win_arm64.lib +0 -0
- scipy/_lib/messagestream.cp314-win_arm64.pyd +0 -0
- scipy/_lib/pyprima/__init__.py +212 -0
- scipy/_lib/pyprima/cobyla/__init__.py +0 -0
- scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
- scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
- scipy/_lib/pyprima/cobyla/geometry.py +226 -0
- scipy/_lib/pyprima/cobyla/initialize.py +215 -0
- scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
- scipy/_lib/pyprima/cobyla/update.py +289 -0
- scipy/_lib/pyprima/common/__init__.py +0 -0
- scipy/_lib/pyprima/common/_bounds.py +34 -0
- scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
- scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
- scipy/_lib/pyprima/common/_project.py +173 -0
- scipy/_lib/pyprima/common/checkbreak.py +93 -0
- scipy/_lib/pyprima/common/consts.py +47 -0
- scipy/_lib/pyprima/common/evaluate.py +99 -0
- scipy/_lib/pyprima/common/history.py +38 -0
- scipy/_lib/pyprima/common/infos.py +30 -0
- scipy/_lib/pyprima/common/linalg.py +435 -0
- scipy/_lib/pyprima/common/message.py +290 -0
- scipy/_lib/pyprima/common/powalg.py +131 -0
- scipy/_lib/pyprima/common/preproc.py +277 -0
- scipy/_lib/pyprima/common/present.py +5 -0
- scipy/_lib/pyprima/common/ratio.py +54 -0
- scipy/_lib/pyprima/common/redrho.py +47 -0
- scipy/_lib/pyprima/common/selectx.py +296 -0
- scipy/_lib/tests/__init__.py +0 -0
- scipy/_lib/tests/test__gcutils.py +110 -0
- scipy/_lib/tests/test__pep440.py +67 -0
- scipy/_lib/tests/test__testutils.py +32 -0
- scipy/_lib/tests/test__threadsafety.py +51 -0
- scipy/_lib/tests/test__util.py +641 -0
- scipy/_lib/tests/test_array_api.py +322 -0
- scipy/_lib/tests/test_bunch.py +169 -0
- scipy/_lib/tests/test_ccallback.py +196 -0
- scipy/_lib/tests/test_config.py +45 -0
- scipy/_lib/tests/test_deprecation.py +10 -0
- scipy/_lib/tests/test_doccer.py +143 -0
- scipy/_lib/tests/test_import_cycles.py +18 -0
- scipy/_lib/tests/test_public_api.py +482 -0
- scipy/_lib/tests/test_scipy_version.py +28 -0
- scipy/_lib/tests/test_tmpdirs.py +48 -0
- scipy/_lib/tests/test_warnings.py +137 -0
- scipy/_lib/uarray.py +31 -0
- scipy/cluster/__init__.py +31 -0
- scipy/cluster/_hierarchy.cp314-win_arm64.lib +0 -0
- scipy/cluster/_hierarchy.cp314-win_arm64.pyd +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.lib +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.pyd +0 -0
- scipy/cluster/_vq.cp314-win_arm64.lib +0 -0
- scipy/cluster/_vq.cp314-win_arm64.pyd +0 -0
- scipy/cluster/hierarchy.py +4348 -0
- scipy/cluster/tests/__init__.py +0 -0
- scipy/cluster/tests/hierarchy_test_data.py +145 -0
- scipy/cluster/tests/test_disjoint_set.py +202 -0
- scipy/cluster/tests/test_hierarchy.py +1238 -0
- scipy/cluster/tests/test_vq.py +434 -0
- scipy/cluster/vq.py +832 -0
- scipy/conftest.py +683 -0
- scipy/constants/__init__.py +358 -0
- scipy/constants/_codata.py +2266 -0
- scipy/constants/_constants.py +369 -0
- scipy/constants/codata.py +21 -0
- scipy/constants/constants.py +53 -0
- scipy/constants/tests/__init__.py +0 -0
- scipy/constants/tests/test_codata.py +78 -0
- scipy/constants/tests/test_constants.py +83 -0
- scipy/datasets/__init__.py +90 -0
- scipy/datasets/_download_all.py +71 -0
- scipy/datasets/_fetchers.py +225 -0
- scipy/datasets/_registry.py +26 -0
- scipy/datasets/_utils.py +81 -0
- scipy/datasets/tests/__init__.py +0 -0
- scipy/datasets/tests/test_data.py +128 -0
- scipy/differentiate/__init__.py +27 -0
- scipy/differentiate/_differentiate.py +1129 -0
- scipy/differentiate/tests/__init__.py +0 -0
- scipy/differentiate/tests/test_differentiate.py +694 -0
- scipy/fft/__init__.py +114 -0
- scipy/fft/_backend.py +196 -0
- scipy/fft/_basic.py +1650 -0
- scipy/fft/_basic_backend.py +197 -0
- scipy/fft/_debug_backends.py +22 -0
- scipy/fft/_fftlog.py +223 -0
- scipy/fft/_fftlog_backend.py +200 -0
- scipy/fft/_helper.py +348 -0
- scipy/fft/_pocketfft/LICENSE.md +25 -0
- scipy/fft/_pocketfft/__init__.py +9 -0
- scipy/fft/_pocketfft/basic.py +251 -0
- scipy/fft/_pocketfft/helper.py +249 -0
- scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.lib +0 -0
- scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.pyd +0 -0
- scipy/fft/_pocketfft/realtransforms.py +109 -0
- scipy/fft/_pocketfft/tests/__init__.py +0 -0
- scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
- scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
- scipy/fft/_realtransforms.py +706 -0
- scipy/fft/_realtransforms_backend.py +63 -0
- scipy/fft/tests/__init__.py +0 -0
- scipy/fft/tests/mock_backend.py +96 -0
- scipy/fft/tests/test_backend.py +98 -0
- scipy/fft/tests/test_basic.py +504 -0
- scipy/fft/tests/test_fftlog.py +215 -0
- scipy/fft/tests/test_helper.py +558 -0
- scipy/fft/tests/test_multithreading.py +84 -0
- scipy/fft/tests/test_real_transforms.py +247 -0
- scipy/fftpack/__init__.py +103 -0
- scipy/fftpack/_basic.py +428 -0
- scipy/fftpack/_helper.py +115 -0
- scipy/fftpack/_pseudo_diffs.py +554 -0
- scipy/fftpack/_realtransforms.py +598 -0
- scipy/fftpack/basic.py +20 -0
- scipy/fftpack/convolve.cp314-win_arm64.lib +0 -0
- scipy/fftpack/convolve.cp314-win_arm64.pyd +0 -0
- scipy/fftpack/helper.py +19 -0
- scipy/fftpack/pseudo_diffs.py +22 -0
- scipy/fftpack/realtransforms.py +19 -0
- scipy/fftpack/tests/__init__.py +0 -0
- scipy/fftpack/tests/fftw_double_ref.npz +0 -0
- scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
- scipy/fftpack/tests/fftw_single_ref.npz +0 -0
- scipy/fftpack/tests/test.npz +0 -0
- scipy/fftpack/tests/test_basic.py +877 -0
- scipy/fftpack/tests/test_helper.py +54 -0
- scipy/fftpack/tests/test_import.py +33 -0
- scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
- scipy/fftpack/tests/test_real_transforms.py +836 -0
- scipy/integrate/__init__.py +122 -0
- scipy/integrate/_bvp.py +1160 -0
- scipy/integrate/_cubature.py +729 -0
- scipy/integrate/_dop.cp314-win_arm64.lib +0 -0
- scipy/integrate/_dop.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_ivp/__init__.py +8 -0
- scipy/integrate/_ivp/base.py +290 -0
- scipy/integrate/_ivp/bdf.py +478 -0
- scipy/integrate/_ivp/common.py +451 -0
- scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- scipy/integrate/_ivp/ivp.py +755 -0
- scipy/integrate/_ivp/lsoda.py +224 -0
- scipy/integrate/_ivp/radau.py +572 -0
- scipy/integrate/_ivp/rk.py +601 -0
- scipy/integrate/_ivp/tests/__init__.py +0 -0
- scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
- scipy/integrate/_ivp/tests/test_rk.py +37 -0
- scipy/integrate/_lebedev.py +5450 -0
- scipy/integrate/_lsoda.cp314-win_arm64.lib +0 -0
- scipy/integrate/_lsoda.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_ode.py +1395 -0
- scipy/integrate/_odepack.cp314-win_arm64.lib +0 -0
- scipy/integrate/_odepack.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_odepack_py.py +273 -0
- scipy/integrate/_quad_vec.py +674 -0
- scipy/integrate/_quadpack.cp314-win_arm64.lib +0 -0
- scipy/integrate/_quadpack.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_quadpack_py.py +1283 -0
- scipy/integrate/_quadrature.py +1336 -0
- scipy/integrate/_rules/__init__.py +12 -0
- scipy/integrate/_rules/_base.py +518 -0
- scipy/integrate/_rules/_gauss_kronrod.py +202 -0
- scipy/integrate/_rules/_gauss_legendre.py +62 -0
- scipy/integrate/_rules/_genz_malik.py +210 -0
- scipy/integrate/_tanhsinh.py +1385 -0
- scipy/integrate/_test_multivariate.cp314-win_arm64.lib +0 -0
- scipy/integrate/_test_multivariate.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_test_odeint_banded.cp314-win_arm64.lib +0 -0
- scipy/integrate/_test_odeint_banded.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_vode.cp314-win_arm64.lib +0 -0
- scipy/integrate/_vode.cp314-win_arm64.pyd +0 -0
- scipy/integrate/dop.py +15 -0
- scipy/integrate/lsoda.py +15 -0
- scipy/integrate/odepack.py +17 -0
- scipy/integrate/quadpack.py +23 -0
- scipy/integrate/tests/__init__.py +0 -0
- scipy/integrate/tests/test__quad_vec.py +211 -0
- scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
- scipy/integrate/tests/test_bvp.py +714 -0
- scipy/integrate/tests/test_cubature.py +1375 -0
- scipy/integrate/tests/test_integrate.py +840 -0
- scipy/integrate/tests/test_odeint_jac.py +74 -0
- scipy/integrate/tests/test_quadpack.py +680 -0
- scipy/integrate/tests/test_quadrature.py +730 -0
- scipy/integrate/tests/test_tanhsinh.py +1171 -0
- scipy/integrate/vode.py +15 -0
- scipy/interpolate/__init__.py +228 -0
- scipy/interpolate/_bary_rational.py +715 -0
- scipy/interpolate/_bsplines.py +2469 -0
- scipy/interpolate/_cubic.py +973 -0
- scipy/interpolate/_dfitpack.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_dfitpack.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_dierckx.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_dierckx.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_fitpack.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack2.py +2397 -0
- scipy/interpolate/_fitpack_impl.py +811 -0
- scipy/interpolate/_fitpack_py.py +898 -0
- scipy/interpolate/_fitpack_repro.py +996 -0
- scipy/interpolate/_interpnd.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_interpnd.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_interpolate.py +2266 -0
- scipy/interpolate/_ndbspline.py +415 -0
- scipy/interpolate/_ndgriddata.py +329 -0
- scipy/interpolate/_pade.py +67 -0
- scipy/interpolate/_polyint.py +1025 -0
- scipy/interpolate/_ppoly.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_ppoly.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_rbf.py +290 -0
- scipy/interpolate/_rbfinterp.py +550 -0
- scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_rgi.py +764 -0
- scipy/interpolate/_rgi_cython.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_rgi_cython.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/dfitpack.py +24 -0
- scipy/interpolate/fitpack.py +31 -0
- scipy/interpolate/fitpack2.py +29 -0
- scipy/interpolate/interpnd.py +24 -0
- scipy/interpolate/interpolate.py +30 -0
- scipy/interpolate/ndgriddata.py +23 -0
- scipy/interpolate/polyint.py +24 -0
- scipy/interpolate/rbf.py +18 -0
- scipy/interpolate/tests/__init__.py +0 -0
- scipy/interpolate/tests/data/bug-1310.npz +0 -0
- scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
- scipy/interpolate/tests/data/gcvspl.npz +0 -0
- scipy/interpolate/tests/test_bary_rational.py +368 -0
- scipy/interpolate/tests/test_bsplines.py +3754 -0
- scipy/interpolate/tests/test_fitpack.py +519 -0
- scipy/interpolate/tests/test_fitpack2.py +1431 -0
- scipy/interpolate/tests/test_gil.py +64 -0
- scipy/interpolate/tests/test_interpnd.py +452 -0
- scipy/interpolate/tests/test_interpolate.py +2630 -0
- scipy/interpolate/tests/test_ndgriddata.py +308 -0
- scipy/interpolate/tests/test_pade.py +107 -0
- scipy/interpolate/tests/test_polyint.py +972 -0
- scipy/interpolate/tests/test_rbf.py +246 -0
- scipy/interpolate/tests/test_rbfinterp.py +534 -0
- scipy/interpolate/tests/test_rgi.py +1151 -0
- scipy/io/__init__.py +116 -0
- scipy/io/_fast_matrix_market/__init__.py +600 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.lib +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.pyd +0 -0
- scipy/io/_fortran.py +354 -0
- scipy/io/_harwell_boeing/__init__.py +7 -0
- scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
- scipy/io/_harwell_boeing/hb.py +571 -0
- scipy/io/_harwell_boeing/tests/__init__.py +0 -0
- scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
- scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
- scipy/io/_idl.py +917 -0
- scipy/io/_mmio.py +968 -0
- scipy/io/_netcdf.py +1104 -0
- scipy/io/_test_fortran.cp314-win_arm64.lib +0 -0
- scipy/io/_test_fortran.cp314-win_arm64.pyd +0 -0
- scipy/io/arff/__init__.py +28 -0
- scipy/io/arff/_arffread.py +873 -0
- scipy/io/arff/arffread.py +19 -0
- scipy/io/arff/tests/__init__.py +0 -0
- scipy/io/arff/tests/data/iris.arff +225 -0
- scipy/io/arff/tests/data/missing.arff +8 -0
- scipy/io/arff/tests/data/nodata.arff +11 -0
- scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
- scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
- scipy/io/arff/tests/data/test1.arff +10 -0
- scipy/io/arff/tests/data/test10.arff +8 -0
- scipy/io/arff/tests/data/test11.arff +11 -0
- scipy/io/arff/tests/data/test2.arff +15 -0
- scipy/io/arff/tests/data/test3.arff +6 -0
- scipy/io/arff/tests/data/test4.arff +11 -0
- scipy/io/arff/tests/data/test5.arff +26 -0
- scipy/io/arff/tests/data/test6.arff +12 -0
- scipy/io/arff/tests/data/test7.arff +15 -0
- scipy/io/arff/tests/data/test8.arff +12 -0
- scipy/io/arff/tests/data/test9.arff +14 -0
- scipy/io/arff/tests/test_arffread.py +421 -0
- scipy/io/harwell_boeing.py +17 -0
- scipy/io/idl.py +17 -0
- scipy/io/matlab/__init__.py +66 -0
- scipy/io/matlab/_byteordercodes.py +75 -0
- scipy/io/matlab/_mio.py +375 -0
- scipy/io/matlab/_mio4.py +632 -0
- scipy/io/matlab/_mio5.py +901 -0
- scipy/io/matlab/_mio5_params.py +281 -0
- scipy/io/matlab/_mio5_utils.cp314-win_arm64.lib +0 -0
- scipy/io/matlab/_mio5_utils.cp314-win_arm64.pyd +0 -0
- scipy/io/matlab/_mio_utils.cp314-win_arm64.lib +0 -0
- scipy/io/matlab/_mio_utils.cp314-win_arm64.pyd +0 -0
- scipy/io/matlab/_miobase.py +435 -0
- scipy/io/matlab/_streams.cp314-win_arm64.lib +0 -0
- scipy/io/matlab/_streams.cp314-win_arm64.pyd +0 -0
- scipy/io/matlab/byteordercodes.py +17 -0
- scipy/io/matlab/mio.py +16 -0
- scipy/io/matlab/mio4.py +17 -0
- scipy/io/matlab/mio5.py +19 -0
- scipy/io/matlab/mio5_params.py +18 -0
- scipy/io/matlab/mio5_utils.py +17 -0
- scipy/io/matlab/mio_utils.py +17 -0
- scipy/io/matlab/miobase.py +16 -0
- scipy/io/matlab/streams.py +16 -0
- scipy/io/matlab/tests/__init__.py +0 -0
- scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
- scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/big_endian.mat +0 -0
- scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
- scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
- scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
- scipy/io/matlab/tests/data/little_endian.mat +0 -0
- scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
- scipy/io/matlab/tests/data/malformed1.mat +0 -0
- scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
- scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
- scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
- scipy/io/matlab/tests/data/parabola.mat +0 -0
- scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
- scipy/io/matlab/tests/data/some_functions.mat +0 -0
- scipy/io/matlab/tests/data/sqr.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
- scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
- scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
- scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/test_byteordercodes.py +29 -0
- scipy/io/matlab/tests/test_mio.py +1399 -0
- scipy/io/matlab/tests/test_mio5_utils.py +179 -0
- scipy/io/matlab/tests/test_mio_funcs.py +51 -0
- scipy/io/matlab/tests/test_mio_utils.py +45 -0
- scipy/io/matlab/tests/test_miobase.py +32 -0
- scipy/io/matlab/tests/test_pathological.py +33 -0
- scipy/io/matlab/tests/test_streams.py +241 -0
- scipy/io/mmio.py +17 -0
- scipy/io/netcdf.py +17 -0
- scipy/io/tests/__init__.py +0 -0
- scipy/io/tests/data/Transparent Busy.ani +0 -0
- scipy/io/tests/data/array_float32_1d.sav +0 -0
- scipy/io/tests/data/array_float32_2d.sav +0 -0
- scipy/io/tests/data/array_float32_3d.sav +0 -0
- scipy/io/tests/data/array_float32_4d.sav +0 -0
- scipy/io/tests/data/array_float32_5d.sav +0 -0
- scipy/io/tests/data/array_float32_6d.sav +0 -0
- scipy/io/tests/data/array_float32_7d.sav +0 -0
- scipy/io/tests/data/array_float32_8d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
- scipy/io/tests/data/example_1.nc +0 -0
- scipy/io/tests/data/example_2.nc +0 -0
- scipy/io/tests/data/example_3_maskedvals.nc +0 -0
- scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
- scipy/io/tests/data/fortran-mixed.dat +0 -0
- scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
- scipy/io/tests/data/invalid_pointer.sav +0 -0
- scipy/io/tests/data/null_pointer.sav +0 -0
- scipy/io/tests/data/scalar_byte.sav +0 -0
- scipy/io/tests/data/scalar_byte_descr.sav +0 -0
- scipy/io/tests/data/scalar_complex32.sav +0 -0
- scipy/io/tests/data/scalar_complex64.sav +0 -0
- scipy/io/tests/data/scalar_float32.sav +0 -0
- scipy/io/tests/data/scalar_float64.sav +0 -0
- scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
- scipy/io/tests/data/scalar_int16.sav +0 -0
- scipy/io/tests/data/scalar_int32.sav +0 -0
- scipy/io/tests/data/scalar_int64.sav +0 -0
- scipy/io/tests/data/scalar_string.sav +0 -0
- scipy/io/tests/data/scalar_uint16.sav +0 -0
- scipy/io/tests/data/scalar_uint32.sav +0 -0
- scipy/io/tests/data/scalar_uint64.sav +0 -0
- scipy/io/tests/data/struct_arrays.sav +0 -0
- scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_inherit.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_pointers.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_scalars.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
- scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
- scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
- scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
- scipy/io/tests/data/various_compressed.sav +0 -0
- scipy/io/tests/test_fortran.py +264 -0
- scipy/io/tests/test_idl.py +483 -0
- scipy/io/tests/test_mmio.py +831 -0
- scipy/io/tests/test_netcdf.py +550 -0
- scipy/io/tests/test_paths.py +93 -0
- scipy/io/tests/test_wavfile.py +501 -0
- scipy/io/wavfile.py +938 -0
- scipy/linalg/__init__.pxd +1 -0
- scipy/linalg/__init__.py +236 -0
- scipy/linalg/_basic.py +2146 -0
- scipy/linalg/_blas_subroutines.h +164 -0
- scipy/linalg/_cythonized_array_utils.cp314-win_arm64.lib +0 -0
- scipy/linalg/_cythonized_array_utils.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_cythonized_array_utils.pxd +40 -0
- scipy/linalg/_cythonized_array_utils.pyi +16 -0
- scipy/linalg/_decomp.py +1645 -0
- scipy/linalg/_decomp_cholesky.py +413 -0
- scipy/linalg/_decomp_cossin.py +236 -0
- scipy/linalg/_decomp_interpolative.cp314-win_arm64.lib +0 -0
- scipy/linalg/_decomp_interpolative.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_ldl.py +356 -0
- scipy/linalg/_decomp_lu.py +401 -0
- scipy/linalg/_decomp_lu_cython.cp314-win_arm64.lib +0 -0
- scipy/linalg/_decomp_lu_cython.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_lu_cython.pyi +6 -0
- scipy/linalg/_decomp_polar.py +113 -0
- scipy/linalg/_decomp_qr.py +494 -0
- scipy/linalg/_decomp_qz.py +452 -0
- scipy/linalg/_decomp_schur.py +336 -0
- scipy/linalg/_decomp_svd.py +545 -0
- scipy/linalg/_decomp_update.cp314-win_arm64.lib +0 -0
- scipy/linalg/_decomp_update.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_expm_frechet.py +417 -0
- scipy/linalg/_fblas.cp314-win_arm64.lib +0 -0
- scipy/linalg/_fblas.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_flapack.cp314-win_arm64.lib +0 -0
- scipy/linalg/_flapack.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_lapack_subroutines.h +1521 -0
- scipy/linalg/_linalg_pythran.cp314-win_arm64.lib +0 -0
- scipy/linalg/_linalg_pythran.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs.py +1050 -0
- scipy/linalg/_matfuncs_expm.cp314-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_expm.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_expm.pyi +6 -0
- scipy/linalg/_matfuncs_inv_ssq.py +886 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_sqrtm.py +107 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_misc.py +191 -0
- scipy/linalg/_procrustes.py +113 -0
- scipy/linalg/_sketches.py +189 -0
- scipy/linalg/_solve_toeplitz.cp314-win_arm64.lib +0 -0
- scipy/linalg/_solve_toeplitz.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_solvers.py +862 -0
- scipy/linalg/_special_matrices.py +1322 -0
- scipy/linalg/_testutils.py +65 -0
- scipy/linalg/basic.py +23 -0
- scipy/linalg/blas.py +495 -0
- scipy/linalg/cython_blas.cp314-win_arm64.lib +0 -0
- scipy/linalg/cython_blas.cp314-win_arm64.pyd +0 -0
- scipy/linalg/cython_blas.pxd +169 -0
- scipy/linalg/cython_blas.pyx +1432 -0
- scipy/linalg/cython_lapack.cp314-win_arm64.lib +0 -0
- scipy/linalg/cython_lapack.cp314-win_arm64.pyd +0 -0
- scipy/linalg/cython_lapack.pxd +1528 -0
- scipy/linalg/cython_lapack.pyx +12045 -0
- scipy/linalg/decomp.py +23 -0
- scipy/linalg/decomp_cholesky.py +21 -0
- scipy/linalg/decomp_lu.py +21 -0
- scipy/linalg/decomp_qr.py +20 -0
- scipy/linalg/decomp_schur.py +21 -0
- scipy/linalg/decomp_svd.py +21 -0
- scipy/linalg/interpolative.py +989 -0
- scipy/linalg/lapack.py +1081 -0
- scipy/linalg/matfuncs.py +23 -0
- scipy/linalg/misc.py +21 -0
- scipy/linalg/special_matrices.py +22 -0
- scipy/linalg/tests/__init__.py +0 -0
- scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
- scipy/linalg/tests/_cython_examples/meson.build +34 -0
- scipy/linalg/tests/data/carex_15_data.npz +0 -0
- scipy/linalg/tests/data/carex_18_data.npz +0 -0
- scipy/linalg/tests/data/carex_19_data.npz +0 -0
- scipy/linalg/tests/data/carex_20_data.npz +0 -0
- scipy/linalg/tests/data/carex_6_data.npz +0 -0
- scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
- scipy/linalg/tests/test_basic.py +2074 -0
- scipy/linalg/tests/test_batch.py +588 -0
- scipy/linalg/tests/test_blas.py +1127 -0
- scipy/linalg/tests/test_cython_blas.py +118 -0
- scipy/linalg/tests/test_cython_lapack.py +22 -0
- scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
- scipy/linalg/tests/test_decomp.py +3189 -0
- scipy/linalg/tests/test_decomp_cholesky.py +268 -0
- scipy/linalg/tests/test_decomp_cossin.py +314 -0
- scipy/linalg/tests/test_decomp_ldl.py +137 -0
- scipy/linalg/tests/test_decomp_lu.py +308 -0
- scipy/linalg/tests/test_decomp_polar.py +110 -0
- scipy/linalg/tests/test_decomp_update.py +1701 -0
- scipy/linalg/tests/test_extending.py +46 -0
- scipy/linalg/tests/test_fblas.py +607 -0
- scipy/linalg/tests/test_interpolative.py +232 -0
- scipy/linalg/tests/test_lapack.py +3620 -0
- scipy/linalg/tests/test_matfuncs.py +1125 -0
- scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
- scipy/linalg/tests/test_procrustes.py +214 -0
- scipy/linalg/tests/test_sketches.py +118 -0
- scipy/linalg/tests/test_solve_toeplitz.py +150 -0
- scipy/linalg/tests/test_solvers.py +844 -0
- scipy/linalg/tests/test_special_matrices.py +636 -0
- scipy/misc/__init__.py +6 -0
- scipy/misc/common.py +6 -0
- scipy/misc/doccer.py +6 -0
- scipy/ndimage/__init__.py +174 -0
- scipy/ndimage/_ctest.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_ctest.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_cytest.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_cytest.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_delegators.py +303 -0
- scipy/ndimage/_filters.py +2422 -0
- scipy/ndimage/_fourier.py +306 -0
- scipy/ndimage/_interpolation.py +1033 -0
- scipy/ndimage/_measurements.py +1689 -0
- scipy/ndimage/_morphology.py +2634 -0
- scipy/ndimage/_nd_image.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_nd_image.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_ndimage_api.py +16 -0
- scipy/ndimage/_ni_docstrings.py +214 -0
- scipy/ndimage/_ni_label.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_ni_label.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_ni_support.py +139 -0
- scipy/ndimage/_rank_filter_1d.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_rank_filter_1d.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_support_alternative_backends.py +84 -0
- scipy/ndimage/filters.py +27 -0
- scipy/ndimage/fourier.py +21 -0
- scipy/ndimage/interpolation.py +22 -0
- scipy/ndimage/measurements.py +24 -0
- scipy/ndimage/morphology.py +27 -0
- scipy/ndimage/tests/__init__.py +12 -0
- scipy/ndimage/tests/data/label_inputs.txt +21 -0
- scipy/ndimage/tests/data/label_results.txt +294 -0
- scipy/ndimage/tests/data/label_strels.txt +42 -0
- scipy/ndimage/tests/dots.png +0 -0
- scipy/ndimage/tests/test_c_api.py +102 -0
- scipy/ndimage/tests/test_datatypes.py +67 -0
- scipy/ndimage/tests/test_filters.py +3083 -0
- scipy/ndimage/tests/test_fourier.py +187 -0
- scipy/ndimage/tests/test_interpolation.py +1491 -0
- scipy/ndimage/tests/test_measurements.py +1592 -0
- scipy/ndimage/tests/test_morphology.py +2950 -0
- scipy/ndimage/tests/test_ni_support.py +78 -0
- scipy/ndimage/tests/test_splines.py +70 -0
- scipy/odr/__init__.py +131 -0
- scipy/odr/__odrpack.cp314-win_arm64.lib +0 -0
- scipy/odr/__odrpack.cp314-win_arm64.pyd +0 -0
- scipy/odr/_add_newdocs.py +34 -0
- scipy/odr/_models.py +315 -0
- scipy/odr/_odrpack.py +1154 -0
- scipy/odr/models.py +20 -0
- scipy/odr/odrpack.py +21 -0
- scipy/odr/tests/__init__.py +0 -0
- scipy/odr/tests/test_odr.py +607 -0
- scipy/optimize/__init__.pxd +1 -0
- scipy/optimize/__init__.py +460 -0
- scipy/optimize/_basinhopping.py +741 -0
- scipy/optimize/_bglu_dense.cp314-win_arm64.lib +0 -0
- scipy/optimize/_bglu_dense.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_bracket.py +706 -0
- scipy/optimize/_chandrupatla.py +551 -0
- scipy/optimize/_cobyla_py.py +297 -0
- scipy/optimize/_cobyqa_py.py +72 -0
- scipy/optimize/_constraints.py +598 -0
- scipy/optimize/_dcsrch.py +728 -0
- scipy/optimize/_differentiable_functions.py +835 -0
- scipy/optimize/_differentialevolution.py +1970 -0
- scipy/optimize/_direct.cp314-win_arm64.lib +0 -0
- scipy/optimize/_direct.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_direct_py.py +280 -0
- scipy/optimize/_dual_annealing.py +732 -0
- scipy/optimize/_elementwise.py +798 -0
- scipy/optimize/_group_columns.cp314-win_arm64.lib +0 -0
- scipy/optimize/_group_columns.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_hessian_update_strategy.py +479 -0
- scipy/optimize/_highspy/__init__.py +0 -0
- scipy/optimize/_highspy/_core.cp314-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_core.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_options.cp314-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_highs_options.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_wrapper.py +338 -0
- scipy/optimize/_isotonic.py +157 -0
- scipy/optimize/_lbfgsb.cp314-win_arm64.lib +0 -0
- scipy/optimize/_lbfgsb.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_lbfgsb_py.py +634 -0
- scipy/optimize/_linesearch.py +896 -0
- scipy/optimize/_linprog.py +733 -0
- scipy/optimize/_linprog_doc.py +1434 -0
- scipy/optimize/_linprog_highs.py +422 -0
- scipy/optimize/_linprog_ip.py +1141 -0
- scipy/optimize/_linprog_rs.py +572 -0
- scipy/optimize/_linprog_simplex.py +663 -0
- scipy/optimize/_linprog_util.py +1521 -0
- scipy/optimize/_lsap.cp314-win_arm64.lib +0 -0
- scipy/optimize/_lsap.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/__init__.py +5 -0
- scipy/optimize/_lsq/bvls.py +183 -0
- scipy/optimize/_lsq/common.py +731 -0
- scipy/optimize/_lsq/dogbox.py +345 -0
- scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.lib +0 -0
- scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/least_squares.py +1044 -0
- scipy/optimize/_lsq/lsq_linear.py +361 -0
- scipy/optimize/_lsq/trf.py +587 -0
- scipy/optimize/_lsq/trf_linear.py +249 -0
- scipy/optimize/_milp.py +394 -0
- scipy/optimize/_minimize.py +1199 -0
- scipy/optimize/_minpack.cp314-win_arm64.lib +0 -0
- scipy/optimize/_minpack.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_minpack_py.py +1178 -0
- scipy/optimize/_moduleTNC.cp314-win_arm64.lib +0 -0
- scipy/optimize/_moduleTNC.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_nnls.py +96 -0
- scipy/optimize/_nonlin.py +1634 -0
- scipy/optimize/_numdiff.py +963 -0
- scipy/optimize/_optimize.py +4169 -0
- scipy/optimize/_pava_pybind.cp314-win_arm64.lib +0 -0
- scipy/optimize/_pava_pybind.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_qap.py +760 -0
- scipy/optimize/_remove_redundancy.py +522 -0
- scipy/optimize/_root.py +732 -0
- scipy/optimize/_root_scalar.py +538 -0
- scipy/optimize/_shgo.py +1606 -0
- scipy/optimize/_shgo_lib/__init__.py +0 -0
- scipy/optimize/_shgo_lib/_complex.py +1225 -0
- scipy/optimize/_shgo_lib/_vertex.py +460 -0
- scipy/optimize/_slsqp_py.py +603 -0
- scipy/optimize/_slsqplib.cp314-win_arm64.lib +0 -0
- scipy/optimize/_slsqplib.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_spectral.py +260 -0
- scipy/optimize/_tnc.py +438 -0
- scipy/optimize/_trlib/__init__.py +12 -0
- scipy/optimize/_trlib/_trlib.cp314-win_arm64.lib +0 -0
- scipy/optimize/_trlib/_trlib.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_trustregion.py +318 -0
- scipy/optimize/_trustregion_constr/__init__.py +6 -0
- scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
- scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
- scipy/optimize/_trustregion_constr/projections.py +411 -0
- scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- scipy/optimize/_trustregion_constr/report.py +49 -0
- scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
- scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
- scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
- scipy/optimize/_trustregion_dogleg.py +122 -0
- scipy/optimize/_trustregion_exact.py +437 -0
- scipy/optimize/_trustregion_krylov.py +65 -0
- scipy/optimize/_trustregion_ncg.py +126 -0
- scipy/optimize/_tstutils.py +972 -0
- scipy/optimize/_zeros.cp314-win_arm64.lib +0 -0
- scipy/optimize/_zeros.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_zeros_py.py +1475 -0
- scipy/optimize/cobyla.py +19 -0
- scipy/optimize/cython_optimize/__init__.py +133 -0
- scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.lib +0 -0
- scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.pyd +0 -0
- scipy/optimize/cython_optimize/_zeros.pxd +33 -0
- scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
- scipy/optimize/cython_optimize.pxd +11 -0
- scipy/optimize/elementwise.py +38 -0
- scipy/optimize/lbfgsb.py +23 -0
- scipy/optimize/linesearch.py +18 -0
- scipy/optimize/minpack.py +27 -0
- scipy/optimize/minpack2.py +17 -0
- scipy/optimize/moduleTNC.py +19 -0
- scipy/optimize/nonlin.py +29 -0
- scipy/optimize/optimize.py +40 -0
- scipy/optimize/slsqp.py +22 -0
- scipy/optimize/tests/__init__.py +0 -0
- scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
- scipy/optimize/tests/_cython_examples/meson.build +32 -0
- scipy/optimize/tests/test__basinhopping.py +535 -0
- scipy/optimize/tests/test__differential_evolution.py +1703 -0
- scipy/optimize/tests/test__dual_annealing.py +416 -0
- scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
- scipy/optimize/tests/test__numdiff.py +885 -0
- scipy/optimize/tests/test__remove_redundancy.py +228 -0
- scipy/optimize/tests/test__root.py +124 -0
- scipy/optimize/tests/test__shgo.py +1164 -0
- scipy/optimize/tests/test__spectral.py +226 -0
- scipy/optimize/tests/test_bracket.py +896 -0
- scipy/optimize/tests/test_chandrupatla.py +982 -0
- scipy/optimize/tests/test_cobyla.py +195 -0
- scipy/optimize/tests/test_cobyqa.py +252 -0
- scipy/optimize/tests/test_constraint_conversion.py +286 -0
- scipy/optimize/tests/test_constraints.py +255 -0
- scipy/optimize/tests/test_cython_optimize.py +92 -0
- scipy/optimize/tests/test_differentiable_functions.py +1025 -0
- scipy/optimize/tests/test_direct.py +321 -0
- scipy/optimize/tests/test_extending.py +28 -0
- scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
- scipy/optimize/tests/test_isotonic_regression.py +167 -0
- scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
- scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
- scipy/optimize/tests/test_least_squares.py +986 -0
- scipy/optimize/tests/test_linear_assignment.py +116 -0
- scipy/optimize/tests/test_linesearch.py +328 -0
- scipy/optimize/tests/test_linprog.py +2577 -0
- scipy/optimize/tests/test_lsq_common.py +297 -0
- scipy/optimize/tests/test_lsq_linear.py +287 -0
- scipy/optimize/tests/test_milp.py +459 -0
- scipy/optimize/tests/test_minimize_constrained.py +845 -0
- scipy/optimize/tests/test_minpack.py +1194 -0
- scipy/optimize/tests/test_nnls.py +469 -0
- scipy/optimize/tests/test_nonlin.py +572 -0
- scipy/optimize/tests/test_optimize.py +3344 -0
- scipy/optimize/tests/test_quadratic_assignment.py +455 -0
- scipy/optimize/tests/test_regression.py +40 -0
- scipy/optimize/tests/test_slsqp.py +645 -0
- scipy/optimize/tests/test_tnc.py +345 -0
- scipy/optimize/tests/test_trustregion.py +110 -0
- scipy/optimize/tests/test_trustregion_exact.py +351 -0
- scipy/optimize/tests/test_trustregion_krylov.py +170 -0
- scipy/optimize/tests/test_zeros.py +998 -0
- scipy/optimize/tnc.py +22 -0
- scipy/optimize/zeros.py +26 -0
- scipy/signal/__init__.py +316 -0
- scipy/signal/_arraytools.py +264 -0
- scipy/signal/_czt.py +575 -0
- scipy/signal/_delegators.py +568 -0
- scipy/signal/_filter_design.py +5893 -0
- scipy/signal/_fir_filter_design.py +1458 -0
- scipy/signal/_lti_conversion.py +534 -0
- scipy/signal/_ltisys.py +3546 -0
- scipy/signal/_max_len_seq.py +139 -0
- scipy/signal/_max_len_seq_inner.cp314-win_arm64.lib +0 -0
- scipy/signal/_max_len_seq_inner.cp314-win_arm64.pyd +0 -0
- scipy/signal/_peak_finding.py +1310 -0
- scipy/signal/_peak_finding_utils.cp314-win_arm64.lib +0 -0
- scipy/signal/_peak_finding_utils.cp314-win_arm64.pyd +0 -0
- scipy/signal/_polyutils.py +172 -0
- scipy/signal/_savitzky_golay.py +357 -0
- scipy/signal/_short_time_fft.py +2228 -0
- scipy/signal/_signal_api.py +30 -0
- scipy/signal/_signaltools.py +5309 -0
- scipy/signal/_sigtools.cp314-win_arm64.lib +0 -0
- scipy/signal/_sigtools.cp314-win_arm64.pyd +0 -0
- scipy/signal/_sosfilt.cp314-win_arm64.lib +0 -0
- scipy/signal/_sosfilt.cp314-win_arm64.pyd +0 -0
- scipy/signal/_spectral_py.py +2471 -0
- scipy/signal/_spline.cp314-win_arm64.lib +0 -0
- scipy/signal/_spline.cp314-win_arm64.pyd +0 -0
- scipy/signal/_spline.pyi +34 -0
- scipy/signal/_spline_filters.py +848 -0
- scipy/signal/_support_alternative_backends.py +73 -0
- scipy/signal/_upfirdn.py +219 -0
- scipy/signal/_upfirdn_apply.cp314-win_arm64.lib +0 -0
- scipy/signal/_upfirdn_apply.cp314-win_arm64.pyd +0 -0
- scipy/signal/_waveforms.py +687 -0
- scipy/signal/_wavelets.py +29 -0
- scipy/signal/bsplines.py +21 -0
- scipy/signal/filter_design.py +28 -0
- scipy/signal/fir_filter_design.py +21 -0
- scipy/signal/lti_conversion.py +20 -0
- scipy/signal/ltisys.py +25 -0
- scipy/signal/signaltools.py +27 -0
- scipy/signal/spectral.py +21 -0
- scipy/signal/spline.py +18 -0
- scipy/signal/tests/__init__.py +0 -0
- scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
- scipy/signal/tests/mpsig.py +122 -0
- scipy/signal/tests/test_array_tools.py +111 -0
- scipy/signal/tests/test_bsplines.py +365 -0
- scipy/signal/tests/test_cont2discrete.py +424 -0
- scipy/signal/tests/test_czt.py +221 -0
- scipy/signal/tests/test_dltisys.py +599 -0
- scipy/signal/tests/test_filter_design.py +4744 -0
- scipy/signal/tests/test_fir_filter_design.py +851 -0
- scipy/signal/tests/test_ltisys.py +1225 -0
- scipy/signal/tests/test_max_len_seq.py +71 -0
- scipy/signal/tests/test_peak_finding.py +915 -0
- scipy/signal/tests/test_result_type.py +51 -0
- scipy/signal/tests/test_savitzky_golay.py +363 -0
- scipy/signal/tests/test_short_time_fft.py +1107 -0
- scipy/signal/tests/test_signaltools.py +4735 -0
- scipy/signal/tests/test_spectral.py +2141 -0
- scipy/signal/tests/test_splines.py +427 -0
- scipy/signal/tests/test_upfirdn.py +322 -0
- scipy/signal/tests/test_waveforms.py +400 -0
- scipy/signal/tests/test_wavelets.py +59 -0
- scipy/signal/tests/test_windows.py +987 -0
- scipy/signal/waveforms.py +20 -0
- scipy/signal/wavelets.py +17 -0
- scipy/signal/windows/__init__.py +52 -0
- scipy/signal/windows/_windows.py +2513 -0
- scipy/signal/windows/windows.py +23 -0
- scipy/sparse/__init__.py +350 -0
- scipy/sparse/_base.py +1613 -0
- scipy/sparse/_bsr.py +880 -0
- scipy/sparse/_compressed.py +1328 -0
- scipy/sparse/_construct.py +1454 -0
- scipy/sparse/_coo.py +1581 -0
- scipy/sparse/_csc.py +367 -0
- scipy/sparse/_csparsetools.cp314-win_arm64.lib +0 -0
- scipy/sparse/_csparsetools.cp314-win_arm64.pyd +0 -0
- scipy/sparse/_csr.py +558 -0
- scipy/sparse/_data.py +569 -0
- scipy/sparse/_dia.py +677 -0
- scipy/sparse/_dok.py +669 -0
- scipy/sparse/_extract.py +178 -0
- scipy/sparse/_index.py +444 -0
- scipy/sparse/_lil.py +632 -0
- scipy/sparse/_matrix.py +169 -0
- scipy/sparse/_matrix_io.py +167 -0
- scipy/sparse/_sparsetools.cp314-win_arm64.lib +0 -0
- scipy/sparse/_sparsetools.cp314-win_arm64.pyd +0 -0
- scipy/sparse/_spfuncs.py +76 -0
- scipy/sparse/_sputils.py +632 -0
- scipy/sparse/base.py +24 -0
- scipy/sparse/bsr.py +22 -0
- scipy/sparse/compressed.py +20 -0
- scipy/sparse/construct.py +38 -0
- scipy/sparse/coo.py +23 -0
- scipy/sparse/csc.py +22 -0
- scipy/sparse/csgraph/__init__.py +210 -0
- scipy/sparse/csgraph/_flow.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_flow.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_laplacian.py +563 -0
- scipy/sparse/csgraph/_matching.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_matching.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_reordering.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_reordering.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_tools.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_tools.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_traversal.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_traversal.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_validation.py +66 -0
- scipy/sparse/csgraph/tests/__init__.py +0 -0
- scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
- scipy/sparse/csgraph/tests/test_conversions.py +61 -0
- scipy/sparse/csgraph/tests/test_flow.py +209 -0
- scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
- scipy/sparse/csgraph/tests/test_matching.py +307 -0
- scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
- scipy/sparse/csgraph/tests/test_reordering.py +70 -0
- scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
- scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
- scipy/sparse/csgraph/tests/test_traversal.py +148 -0
- scipy/sparse/csr.py +22 -0
- scipy/sparse/data.py +18 -0
- scipy/sparse/dia.py +22 -0
- scipy/sparse/dok.py +22 -0
- scipy/sparse/extract.py +23 -0
- scipy/sparse/lil.py +22 -0
- scipy/sparse/linalg/__init__.py +148 -0
- scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
- scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
- scipy/sparse/linalg/_eigen/__init__.py +22 -0
- scipy/sparse/linalg/_eigen/_svds.py +540 -0
- scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
- scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
- scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
- scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
- scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
- scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
- scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
- scipy/sparse/linalg/_expm_multiply.py +816 -0
- scipy/sparse/linalg/_interface.py +920 -0
- scipy/sparse/linalg/_isolve/__init__.py +20 -0
- scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
- scipy/sparse/linalg/_isolve/iterative.py +1051 -0
- scipy/sparse/linalg/_isolve/lgmres.py +230 -0
- scipy/sparse/linalg/_isolve/lsmr.py +486 -0
- scipy/sparse/linalg/_isolve/lsqr.py +589 -0
- scipy/sparse/linalg/_isolve/minres.py +372 -0
- scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
- scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
- scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
- scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
- scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
- scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
- scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
- scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
- scipy/sparse/linalg/_isolve/utils.py +121 -0
- scipy/sparse/linalg/_matfuncs.py +940 -0
- scipy/sparse/linalg/_norm.py +195 -0
- scipy/sparse/linalg/_onenormest.py +467 -0
- scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
- scipy/sparse/linalg/_svdp.py +309 -0
- scipy/sparse/linalg/dsolve.py +22 -0
- scipy/sparse/linalg/eigen.py +21 -0
- scipy/sparse/linalg/interface.py +20 -0
- scipy/sparse/linalg/isolve.py +22 -0
- scipy/sparse/linalg/matfuncs.py +18 -0
- scipy/sparse/linalg/tests/__init__.py +0 -0
- scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
- scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
- scipy/sparse/linalg/tests/test_interface.py +561 -0
- scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
- scipy/sparse/linalg/tests/test_norm.py +154 -0
- scipy/sparse/linalg/tests/test_onenormest.py +252 -0
- scipy/sparse/linalg/tests/test_propack.py +165 -0
- scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
- scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
- scipy/sparse/sparsetools.py +17 -0
- scipy/sparse/spfuncs.py +17 -0
- scipy/sparse/sputils.py +17 -0
- scipy/sparse/tests/__init__.py +0 -0
- scipy/sparse/tests/data/csc_py2.npz +0 -0
- scipy/sparse/tests/data/csc_py3.npz +0 -0
- scipy/sparse/tests/test_arithmetic1d.py +341 -0
- scipy/sparse/tests/test_array_api.py +561 -0
- scipy/sparse/tests/test_base.py +5870 -0
- scipy/sparse/tests/test_common1d.py +447 -0
- scipy/sparse/tests/test_construct.py +872 -0
- scipy/sparse/tests/test_coo.py +1119 -0
- scipy/sparse/tests/test_csc.py +98 -0
- scipy/sparse/tests/test_csr.py +214 -0
- scipy/sparse/tests/test_dok.py +209 -0
- scipy/sparse/tests/test_extract.py +51 -0
- scipy/sparse/tests/test_indexing1d.py +603 -0
- scipy/sparse/tests/test_matrix_io.py +109 -0
- scipy/sparse/tests/test_minmax1d.py +128 -0
- scipy/sparse/tests/test_sparsetools.py +344 -0
- scipy/sparse/tests/test_spfuncs.py +97 -0
- scipy/sparse/tests/test_sputils.py +424 -0
- scipy/spatial/__init__.py +129 -0
- scipy/spatial/_ckdtree.cp314-win_arm64.lib +0 -0
- scipy/spatial/_ckdtree.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_distance_pybind.cp314-win_arm64.lib +0 -0
- scipy/spatial/_distance_pybind.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_distance_wrap.cp314-win_arm64.lib +0 -0
- scipy/spatial/_distance_wrap.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_geometric_slerp.py +238 -0
- scipy/spatial/_hausdorff.cp314-win_arm64.lib +0 -0
- scipy/spatial/_hausdorff.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_kdtree.py +920 -0
- scipy/spatial/_plotutils.py +274 -0
- scipy/spatial/_procrustes.py +132 -0
- scipy/spatial/_qhull.cp314-win_arm64.lib +0 -0
- scipy/spatial/_qhull.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_qhull.pyi +213 -0
- scipy/spatial/_spherical_voronoi.py +341 -0
- scipy/spatial/_voronoi.cp314-win_arm64.lib +0 -0
- scipy/spatial/_voronoi.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_voronoi.pyi +4 -0
- scipy/spatial/ckdtree.py +18 -0
- scipy/spatial/distance.py +3147 -0
- scipy/spatial/distance.pyi +210 -0
- scipy/spatial/kdtree.py +25 -0
- scipy/spatial/qhull.py +25 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/__init__.py +0 -0
- scipy/spatial/tests/data/cdist-X1.txt +10 -0
- scipy/spatial/tests/data/cdist-X2.txt +20 -0
- scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
- scipy/spatial/tests/data/iris.txt +150 -0
- scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
- scipy/spatial/tests/data/random-bool-data.txt +100 -0
- scipy/spatial/tests/data/random-double-data.txt +100 -0
- scipy/spatial/tests/data/random-int-data.txt +100 -0
- scipy/spatial/tests/data/random-uint-data.txt +100 -0
- scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
- scipy/spatial/tests/test__plotutils.py +91 -0
- scipy/spatial/tests/test__procrustes.py +116 -0
- scipy/spatial/tests/test_distance.py +2389 -0
- scipy/spatial/tests/test_hausdorff.py +199 -0
- scipy/spatial/tests/test_kdtree.py +1536 -0
- scipy/spatial/tests/test_qhull.py +1313 -0
- scipy/spatial/tests/test_slerp.py +417 -0
- scipy/spatial/tests/test_spherical_voronoi.py +358 -0
- scipy/spatial/transform/__init__.py +31 -0
- scipy/spatial/transform/_rigid_transform.cp314-win_arm64.lib +0 -0
- scipy/spatial/transform/_rigid_transform.cp314-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation.cp314-win_arm64.lib +0 -0
- scipy/spatial/transform/_rotation.cp314-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation_groups.py +140 -0
- scipy/spatial/transform/_rotation_spline.py +460 -0
- scipy/spatial/transform/rotation.py +21 -0
- scipy/spatial/transform/tests/__init__.py +0 -0
- scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
- scipy/spatial/transform/tests/test_rotation.py +2569 -0
- scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
- scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
- scipy/special/__init__.pxd +1 -0
- scipy/special/__init__.py +841 -0
- scipy/special/_add_newdocs.py +9961 -0
- scipy/special/_basic.py +3576 -0
- scipy/special/_comb.cp314-win_arm64.lib +0 -0
- scipy/special/_comb.cp314-win_arm64.pyd +0 -0
- scipy/special/_ellip_harm.py +214 -0
- scipy/special/_ellip_harm_2.cp314-win_arm64.lib +0 -0
- scipy/special/_ellip_harm_2.cp314-win_arm64.pyd +0 -0
- scipy/special/_gufuncs.cp314-win_arm64.lib +0 -0
- scipy/special/_gufuncs.cp314-win_arm64.pyd +0 -0
- scipy/special/_input_validation.py +17 -0
- scipy/special/_lambertw.py +149 -0
- scipy/special/_logsumexp.py +426 -0
- scipy/special/_mptestutils.py +453 -0
- scipy/special/_multiufuncs.py +610 -0
- scipy/special/_orthogonal.py +2592 -0
- scipy/special/_orthogonal.pyi +330 -0
- scipy/special/_precompute/__init__.py +0 -0
- scipy/special/_precompute/cosine_cdf.py +17 -0
- scipy/special/_precompute/expn_asy.py +54 -0
- scipy/special/_precompute/gammainc_asy.py +116 -0
- scipy/special/_precompute/gammainc_data.py +124 -0
- scipy/special/_precompute/hyp2f1_data.py +484 -0
- scipy/special/_precompute/lambertw.py +68 -0
- scipy/special/_precompute/loggamma.py +43 -0
- scipy/special/_precompute/struve_convergence.py +131 -0
- scipy/special/_precompute/utils.py +38 -0
- scipy/special/_precompute/wright_bessel.py +342 -0
- scipy/special/_precompute/wright_bessel_data.py +152 -0
- scipy/special/_precompute/wrightomega.py +41 -0
- scipy/special/_precompute/zetac.py +27 -0
- scipy/special/_sf_error.py +15 -0
- scipy/special/_specfun.cp314-win_arm64.lib +0 -0
- scipy/special/_specfun.cp314-win_arm64.pyd +0 -0
- scipy/special/_special_ufuncs.cp314-win_arm64.lib +0 -0
- scipy/special/_special_ufuncs.cp314-win_arm64.pyd +0 -0
- scipy/special/_spfun_stats.py +106 -0
- scipy/special/_spherical_bessel.py +397 -0
- scipy/special/_support_alternative_backends.py +295 -0
- scipy/special/_test_internal.cp314-win_arm64.lib +0 -0
- scipy/special/_test_internal.cp314-win_arm64.pyd +0 -0
- scipy/special/_test_internal.pyi +9 -0
- scipy/special/_testutils.py +321 -0
- scipy/special/_ufuncs.cp314-win_arm64.lib +0 -0
- scipy/special/_ufuncs.cp314-win_arm64.pyd +0 -0
- scipy/special/_ufuncs.pyi +522 -0
- scipy/special/_ufuncs.pyx +13173 -0
- scipy/special/_ufuncs_cxx.cp314-win_arm64.lib +0 -0
- scipy/special/_ufuncs_cxx.cp314-win_arm64.pyd +0 -0
- scipy/special/_ufuncs_cxx.pxd +142 -0
- scipy/special/_ufuncs_cxx.pyx +427 -0
- scipy/special/_ufuncs_cxx_defs.h +147 -0
- scipy/special/_ufuncs_defs.h +57 -0
- scipy/special/add_newdocs.py +15 -0
- scipy/special/basic.py +87 -0
- scipy/special/cython_special.cp314-win_arm64.lib +0 -0
- scipy/special/cython_special.cp314-win_arm64.pyd +0 -0
- scipy/special/cython_special.pxd +259 -0
- scipy/special/cython_special.pyi +3 -0
- scipy/special/orthogonal.py +45 -0
- scipy/special/sf_error.py +20 -0
- scipy/special/specfun.py +24 -0
- scipy/special/spfun_stats.py +17 -0
- scipy/special/tests/__init__.py +0 -0
- scipy/special/tests/_cython_examples/extending.pyx +12 -0
- scipy/special/tests/_cython_examples/meson.build +34 -0
- scipy/special/tests/data/__init__.py +0 -0
- scipy/special/tests/data/boost.npz +0 -0
- scipy/special/tests/data/gsl.npz +0 -0
- scipy/special/tests/data/local.npz +0 -0
- scipy/special/tests/test_basic.py +4815 -0
- scipy/special/tests/test_bdtr.py +112 -0
- scipy/special/tests/test_boost_ufuncs.py +64 -0
- scipy/special/tests/test_boxcox.py +125 -0
- scipy/special/tests/test_cdflib.py +712 -0
- scipy/special/tests/test_cdft_asymptotic.py +49 -0
- scipy/special/tests/test_cephes_intp_cast.py +29 -0
- scipy/special/tests/test_cosine_distr.py +83 -0
- scipy/special/tests/test_cython_special.py +363 -0
- scipy/special/tests/test_data.py +719 -0
- scipy/special/tests/test_dd.py +42 -0
- scipy/special/tests/test_digamma.py +45 -0
- scipy/special/tests/test_ellip_harm.py +278 -0
- scipy/special/tests/test_erfinv.py +89 -0
- scipy/special/tests/test_exponential_integrals.py +118 -0
- scipy/special/tests/test_extending.py +28 -0
- scipy/special/tests/test_faddeeva.py +85 -0
- scipy/special/tests/test_gamma.py +12 -0
- scipy/special/tests/test_gammainc.py +152 -0
- scipy/special/tests/test_hyp2f1.py +2566 -0
- scipy/special/tests/test_hypergeometric.py +234 -0
- scipy/special/tests/test_iv_ratio.py +249 -0
- scipy/special/tests/test_kolmogorov.py +491 -0
- scipy/special/tests/test_lambertw.py +109 -0
- scipy/special/tests/test_legendre.py +1518 -0
- scipy/special/tests/test_log1mexp.py +85 -0
- scipy/special/tests/test_loggamma.py +70 -0
- scipy/special/tests/test_logit.py +162 -0
- scipy/special/tests/test_logsumexp.py +469 -0
- scipy/special/tests/test_mpmath.py +2293 -0
- scipy/special/tests/test_nan_inputs.py +65 -0
- scipy/special/tests/test_ndtr.py +77 -0
- scipy/special/tests/test_ndtri_exp.py +94 -0
- scipy/special/tests/test_orthogonal.py +821 -0
- scipy/special/tests/test_orthogonal_eval.py +275 -0
- scipy/special/tests/test_owens_t.py +53 -0
- scipy/special/tests/test_pcf.py +24 -0
- scipy/special/tests/test_pdtr.py +48 -0
- scipy/special/tests/test_powm1.py +65 -0
- scipy/special/tests/test_precompute_expn_asy.py +24 -0
- scipy/special/tests/test_precompute_gammainc.py +108 -0
- scipy/special/tests/test_precompute_utils.py +36 -0
- scipy/special/tests/test_round.py +18 -0
- scipy/special/tests/test_sf_error.py +146 -0
- scipy/special/tests/test_sici.py +36 -0
- scipy/special/tests/test_specfun.py +48 -0
- scipy/special/tests/test_spence.py +32 -0
- scipy/special/tests/test_spfun_stats.py +61 -0
- scipy/special/tests/test_sph_harm.py +85 -0
- scipy/special/tests/test_spherical_bessel.py +400 -0
- scipy/special/tests/test_support_alternative_backends.py +248 -0
- scipy/special/tests/test_trig.py +72 -0
- scipy/special/tests/test_ufunc_signatures.py +46 -0
- scipy/special/tests/test_wright_bessel.py +205 -0
- scipy/special/tests/test_wrightomega.py +117 -0
- scipy/special/tests/test_zeta.py +301 -0
- scipy/stats/__init__.py +670 -0
- scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.lib +0 -0
- scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.pyd +0 -0
- scipy/stats/_axis_nan_policy.py +692 -0
- scipy/stats/_biasedurn.cp314-win_arm64.lib +0 -0
- scipy/stats/_biasedurn.cp314-win_arm64.pyd +0 -0
- scipy/stats/_biasedurn.pxd +27 -0
- scipy/stats/_binned_statistic.py +795 -0
- scipy/stats/_binomtest.py +375 -0
- scipy/stats/_bws_test.py +177 -0
- scipy/stats/_censored_data.py +459 -0
- scipy/stats/_common.py +5 -0
- scipy/stats/_constants.py +42 -0
- scipy/stats/_continued_fraction.py +387 -0
- scipy/stats/_continuous_distns.py +12486 -0
- scipy/stats/_correlation.py +210 -0
- scipy/stats/_covariance.py +636 -0
- scipy/stats/_crosstab.py +204 -0
- scipy/stats/_discrete_distns.py +2098 -0
- scipy/stats/_distn_infrastructure.py +4201 -0
- scipy/stats/_distr_params.py +299 -0
- scipy/stats/_distribution_infrastructure.py +5750 -0
- scipy/stats/_entropy.py +428 -0
- scipy/stats/_finite_differences.py +145 -0
- scipy/stats/_fit.py +1351 -0
- scipy/stats/_hypotests.py +2060 -0
- scipy/stats/_kde.py +732 -0
- scipy/stats/_ksstats.py +600 -0
- scipy/stats/_levy_stable/__init__.py +1231 -0
- scipy/stats/_levy_stable/levyst.cp314-win_arm64.lib +0 -0
- scipy/stats/_levy_stable/levyst.cp314-win_arm64.pyd +0 -0
- scipy/stats/_mannwhitneyu.py +492 -0
- scipy/stats/_mgc.py +550 -0
- scipy/stats/_morestats.py +4626 -0
- scipy/stats/_mstats_basic.py +3658 -0
- scipy/stats/_mstats_extras.py +521 -0
- scipy/stats/_multicomp.py +449 -0
- scipy/stats/_multivariate.py +7281 -0
- scipy/stats/_new_distributions.py +452 -0
- scipy/stats/_odds_ratio.py +466 -0
- scipy/stats/_page_trend_test.py +486 -0
- scipy/stats/_probability_distribution.py +1964 -0
- scipy/stats/_qmc.py +2956 -0
- scipy/stats/_qmc_cy.cp314-win_arm64.lib +0 -0
- scipy/stats/_qmc_cy.cp314-win_arm64.pyd +0 -0
- scipy/stats/_qmc_cy.pyi +54 -0
- scipy/stats/_qmvnt.py +454 -0
- scipy/stats/_qmvnt_cy.cp314-win_arm64.lib +0 -0
- scipy/stats/_qmvnt_cy.cp314-win_arm64.pyd +0 -0
- scipy/stats/_quantile.py +335 -0
- scipy/stats/_rcont/__init__.py +4 -0
- scipy/stats/_rcont/rcont.cp314-win_arm64.lib +0 -0
- scipy/stats/_rcont/rcont.cp314-win_arm64.pyd +0 -0
- scipy/stats/_relative_risk.py +263 -0
- scipy/stats/_resampling.py +2352 -0
- scipy/stats/_result_classes.py +40 -0
- scipy/stats/_sampling.py +1314 -0
- scipy/stats/_sensitivity_analysis.py +713 -0
- scipy/stats/_sobol.cp314-win_arm64.lib +0 -0
- scipy/stats/_sobol.cp314-win_arm64.pyd +0 -0
- scipy/stats/_sobol.pyi +54 -0
- scipy/stats/_sobol_direction_numbers.npz +0 -0
- scipy/stats/_stats.cp314-win_arm64.lib +0 -0
- scipy/stats/_stats.cp314-win_arm64.pyd +0 -0
- scipy/stats/_stats.pxd +10 -0
- scipy/stats/_stats_mstats_common.py +322 -0
- scipy/stats/_stats_py.py +11089 -0
- scipy/stats/_stats_pythran.cp314-win_arm64.lib +0 -0
- scipy/stats/_stats_pythran.cp314-win_arm64.pyd +0 -0
- scipy/stats/_survival.py +683 -0
- scipy/stats/_tukeylambda_stats.py +199 -0
- scipy/stats/_unuran/__init__.py +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.lib +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.pyd +0 -0
- scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
- scipy/stats/_variation.py +126 -0
- scipy/stats/_warnings_errors.py +38 -0
- scipy/stats/_wilcoxon.py +265 -0
- scipy/stats/biasedurn.py +16 -0
- scipy/stats/contingency.py +521 -0
- scipy/stats/distributions.py +24 -0
- scipy/stats/kde.py +18 -0
- scipy/stats/morestats.py +27 -0
- scipy/stats/mstats.py +140 -0
- scipy/stats/mstats_basic.py +42 -0
- scipy/stats/mstats_extras.py +25 -0
- scipy/stats/mvn.py +17 -0
- scipy/stats/qmc.py +236 -0
- scipy/stats/sampling.py +73 -0
- scipy/stats/stats.py +41 -0
- scipy/stats/tests/__init__.py +0 -0
- scipy/stats/tests/common_tests.py +356 -0
- scipy/stats/tests/data/_mvt.py +171 -0
- scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
- scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
- scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
- scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
- scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
- scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
- scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
- scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
- scipy/stats/tests/test_axis_nan_policy.py +1388 -0
- scipy/stats/tests/test_binned_statistic.py +568 -0
- scipy/stats/tests/test_censored_data.py +152 -0
- scipy/stats/tests/test_contingency.py +294 -0
- scipy/stats/tests/test_continued_fraction.py +173 -0
- scipy/stats/tests/test_continuous.py +2198 -0
- scipy/stats/tests/test_continuous_basic.py +1053 -0
- scipy/stats/tests/test_continuous_fit_censored.py +683 -0
- scipy/stats/tests/test_correlation.py +80 -0
- scipy/stats/tests/test_crosstab.py +115 -0
- scipy/stats/tests/test_discrete_basic.py +580 -0
- scipy/stats/tests/test_discrete_distns.py +700 -0
- scipy/stats/tests/test_distributions.py +10413 -0
- scipy/stats/tests/test_entropy.py +322 -0
- scipy/stats/tests/test_fast_gen_inversion.py +435 -0
- scipy/stats/tests/test_fit.py +1090 -0
- scipy/stats/tests/test_hypotests.py +1991 -0
- scipy/stats/tests/test_kdeoth.py +676 -0
- scipy/stats/tests/test_marray.py +289 -0
- scipy/stats/tests/test_mgc.py +217 -0
- scipy/stats/tests/test_morestats.py +3259 -0
- scipy/stats/tests/test_mstats_basic.py +2071 -0
- scipy/stats/tests/test_mstats_extras.py +172 -0
- scipy/stats/tests/test_multicomp.py +405 -0
- scipy/stats/tests/test_multivariate.py +4381 -0
- scipy/stats/tests/test_odds_ratio.py +148 -0
- scipy/stats/tests/test_qmc.py +1492 -0
- scipy/stats/tests/test_quantile.py +199 -0
- scipy/stats/tests/test_rank.py +345 -0
- scipy/stats/tests/test_relative_risk.py +95 -0
- scipy/stats/tests/test_resampling.py +2000 -0
- scipy/stats/tests/test_sampling.py +1450 -0
- scipy/stats/tests/test_sensitivity_analysis.py +310 -0
- scipy/stats/tests/test_stats.py +9707 -0
- scipy/stats/tests/test_survival.py +466 -0
- scipy/stats/tests/test_tukeylambda_stats.py +85 -0
- scipy/stats/tests/test_variation.py +216 -0
- scipy/version.py +12 -0
- scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
- scipy-1.16.2.dist-info/LICENSE.txt +912 -0
- scipy-1.16.2.dist-info/METADATA +1061 -0
- scipy-1.16.2.dist-info/RECORD +1530 -0
- scipy-1.16.2.dist-info/WHEEL +4 -0
- scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,2630 @@
|
|
1
|
+
from scipy._lib._array_api import (
|
2
|
+
xp_assert_equal, xp_assert_close, assert_almost_equal, assert_array_almost_equal
|
3
|
+
)
|
4
|
+
from pytest import raises as assert_raises
|
5
|
+
import pytest
|
6
|
+
|
7
|
+
from numpy import mgrid, pi, sin, poly1d
|
8
|
+
import numpy as np
|
9
|
+
|
10
|
+
from scipy.interpolate import (interp1d, interp2d, lagrange, PPoly, BPoly,
|
11
|
+
splrep, splev, splantider, splint, sproot, Akima1DInterpolator,
|
12
|
+
NdPPoly, BSpline, PchipInterpolator)
|
13
|
+
|
14
|
+
from scipy.special import poch, gamma
|
15
|
+
|
16
|
+
from scipy.interpolate import _ppoly
|
17
|
+
|
18
|
+
from scipy._lib._gcutils import assert_deallocated, IS_PYPY
|
19
|
+
from scipy._lib._testutils import _run_concurrent_barrier
|
20
|
+
|
21
|
+
from scipy.integrate import nquad
|
22
|
+
|
23
|
+
from scipy.special import binom
|
24
|
+
|
25
|
+
|
26
|
+
class TestInterp2D:
|
27
|
+
def test_interp2d(self):
|
28
|
+
y, x = mgrid[0:2:20j, 0:pi:21j]
|
29
|
+
z = sin(x+0.5*y)
|
30
|
+
with assert_raises(NotImplementedError):
|
31
|
+
interp2d(x, y, z)
|
32
|
+
|
33
|
+
|
34
|
+
class TestInterp1D:
|
35
|
+
|
36
|
+
def setup_method(self):
|
37
|
+
self.x5 = np.arange(5.)
|
38
|
+
self.x10 = np.arange(10.)
|
39
|
+
self.y10 = np.arange(10.)
|
40
|
+
self.x25 = self.x10.reshape((2,5))
|
41
|
+
self.x2 = np.arange(2.)
|
42
|
+
self.y2 = np.arange(2.)
|
43
|
+
self.x1 = np.array([0.])
|
44
|
+
self.y1 = np.array([0.])
|
45
|
+
|
46
|
+
self.y210 = np.arange(20.).reshape((2, 10))
|
47
|
+
self.y102 = np.arange(20.).reshape((10, 2))
|
48
|
+
self.y225 = np.arange(20.).reshape((2, 2, 5))
|
49
|
+
self.y25 = np.arange(10.).reshape((2, 5))
|
50
|
+
self.y235 = np.arange(30.).reshape((2, 3, 5))
|
51
|
+
self.y325 = np.arange(30.).reshape((3, 2, 5))
|
52
|
+
|
53
|
+
# Edge updated test matrix 1
|
54
|
+
# array([[ 30, 1, 2, 3, 4, 5, 6, 7, 8, -30],
|
55
|
+
# [ 30, 11, 12, 13, 14, 15, 16, 17, 18, -30]])
|
56
|
+
self.y210_edge_updated = np.arange(20.).reshape((2, 10))
|
57
|
+
self.y210_edge_updated[:, 0] = 30
|
58
|
+
self.y210_edge_updated[:, -1] = -30
|
59
|
+
|
60
|
+
# Edge updated test matrix 2
|
61
|
+
# array([[ 30, 30],
|
62
|
+
# [ 2, 3],
|
63
|
+
# [ 4, 5],
|
64
|
+
# [ 6, 7],
|
65
|
+
# [ 8, 9],
|
66
|
+
# [ 10, 11],
|
67
|
+
# [ 12, 13],
|
68
|
+
# [ 14, 15],
|
69
|
+
# [ 16, 17],
|
70
|
+
# [-30, -30]])
|
71
|
+
self.y102_edge_updated = np.arange(20.).reshape((10, 2))
|
72
|
+
self.y102_edge_updated[0, :] = 30
|
73
|
+
self.y102_edge_updated[-1, :] = -30
|
74
|
+
|
75
|
+
self.fill_value = -100.0
|
76
|
+
|
77
|
+
def test_validation(self):
|
78
|
+
# Make sure that appropriate exceptions are raised when invalid values
|
79
|
+
# are given to the constructor.
|
80
|
+
|
81
|
+
# These should all work.
|
82
|
+
for kind in ('nearest', 'nearest-up', 'zero', 'linear', 'slinear',
|
83
|
+
'quadratic', 'cubic', 'previous', 'next'):
|
84
|
+
interp1d(self.x10, self.y10, kind=kind)
|
85
|
+
interp1d(self.x10, self.y10, kind=kind, fill_value="extrapolate")
|
86
|
+
interp1d(self.x10, self.y10, kind='linear', fill_value=(-1, 1))
|
87
|
+
interp1d(self.x10, self.y10, kind='linear',
|
88
|
+
fill_value=np.array([-1]))
|
89
|
+
interp1d(self.x10, self.y10, kind='linear',
|
90
|
+
fill_value=(-1,))
|
91
|
+
interp1d(self.x10, self.y10, kind='linear',
|
92
|
+
fill_value=-1)
|
93
|
+
interp1d(self.x10, self.y10, kind='linear',
|
94
|
+
fill_value=(-1, -1))
|
95
|
+
interp1d(self.x10, self.y10, kind=0)
|
96
|
+
interp1d(self.x10, self.y10, kind=1)
|
97
|
+
interp1d(self.x10, self.y10, kind=2)
|
98
|
+
interp1d(self.x10, self.y10, kind=3)
|
99
|
+
interp1d(self.x10, self.y210, kind='linear', axis=-1,
|
100
|
+
fill_value=(-1, -1))
|
101
|
+
interp1d(self.x2, self.y210, kind='linear', axis=0,
|
102
|
+
fill_value=np.ones(10))
|
103
|
+
interp1d(self.x2, self.y210, kind='linear', axis=0,
|
104
|
+
fill_value=(np.ones(10), np.ones(10)))
|
105
|
+
interp1d(self.x2, self.y210, kind='linear', axis=0,
|
106
|
+
fill_value=(np.ones(10), -1))
|
107
|
+
|
108
|
+
# x array must be 1D.
|
109
|
+
assert_raises(ValueError, interp1d, self.x25, self.y10)
|
110
|
+
|
111
|
+
# y array cannot be a scalar.
|
112
|
+
assert_raises(ValueError, interp1d, self.x10, np.array(0))
|
113
|
+
|
114
|
+
# Check for x and y arrays having the same length.
|
115
|
+
assert_raises(ValueError, interp1d, self.x10, self.y2)
|
116
|
+
assert_raises(ValueError, interp1d, self.x2, self.y10)
|
117
|
+
assert_raises(ValueError, interp1d, self.x10, self.y102)
|
118
|
+
interp1d(self.x10, self.y210)
|
119
|
+
interp1d(self.x10, self.y102, axis=0)
|
120
|
+
|
121
|
+
# Check for x and y having at least 1 element.
|
122
|
+
assert_raises(ValueError, interp1d, self.x1, self.y10)
|
123
|
+
assert_raises(ValueError, interp1d, self.x10, self.y1)
|
124
|
+
|
125
|
+
# Bad fill values
|
126
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
|
127
|
+
fill_value=(-1, -1, -1)) # doesn't broadcast
|
128
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
|
129
|
+
fill_value=[-1, -1, -1]) # doesn't broadcast
|
130
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
|
131
|
+
fill_value=np.array((-1, -1, -1))) # doesn't broadcast
|
132
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
|
133
|
+
fill_value=[[-1]]) # doesn't broadcast
|
134
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
|
135
|
+
fill_value=[-1, -1]) # doesn't broadcast
|
136
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
|
137
|
+
fill_value=np.array([])) # doesn't broadcast
|
138
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
|
139
|
+
fill_value=()) # doesn't broadcast
|
140
|
+
assert_raises(ValueError, interp1d, self.x2, self.y210, kind='linear',
|
141
|
+
axis=0, fill_value=[-1, -1]) # doesn't broadcast
|
142
|
+
assert_raises(ValueError, interp1d, self.x2, self.y210, kind='linear',
|
143
|
+
axis=0, fill_value=(0., [-1, -1])) # above doesn't bc
|
144
|
+
|
145
|
+
def test_init(self):
|
146
|
+
# Check that the attributes are initialized appropriately by the
|
147
|
+
# constructor.
|
148
|
+
assert interp1d(self.x10, self.y10).copy
|
149
|
+
assert not interp1d(self.x10, self.y10, copy=False).copy
|
150
|
+
assert interp1d(self.x10, self.y10).bounds_error
|
151
|
+
assert not interp1d(self.x10, self.y10, bounds_error=False).bounds_error
|
152
|
+
assert np.isnan(interp1d(self.x10, self.y10).fill_value)
|
153
|
+
assert interp1d(self.x10, self.y10, fill_value=3.0).fill_value == 3.0
|
154
|
+
assert (interp1d(self.x10, self.y10, fill_value=(1.0, 2.0)).fill_value ==
|
155
|
+
(1.0, 2.0)
|
156
|
+
)
|
157
|
+
assert interp1d(self.x10, self.y10).axis == 0
|
158
|
+
assert interp1d(self.x10, self.y210).axis == 1
|
159
|
+
assert interp1d(self.x10, self.y102, axis=0).axis == 0
|
160
|
+
xp_assert_equal(interp1d(self.x10, self.y10).x, self.x10)
|
161
|
+
xp_assert_equal(interp1d(self.x10, self.y10).y, self.y10)
|
162
|
+
xp_assert_equal(interp1d(self.x10, self.y210).y, self.y210)
|
163
|
+
|
164
|
+
def test_assume_sorted(self):
|
165
|
+
# Check for unsorted arrays
|
166
|
+
interp10 = interp1d(self.x10, self.y10)
|
167
|
+
interp10_unsorted = interp1d(self.x10[::-1], self.y10[::-1])
|
168
|
+
|
169
|
+
assert_array_almost_equal(interp10_unsorted(self.x10), self.y10)
|
170
|
+
assert_array_almost_equal(interp10_unsorted(1.2), np.array(1.2))
|
171
|
+
assert_array_almost_equal(interp10_unsorted([2.4, 5.6, 6.0]),
|
172
|
+
interp10([2.4, 5.6, 6.0]))
|
173
|
+
|
174
|
+
# Check assume_sorted keyword (defaults to False)
|
175
|
+
interp10_assume_kw = interp1d(self.x10[::-1], self.y10[::-1],
|
176
|
+
assume_sorted=False)
|
177
|
+
assert_array_almost_equal(interp10_assume_kw(self.x10), self.y10)
|
178
|
+
|
179
|
+
interp10_assume_kw2 = interp1d(self.x10[::-1], self.y10[::-1],
|
180
|
+
assume_sorted=True)
|
181
|
+
# Should raise an error for unsorted input if assume_sorted=True
|
182
|
+
assert_raises(ValueError, interp10_assume_kw2, self.x10)
|
183
|
+
|
184
|
+
# Check that if y is a 2-D array, things are still consistent
|
185
|
+
interp10_y_2d = interp1d(self.x10, self.y210)
|
186
|
+
interp10_y_2d_unsorted = interp1d(self.x10[::-1], self.y210[:, ::-1])
|
187
|
+
assert_array_almost_equal(interp10_y_2d(self.x10),
|
188
|
+
interp10_y_2d_unsorted(self.x10))
|
189
|
+
|
190
|
+
def test_linear(self):
|
191
|
+
for kind in ['linear', 'slinear']:
|
192
|
+
self._check_linear(kind)
|
193
|
+
|
194
|
+
def _check_linear(self, kind):
|
195
|
+
# Check the actual implementation of linear interpolation.
|
196
|
+
interp10 = interp1d(self.x10, self.y10, kind=kind)
|
197
|
+
assert_array_almost_equal(interp10(self.x10), self.y10)
|
198
|
+
assert_array_almost_equal(interp10(1.2), np.array(1.2))
|
199
|
+
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
|
200
|
+
np.array([2.4, 5.6, 6.0]))
|
201
|
+
|
202
|
+
# test fill_value="extrapolate"
|
203
|
+
extrapolator = interp1d(self.x10, self.y10, kind=kind,
|
204
|
+
fill_value='extrapolate')
|
205
|
+
xp_assert_close(extrapolator([-1., 0, 9, 11]),
|
206
|
+
np.asarray([-1.0, 0, 9, 11]), rtol=1e-14)
|
207
|
+
|
208
|
+
opts = dict(kind=kind,
|
209
|
+
fill_value='extrapolate',
|
210
|
+
bounds_error=True)
|
211
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
|
212
|
+
|
213
|
+
def test_linear_dtypes(self):
|
214
|
+
# regression test for gh-5898, where 1D linear interpolation has been
|
215
|
+
# delegated to numpy.interp for all float dtypes, and the latter was
|
216
|
+
# not handling e.g. np.float128.
|
217
|
+
for dtyp in [np.float16,
|
218
|
+
np.float32,
|
219
|
+
np.float64,
|
220
|
+
np.longdouble]:
|
221
|
+
x = np.arange(8, dtype=dtyp)
|
222
|
+
y = x
|
223
|
+
yp = interp1d(x, y, kind='linear')(x)
|
224
|
+
assert yp.dtype == dtyp
|
225
|
+
xp_assert_close(yp, y, atol=1e-15)
|
226
|
+
|
227
|
+
# regression test for gh-14531, where 1D linear interpolation has been
|
228
|
+
# has been extended to delegate to numpy.interp for integer dtypes
|
229
|
+
x = [0, 1, 2]
|
230
|
+
y = [np.nan, 0, 1]
|
231
|
+
yp = interp1d(x, y)(x)
|
232
|
+
xp_assert_close(yp, y, atol=1e-15)
|
233
|
+
|
234
|
+
def test_slinear_dtypes(self):
|
235
|
+
# regression test for gh-7273: 1D slinear interpolation fails with
|
236
|
+
# float32 inputs
|
237
|
+
dt_r = [np.float16, np.float32, np.float64]
|
238
|
+
dt_rc = dt_r + [np.complex64, np.complex128]
|
239
|
+
spline_kinds = ['slinear', 'zero', 'quadratic', 'cubic']
|
240
|
+
for dtx in dt_r:
|
241
|
+
x = np.arange(0, 10, dtype=dtx)
|
242
|
+
for dty in dt_rc:
|
243
|
+
y = np.exp(-x/3.0).astype(dty)
|
244
|
+
for dtn in dt_r:
|
245
|
+
xnew = x.astype(dtn)
|
246
|
+
for kind in spline_kinds:
|
247
|
+
f = interp1d(x, y, kind=kind, bounds_error=False)
|
248
|
+
xp_assert_close(f(xnew), y, atol=1e-7,
|
249
|
+
check_dtype=False,
|
250
|
+
err_msg=f"{dtx}, {dty} {dtn}")
|
251
|
+
|
252
|
+
def test_cubic(self):
|
253
|
+
# Check the actual implementation of spline interpolation.
|
254
|
+
interp10 = interp1d(self.x10, self.y10, kind='cubic')
|
255
|
+
assert_array_almost_equal(interp10(self.x10), self.y10)
|
256
|
+
assert_array_almost_equal(interp10(1.2), np.array(1.2))
|
257
|
+
assert_array_almost_equal(interp10(1.5), np.array(1.5))
|
258
|
+
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
|
259
|
+
np.array([2.4, 5.6, 6.0]),)
|
260
|
+
|
261
|
+
def test_nearest(self):
|
262
|
+
# Check the actual implementation of nearest-neighbour interpolation.
|
263
|
+
# Nearest asserts that half-integer case (1.5) rounds down to 1
|
264
|
+
interp10 = interp1d(self.x10, self.y10, kind='nearest')
|
265
|
+
assert_array_almost_equal(interp10(self.x10), self.y10)
|
266
|
+
assert_array_almost_equal(interp10(1.2), np.array(1.))
|
267
|
+
assert_array_almost_equal(interp10(1.5), np.array(1.))
|
268
|
+
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
|
269
|
+
np.array([2., 6., 6.]),)
|
270
|
+
|
271
|
+
# test fill_value="extrapolate"
|
272
|
+
extrapolator = interp1d(self.x10, self.y10, kind='nearest',
|
273
|
+
fill_value='extrapolate')
|
274
|
+
xp_assert_close(extrapolator([-1., 0, 9, 11]),
|
275
|
+
[0.0, 0, 9, 9], rtol=1e-14)
|
276
|
+
|
277
|
+
opts = dict(kind='nearest',
|
278
|
+
fill_value='extrapolate',
|
279
|
+
bounds_error=True)
|
280
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
|
281
|
+
|
282
|
+
def test_nearest_up(self):
|
283
|
+
# Check the actual implementation of nearest-neighbour interpolation.
|
284
|
+
# Nearest-up asserts that half-integer case (1.5) rounds up to 2
|
285
|
+
interp10 = interp1d(self.x10, self.y10, kind='nearest-up')
|
286
|
+
assert_array_almost_equal(interp10(self.x10), self.y10)
|
287
|
+
assert_array_almost_equal(interp10(1.2), np.array(1.))
|
288
|
+
assert_array_almost_equal(interp10(1.5), np.array(2.))
|
289
|
+
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
|
290
|
+
np.array([2., 6., 6.]),)
|
291
|
+
|
292
|
+
# test fill_value="extrapolate"
|
293
|
+
extrapolator = interp1d(self.x10, self.y10, kind='nearest-up',
|
294
|
+
fill_value='extrapolate')
|
295
|
+
xp_assert_close(extrapolator([-1., 0, 9, 11]),
|
296
|
+
[0.0, 0, 9, 9], rtol=1e-14)
|
297
|
+
|
298
|
+
opts = dict(kind='nearest-up',
|
299
|
+
fill_value='extrapolate',
|
300
|
+
bounds_error=True)
|
301
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
|
302
|
+
|
303
|
+
def test_previous(self):
|
304
|
+
# Check the actual implementation of previous interpolation.
|
305
|
+
interp10 = interp1d(self.x10, self.y10, kind='previous')
|
306
|
+
assert_array_almost_equal(interp10(self.x10), self.y10)
|
307
|
+
assert_array_almost_equal(interp10(1.2), np.array(1.))
|
308
|
+
assert_array_almost_equal(interp10(1.5), np.array(1.))
|
309
|
+
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
|
310
|
+
np.array([2., 5., 6.]),)
|
311
|
+
|
312
|
+
# test fill_value="extrapolate"
|
313
|
+
extrapolator = interp1d(self.x10, self.y10, kind='previous',
|
314
|
+
fill_value='extrapolate')
|
315
|
+
xp_assert_close(extrapolator([-1., 0, 9, 11]),
|
316
|
+
[np.nan, 0, 9, 9], rtol=1e-14)
|
317
|
+
|
318
|
+
# Tests for gh-9591
|
319
|
+
interpolator1D = interp1d(self.x10, self.y10, kind="previous",
|
320
|
+
fill_value='extrapolate')
|
321
|
+
xp_assert_close(interpolator1D([-1, -2, 5, 8, 12, 25]),
|
322
|
+
[np.nan, np.nan, 5, 8, 9, 9])
|
323
|
+
|
324
|
+
interpolator2D = interp1d(self.x10, self.y210, kind="previous",
|
325
|
+
fill_value='extrapolate')
|
326
|
+
xp_assert_close(interpolator2D([-1, -2, 5, 8, 12, 25]),
|
327
|
+
[[np.nan, np.nan, 5, 8, 9, 9],
|
328
|
+
[np.nan, np.nan, 15, 18, 19, 19]])
|
329
|
+
|
330
|
+
interpolator2DAxis0 = interp1d(self.x10, self.y102, kind="previous",
|
331
|
+
axis=0, fill_value='extrapolate')
|
332
|
+
xp_assert_close(interpolator2DAxis0([-2, 5, 12]),
|
333
|
+
[[np.nan, np.nan],
|
334
|
+
[10, 11],
|
335
|
+
[18, 19]])
|
336
|
+
|
337
|
+
opts = dict(kind='previous',
|
338
|
+
fill_value='extrapolate',
|
339
|
+
bounds_error=True)
|
340
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
|
341
|
+
|
342
|
+
# Tests for gh-16813
|
343
|
+
interpolator1D = interp1d([0, 1, 2],
|
344
|
+
[0, 1, -1], kind="previous",
|
345
|
+
fill_value='extrapolate',
|
346
|
+
assume_sorted=True)
|
347
|
+
xp_assert_close(interpolator1D([-2, -1, 0, 1, 2, 3, 5]),
|
348
|
+
[np.nan, np.nan, 0, 1, -1, -1, -1])
|
349
|
+
|
350
|
+
interpolator1D = interp1d([2, 0, 1], # x is not ascending
|
351
|
+
[-1, 0, 1], kind="previous",
|
352
|
+
fill_value='extrapolate',
|
353
|
+
assume_sorted=False)
|
354
|
+
xp_assert_close(interpolator1D([-2, -1, 0, 1, 2, 3, 5]),
|
355
|
+
[np.nan, np.nan, 0, 1, -1, -1, -1])
|
356
|
+
|
357
|
+
interpolator2D = interp1d(self.x10, self.y210_edge_updated,
|
358
|
+
kind="previous",
|
359
|
+
fill_value='extrapolate')
|
360
|
+
xp_assert_close(interpolator2D([-1, -2, 5, 8, 12, 25]),
|
361
|
+
[[np.nan, np.nan, 5, 8, -30, -30],
|
362
|
+
[np.nan, np.nan, 15, 18, -30, -30]])
|
363
|
+
|
364
|
+
interpolator2DAxis0 = interp1d(self.x10, self.y102_edge_updated,
|
365
|
+
kind="previous",
|
366
|
+
axis=0, fill_value='extrapolate')
|
367
|
+
xp_assert_close(interpolator2DAxis0([-2, 5, 12]),
|
368
|
+
[[np.nan, np.nan],
|
369
|
+
[10, 11],
|
370
|
+
[-30, -30]])
|
371
|
+
|
372
|
+
def test_next(self):
|
373
|
+
# Check the actual implementation of next interpolation.
|
374
|
+
interp10 = interp1d(self.x10, self.y10, kind='next')
|
375
|
+
assert_array_almost_equal(interp10(self.x10), self.y10)
|
376
|
+
assert_array_almost_equal(interp10(1.2), np.array(2.))
|
377
|
+
assert_array_almost_equal(interp10(1.5), np.array(2.))
|
378
|
+
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
|
379
|
+
np.array([3., 6., 6.]),)
|
380
|
+
|
381
|
+
# test fill_value="extrapolate"
|
382
|
+
extrapolator = interp1d(self.x10, self.y10, kind='next',
|
383
|
+
fill_value='extrapolate')
|
384
|
+
xp_assert_close(extrapolator([-1., 0, 9, 11]),
|
385
|
+
[0, 0, 9, np.nan], rtol=1e-14)
|
386
|
+
|
387
|
+
# Tests for gh-9591
|
388
|
+
interpolator1D = interp1d(self.x10, self.y10, kind="next",
|
389
|
+
fill_value='extrapolate')
|
390
|
+
xp_assert_close(interpolator1D([-1, -2, 5, 8, 12, 25]),
|
391
|
+
[0, 0, 5, 8, np.nan, np.nan])
|
392
|
+
|
393
|
+
interpolator2D = interp1d(self.x10, self.y210, kind="next",
|
394
|
+
fill_value='extrapolate')
|
395
|
+
xp_assert_close(interpolator2D([-1, -2, 5, 8, 12, 25]),
|
396
|
+
[[0, 0, 5, 8, np.nan, np.nan],
|
397
|
+
[10, 10, 15, 18, np.nan, np.nan]])
|
398
|
+
|
399
|
+
interpolator2DAxis0 = interp1d(self.x10, self.y102, kind="next",
|
400
|
+
axis=0, fill_value='extrapolate')
|
401
|
+
xp_assert_close(interpolator2DAxis0([-2, 5, 12]),
|
402
|
+
[[0, 1],
|
403
|
+
[10, 11],
|
404
|
+
[np.nan, np.nan]])
|
405
|
+
|
406
|
+
opts = dict(kind='next',
|
407
|
+
fill_value='extrapolate',
|
408
|
+
bounds_error=True)
|
409
|
+
assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
|
410
|
+
|
411
|
+
# Tests for gh-16813
|
412
|
+
interpolator1D = interp1d([0, 1, 2],
|
413
|
+
[0, 1, -1], kind="next",
|
414
|
+
fill_value='extrapolate',
|
415
|
+
assume_sorted=True)
|
416
|
+
xp_assert_close(interpolator1D([-2, -1, 0, 1, 2, 3, 5]),
|
417
|
+
[0, 0, 0, 1, -1, np.nan, np.nan])
|
418
|
+
|
419
|
+
interpolator1D = interp1d([2, 0, 1], # x is not ascending
|
420
|
+
[-1, 0, 1], kind="next",
|
421
|
+
fill_value='extrapolate',
|
422
|
+
assume_sorted=False)
|
423
|
+
xp_assert_close(interpolator1D([-2, -1, 0, 1, 2, 3, 5]),
|
424
|
+
[0, 0, 0, 1, -1, np.nan, np.nan])
|
425
|
+
|
426
|
+
interpolator2D = interp1d(self.x10, self.y210_edge_updated,
|
427
|
+
kind="next",
|
428
|
+
fill_value='extrapolate')
|
429
|
+
xp_assert_close(interpolator2D([-1, -2, 5, 8, 12, 25]),
|
430
|
+
[[30, 30, 5, 8, np.nan, np.nan],
|
431
|
+
[30, 30, 15, 18, np.nan, np.nan]])
|
432
|
+
|
433
|
+
interpolator2DAxis0 = interp1d(self.x10, self.y102_edge_updated,
|
434
|
+
kind="next",
|
435
|
+
axis=0, fill_value='extrapolate')
|
436
|
+
xp_assert_close(interpolator2DAxis0([-2, 5, 12]),
|
437
|
+
[[30, 30],
|
438
|
+
[10, 11],
|
439
|
+
[np.nan, np.nan]])
|
440
|
+
|
441
|
+
def test_zero(self):
|
442
|
+
# Check the actual implementation of zero-order spline interpolation.
|
443
|
+
interp10 = interp1d(self.x10, self.y10, kind='zero')
|
444
|
+
assert_array_almost_equal(interp10(self.x10), self.y10)
|
445
|
+
assert_array_almost_equal(interp10(1.2), np.array(1.))
|
446
|
+
assert_array_almost_equal(interp10(1.5), np.array(1.))
|
447
|
+
assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
|
448
|
+
np.array([2., 5., 6.]))
|
449
|
+
|
450
|
+
def bounds_check_helper(self, interpolant, test_array, fail_value):
|
451
|
+
# Asserts that a ValueError is raised and that the error message
|
452
|
+
# contains the value causing this exception.
|
453
|
+
assert_raises(ValueError, interpolant, test_array)
|
454
|
+
try:
|
455
|
+
interpolant(test_array)
|
456
|
+
except ValueError as err:
|
457
|
+
assert (f"{fail_value}" in str(err))
|
458
|
+
|
459
|
+
def _bounds_check(self, kind='linear'):
|
460
|
+
# Test that our handling of out-of-bounds input is correct.
|
461
|
+
extrap10 = interp1d(self.x10, self.y10, fill_value=self.fill_value,
|
462
|
+
bounds_error=False, kind=kind)
|
463
|
+
|
464
|
+
xp_assert_equal(extrap10(11.2), np.array(self.fill_value))
|
465
|
+
xp_assert_equal(extrap10(-3.4), np.array(self.fill_value))
|
466
|
+
xp_assert_equal(extrap10([[[11.2], [-3.4], [12.6], [19.3]]]),
|
467
|
+
np.array(self.fill_value), check_shape=False)
|
468
|
+
xp_assert_equal(extrap10._check_bounds(
|
469
|
+
np.array([-1.0, 0.0, 5.0, 9.0, 11.0])),
|
470
|
+
np.array([[True, False, False, False, False],
|
471
|
+
[False, False, False, False, True]]))
|
472
|
+
|
473
|
+
raises_bounds_error = interp1d(self.x10, self.y10, bounds_error=True,
|
474
|
+
kind=kind)
|
475
|
+
|
476
|
+
self.bounds_check_helper(raises_bounds_error, -1.0, -1.0)
|
477
|
+
self.bounds_check_helper(raises_bounds_error, 11.0, 11.0)
|
478
|
+
self.bounds_check_helper(raises_bounds_error, [0.0, -1.0, 0.0], -1.0)
|
479
|
+
self.bounds_check_helper(raises_bounds_error, [0.0, 1.0, 21.0], 21.0)
|
480
|
+
|
481
|
+
raises_bounds_error([0.0, 5.0, 9.0])
|
482
|
+
|
483
|
+
def _bounds_check_int_nan_fill(self, kind='linear'):
|
484
|
+
x = np.arange(10).astype(int)
|
485
|
+
y = np.arange(10).astype(int)
|
486
|
+
c = interp1d(x, y, kind=kind, fill_value=np.nan, bounds_error=False)
|
487
|
+
yi = c(x - 1)
|
488
|
+
assert np.isnan(yi[0])
|
489
|
+
assert_array_almost_equal(yi, np.r_[np.nan, y[:-1]])
|
490
|
+
|
491
|
+
def test_bounds(self):
|
492
|
+
for kind in ('linear', 'cubic', 'nearest', 'previous', 'next',
|
493
|
+
'slinear', 'zero', 'quadratic'):
|
494
|
+
self._bounds_check(kind)
|
495
|
+
self._bounds_check_int_nan_fill(kind)
|
496
|
+
|
497
|
+
def _check_fill_value(self, kind):
|
498
|
+
interp = interp1d(self.x10, self.y10, kind=kind,
|
499
|
+
fill_value=(-100, 100), bounds_error=False)
|
500
|
+
assert_array_almost_equal(interp(10), np.asarray(100.))
|
501
|
+
assert_array_almost_equal(interp(-10), np.asarray(-100.))
|
502
|
+
assert_array_almost_equal(interp([-10, 10]), [-100, 100])
|
503
|
+
|
504
|
+
# Proper broadcasting:
|
505
|
+
# interp along axis of length 5
|
506
|
+
# other dim=(2, 3), (3, 2), (2, 2), or (2,)
|
507
|
+
|
508
|
+
# one singleton fill_value (works for all)
|
509
|
+
for y in (self.y235, self.y325, self.y225, self.y25):
|
510
|
+
interp = interp1d(self.x5, y, kind=kind, axis=-1,
|
511
|
+
fill_value=100, bounds_error=False)
|
512
|
+
assert_array_almost_equal(interp(10), np.asarray(100.))
|
513
|
+
assert_array_almost_equal(interp(-10), np.asarray(100.))
|
514
|
+
assert_array_almost_equal(interp([-10, 10]), np.asarray(100.))
|
515
|
+
|
516
|
+
# singleton lower, singleton upper
|
517
|
+
interp = interp1d(self.x5, y, kind=kind, axis=-1,
|
518
|
+
fill_value=(-100, 100), bounds_error=False)
|
519
|
+
assert_array_almost_equal(interp(10), np.asarray(100.))
|
520
|
+
assert_array_almost_equal(interp(-10), np.asarray(-100.))
|
521
|
+
if y.ndim == 3:
|
522
|
+
result = [[[-100, 100]] * y.shape[1]] * y.shape[0]
|
523
|
+
else:
|
524
|
+
result = [[-100, 100]] * y.shape[0]
|
525
|
+
assert_array_almost_equal(interp([-10, 10]), result)
|
526
|
+
|
527
|
+
# one broadcastable (3,) fill_value
|
528
|
+
fill_value = [100, 200, 300]
|
529
|
+
for y in (self.y325, self.y225):
|
530
|
+
assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
|
531
|
+
axis=-1, fill_value=fill_value, bounds_error=False)
|
532
|
+
interp = interp1d(self.x5, self.y235, kind=kind, axis=-1,
|
533
|
+
fill_value=fill_value, bounds_error=False)
|
534
|
+
assert_array_almost_equal(interp(10), [[100, 200, 300]] * 2)
|
535
|
+
assert_array_almost_equal(interp(-10), [[100, 200, 300]] * 2)
|
536
|
+
assert_array_almost_equal(interp([-10, 10]), [[[100, 100],
|
537
|
+
[200, 200],
|
538
|
+
[300, 300]]] * 2)
|
539
|
+
|
540
|
+
# one broadcastable (2,) fill_value
|
541
|
+
fill_value = [100, 200]
|
542
|
+
assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind,
|
543
|
+
axis=-1, fill_value=fill_value, bounds_error=False)
|
544
|
+
for y in (self.y225, self.y325, self.y25):
|
545
|
+
interp = interp1d(self.x5, y, kind=kind, axis=-1,
|
546
|
+
fill_value=fill_value, bounds_error=False)
|
547
|
+
result = [100, 200]
|
548
|
+
if y.ndim == 3:
|
549
|
+
result = [result] * y.shape[0]
|
550
|
+
assert_array_almost_equal(interp(10), result)
|
551
|
+
assert_array_almost_equal(interp(-10), result)
|
552
|
+
result = [[100, 100], [200, 200]]
|
553
|
+
if y.ndim == 3:
|
554
|
+
result = [result] * y.shape[0]
|
555
|
+
assert_array_almost_equal(interp([-10, 10]), result)
|
556
|
+
|
557
|
+
# broadcastable (3,) lower, singleton upper
|
558
|
+
fill_value = (np.array([-100, -200, -300]), 100)
|
559
|
+
for y in (self.y325, self.y225):
|
560
|
+
assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
|
561
|
+
axis=-1, fill_value=fill_value, bounds_error=False)
|
562
|
+
interp = interp1d(self.x5, self.y235, kind=kind, axis=-1,
|
563
|
+
fill_value=fill_value, bounds_error=False)
|
564
|
+
assert_array_almost_equal(interp(10), np.asarray(100.))
|
565
|
+
assert_array_almost_equal(interp(-10), [[-100, -200, -300]] * 2)
|
566
|
+
assert_array_almost_equal(interp([-10, 10]), [[[-100, 100],
|
567
|
+
[-200, 100],
|
568
|
+
[-300, 100]]] * 2)
|
569
|
+
|
570
|
+
# broadcastable (2,) lower, singleton upper
|
571
|
+
fill_value = (np.array([-100, -200]), 100)
|
572
|
+
assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind,
|
573
|
+
axis=-1, fill_value=fill_value, bounds_error=False)
|
574
|
+
for y in (self.y225, self.y325, self.y25):
|
575
|
+
interp = interp1d(self.x5, y, kind=kind, axis=-1,
|
576
|
+
fill_value=fill_value, bounds_error=False)
|
577
|
+
assert_array_almost_equal(interp(10), np.asarray(100))
|
578
|
+
result = [-100, -200]
|
579
|
+
if y.ndim == 3:
|
580
|
+
result = [result] * y.shape[0]
|
581
|
+
assert_array_almost_equal(interp(-10), result)
|
582
|
+
result = [[-100, 100], [-200, 100]]
|
583
|
+
if y.ndim == 3:
|
584
|
+
result = [result] * y.shape[0]
|
585
|
+
assert_array_almost_equal(interp([-10, 10]), result)
|
586
|
+
|
587
|
+
# broadcastable (3,) lower, broadcastable (3,) upper
|
588
|
+
fill_value = ([-100, -200, -300], [100, 200, 300])
|
589
|
+
for y in (self.y325, self.y225):
|
590
|
+
assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
|
591
|
+
axis=-1, fill_value=fill_value, bounds_error=False)
|
592
|
+
for ii in range(2): # check ndarray as well as list here
|
593
|
+
if ii == 1:
|
594
|
+
fill_value = tuple(np.array(f) for f in fill_value)
|
595
|
+
interp = interp1d(self.x5, self.y235, kind=kind, axis=-1,
|
596
|
+
fill_value=fill_value, bounds_error=False)
|
597
|
+
assert_array_almost_equal(interp(10), [[100, 200, 300]] * 2)
|
598
|
+
assert_array_almost_equal(interp(-10), [[-100, -200, -300]] * 2)
|
599
|
+
assert_array_almost_equal(interp([-10, 10]), [[[-100, 100],
|
600
|
+
[-200, 200],
|
601
|
+
[-300, 300]]] * 2)
|
602
|
+
# broadcastable (2,) lower, broadcastable (2,) upper
|
603
|
+
fill_value = ([-100, -200], [100, 200])
|
604
|
+
assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind,
|
605
|
+
axis=-1, fill_value=fill_value, bounds_error=False)
|
606
|
+
for y in (self.y325, self.y225, self.y25):
|
607
|
+
interp = interp1d(self.x5, y, kind=kind, axis=-1,
|
608
|
+
fill_value=fill_value, bounds_error=False)
|
609
|
+
result = [100, 200]
|
610
|
+
if y.ndim == 3:
|
611
|
+
result = [result] * y.shape[0]
|
612
|
+
assert_array_almost_equal(interp(10), result)
|
613
|
+
result = [-100, -200]
|
614
|
+
if y.ndim == 3:
|
615
|
+
result = [result] * y.shape[0]
|
616
|
+
assert_array_almost_equal(interp(-10), result)
|
617
|
+
result = [[-100, 100], [-200, 200]]
|
618
|
+
if y.ndim == 3:
|
619
|
+
result = [result] * y.shape[0]
|
620
|
+
assert_array_almost_equal(interp([-10, 10]), result)
|
621
|
+
|
622
|
+
# one broadcastable (2, 2) array-like
|
623
|
+
fill_value = [[100, 200], [1000, 2000]]
|
624
|
+
for y in (self.y235, self.y325, self.y25):
|
625
|
+
assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
|
626
|
+
axis=-1, fill_value=fill_value, bounds_error=False)
|
627
|
+
for ii in range(2):
|
628
|
+
if ii == 1:
|
629
|
+
fill_value = np.array(fill_value)
|
630
|
+
interp = interp1d(self.x5, self.y225, kind=kind, axis=-1,
|
631
|
+
fill_value=fill_value, bounds_error=False)
|
632
|
+
assert_array_almost_equal(interp(10), [[100, 200], [1000, 2000]])
|
633
|
+
assert_array_almost_equal(interp(-10), [[100, 200], [1000, 2000]])
|
634
|
+
assert_array_almost_equal(interp([-10, 10]), [[[100, 100],
|
635
|
+
[200, 200]],
|
636
|
+
[[1000, 1000],
|
637
|
+
[2000, 2000]]])
|
638
|
+
|
639
|
+
# broadcastable (2, 2) lower, broadcastable (2, 2) upper
|
640
|
+
fill_value = ([[-100, -200], [-1000, -2000]],
|
641
|
+
[[100, 200], [1000, 2000]])
|
642
|
+
for y in (self.y235, self.y325, self.y25):
|
643
|
+
assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
|
644
|
+
axis=-1, fill_value=fill_value, bounds_error=False)
|
645
|
+
for ii in range(2):
|
646
|
+
if ii == 1:
|
647
|
+
fill_value = (np.array(fill_value[0]), np.array(fill_value[1]))
|
648
|
+
interp = interp1d(self.x5, self.y225, kind=kind, axis=-1,
|
649
|
+
fill_value=fill_value, bounds_error=False)
|
650
|
+
assert_array_almost_equal(interp(10), [[100, 200], [1000, 2000]])
|
651
|
+
assert_array_almost_equal(interp(-10), [[-100, -200],
|
652
|
+
[-1000, -2000]])
|
653
|
+
assert_array_almost_equal(interp([-10, 10]), [[[-100, 100],
|
654
|
+
[-200, 200]],
|
655
|
+
[[-1000, 1000],
|
656
|
+
[-2000, 2000]]])
|
657
|
+
|
658
|
+
def test_fill_value(self):
|
659
|
+
# test that two-element fill value works
|
660
|
+
for kind in ('linear', 'nearest', 'cubic', 'slinear', 'quadratic',
|
661
|
+
'zero', 'previous', 'next'):
|
662
|
+
self._check_fill_value(kind)
|
663
|
+
|
664
|
+
def test_fill_value_writeable(self):
|
665
|
+
# backwards compat: fill_value is a public writeable attribute
|
666
|
+
interp = interp1d(self.x10, self.y10, fill_value=123.0)
|
667
|
+
assert interp.fill_value == 123.0
|
668
|
+
interp.fill_value = 321.0
|
669
|
+
assert interp.fill_value == 321.0
|
670
|
+
|
671
|
+
def _nd_check_interp(self, kind='linear'):
|
672
|
+
# Check the behavior when the inputs and outputs are multidimensional.
|
673
|
+
|
674
|
+
# Multidimensional input.
|
675
|
+
interp10 = interp1d(self.x10, self.y10, kind=kind)
|
676
|
+
assert_array_almost_equal(interp10(np.array([[3., 5.], [2., 7.]])),
|
677
|
+
np.array([[3., 5.], [2., 7.]]))
|
678
|
+
|
679
|
+
# Scalar input -> 0-dim scalar array output
|
680
|
+
assert isinstance(interp10(1.2), np.ndarray)
|
681
|
+
assert interp10(1.2).shape == ()
|
682
|
+
|
683
|
+
# Multidimensional outputs.
|
684
|
+
interp210 = interp1d(self.x10, self.y210, kind=kind)
|
685
|
+
assert_array_almost_equal(interp210(1.), np.array([1., 11.]))
|
686
|
+
assert_array_almost_equal(interp210(np.array([1., 2.])),
|
687
|
+
np.array([[1., 2.], [11., 12.]]))
|
688
|
+
|
689
|
+
interp102 = interp1d(self.x10, self.y102, axis=0, kind=kind)
|
690
|
+
assert_array_almost_equal(interp102(1.), np.array([2.0, 3.0]))
|
691
|
+
assert_array_almost_equal(interp102(np.array([1., 3.])),
|
692
|
+
np.array([[2., 3.], [6., 7.]]))
|
693
|
+
|
694
|
+
# Both at the same time!
|
695
|
+
x_new = np.array([[3., 5.], [2., 7.]])
|
696
|
+
assert_array_almost_equal(interp210(x_new),
|
697
|
+
np.array([[[3., 5.], [2., 7.]],
|
698
|
+
[[13., 15.], [12., 17.]]]))
|
699
|
+
assert_array_almost_equal(interp102(x_new),
|
700
|
+
np.array([[[6., 7.], [10., 11.]],
|
701
|
+
[[4., 5.], [14., 15.]]]))
|
702
|
+
|
703
|
+
def _nd_check_shape(self, kind='linear'):
|
704
|
+
# Check large N-D output shape
|
705
|
+
a = [4, 5, 6, 7]
|
706
|
+
y = np.arange(np.prod(a)).reshape(*a)
|
707
|
+
for n, s in enumerate(a):
|
708
|
+
x = np.arange(s)
|
709
|
+
z = interp1d(x, y, axis=n, kind=kind)
|
710
|
+
assert_array_almost_equal(z(x), y, err_msg=kind)
|
711
|
+
|
712
|
+
x2 = np.arange(2*3*1).reshape((2,3,1)) / 12.
|
713
|
+
b = list(a)
|
714
|
+
b[n:n+1] = [2, 3, 1]
|
715
|
+
assert z(x2).shape == tuple(b), kind
|
716
|
+
|
717
|
+
def test_nd(self):
|
718
|
+
for kind in ('linear', 'cubic', 'slinear', 'quadratic', 'nearest',
|
719
|
+
'zero', 'previous', 'next'):
|
720
|
+
self._nd_check_interp(kind)
|
721
|
+
self._nd_check_shape(kind)
|
722
|
+
|
723
|
+
def _check_complex(self, dtype=np.complex128, kind='linear'):
|
724
|
+
x = np.array([1, 2.5, 3, 3.1, 4, 6.4, 7.9, 8.0, 9.5, 10])
|
725
|
+
y = x * x ** (1 + 2j)
|
726
|
+
y = y.astype(dtype)
|
727
|
+
|
728
|
+
# simple test
|
729
|
+
c = interp1d(x, y, kind=kind)
|
730
|
+
assert_array_almost_equal(y[:-1], c(x)[:-1])
|
731
|
+
|
732
|
+
# check against interpolating real+imag separately
|
733
|
+
xi = np.linspace(1, 10, 31)
|
734
|
+
cr = interp1d(x, y.real, kind=kind)
|
735
|
+
ci = interp1d(x, y.imag, kind=kind)
|
736
|
+
assert_array_almost_equal(c(xi).real, cr(xi))
|
737
|
+
assert_array_almost_equal(c(xi).imag, ci(xi))
|
738
|
+
|
739
|
+
def test_complex(self):
|
740
|
+
for kind in ('linear', 'nearest', 'cubic', 'slinear', 'quadratic',
|
741
|
+
'zero', 'previous', 'next'):
|
742
|
+
self._check_complex(np.complex64, kind)
|
743
|
+
self._check_complex(np.complex128, kind)
|
744
|
+
|
745
|
+
@pytest.mark.skipif(IS_PYPY, reason="Test not meaningful on PyPy")
|
746
|
+
def test_circular_refs(self):
|
747
|
+
# Test interp1d can be automatically garbage collected
|
748
|
+
x = np.linspace(0, 1)
|
749
|
+
y = np.linspace(0, 1)
|
750
|
+
# Confirm interp can be released from memory after use
|
751
|
+
with assert_deallocated(interp1d, x, y) as interp:
|
752
|
+
interp([0.1, 0.2])
|
753
|
+
del interp
|
754
|
+
|
755
|
+
def test_overflow_nearest(self):
|
756
|
+
# Test that the x range doesn't overflow when given integers as input
|
757
|
+
for kind in ('nearest', 'previous', 'next'):
|
758
|
+
x = np.array([0, 50, 127], dtype=np.int8)
|
759
|
+
ii = interp1d(x, x, kind=kind)
|
760
|
+
assert_array_almost_equal(ii(x), x)
|
761
|
+
|
762
|
+
def test_local_nans(self):
|
763
|
+
# check that for local interpolation kinds (slinear, zero) a single nan
|
764
|
+
# only affects its local neighborhood
|
765
|
+
x = np.arange(10).astype(float)
|
766
|
+
y = x.copy()
|
767
|
+
y[6] = np.nan
|
768
|
+
for kind in ('zero', 'slinear'):
|
769
|
+
ir = interp1d(x, y, kind=kind)
|
770
|
+
vals = ir([4.9, 7.0])
|
771
|
+
assert np.isfinite(vals).all()
|
772
|
+
|
773
|
+
def test_spline_nans(self):
|
774
|
+
# Backwards compat: a single nan makes the whole spline interpolation
|
775
|
+
# return nans in an array of the correct shape. And it doesn't raise,
|
776
|
+
# just quiet nans because of backcompat.
|
777
|
+
x = np.arange(8).astype(float)
|
778
|
+
y = x.copy()
|
779
|
+
yn = y.copy()
|
780
|
+
yn[3] = np.nan
|
781
|
+
|
782
|
+
for kind in ['quadratic', 'cubic']:
|
783
|
+
ir = interp1d(x, y, kind=kind)
|
784
|
+
irn = interp1d(x, yn, kind=kind)
|
785
|
+
for xnew in (6, [1, 6], [[1, 6], [3, 5]]):
|
786
|
+
xnew = np.asarray(xnew)
|
787
|
+
out, outn = ir(x), irn(x)
|
788
|
+
assert np.isnan(outn).all()
|
789
|
+
assert out.shape == outn.shape
|
790
|
+
|
791
|
+
def test_all_nans(self):
|
792
|
+
# regression test for gh-11637: interp1d core dumps with all-nan `x`
|
793
|
+
x = np.ones(10) * np.nan
|
794
|
+
y = np.arange(10)
|
795
|
+
with assert_raises(ValueError):
|
796
|
+
interp1d(x, y, kind='cubic')
|
797
|
+
|
798
|
+
def test_read_only(self):
|
799
|
+
x = np.arange(0, 10)
|
800
|
+
y = np.exp(-x / 3.0)
|
801
|
+
xnew = np.arange(0, 9, 0.1)
|
802
|
+
# Check both read-only and not read-only:
|
803
|
+
for xnew_writeable in (True, False):
|
804
|
+
xnew.flags.writeable = xnew_writeable
|
805
|
+
x.flags.writeable = False
|
806
|
+
for kind in ('linear', 'nearest', 'zero', 'slinear', 'quadratic',
|
807
|
+
'cubic'):
|
808
|
+
f = interp1d(x, y, kind=kind)
|
809
|
+
vals = f(xnew)
|
810
|
+
assert np.isfinite(vals).all()
|
811
|
+
|
812
|
+
@pytest.mark.parametrize(
|
813
|
+
"kind", ("linear", "nearest", "nearest-up", "previous", "next")
|
814
|
+
)
|
815
|
+
def test_single_value(self, kind):
|
816
|
+
# https://github.com/scipy/scipy/issues/4043
|
817
|
+
f = interp1d([1.5], [6], kind=kind, bounds_error=False,
|
818
|
+
fill_value=(2, 10))
|
819
|
+
xp_assert_equal(f([1, 1.5, 2]), np.asarray([2.0, 6, 10]))
|
820
|
+
# check still error if bounds_error=True
|
821
|
+
f = interp1d([1.5], [6], kind=kind, bounds_error=True)
|
822
|
+
with assert_raises(ValueError, match="x_new is above"):
|
823
|
+
f(2.0)
|
824
|
+
|
825
|
+
|
826
|
+
class TestLagrange:
|
827
|
+
|
828
|
+
def test_lagrange(self):
|
829
|
+
p = poly1d([5,2,1,4,3])
|
830
|
+
xs = np.arange(len(p.coeffs))
|
831
|
+
ys = p(xs)
|
832
|
+
pl = lagrange(xs,ys)
|
833
|
+
assert_array_almost_equal(p.coeffs,pl.coeffs)
|
834
|
+
|
835
|
+
|
836
|
+
class TestAkima1DInterpolator:
|
837
|
+
def test_eval(self):
|
838
|
+
x = np.arange(0., 11.)
|
839
|
+
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
|
840
|
+
ak = Akima1DInterpolator(x, y)
|
841
|
+
xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2,
|
842
|
+
8.6, 9.9, 10.])
|
843
|
+
yi = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375,
|
844
|
+
4.1363636363636366866103344, 5.9803623910336236590978842,
|
845
|
+
5.5067291516462386624652936, 5.2031367459745245795943447,
|
846
|
+
4.1796554159017080820603951, 3.4110386597938129327189927,
|
847
|
+
3.])
|
848
|
+
xp_assert_close(ak(xi), yi)
|
849
|
+
|
850
|
+
def test_eval_mod(self):
|
851
|
+
# Reference values generated with the following MATLAB code:
|
852
|
+
# format longG
|
853
|
+
# x = 0:10; y = [0. 2. 1. 3. 2. 6. 5.5 5.5 2.7 5.1 3.];
|
854
|
+
# xi = [0. 0.5 1. 1.5 2.5 3.5 4.5 5.1 6.5 7.2 8.6 9.9 10.];
|
855
|
+
# makima(x, y, xi)
|
856
|
+
x = np.arange(0., 11.)
|
857
|
+
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
|
858
|
+
ak = Akima1DInterpolator(x, y, method="makima")
|
859
|
+
xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2,
|
860
|
+
8.6, 9.9, 10.])
|
861
|
+
yi = np.array([
|
862
|
+
0.0, 1.34471153846154, 2.0, 1.44375, 1.94375, 2.51939102564103,
|
863
|
+
4.10366931918656, 5.98501550899192, 5.51756330960439, 5.1757231914014,
|
864
|
+
4.12326636931311, 3.32931513157895, 3.0])
|
865
|
+
xp_assert_close(ak(xi), yi)
|
866
|
+
|
867
|
+
def test_eval_2d(self):
|
868
|
+
x = np.arange(0., 11.)
|
869
|
+
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
|
870
|
+
y = np.column_stack((y, 2. * y))
|
871
|
+
ak = Akima1DInterpolator(x, y)
|
872
|
+
xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2,
|
873
|
+
8.6, 9.9, 10.])
|
874
|
+
yi = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375,
|
875
|
+
4.1363636363636366866103344,
|
876
|
+
5.9803623910336236590978842,
|
877
|
+
5.5067291516462386624652936,
|
878
|
+
5.2031367459745245795943447,
|
879
|
+
4.1796554159017080820603951,
|
880
|
+
3.4110386597938129327189927, 3.])
|
881
|
+
yi = np.column_stack((yi, 2. * yi))
|
882
|
+
xp_assert_close(ak(xi), yi)
|
883
|
+
|
884
|
+
def test_eval_3d(self):
|
885
|
+
x = np.arange(0., 11.)
|
886
|
+
y_ = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
|
887
|
+
y = np.empty((11, 2, 2))
|
888
|
+
y[:, 0, 0] = y_
|
889
|
+
y[:, 1, 0] = 2. * y_
|
890
|
+
y[:, 0, 1] = 3. * y_
|
891
|
+
y[:, 1, 1] = 4. * y_
|
892
|
+
ak = Akima1DInterpolator(x, y)
|
893
|
+
xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2,
|
894
|
+
8.6, 9.9, 10.])
|
895
|
+
yi = np.empty((13, 2, 2))
|
896
|
+
yi_ = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375,
|
897
|
+
4.1363636363636366866103344,
|
898
|
+
5.9803623910336236590978842,
|
899
|
+
5.5067291516462386624652936,
|
900
|
+
5.2031367459745245795943447,
|
901
|
+
4.1796554159017080820603951,
|
902
|
+
3.4110386597938129327189927, 3.])
|
903
|
+
yi[:, 0, 0] = yi_
|
904
|
+
yi[:, 1, 0] = 2. * yi_
|
905
|
+
yi[:, 0, 1] = 3. * yi_
|
906
|
+
yi[:, 1, 1] = 4. * yi_
|
907
|
+
xp_assert_close(ak(xi), yi)
|
908
|
+
|
909
|
+
def test_linear_interpolant_edge_case_1d(self):
|
910
|
+
x = np.array([0.0, 1.0], dtype=float)
|
911
|
+
y = np.array([0.5, 1.0])
|
912
|
+
akima = Akima1DInterpolator(x, y, axis=0, extrapolate=None)
|
913
|
+
xp_assert_close(akima(0.45), np.array(0.725))
|
914
|
+
|
915
|
+
def test_linear_interpolant_edge_case_2d(self):
|
916
|
+
x = np.array([0., 1.])
|
917
|
+
y = np.column_stack((x, 2. * x, 3. * x, 4. * x))
|
918
|
+
|
919
|
+
ak = Akima1DInterpolator(x, y)
|
920
|
+
xi = np.array([0.5, 1.])
|
921
|
+
yi = np.array([[0.5, 1., 1.5, 2. ],
|
922
|
+
[1., 2., 3., 4.]])
|
923
|
+
xp_assert_close(ak(xi), yi)
|
924
|
+
|
925
|
+
ak = Akima1DInterpolator(x, y.T, axis=1)
|
926
|
+
xp_assert_close(ak(xi), yi.T)
|
927
|
+
|
928
|
+
def test_linear_interpolant_edge_case_3d(self):
|
929
|
+
x = np.arange(0., 2.)
|
930
|
+
y_ = np.array([0., 1.])
|
931
|
+
y = np.empty((2, 2, 2))
|
932
|
+
y[:, 0, 0] = y_
|
933
|
+
y[:, 1, 0] = 2. * y_
|
934
|
+
y[:, 0, 1] = 3. * y_
|
935
|
+
y[:, 1, 1] = 4. * y_
|
936
|
+
ak = Akima1DInterpolator(x, y)
|
937
|
+
yi_ = np.array([0.5, 1.])
|
938
|
+
yi = np.empty((2, 2, 2))
|
939
|
+
yi[:, 0, 0] = yi_
|
940
|
+
yi[:, 1, 0] = 2. * yi_
|
941
|
+
yi[:, 0, 1] = 3. * yi_
|
942
|
+
yi[:, 1, 1] = 4. * yi_
|
943
|
+
xi = yi_
|
944
|
+
xp_assert_close(ak(xi), yi)
|
945
|
+
|
946
|
+
ak = Akima1DInterpolator(x, y.transpose(1, 0, 2), axis=1)
|
947
|
+
xp_assert_close(ak(xi), yi.transpose(1, 0, 2))
|
948
|
+
|
949
|
+
ak = Akima1DInterpolator(x, y.transpose(2, 1, 0), axis=2)
|
950
|
+
xp_assert_close(ak(xi), yi.transpose(2, 1, 0))
|
951
|
+
|
952
|
+
|
953
|
+
def test_degenerate_case_multidimensional(self):
|
954
|
+
# This test is for issue #5683.
|
955
|
+
x = np.array([0, 1, 2])
|
956
|
+
y = np.vstack((x, x**2)).T
|
957
|
+
ak = Akima1DInterpolator(x, y)
|
958
|
+
x_eval = np.array([0.5, 1.5])
|
959
|
+
y_eval = ak(x_eval)
|
960
|
+
xp_assert_close(y_eval, np.vstack((x_eval, x_eval**2)).T)
|
961
|
+
|
962
|
+
def test_extend(self):
|
963
|
+
x = np.arange(0., 11.)
|
964
|
+
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
|
965
|
+
ak = Akima1DInterpolator(x, y)
|
966
|
+
match = "Extending a 1-D Akima interpolator is not yet implemented"
|
967
|
+
with pytest.raises(NotImplementedError, match=match):
|
968
|
+
ak.extend(None, None)
|
969
|
+
|
970
|
+
def test_mod_invalid_method(self):
|
971
|
+
x = np.arange(0., 11.)
|
972
|
+
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
|
973
|
+
match = "`method`=invalid is unsupported."
|
974
|
+
with pytest.raises(NotImplementedError, match=match):
|
975
|
+
Akima1DInterpolator(x, y, method="invalid") # type: ignore
|
976
|
+
|
977
|
+
def test_extrapolate_attr(self):
|
978
|
+
#
|
979
|
+
x = np.linspace(-5, 5, 11)
|
980
|
+
y = x**2
|
981
|
+
x_ext = np.linspace(-10, 10, 17)
|
982
|
+
y_ext = x_ext**2
|
983
|
+
# Testing all extrapolate cases.
|
984
|
+
ak_true = Akima1DInterpolator(x, y, extrapolate=True)
|
985
|
+
ak_false = Akima1DInterpolator(x, y, extrapolate=False)
|
986
|
+
ak_none = Akima1DInterpolator(x, y, extrapolate=None)
|
987
|
+
# None should default to False; extrapolated points are NaN.
|
988
|
+
xp_assert_close(ak_false(x_ext), ak_none(x_ext), atol=1e-15)
|
989
|
+
xp_assert_equal(ak_false(x_ext)[0:4], np.full(4, np.nan))
|
990
|
+
xp_assert_equal(ak_false(x_ext)[-4:-1], np.full(3, np.nan))
|
991
|
+
# Extrapolation on call and attribute should be equal.
|
992
|
+
xp_assert_close(ak_false(x_ext, extrapolate=True), ak_true(x_ext), atol=1e-15)
|
993
|
+
# Testing extrapoation to actual function.
|
994
|
+
xp_assert_close(y_ext, ak_true(x_ext), atol=1e-15)
|
995
|
+
|
996
|
+
|
997
|
+
@pytest.mark.parametrize("method", [Akima1DInterpolator, PchipInterpolator])
|
998
|
+
def test_complex(method):
|
999
|
+
# Complex-valued data deprecated
|
1000
|
+
x = np.arange(0., 11.)
|
1001
|
+
y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
|
1002
|
+
y = y - 2j*y
|
1003
|
+
msg = "real values"
|
1004
|
+
with pytest.raises(ValueError, match=msg):
|
1005
|
+
method(x, y)
|
1006
|
+
|
1007
|
+
def test_concurrency(self):
|
1008
|
+
# Check that no segfaults appear with concurrent access to Akima1D
|
1009
|
+
x = np.linspace(-5, 5, 11)
|
1010
|
+
y = x**2
|
1011
|
+
x_ext = np.linspace(-10, 10, 17)
|
1012
|
+
ak = Akima1DInterpolator(x, y, extrapolate=True)
|
1013
|
+
|
1014
|
+
def worker_fn(_, ak, x_ext):
|
1015
|
+
ak(x_ext)
|
1016
|
+
|
1017
|
+
_run_concurrent_barrier(10, worker_fn, ak, x_ext)
|
1018
|
+
|
1019
|
+
|
1020
|
+
class TestPPolyCommon:
|
1021
|
+
# test basic functionality for PPoly and BPoly
|
1022
|
+
def test_sort_check(self):
|
1023
|
+
c = np.array([[1, 4], [2, 5], [3, 6]])
|
1024
|
+
x = np.array([0, 1, 0.5])
|
1025
|
+
assert_raises(ValueError, PPoly, c, x)
|
1026
|
+
assert_raises(ValueError, BPoly, c, x)
|
1027
|
+
|
1028
|
+
def test_ctor_c(self):
|
1029
|
+
# wrong shape: `c` must be at least 2D
|
1030
|
+
with assert_raises(ValueError):
|
1031
|
+
PPoly([1, 2], [0, 1])
|
1032
|
+
|
1033
|
+
def test_extend(self):
|
1034
|
+
# Test adding new points to the piecewise polynomial
|
1035
|
+
np.random.seed(1234)
|
1036
|
+
|
1037
|
+
order = 3
|
1038
|
+
x = np.unique(np.r_[0, 10 * np.random.rand(30), 10])
|
1039
|
+
c = 2*np.random.rand(order+1, len(x)-1, 2, 3) - 1
|
1040
|
+
|
1041
|
+
for cls in (PPoly, BPoly):
|
1042
|
+
pp = cls(c[:,:9], x[:10])
|
1043
|
+
pp.extend(c[:,9:], x[10:])
|
1044
|
+
|
1045
|
+
pp2 = cls(c[:, 10:], x[10:])
|
1046
|
+
pp2.extend(c[:, :10], x[:10])
|
1047
|
+
|
1048
|
+
pp3 = cls(c, x)
|
1049
|
+
|
1050
|
+
xp_assert_equal(pp.c, pp3.c)
|
1051
|
+
xp_assert_equal(pp.x, pp3.x)
|
1052
|
+
xp_assert_equal(pp2.c, pp3.c)
|
1053
|
+
xp_assert_equal(pp2.x, pp3.x)
|
1054
|
+
|
1055
|
+
def test_extend_diff_orders(self):
|
1056
|
+
# Test extending polynomial with different order one
|
1057
|
+
np.random.seed(1234)
|
1058
|
+
|
1059
|
+
x = np.linspace(0, 1, 6)
|
1060
|
+
c = np.random.rand(2, 5)
|
1061
|
+
|
1062
|
+
x2 = np.linspace(1, 2, 6)
|
1063
|
+
c2 = np.random.rand(4, 5)
|
1064
|
+
|
1065
|
+
for cls in (PPoly, BPoly):
|
1066
|
+
pp1 = cls(c, x)
|
1067
|
+
pp2 = cls(c2, x2)
|
1068
|
+
|
1069
|
+
pp_comb = cls(c, x)
|
1070
|
+
pp_comb.extend(c2, x2[1:])
|
1071
|
+
|
1072
|
+
# NB. doesn't match to pp1 at the endpoint, because pp1 is not
|
1073
|
+
# continuous with pp2 as we took random coefs.
|
1074
|
+
xi1 = np.linspace(0, 1, 300, endpoint=False)
|
1075
|
+
xi2 = np.linspace(1, 2, 300)
|
1076
|
+
|
1077
|
+
xp_assert_close(pp1(xi1), pp_comb(xi1))
|
1078
|
+
xp_assert_close(pp2(xi2), pp_comb(xi2))
|
1079
|
+
|
1080
|
+
def test_extend_descending(self):
|
1081
|
+
np.random.seed(0)
|
1082
|
+
|
1083
|
+
order = 3
|
1084
|
+
x = np.sort(np.random.uniform(0, 10, 20))
|
1085
|
+
c = np.random.rand(order + 1, x.shape[0] - 1, 2, 3)
|
1086
|
+
|
1087
|
+
for cls in (PPoly, BPoly):
|
1088
|
+
p = cls(c, x)
|
1089
|
+
|
1090
|
+
p1 = cls(c[:, :9], x[:10])
|
1091
|
+
p1.extend(c[:, 9:], x[10:])
|
1092
|
+
|
1093
|
+
p2 = cls(c[:, 10:], x[10:])
|
1094
|
+
p2.extend(c[:, :10], x[:10])
|
1095
|
+
|
1096
|
+
xp_assert_equal(p1.c, p.c)
|
1097
|
+
xp_assert_equal(p1.x, p.x)
|
1098
|
+
xp_assert_equal(p2.c, p.c)
|
1099
|
+
xp_assert_equal(p2.x, p.x)
|
1100
|
+
|
1101
|
+
def test_shape(self):
|
1102
|
+
np.random.seed(1234)
|
1103
|
+
c = np.random.rand(8, 12, 5, 6, 7)
|
1104
|
+
x = np.sort(np.random.rand(13))
|
1105
|
+
xp = np.random.rand(3, 4)
|
1106
|
+
for cls in (PPoly, BPoly):
|
1107
|
+
p = cls(c, x)
|
1108
|
+
assert p(xp).shape == (3, 4, 5, 6, 7)
|
1109
|
+
|
1110
|
+
# 'scalars'
|
1111
|
+
for cls in (PPoly, BPoly):
|
1112
|
+
p = cls(c[..., 0, 0, 0], x)
|
1113
|
+
|
1114
|
+
assert np.shape(p(0.5)) == ()
|
1115
|
+
assert np.shape(p(np.array(0.5))) == ()
|
1116
|
+
|
1117
|
+
assert_raises(ValueError, p, np.array([[0.1, 0.2], [0.4]], dtype=object))
|
1118
|
+
|
1119
|
+
def test_concurrency(self):
|
1120
|
+
# Check that no segfaults appear with concurrent access to BPoly, PPoly
|
1121
|
+
c = np.random.rand(8, 12, 5, 6, 7)
|
1122
|
+
x = np.sort(np.random.rand(13))
|
1123
|
+
xp = np.random.rand(3, 4)
|
1124
|
+
|
1125
|
+
for cls in (PPoly, BPoly):
|
1126
|
+
interp = cls(c, x)
|
1127
|
+
|
1128
|
+
def worker_fn(_, interp, xp):
|
1129
|
+
interp(xp)
|
1130
|
+
|
1131
|
+
_run_concurrent_barrier(10, worker_fn, interp, xp)
|
1132
|
+
|
1133
|
+
|
1134
|
+
def test_complex_coef(self):
|
1135
|
+
np.random.seed(12345)
|
1136
|
+
x = np.sort(np.random.random(13))
|
1137
|
+
c = np.random.random((8, 12)) * (1. + 0.3j)
|
1138
|
+
c_re, c_im = c.real, c.imag
|
1139
|
+
xp = np.random.random(5)
|
1140
|
+
for cls in (PPoly, BPoly):
|
1141
|
+
p, p_re, p_im = cls(c, x), cls(c_re, x), cls(c_im, x)
|
1142
|
+
for nu in [0, 1, 2]:
|
1143
|
+
xp_assert_close(p(xp, nu).real, p_re(xp, nu))
|
1144
|
+
xp_assert_close(p(xp, nu).imag, p_im(xp, nu))
|
1145
|
+
|
1146
|
+
def test_axis(self):
|
1147
|
+
np.random.seed(12345)
|
1148
|
+
c = np.random.rand(3, 4, 5, 6, 7, 8)
|
1149
|
+
c_s = c.shape
|
1150
|
+
xp = np.random.random((1, 2))
|
1151
|
+
for axis in (0, 1, 2, 3):
|
1152
|
+
m = c.shape[axis+1]
|
1153
|
+
x = np.sort(np.random.rand(m+1))
|
1154
|
+
for cls in (PPoly, BPoly):
|
1155
|
+
p = cls(c, x, axis=axis)
|
1156
|
+
assert p.c.shape == c_s[axis:axis+2] + c_s[:axis] + c_s[axis+2:]
|
1157
|
+
res = p(xp)
|
1158
|
+
targ_shape = c_s[:axis] + xp.shape + c_s[2+axis:]
|
1159
|
+
assert res.shape == targ_shape
|
1160
|
+
|
1161
|
+
# deriv/antideriv does not drop the axis
|
1162
|
+
for p1 in [cls(c, x, axis=axis).derivative(),
|
1163
|
+
cls(c, x, axis=axis).derivative(2),
|
1164
|
+
cls(c, x, axis=axis).antiderivative(),
|
1165
|
+
cls(c, x, axis=axis).antiderivative(2)]:
|
1166
|
+
assert p1.axis == p.axis
|
1167
|
+
|
1168
|
+
# c array needs two axes for the coefficients and intervals, so
|
1169
|
+
# 0 <= axis < c.ndim-1; raise otherwise
|
1170
|
+
for axis in (-1, 4, 5, 6):
|
1171
|
+
for cls in (BPoly, PPoly):
|
1172
|
+
assert_raises(ValueError, cls, **dict(c=c, x=x, axis=axis))
|
1173
|
+
|
1174
|
+
|
1175
|
+
class TestPolySubclassing:
|
1176
|
+
class P(PPoly):
|
1177
|
+
pass
|
1178
|
+
|
1179
|
+
class B(BPoly):
|
1180
|
+
pass
|
1181
|
+
|
1182
|
+
def _make_polynomials(self):
|
1183
|
+
np.random.seed(1234)
|
1184
|
+
x = np.sort(np.random.random(3))
|
1185
|
+
c = np.random.random((4, 2))
|
1186
|
+
return self.P(c, x), self.B(c, x)
|
1187
|
+
|
1188
|
+
def test_derivative(self):
|
1189
|
+
pp, bp = self._make_polynomials()
|
1190
|
+
for p in (pp, bp):
|
1191
|
+
pd = p.derivative()
|
1192
|
+
assert p.__class__ == pd.__class__
|
1193
|
+
|
1194
|
+
ppa = pp.antiderivative()
|
1195
|
+
assert pp.__class__ == ppa.__class__
|
1196
|
+
|
1197
|
+
def test_from_spline(self):
|
1198
|
+
np.random.seed(1234)
|
1199
|
+
x = np.sort(np.r_[0, np.random.rand(11), 1])
|
1200
|
+
y = np.random.rand(len(x))
|
1201
|
+
|
1202
|
+
spl = splrep(x, y, s=0)
|
1203
|
+
pp = self.P.from_spline(spl)
|
1204
|
+
assert pp.__class__ == self.P
|
1205
|
+
|
1206
|
+
def test_conversions(self):
|
1207
|
+
pp, bp = self._make_polynomials()
|
1208
|
+
|
1209
|
+
pp1 = self.P.from_bernstein_basis(bp)
|
1210
|
+
assert pp1.__class__ == self.P
|
1211
|
+
|
1212
|
+
bp1 = self.B.from_power_basis(pp)
|
1213
|
+
assert bp1.__class__ == self.B
|
1214
|
+
|
1215
|
+
def test_from_derivatives(self):
|
1216
|
+
x = [0, 1, 2]
|
1217
|
+
y = [[1], [2], [3]]
|
1218
|
+
bp = self.B.from_derivatives(x, y)
|
1219
|
+
assert bp.__class__ == self.B
|
1220
|
+
|
1221
|
+
|
1222
|
+
class TestPPoly:
|
1223
|
+
def test_simple(self):
|
1224
|
+
c = np.array([[1, 4], [2, 5], [3, 6]])
|
1225
|
+
x = np.array([0, 0.5, 1])
|
1226
|
+
p = PPoly(c, x)
|
1227
|
+
xp_assert_close(p(0.3), np.asarray(1*0.3**2 + 2*0.3 + 3))
|
1228
|
+
xp_assert_close(p(0.7), np.asarray(4*(0.7-0.5)**2 + 5*(0.7-0.5) + 6))
|
1229
|
+
|
1230
|
+
def test_periodic(self):
|
1231
|
+
c = np.array([[1, 4], [2, 5], [3, 6]])
|
1232
|
+
x = np.array([0, 0.5, 1])
|
1233
|
+
p = PPoly(c, x, extrapolate='periodic')
|
1234
|
+
|
1235
|
+
xp_assert_close(p(1.3),
|
1236
|
+
np.asarray(1 * 0.3 ** 2 + 2 * 0.3 + 3))
|
1237
|
+
xp_assert_close(p(-0.3),
|
1238
|
+
np.asarray(4 * (0.7 - 0.5) ** 2 + 5 * (0.7 - 0.5) + 6))
|
1239
|
+
|
1240
|
+
xp_assert_close(p(1.3, 1), np.asarray(2 * 0.3 + 2))
|
1241
|
+
xp_assert_close(p(-0.3, 1), np.asarray(8 * (0.7 - 0.5) + 5))
|
1242
|
+
|
1243
|
+
def test_read_only(self):
|
1244
|
+
c = np.array([[1, 4], [2, 5], [3, 6]])
|
1245
|
+
x = np.array([0, 0.5, 1])
|
1246
|
+
xnew = np.array([0, 0.1, 0.2])
|
1247
|
+
PPoly(c, x, extrapolate='periodic')
|
1248
|
+
|
1249
|
+
for writeable in (True, False):
|
1250
|
+
x.flags.writeable = writeable
|
1251
|
+
c.flags.writeable = writeable
|
1252
|
+
f = PPoly(c, x)
|
1253
|
+
vals = f(xnew)
|
1254
|
+
assert np.isfinite(vals).all()
|
1255
|
+
|
1256
|
+
def test_descending(self):
|
1257
|
+
def binom_matrix(power):
|
1258
|
+
n = np.arange(power + 1).reshape(-1, 1)
|
1259
|
+
k = np.arange(power + 1)
|
1260
|
+
B = binom(n, k)
|
1261
|
+
return B[::-1, ::-1]
|
1262
|
+
|
1263
|
+
rng = np.random.RandomState(0)
|
1264
|
+
|
1265
|
+
power = 3
|
1266
|
+
for m in [10, 20, 30]:
|
1267
|
+
x = np.sort(rng.uniform(0, 10, m + 1))
|
1268
|
+
ca = rng.uniform(-2, 2, size=(power + 1, m))
|
1269
|
+
|
1270
|
+
h = np.diff(x)
|
1271
|
+
h_powers = h[None, :] ** np.arange(power + 1)[::-1, None]
|
1272
|
+
B = binom_matrix(power)
|
1273
|
+
cap = ca * h_powers
|
1274
|
+
cdp = np.dot(B.T, cap)
|
1275
|
+
cd = cdp / h_powers
|
1276
|
+
|
1277
|
+
pa = PPoly(ca, x, extrapolate=True)
|
1278
|
+
pd = PPoly(cd[:, ::-1], x[::-1], extrapolate=True)
|
1279
|
+
|
1280
|
+
x_test = rng.uniform(-10, 20, 100)
|
1281
|
+
xp_assert_close(pa(x_test), pd(x_test), rtol=1e-13)
|
1282
|
+
xp_assert_close(pa(x_test, 1), pd(x_test, 1), rtol=1e-13)
|
1283
|
+
|
1284
|
+
pa_d = pa.derivative()
|
1285
|
+
pd_d = pd.derivative()
|
1286
|
+
|
1287
|
+
xp_assert_close(pa_d(x_test), pd_d(x_test), rtol=1e-13)
|
1288
|
+
|
1289
|
+
# Antiderivatives won't be equal because fixing continuity is
|
1290
|
+
# done in the reverse order, but surely the differences should be
|
1291
|
+
# equal.
|
1292
|
+
pa_i = pa.antiderivative()
|
1293
|
+
pd_i = pd.antiderivative()
|
1294
|
+
for a, b in rng.uniform(-10, 20, (5, 2)):
|
1295
|
+
int_a = pa.integrate(a, b)
|
1296
|
+
int_d = pd.integrate(a, b)
|
1297
|
+
xp_assert_close(int_a, int_d, rtol=1e-13)
|
1298
|
+
xp_assert_close(pa_i(b) - pa_i(a), pd_i(b) - pd_i(a),
|
1299
|
+
rtol=1e-13)
|
1300
|
+
|
1301
|
+
roots_d = pd.roots()
|
1302
|
+
roots_a = pa.roots()
|
1303
|
+
xp_assert_close(roots_a, np.sort(roots_d), rtol=1e-12)
|
1304
|
+
|
1305
|
+
def test_multi_shape(self):
|
1306
|
+
c = np.random.rand(6, 2, 1, 2, 3)
|
1307
|
+
x = np.array([0, 0.5, 1])
|
1308
|
+
p = PPoly(c, x)
|
1309
|
+
assert p.x.shape == x.shape
|
1310
|
+
assert p.c.shape == c.shape
|
1311
|
+
assert p(0.3).shape == c.shape[2:]
|
1312
|
+
|
1313
|
+
assert p(np.random.rand(5, 6)).shape == (5, 6) + c.shape[2:]
|
1314
|
+
|
1315
|
+
dp = p.derivative()
|
1316
|
+
assert dp.c.shape == (5, 2, 1, 2, 3)
|
1317
|
+
ip = p.antiderivative()
|
1318
|
+
assert ip.c.shape == (7, 2, 1, 2, 3)
|
1319
|
+
|
1320
|
+
def test_construct_fast(self):
|
1321
|
+
np.random.seed(1234)
|
1322
|
+
c = np.array([[1, 4], [2, 5], [3, 6]], dtype=float)
|
1323
|
+
x = np.array([0, 0.5, 1])
|
1324
|
+
p = PPoly.construct_fast(c, x)
|
1325
|
+
xp_assert_close(p(0.3), np.asarray(1*0.3**2 + 2*0.3 + 3))
|
1326
|
+
xp_assert_close(p(0.7), np.asarray(4*(0.7-0.5)**2 + 5*(0.7-0.5) + 6))
|
1327
|
+
|
1328
|
+
def test_vs_alternative_implementations(self):
|
1329
|
+
rng = np.random.RandomState(1234)
|
1330
|
+
c = rng.rand(3, 12, 22)
|
1331
|
+
x = np.sort(np.r_[0, rng.rand(11), 1])
|
1332
|
+
|
1333
|
+
p = PPoly(c, x)
|
1334
|
+
|
1335
|
+
xp = np.r_[0.3, 0.5, 0.33, 0.6]
|
1336
|
+
expected = _ppoly_eval_1(c, x, xp)
|
1337
|
+
xp_assert_close(p(xp), expected)
|
1338
|
+
|
1339
|
+
expected = _ppoly_eval_2(c[:,:,0], x, xp)
|
1340
|
+
xp_assert_close(p(xp)[:, 0], expected)
|
1341
|
+
|
1342
|
+
def test_from_spline(self):
|
1343
|
+
rng = np.random.RandomState(1234)
|
1344
|
+
x = np.sort(np.r_[0, rng.rand(11), 1])
|
1345
|
+
y = rng.rand(len(x))
|
1346
|
+
|
1347
|
+
spl = splrep(x, y, s=0)
|
1348
|
+
pp = PPoly.from_spline(spl)
|
1349
|
+
|
1350
|
+
xi = np.linspace(0, 1, 200)
|
1351
|
+
xp_assert_close(pp(xi), splev(xi, spl))
|
1352
|
+
|
1353
|
+
# make sure .from_spline accepts BSpline objects
|
1354
|
+
b = BSpline(*spl)
|
1355
|
+
ppp = PPoly.from_spline(b)
|
1356
|
+
xp_assert_close(ppp(xi), b(xi))
|
1357
|
+
|
1358
|
+
# BSpline's extrapolate attribute propagates unless overridden
|
1359
|
+
t, c, k = spl
|
1360
|
+
for extrap in (None, True, False):
|
1361
|
+
b = BSpline(t, c, k, extrapolate=extrap)
|
1362
|
+
p = PPoly.from_spline(b)
|
1363
|
+
assert p.extrapolate == b.extrapolate
|
1364
|
+
|
1365
|
+
def test_derivative_simple(self):
|
1366
|
+
np.random.seed(1234)
|
1367
|
+
c = np.array([[4, 3, 2, 1]]).T
|
1368
|
+
dc = np.array([[3*4, 2*3, 2]]).T
|
1369
|
+
ddc = np.array([[2*3*4, 1*2*3]]).T
|
1370
|
+
x = np.array([0, 1])
|
1371
|
+
|
1372
|
+
pp = PPoly(c, x)
|
1373
|
+
dpp = PPoly(dc, x)
|
1374
|
+
ddpp = PPoly(ddc, x)
|
1375
|
+
|
1376
|
+
xp_assert_close(pp.derivative().c, dpp.c)
|
1377
|
+
xp_assert_close(pp.derivative(2).c, ddpp.c)
|
1378
|
+
|
1379
|
+
def test_derivative_eval(self):
|
1380
|
+
rng = np.random.RandomState(1234)
|
1381
|
+
x = np.sort(np.r_[0, rng.rand(11), 1])
|
1382
|
+
y = rng.rand(len(x))
|
1383
|
+
|
1384
|
+
spl = splrep(x, y, s=0)
|
1385
|
+
pp = PPoly.from_spline(spl)
|
1386
|
+
|
1387
|
+
xi = np.linspace(0, 1, 200)
|
1388
|
+
for dx in range(0, 3):
|
1389
|
+
xp_assert_close(pp(xi, dx), splev(xi, spl, dx))
|
1390
|
+
|
1391
|
+
def test_derivative(self):
|
1392
|
+
rng = np.random.RandomState(1234)
|
1393
|
+
x = np.sort(np.r_[0, rng.rand(11), 1])
|
1394
|
+
y = rng.rand(len(x))
|
1395
|
+
|
1396
|
+
spl = splrep(x, y, s=0, k=5)
|
1397
|
+
pp = PPoly.from_spline(spl)
|
1398
|
+
|
1399
|
+
xi = np.linspace(0, 1, 200)
|
1400
|
+
for dx in range(0, 10):
|
1401
|
+
xp_assert_close(pp(xi, dx), pp.derivative(dx)(xi), err_msg=f"dx={dx}")
|
1402
|
+
|
1403
|
+
def test_antiderivative_of_constant(self):
|
1404
|
+
# https://github.com/scipy/scipy/issues/4216
|
1405
|
+
p = PPoly([[1.]], [0, 1])
|
1406
|
+
xp_assert_equal(p.antiderivative().c, PPoly([[1], [0]], [0, 1]).c)
|
1407
|
+
xp_assert_equal(p.antiderivative().x, PPoly([[1], [0]], [0, 1]).x)
|
1408
|
+
|
1409
|
+
def test_antiderivative_regression_4355(self):
|
1410
|
+
# https://github.com/scipy/scipy/issues/4355
|
1411
|
+
p = PPoly([[1., 0.5]], [0, 1, 2])
|
1412
|
+
q = p.antiderivative()
|
1413
|
+
xp_assert_equal(q.c, [[1, 0.5], [0, 1]])
|
1414
|
+
xp_assert_equal(q.x, [0.0, 1, 2])
|
1415
|
+
xp_assert_close(p.integrate(0, 2), np.asarray(1.5))
|
1416
|
+
xp_assert_close(np.asarray(q(2) - q(0)),
|
1417
|
+
np.asarray(1.5))
|
1418
|
+
|
1419
|
+
def test_antiderivative_simple(self):
|
1420
|
+
np.random.seed(1234)
|
1421
|
+
# [ p1(x) = 3*x**2 + 2*x + 1,
|
1422
|
+
# p2(x) = 1.6875]
|
1423
|
+
c = np.array([[3, 2, 1], [0, 0, 1.6875]]).T
|
1424
|
+
# [ pp1(x) = x**3 + x**2 + x,
|
1425
|
+
# pp2(x) = 1.6875*(x - 0.25) + pp1(0.25)]
|
1426
|
+
ic = np.array([[1, 1, 1, 0], [0, 0, 1.6875, 0.328125]]).T
|
1427
|
+
# [ ppp1(x) = (1/4)*x**4 + (1/3)*x**3 + (1/2)*x**2,
|
1428
|
+
# ppp2(x) = (1.6875/2)*(x - 0.25)**2 + pp1(0.25)*x + ppp1(0.25)]
|
1429
|
+
iic = np.array([[1/4, 1/3, 1/2, 0, 0],
|
1430
|
+
[0, 0, 1.6875/2, 0.328125, 0.037434895833333336]]).T
|
1431
|
+
x = np.array([0, 0.25, 1])
|
1432
|
+
|
1433
|
+
pp = PPoly(c, x)
|
1434
|
+
ipp = pp.antiderivative()
|
1435
|
+
iipp = pp.antiderivative(2)
|
1436
|
+
iipp2 = ipp.antiderivative()
|
1437
|
+
|
1438
|
+
xp_assert_close(ipp.x, x)
|
1439
|
+
xp_assert_close(ipp.c.T, ic.T)
|
1440
|
+
xp_assert_close(iipp.c.T, iic.T)
|
1441
|
+
xp_assert_close(iipp2.c.T, iic.T)
|
1442
|
+
|
1443
|
+
def test_antiderivative_vs_derivative(self):
|
1444
|
+
rng = np.random.RandomState(1234)
|
1445
|
+
x = np.linspace(0, 1, 30)**2
|
1446
|
+
y = rng.rand(len(x))
|
1447
|
+
spl = splrep(x, y, s=0, k=5)
|
1448
|
+
pp = PPoly.from_spline(spl)
|
1449
|
+
|
1450
|
+
for dx in range(0, 10):
|
1451
|
+
ipp = pp.antiderivative(dx)
|
1452
|
+
|
1453
|
+
# check that derivative is inverse op
|
1454
|
+
pp2 = ipp.derivative(dx)
|
1455
|
+
xp_assert_close(pp.c, pp2.c)
|
1456
|
+
|
1457
|
+
# check continuity
|
1458
|
+
for k in range(dx):
|
1459
|
+
pp2 = ipp.derivative(k)
|
1460
|
+
|
1461
|
+
r = 1e-13
|
1462
|
+
endpoint = r*pp2.x[:-1] + (1 - r)*pp2.x[1:]
|
1463
|
+
|
1464
|
+
xp_assert_close(
|
1465
|
+
pp2(pp2.x[1:]), pp2(endpoint), rtol=1e-7, err_msg=f"dx={dx} k={k}"
|
1466
|
+
)
|
1467
|
+
|
1468
|
+
def test_antiderivative_vs_spline(self):
|
1469
|
+
rng = np.random.RandomState(1234)
|
1470
|
+
x = np.sort(np.r_[0, rng.rand(11), 1])
|
1471
|
+
y = rng.rand(len(x))
|
1472
|
+
|
1473
|
+
spl = splrep(x, y, s=0, k=5)
|
1474
|
+
pp = PPoly.from_spline(spl)
|
1475
|
+
|
1476
|
+
for dx in range(0, 10):
|
1477
|
+
pp2 = pp.antiderivative(dx)
|
1478
|
+
spl2 = splantider(spl, dx)
|
1479
|
+
|
1480
|
+
xi = np.linspace(0, 1, 200)
|
1481
|
+
xp_assert_close(pp2(xi), splev(xi, spl2),
|
1482
|
+
rtol=1e-7)
|
1483
|
+
|
1484
|
+
def test_antiderivative_continuity(self):
|
1485
|
+
c = np.array([[2, 1, 2, 2], [2, 1, 3, 3]]).T
|
1486
|
+
x = np.array([0, 0.5, 1])
|
1487
|
+
|
1488
|
+
p = PPoly(c, x)
|
1489
|
+
ip = p.antiderivative()
|
1490
|
+
|
1491
|
+
# check continuity
|
1492
|
+
xp_assert_close(ip(0.5 - 1e-9), ip(0.5 + 1e-9), rtol=1e-8)
|
1493
|
+
|
1494
|
+
# check that only lowest order coefficients were changed
|
1495
|
+
p2 = ip.derivative()
|
1496
|
+
xp_assert_close(p2.c, p.c)
|
1497
|
+
|
1498
|
+
def test_integrate(self):
|
1499
|
+
rng = np.random.RandomState(1234)
|
1500
|
+
x = np.sort(np.r_[0, rng.rand(11), 1])
|
1501
|
+
y = rng.rand(len(x))
|
1502
|
+
|
1503
|
+
spl = splrep(x, y, s=0, k=5)
|
1504
|
+
pp = PPoly.from_spline(spl)
|
1505
|
+
|
1506
|
+
a, b = 0.3, 0.9
|
1507
|
+
ig = pp.integrate(a, b)
|
1508
|
+
|
1509
|
+
ipp = pp.antiderivative()
|
1510
|
+
xp_assert_close(ig, ipp(b) - ipp(a), check_0d=False)
|
1511
|
+
xp_assert_close(ig, splint(a, b, spl), check_0d=False)
|
1512
|
+
|
1513
|
+
a, b = -0.3, 0.9
|
1514
|
+
ig = pp.integrate(a, b, extrapolate=True)
|
1515
|
+
xp_assert_close(ig, ipp(b) - ipp(a), check_0d=False)
|
1516
|
+
|
1517
|
+
assert np.isnan(pp.integrate(a, b, extrapolate=False)).all()
|
1518
|
+
|
1519
|
+
def test_integrate_readonly(self):
|
1520
|
+
x = np.array([1, 2, 4])
|
1521
|
+
c = np.array([[0., 0.], [-1., -1.], [2., -0.], [1., 2.]])
|
1522
|
+
|
1523
|
+
for writeable in (True, False):
|
1524
|
+
x.flags.writeable = writeable
|
1525
|
+
|
1526
|
+
P = PPoly(c, x)
|
1527
|
+
vals = P.integrate(1, 4)
|
1528
|
+
|
1529
|
+
assert np.isfinite(vals).all()
|
1530
|
+
|
1531
|
+
def test_integrate_periodic(self):
|
1532
|
+
x = np.array([1, 2, 4])
|
1533
|
+
c = np.array([[0., 0.], [-1., -1.], [2., -0.], [1., 2.]])
|
1534
|
+
|
1535
|
+
P = PPoly(c, x, extrapolate='periodic')
|
1536
|
+
I = P.antiderivative()
|
1537
|
+
|
1538
|
+
period_int = np.asarray(I(4) - I(1))
|
1539
|
+
|
1540
|
+
xp_assert_close(P.integrate(1, 4), period_int)
|
1541
|
+
xp_assert_close(P.integrate(-10, -7), period_int)
|
1542
|
+
xp_assert_close(P.integrate(-10, -4), np.asarray(2 * period_int))
|
1543
|
+
|
1544
|
+
xp_assert_close(P.integrate(1.5, 2.5),
|
1545
|
+
np.asarray(I(2.5) - I(1.5)))
|
1546
|
+
xp_assert_close(P.integrate(3.5, 5),
|
1547
|
+
np.asarray(I(2) - I(1) + I(4) - I(3.5)))
|
1548
|
+
xp_assert_close(P.integrate(3.5 + 12, 5 + 12),
|
1549
|
+
np.asarray(I(2) - I(1) + I(4) - I(3.5)))
|
1550
|
+
xp_assert_close(P.integrate(3.5, 5 + 12),
|
1551
|
+
np.asarray(I(2) - I(1) + I(4) - I(3.5) + 4 * period_int))
|
1552
|
+
xp_assert_close(P.integrate(0, -1),
|
1553
|
+
np.asarray(I(2) - I(3)))
|
1554
|
+
xp_assert_close(P.integrate(-9, -10),
|
1555
|
+
np.asarray(I(2) - I(3)))
|
1556
|
+
xp_assert_close(P.integrate(0, -10),
|
1557
|
+
np.asarray(I(2) - I(3) - 3 * period_int))
|
1558
|
+
|
1559
|
+
def test_roots(self):
|
1560
|
+
x = np.linspace(0, 1, 31)**2
|
1561
|
+
y = np.sin(30*x)
|
1562
|
+
|
1563
|
+
spl = splrep(x, y, s=0, k=3)
|
1564
|
+
pp = PPoly.from_spline(spl)
|
1565
|
+
|
1566
|
+
r = pp.roots()
|
1567
|
+
r = r[(r >= 0 - 1e-15) & (r <= 1 + 1e-15)]
|
1568
|
+
xp_assert_close(r, sproot(spl), atol=1e-15)
|
1569
|
+
|
1570
|
+
def test_roots_idzero(self):
|
1571
|
+
# Roots for piecewise polynomials with identically zero
|
1572
|
+
# sections.
|
1573
|
+
c = np.array([[-1, 0.25], [0, 0], [-1, 0.25]]).T
|
1574
|
+
x = np.array([0, 0.4, 0.6, 1.0])
|
1575
|
+
|
1576
|
+
pp = PPoly(c, x)
|
1577
|
+
xp_assert_equal(pp.roots(),
|
1578
|
+
[0.25, 0.4, np.nan, 0.6 + 0.25])
|
1579
|
+
|
1580
|
+
# ditto for p.solve(const) with sections identically equal const
|
1581
|
+
const = 2.
|
1582
|
+
c1 = c.copy()
|
1583
|
+
c1[1, :] += const
|
1584
|
+
pp1 = PPoly(c1, x)
|
1585
|
+
|
1586
|
+
xp_assert_equal(pp1.solve(const),
|
1587
|
+
[0.25, 0.4, np.nan, 0.6 + 0.25])
|
1588
|
+
|
1589
|
+
def test_roots_all_zero(self):
|
1590
|
+
# test the code path for the polynomial being identically zero everywhere
|
1591
|
+
c = [[0], [0]]
|
1592
|
+
x = [0, 1]
|
1593
|
+
p = PPoly(c, x)
|
1594
|
+
xp_assert_equal(p.roots(), [0, np.nan])
|
1595
|
+
xp_assert_equal(p.solve(0), [0, np.nan])
|
1596
|
+
xp_assert_equal(p.solve(1), [])
|
1597
|
+
|
1598
|
+
c = [[0, 0], [0, 0]]
|
1599
|
+
x = [0, 1, 2]
|
1600
|
+
p = PPoly(c, x)
|
1601
|
+
xp_assert_equal(p.roots(), [0, np.nan, 1, np.nan])
|
1602
|
+
xp_assert_equal(p.solve(0), [0, np.nan, 1, np.nan])
|
1603
|
+
xp_assert_equal(p.solve(1), [])
|
1604
|
+
|
1605
|
+
def test_roots_repeated(self):
|
1606
|
+
# Check roots repeated in multiple sections are reported only
|
1607
|
+
# once.
|
1608
|
+
|
1609
|
+
# [(x + 1)**2 - 1, -x**2] ; x == 0 is a repeated root
|
1610
|
+
c = np.array([[1, 0, -1], [-1, 0, 0]]).T
|
1611
|
+
x = np.array([-1, 0, 1])
|
1612
|
+
|
1613
|
+
pp = PPoly(c, x)
|
1614
|
+
xp_assert_equal(pp.roots(), np.asarray([-2.0, 0.0]))
|
1615
|
+
xp_assert_equal(pp.roots(extrapolate=False), np.asarray([0.0]))
|
1616
|
+
|
1617
|
+
def test_roots_discont(self):
|
1618
|
+
# Check that a discontinuity across zero is reported as root
|
1619
|
+
c = np.array([[1], [-1]]).T
|
1620
|
+
x = np.array([0, 0.5, 1])
|
1621
|
+
pp = PPoly(c, x)
|
1622
|
+
xp_assert_equal(pp.roots(), np.asarray([0.5]))
|
1623
|
+
xp_assert_equal(pp.roots(discontinuity=False), np.asarray([]))
|
1624
|
+
|
1625
|
+
# ditto for a discontinuity across y:
|
1626
|
+
xp_assert_equal(pp.solve(0.5), np.asarray([0.5]))
|
1627
|
+
xp_assert_equal(pp.solve(0.5, discontinuity=False), np.asarray([]))
|
1628
|
+
|
1629
|
+
xp_assert_equal(pp.solve(1.5), np.asarray([]))
|
1630
|
+
xp_assert_equal(pp.solve(1.5, discontinuity=False), np.asarray([]))
|
1631
|
+
|
1632
|
+
def test_roots_random(self):
|
1633
|
+
# Check high-order polynomials with random coefficients
|
1634
|
+
rng = np.random.RandomState(1234)
|
1635
|
+
|
1636
|
+
num = 0
|
1637
|
+
|
1638
|
+
for extrapolate in (True, False):
|
1639
|
+
for order in range(0, 20):
|
1640
|
+
x = np.unique(np.r_[0, 10 * rng.rand(30), 10])
|
1641
|
+
c = 2*rng.rand(order+1, len(x)-1, 2, 3) - 1
|
1642
|
+
|
1643
|
+
pp = PPoly(c, x)
|
1644
|
+
for y in [0, rng.random()]:
|
1645
|
+
r = pp.solve(y, discontinuity=False, extrapolate=extrapolate)
|
1646
|
+
|
1647
|
+
for i in range(2):
|
1648
|
+
for j in range(3):
|
1649
|
+
rr = r[i,j]
|
1650
|
+
if rr.size > 0:
|
1651
|
+
# Check that the reported roots indeed are roots
|
1652
|
+
num += rr.size
|
1653
|
+
val = pp(rr, extrapolate=extrapolate)[:,i,j]
|
1654
|
+
cmpval = pp(rr, nu=1,
|
1655
|
+
extrapolate=extrapolate)[:,i,j]
|
1656
|
+
msg = f"({extrapolate!r}) r = {repr(rr)}"
|
1657
|
+
xp_assert_close((val-y) / cmpval, np.asarray(0.0),
|
1658
|
+
atol=1e-7,
|
1659
|
+
err_msg=msg, check_shape=False)
|
1660
|
+
|
1661
|
+
# Check that we checked a number of roots
|
1662
|
+
assert num > 100, repr(num)
|
1663
|
+
|
1664
|
+
def test_roots_croots(self):
|
1665
|
+
# Test the complex root finding algorithm
|
1666
|
+
rng = np.random.RandomState(1234)
|
1667
|
+
|
1668
|
+
for k in range(1, 15):
|
1669
|
+
c = rng.rand(k, 1, 130)
|
1670
|
+
|
1671
|
+
if k == 3:
|
1672
|
+
# add a case with zero discriminant
|
1673
|
+
c[:,0,0] = 1, 2, 1
|
1674
|
+
|
1675
|
+
for y in [0, rng.random()]:
|
1676
|
+
w = np.empty(c.shape, dtype=complex)
|
1677
|
+
_ppoly._croots_poly1(c, w, y)
|
1678
|
+
|
1679
|
+
if k == 1:
|
1680
|
+
assert np.isnan(w).all()
|
1681
|
+
continue
|
1682
|
+
|
1683
|
+
res = -y
|
1684
|
+
cres = 0
|
1685
|
+
for i in range(k):
|
1686
|
+
res += c[i,None] * w**(k-1-i)
|
1687
|
+
cres += abs(c[i,None] * w**(k-1-i))
|
1688
|
+
with np.errstate(invalid='ignore'):
|
1689
|
+
res /= cres
|
1690
|
+
res = res.ravel()
|
1691
|
+
res = res[~np.isnan(res)]
|
1692
|
+
xp_assert_close(res, np.zeros_like(res), atol=1e-10)
|
1693
|
+
|
1694
|
+
def test_extrapolate_attr(self):
|
1695
|
+
# [ 1 - x**2 ]
|
1696
|
+
c = np.array([[-1, 0, 1]]).T
|
1697
|
+
x = np.array([0, 1])
|
1698
|
+
|
1699
|
+
for extrapolate in [True, False, None]:
|
1700
|
+
pp = PPoly(c, x, extrapolate=extrapolate)
|
1701
|
+
pp_d = pp.derivative()
|
1702
|
+
pp_i = pp.antiderivative()
|
1703
|
+
|
1704
|
+
if extrapolate is False:
|
1705
|
+
assert np.isnan(pp([-0.1, 1.1])).all()
|
1706
|
+
assert np.isnan(pp_i([-0.1, 1.1])).all()
|
1707
|
+
assert np.isnan(pp_d([-0.1, 1.1])).all()
|
1708
|
+
assert pp.roots() == [1]
|
1709
|
+
else:
|
1710
|
+
xp_assert_close(pp([-0.1, 1.1]), [1-0.1**2, 1-1.1**2])
|
1711
|
+
assert not np.isnan(pp_i([-0.1, 1.1])).any()
|
1712
|
+
assert not np.isnan(pp_d([-0.1, 1.1])).any()
|
1713
|
+
xp_assert_close(pp.roots(), np.asarray([1.0, -1.0]))
|
1714
|
+
|
1715
|
+
|
1716
|
+
class TestBPoly:
|
1717
|
+
def test_simple(self):
|
1718
|
+
x = [0, 1]
|
1719
|
+
c = [[3]]
|
1720
|
+
bp = BPoly(c, x)
|
1721
|
+
xp_assert_close(bp(0.1), np.asarray(3.))
|
1722
|
+
|
1723
|
+
def test_simple2(self):
|
1724
|
+
x = [0, 1]
|
1725
|
+
c = [[3], [1]]
|
1726
|
+
bp = BPoly(c, x) # 3*(1-x) + 1*x
|
1727
|
+
xp_assert_close(bp(0.1), np.asarray(3*0.9 + 1.*0.1))
|
1728
|
+
|
1729
|
+
def test_simple3(self):
|
1730
|
+
x = [0, 1]
|
1731
|
+
c = [[3], [1], [4]]
|
1732
|
+
bp = BPoly(c, x) # 3 * (1-x)**2 + 2 * x (1-x) + 4 * x**2
|
1733
|
+
xp_assert_close(bp(0.2),
|
1734
|
+
np.asarray(3 * 0.8*0.8 + 1 * 2*0.2*0.8 + 4 * 0.2*0.2))
|
1735
|
+
|
1736
|
+
def test_simple4(self):
|
1737
|
+
x = [0, 1]
|
1738
|
+
c = [[1], [1], [1], [2]]
|
1739
|
+
bp = BPoly(c, x)
|
1740
|
+
xp_assert_close(bp(0.3),
|
1741
|
+
np.asarray( 0.7**3 +
|
1742
|
+
3 * 0.7**2 * 0.3 +
|
1743
|
+
3 * 0.7 * 0.3**2 +
|
1744
|
+
2 * 0.3**3)
|
1745
|
+
)
|
1746
|
+
|
1747
|
+
def test_simple5(self):
|
1748
|
+
x = [0, 1]
|
1749
|
+
c = [[1], [1], [8], [2], [1]]
|
1750
|
+
bp = BPoly(c, x)
|
1751
|
+
xp_assert_close(bp(0.3),
|
1752
|
+
np.asarray( 0.7**4 +
|
1753
|
+
4 * 0.7**3 * 0.3 +
|
1754
|
+
8 * 6 * 0.7**2 * 0.3**2 +
|
1755
|
+
2 * 4 * 0.7 * 0.3**3 +
|
1756
|
+
0.3**4)
|
1757
|
+
)
|
1758
|
+
|
1759
|
+
def test_periodic(self):
|
1760
|
+
x = [0, 1, 3]
|
1761
|
+
c = [[3, 0], [0, 0], [0, 2]]
|
1762
|
+
# [3*(1-x)**2, 2*((x-1)/2)**2]
|
1763
|
+
bp = BPoly(c, x, extrapolate='periodic')
|
1764
|
+
|
1765
|
+
xp_assert_close(bp(3.4), np.asarray(3 * 0.6**2))
|
1766
|
+
xp_assert_close(bp(-1.3), np.asarray(2 * (0.7/2)**2))
|
1767
|
+
|
1768
|
+
xp_assert_close(bp(3.4, 1), np.asarray(-6 * 0.6))
|
1769
|
+
xp_assert_close(bp(-1.3, 1), np.asarray(2 * (0.7/2)))
|
1770
|
+
|
1771
|
+
def test_descending(self):
|
1772
|
+
rng = np.random.RandomState(0)
|
1773
|
+
|
1774
|
+
power = 3
|
1775
|
+
for m in [10, 20, 30]:
|
1776
|
+
x = np.sort(rng.uniform(0, 10, m + 1))
|
1777
|
+
ca = rng.uniform(-0.1, 0.1, size=(power + 1, m))
|
1778
|
+
# We need only to flip coefficients to get it right!
|
1779
|
+
cd = ca[::-1].copy()
|
1780
|
+
|
1781
|
+
pa = BPoly(ca, x, extrapolate=True)
|
1782
|
+
pd = BPoly(cd[:, ::-1], x[::-1], extrapolate=True)
|
1783
|
+
|
1784
|
+
x_test = rng.uniform(-10, 20, 100)
|
1785
|
+
xp_assert_close(pa(x_test), pd(x_test), rtol=1e-13)
|
1786
|
+
xp_assert_close(pa(x_test, 1), pd(x_test, 1), rtol=1e-13)
|
1787
|
+
|
1788
|
+
pa_d = pa.derivative()
|
1789
|
+
pd_d = pd.derivative()
|
1790
|
+
|
1791
|
+
xp_assert_close(pa_d(x_test), pd_d(x_test), rtol=1e-13)
|
1792
|
+
|
1793
|
+
# Antiderivatives won't be equal because fixing continuity is
|
1794
|
+
# done in the reverse order, but surely the differences should be
|
1795
|
+
# equal.
|
1796
|
+
pa_i = pa.antiderivative()
|
1797
|
+
pd_i = pd.antiderivative()
|
1798
|
+
for a, b in rng.uniform(-10, 20, (5, 2)):
|
1799
|
+
int_a = pa.integrate(a, b)
|
1800
|
+
int_d = pd.integrate(a, b)
|
1801
|
+
xp_assert_close(int_a, int_d, rtol=1e-12)
|
1802
|
+
xp_assert_close(pa_i(b) - pa_i(a), pd_i(b) - pd_i(a),
|
1803
|
+
rtol=1e-12)
|
1804
|
+
|
1805
|
+
def test_multi_shape(self):
|
1806
|
+
rng = np.random.RandomState(1234)
|
1807
|
+
c = rng.rand(6, 2, 1, 2, 3)
|
1808
|
+
x = np.array([0, 0.5, 1])
|
1809
|
+
p = BPoly(c, x)
|
1810
|
+
assert p.x.shape == x.shape
|
1811
|
+
assert p.c.shape == c.shape
|
1812
|
+
assert p(0.3).shape == c.shape[2:]
|
1813
|
+
assert p(rng.rand(5, 6)).shape == (5, 6) + c.shape[2:]
|
1814
|
+
|
1815
|
+
dp = p.derivative()
|
1816
|
+
assert dp.c.shape == (5, 2, 1, 2, 3)
|
1817
|
+
|
1818
|
+
def test_interval_length(self):
|
1819
|
+
x = [0, 2]
|
1820
|
+
c = [[3], [1], [4]]
|
1821
|
+
bp = BPoly(c, x)
|
1822
|
+
xval = 0.1
|
1823
|
+
s = xval / 2 # s = (x - xa) / (xb - xa)
|
1824
|
+
xp_assert_close(bp(xval),
|
1825
|
+
np.asarray(3 * (1-s)*(1-s) + 1 * 2*s*(1-s) + 4 * s*s)
|
1826
|
+
)
|
1827
|
+
|
1828
|
+
def test_two_intervals(self):
|
1829
|
+
x = [0, 1, 3]
|
1830
|
+
c = [[3, 0], [0, 0], [0, 2]]
|
1831
|
+
bp = BPoly(c, x) # [3*(1-x)**2, 2*((x-1)/2)**2]
|
1832
|
+
|
1833
|
+
xp_assert_close(bp(0.4), np.asarray(3 * 0.6*0.6))
|
1834
|
+
xp_assert_close(bp(1.7), np.asarray(2 * (0.7/2)**2))
|
1835
|
+
|
1836
|
+
def test_extrapolate_attr(self):
|
1837
|
+
x = [0, 2]
|
1838
|
+
c = [[3], [1], [4]]
|
1839
|
+
bp = BPoly(c, x)
|
1840
|
+
|
1841
|
+
for extrapolate in (True, False, None):
|
1842
|
+
bp = BPoly(c, x, extrapolate=extrapolate)
|
1843
|
+
bp_d = bp.derivative()
|
1844
|
+
if extrapolate is False:
|
1845
|
+
assert np.isnan(bp([-0.1, 2.1])).all()
|
1846
|
+
assert np.isnan(bp_d([-0.1, 2.1])).all()
|
1847
|
+
else:
|
1848
|
+
assert not np.isnan(bp([-0.1, 2.1])).any()
|
1849
|
+
assert not np.isnan(bp_d([-0.1, 2.1])).any()
|
1850
|
+
|
1851
|
+
|
1852
|
+
class TestBPolyCalculus:
|
1853
|
+
def test_derivative(self):
|
1854
|
+
x = [0, 1, 3]
|
1855
|
+
c = [[3, 0], [0, 0], [0, 2]]
|
1856
|
+
bp = BPoly(c, x) # [3*(1-x)**2, 2*((x-1)/2)**2]
|
1857
|
+
bp_der = bp.derivative()
|
1858
|
+
xp_assert_close(bp_der(0.4), np.asarray(-6*(0.6)))
|
1859
|
+
xp_assert_close(bp_der(1.7), np.asarray(0.7))
|
1860
|
+
|
1861
|
+
# derivatives in-place
|
1862
|
+
xp_assert_close(np.asarray([bp(0.4, nu) for nu in [1, 2, 3]]),
|
1863
|
+
np.asarray([-6*(1-0.4), 6., 0.])
|
1864
|
+
)
|
1865
|
+
xp_assert_close(np.asarray([bp(1.7, nu) for nu in [1, 2, 3]]),
|
1866
|
+
np.asarray([0.7, 1., 0])
|
1867
|
+
)
|
1868
|
+
|
1869
|
+
def test_derivative_ppoly(self):
|
1870
|
+
# make sure it's consistent w/ power basis
|
1871
|
+
rng = np.random.RandomState(1234)
|
1872
|
+
m, k = 5, 8 # number of intervals, order
|
1873
|
+
x = np.sort(rng.random(m))
|
1874
|
+
c = rng.random((k, m-1))
|
1875
|
+
bp = BPoly(c, x)
|
1876
|
+
pp = PPoly.from_bernstein_basis(bp)
|
1877
|
+
|
1878
|
+
for d in range(k):
|
1879
|
+
bp = bp.derivative()
|
1880
|
+
pp = pp.derivative()
|
1881
|
+
xp = np.linspace(x[0], x[-1], 21)
|
1882
|
+
xp_assert_close(bp(xp), pp(xp))
|
1883
|
+
|
1884
|
+
def test_deriv_inplace(self):
|
1885
|
+
rng = np.random.RandomState(1234)
|
1886
|
+
m, k = 5, 8 # number of intervals, order
|
1887
|
+
x = np.sort(rng.random(m))
|
1888
|
+
c = rng.random((k, m-1))
|
1889
|
+
|
1890
|
+
# test both real and complex coefficients
|
1891
|
+
for cc in [c.copy(), c*(1. + 2.j)]:
|
1892
|
+
bp = BPoly(cc, x)
|
1893
|
+
xp = np.linspace(x[0], x[-1], 21)
|
1894
|
+
for i in range(k):
|
1895
|
+
xp_assert_close(bp(xp, i), bp.derivative(i)(xp))
|
1896
|
+
|
1897
|
+
def test_antiderivative_simple(self):
|
1898
|
+
# f(x) = x for x \in [0, 1),
|
1899
|
+
# (x-1)/2 for x \in [1, 3]
|
1900
|
+
#
|
1901
|
+
# antiderivative is then
|
1902
|
+
# F(x) = x**2 / 2 for x \in [0, 1),
|
1903
|
+
# 0.5*x*(x/2 - 1) + A for x \in [1, 3]
|
1904
|
+
# where A = 3/4 for continuity at x = 1.
|
1905
|
+
x = [0, 1, 3]
|
1906
|
+
c = [[0, 0], [1, 1]]
|
1907
|
+
|
1908
|
+
bp = BPoly(c, x)
|
1909
|
+
bi = bp.antiderivative()
|
1910
|
+
|
1911
|
+
xx = np.linspace(0, 3, 11)
|
1912
|
+
xp_assert_close(bi(xx),
|
1913
|
+
np.where(xx < 1, xx**2 / 2.,
|
1914
|
+
0.5 * xx * (xx/2. - 1) + 3./4),
|
1915
|
+
atol=1e-12, rtol=1e-12)
|
1916
|
+
|
1917
|
+
def test_der_antider(self):
|
1918
|
+
rng = np.random.RandomState(1234)
|
1919
|
+
x = np.sort(rng.random(11))
|
1920
|
+
c = rng.random((4, 10, 2, 3))
|
1921
|
+
bp = BPoly(c, x)
|
1922
|
+
|
1923
|
+
xx = np.linspace(x[0], x[-1], 100)
|
1924
|
+
xp_assert_close(bp.antiderivative().derivative()(xx),
|
1925
|
+
bp(xx), atol=1e-12, rtol=1e-12)
|
1926
|
+
|
1927
|
+
def test_antider_ppoly(self):
|
1928
|
+
rng = np.random.RandomState(1234)
|
1929
|
+
x = np.sort(rng.random(11))
|
1930
|
+
c = rng.random((4, 10, 2, 3))
|
1931
|
+
bp = BPoly(c, x)
|
1932
|
+
pp = PPoly.from_bernstein_basis(bp)
|
1933
|
+
|
1934
|
+
xx = np.linspace(x[0], x[-1], 10)
|
1935
|
+
|
1936
|
+
xp_assert_close(bp.antiderivative(2)(xx),
|
1937
|
+
pp.antiderivative(2)(xx), atol=1e-12, rtol=1e-12)
|
1938
|
+
|
1939
|
+
def test_antider_continuous(self):
|
1940
|
+
rng = np.random.RandomState(1234)
|
1941
|
+
x = np.sort(rng.random(11))
|
1942
|
+
c = rng.random((4, 10))
|
1943
|
+
bp = BPoly(c, x).antiderivative()
|
1944
|
+
|
1945
|
+
xx = bp.x[1:-1]
|
1946
|
+
xp_assert_close(bp(xx - 1e-14),
|
1947
|
+
bp(xx + 1e-14), atol=1e-12, rtol=1e-12)
|
1948
|
+
|
1949
|
+
def test_integrate(self):
|
1950
|
+
rng = np.random.RandomState(1234)
|
1951
|
+
x = np.sort(rng.random(11))
|
1952
|
+
c = rng.random((4, 10))
|
1953
|
+
bp = BPoly(c, x)
|
1954
|
+
pp = PPoly.from_bernstein_basis(bp)
|
1955
|
+
xp_assert_close(bp.integrate(0, 1),
|
1956
|
+
pp.integrate(0, 1), atol=1e-12, rtol=1e-12, check_0d=False)
|
1957
|
+
|
1958
|
+
def test_integrate_extrap(self):
|
1959
|
+
c = [[1]]
|
1960
|
+
x = [0, 1]
|
1961
|
+
b = BPoly(c, x)
|
1962
|
+
|
1963
|
+
# default is extrapolate=True
|
1964
|
+
xp_assert_close(b.integrate(0, 2), np.asarray(2.),
|
1965
|
+
atol=1e-14, check_0d=False)
|
1966
|
+
|
1967
|
+
# .integrate argument overrides self.extrapolate
|
1968
|
+
b1 = BPoly(c, x, extrapolate=False)
|
1969
|
+
assert np.isnan(b1.integrate(0, 2))
|
1970
|
+
xp_assert_close(b1.integrate(0, 2, extrapolate=True),
|
1971
|
+
np.asarray(2.), atol=1e-14, check_0d=False)
|
1972
|
+
|
1973
|
+
def test_integrate_periodic(self):
|
1974
|
+
x = np.array([1, 2, 4])
|
1975
|
+
c = np.array([[0., 0.], [-1., -1.], [2., -0.], [1., 2.]])
|
1976
|
+
|
1977
|
+
P = BPoly.from_power_basis(PPoly(c, x), extrapolate='periodic')
|
1978
|
+
I = P.antiderivative()
|
1979
|
+
|
1980
|
+
period_int = I(4) - I(1)
|
1981
|
+
|
1982
|
+
xp_assert_close(P.integrate(1, 4), period_int) #, check_0d=False)
|
1983
|
+
xp_assert_close(P.integrate(-10, -7), period_int)
|
1984
|
+
xp_assert_close(P.integrate(-10, -4), 2 * period_int)
|
1985
|
+
|
1986
|
+
xp_assert_close(P.integrate(1.5, 2.5), I(2.5) - I(1.5))
|
1987
|
+
xp_assert_close(P.integrate(3.5, 5), I(2) - I(1) + I(4) - I(3.5))
|
1988
|
+
xp_assert_close(P.integrate(3.5 + 12, 5 + 12),
|
1989
|
+
I(2) - I(1) + I(4) - I(3.5))
|
1990
|
+
xp_assert_close(P.integrate(3.5, 5 + 12),
|
1991
|
+
I(2) - I(1) + I(4) - I(3.5) + 4 * period_int)
|
1992
|
+
|
1993
|
+
xp_assert_close(P.integrate(0, -1), I(2) - I(3))
|
1994
|
+
xp_assert_close(P.integrate(-9, -10), I(2) - I(3))
|
1995
|
+
xp_assert_close(P.integrate(0, -10), I(2) - I(3) - 3 * period_int)
|
1996
|
+
|
1997
|
+
def test_antider_neg(self):
|
1998
|
+
# .derivative(-nu) ==> .andiderivative(nu) and vice versa
|
1999
|
+
c = [[1]]
|
2000
|
+
x = [0, 1]
|
2001
|
+
b = BPoly(c, x)
|
2002
|
+
|
2003
|
+
xx = np.linspace(0, 1, 21)
|
2004
|
+
|
2005
|
+
xp_assert_close(b.derivative(-1)(xx), b.antiderivative()(xx),
|
2006
|
+
atol=1e-12, rtol=1e-12)
|
2007
|
+
xp_assert_close(b.derivative(1)(xx), b.antiderivative(-1)(xx),
|
2008
|
+
atol=1e-12, rtol=1e-12)
|
2009
|
+
|
2010
|
+
|
2011
|
+
class TestPolyConversions:
|
2012
|
+
def test_bp_from_pp(self):
|
2013
|
+
x = [0, 1, 3]
|
2014
|
+
c = [[3, 2], [1, 8], [4, 3]]
|
2015
|
+
pp = PPoly(c, x)
|
2016
|
+
bp = BPoly.from_power_basis(pp)
|
2017
|
+
pp1 = PPoly.from_bernstein_basis(bp)
|
2018
|
+
|
2019
|
+
xp = [0.1, 1.4]
|
2020
|
+
xp_assert_close(pp(xp), bp(xp))
|
2021
|
+
xp_assert_close(pp(xp), pp1(xp))
|
2022
|
+
|
2023
|
+
def test_bp_from_pp_random(self):
|
2024
|
+
rng = np.random.RandomState(1234)
|
2025
|
+
m, k = 5, 8 # number of intervals, order
|
2026
|
+
x = np.sort(rng.random(m))
|
2027
|
+
c = rng.random((k, m-1))
|
2028
|
+
pp = PPoly(c, x)
|
2029
|
+
bp = BPoly.from_power_basis(pp)
|
2030
|
+
pp1 = PPoly.from_bernstein_basis(bp)
|
2031
|
+
|
2032
|
+
xp = np.linspace(x[0], x[-1], 21)
|
2033
|
+
xp_assert_close(pp(xp), bp(xp))
|
2034
|
+
xp_assert_close(pp(xp), pp1(xp))
|
2035
|
+
|
2036
|
+
def test_pp_from_bp(self):
|
2037
|
+
x = [0, 1, 3]
|
2038
|
+
c = [[3, 3], [1, 1], [4, 2]]
|
2039
|
+
bp = BPoly(c, x)
|
2040
|
+
pp = PPoly.from_bernstein_basis(bp)
|
2041
|
+
bp1 = BPoly.from_power_basis(pp)
|
2042
|
+
|
2043
|
+
xp = [0.1, 1.4]
|
2044
|
+
xp_assert_close(bp(xp), pp(xp))
|
2045
|
+
xp_assert_close(bp(xp), bp1(xp))
|
2046
|
+
|
2047
|
+
def test_broken_conversions(self):
|
2048
|
+
# regression test for gh-10597: from_power_basis only accepts PPoly etc.
|
2049
|
+
x = [0, 1, 3]
|
2050
|
+
c = [[3, 3], [1, 1], [4, 2]]
|
2051
|
+
pp = PPoly(c, x)
|
2052
|
+
with assert_raises(TypeError):
|
2053
|
+
PPoly.from_bernstein_basis(pp)
|
2054
|
+
|
2055
|
+
bp = BPoly(c, x)
|
2056
|
+
with assert_raises(TypeError):
|
2057
|
+
BPoly.from_power_basis(bp)
|
2058
|
+
|
2059
|
+
|
2060
|
+
class TestBPolyFromDerivatives:
|
2061
|
+
def test_make_poly_1(self):
|
2062
|
+
c1 = BPoly._construct_from_derivatives(0, 1, [2], [3])
|
2063
|
+
xp_assert_close(c1, [2., 3.])
|
2064
|
+
|
2065
|
+
def test_make_poly_2(self):
|
2066
|
+
c1 = BPoly._construct_from_derivatives(0, 1, [1, 0], [1])
|
2067
|
+
xp_assert_close(c1, [1., 1., 1.])
|
2068
|
+
|
2069
|
+
# f'(0) = 3
|
2070
|
+
c2 = BPoly._construct_from_derivatives(0, 1, [2, 3], [1])
|
2071
|
+
xp_assert_close(c2, [2., 7./2, 1.])
|
2072
|
+
|
2073
|
+
# f'(1) = 3
|
2074
|
+
c3 = BPoly._construct_from_derivatives(0, 1, [2], [1, 3])
|
2075
|
+
xp_assert_close(c3, [2., -0.5, 1.])
|
2076
|
+
|
2077
|
+
def test_make_poly_3(self):
|
2078
|
+
# f'(0)=2, f''(0)=3
|
2079
|
+
c1 = BPoly._construct_from_derivatives(0, 1, [1, 2, 3], [4])
|
2080
|
+
xp_assert_close(c1, [1., 5./3, 17./6, 4.])
|
2081
|
+
|
2082
|
+
# f'(1)=2, f''(1)=3
|
2083
|
+
c2 = BPoly._construct_from_derivatives(0, 1, [1], [4, 2, 3])
|
2084
|
+
xp_assert_close(c2, [1., 19./6, 10./3, 4.])
|
2085
|
+
|
2086
|
+
# f'(0)=2, f'(1)=3
|
2087
|
+
c3 = BPoly._construct_from_derivatives(0, 1, [1, 2], [4, 3])
|
2088
|
+
xp_assert_close(c3, [1., 5./3, 3., 4.])
|
2089
|
+
|
2090
|
+
def test_make_poly_12(self):
|
2091
|
+
rng = np.random.RandomState(12345)
|
2092
|
+
ya = np.r_[0, rng.random(5)]
|
2093
|
+
yb = np.r_[0, rng.random(5)]
|
2094
|
+
|
2095
|
+
c = BPoly._construct_from_derivatives(0, 1, ya, yb)
|
2096
|
+
pp = BPoly(c[:, None], [0, 1])
|
2097
|
+
for j in range(6):
|
2098
|
+
xp_assert_close(pp(0.), ya[j], check_0d=False)
|
2099
|
+
xp_assert_close(pp(1.), yb[j], check_0d=False)
|
2100
|
+
pp = pp.derivative()
|
2101
|
+
|
2102
|
+
def test_raise_degree(self):
|
2103
|
+
rng = np.random.RandomState(12345)
|
2104
|
+
x = [0, 1]
|
2105
|
+
k, d = 8, 5
|
2106
|
+
c = rng.random((k, 1, 2, 3, 4))
|
2107
|
+
bp = BPoly(c, x)
|
2108
|
+
|
2109
|
+
c1 = BPoly._raise_degree(c, d)
|
2110
|
+
bp1 = BPoly(c1, x)
|
2111
|
+
|
2112
|
+
xp = np.linspace(0, 1, 11)
|
2113
|
+
xp_assert_close(bp(xp), bp1(xp))
|
2114
|
+
|
2115
|
+
def test_xi_yi(self):
|
2116
|
+
assert_raises(ValueError, BPoly.from_derivatives, [0, 1], [0])
|
2117
|
+
|
2118
|
+
def test_coords_order(self):
|
2119
|
+
xi = [0, 0, 1]
|
2120
|
+
yi = [[0], [0], [0]]
|
2121
|
+
assert_raises(ValueError, BPoly.from_derivatives, xi, yi)
|
2122
|
+
|
2123
|
+
def test_zeros(self):
|
2124
|
+
xi = [0, 1, 2, 3]
|
2125
|
+
yi = [[0, 0], [0], [0, 0], [0, 0]] # NB: will have to raise the degree
|
2126
|
+
pp = BPoly.from_derivatives(xi, yi)
|
2127
|
+
assert pp.c.shape == (4, 3)
|
2128
|
+
|
2129
|
+
ppd = pp.derivative()
|
2130
|
+
for xp in [0., 0.1, 1., 1.1, 1.9, 2., 2.5]:
|
2131
|
+
xp_assert_close(pp(xp), np.asarray(0.0))
|
2132
|
+
xp_assert_close(ppd(xp), np.asarray(0.0))
|
2133
|
+
|
2134
|
+
|
2135
|
+
def _make_random_mk(self, m, k):
|
2136
|
+
# k derivatives at each breakpoint
|
2137
|
+
rng = np.random.RandomState(1234)
|
2138
|
+
xi = np.asarray([1. * j**2 for j in range(m+1)])
|
2139
|
+
yi = [rng.random(k) for j in range(m+1)]
|
2140
|
+
return xi, yi
|
2141
|
+
|
2142
|
+
def test_random_12(self):
|
2143
|
+
m, k = 5, 12
|
2144
|
+
xi, yi = self._make_random_mk(m, k)
|
2145
|
+
pp = BPoly.from_derivatives(xi, yi)
|
2146
|
+
|
2147
|
+
for order in range(k//2):
|
2148
|
+
xp_assert_close(pp(xi), [yy[order] for yy in yi])
|
2149
|
+
pp = pp.derivative()
|
2150
|
+
|
2151
|
+
def test_order_zero(self):
|
2152
|
+
m, k = 5, 12
|
2153
|
+
xi, yi = self._make_random_mk(m, k)
|
2154
|
+
assert_raises(ValueError, BPoly.from_derivatives,
|
2155
|
+
**dict(xi=xi, yi=yi, orders=0))
|
2156
|
+
|
2157
|
+
def test_orders_too_high(self):
|
2158
|
+
m, k = 5, 12
|
2159
|
+
xi, yi = self._make_random_mk(m, k)
|
2160
|
+
|
2161
|
+
BPoly.from_derivatives(xi, yi, orders=2*k-1) # this is still ok
|
2162
|
+
assert_raises(ValueError, BPoly.from_derivatives, # but this is not
|
2163
|
+
**dict(xi=xi, yi=yi, orders=2*k))
|
2164
|
+
|
2165
|
+
def test_orders_global(self):
|
2166
|
+
m, k = 5, 12
|
2167
|
+
xi, yi = self._make_random_mk(m, k)
|
2168
|
+
|
2169
|
+
# ok, this is confusing. Local polynomials will be of the order 5
|
2170
|
+
# which means that up to the 2nd derivatives will be used at each point
|
2171
|
+
order = 5
|
2172
|
+
pp = BPoly.from_derivatives(xi, yi, orders=order)
|
2173
|
+
|
2174
|
+
for j in range(order//2+1):
|
2175
|
+
xp_assert_close(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12))
|
2176
|
+
pp = pp.derivative()
|
2177
|
+
assert not np.allclose(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12))
|
2178
|
+
|
2179
|
+
# now repeat with `order` being even: on each interval, it uses
|
2180
|
+
# order//2 'derivatives' @ the right-hand endpoint and
|
2181
|
+
# order//2+1 @ 'derivatives' the left-hand endpoint
|
2182
|
+
order = 6
|
2183
|
+
pp = BPoly.from_derivatives(xi, yi, orders=order)
|
2184
|
+
for j in range(order//2):
|
2185
|
+
xp_assert_close(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12))
|
2186
|
+
pp = pp.derivative()
|
2187
|
+
assert not np.allclose(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12))
|
2188
|
+
|
2189
|
+
def test_orders_local(self):
|
2190
|
+
m, k = 7, 12
|
2191
|
+
xi, yi = self._make_random_mk(m, k)
|
2192
|
+
|
2193
|
+
orders = [o + 1 for o in range(m)]
|
2194
|
+
for i, x in enumerate(xi[1:-1]):
|
2195
|
+
pp = BPoly.from_derivatives(xi, yi, orders=orders)
|
2196
|
+
for j in range(orders[i] // 2 + 1):
|
2197
|
+
xp_assert_close(pp(x - 1e-12), pp(x + 1e-12))
|
2198
|
+
pp = pp.derivative()
|
2199
|
+
assert not np.allclose(pp(x - 1e-12), pp(x + 1e-12))
|
2200
|
+
|
2201
|
+
def test_yi_trailing_dims(self):
|
2202
|
+
rng = np.random.RandomState(1234)
|
2203
|
+
m, k = 7, 5
|
2204
|
+
xi = np.sort(rng.random(m+1))
|
2205
|
+
yi = rng.random((m+1, k, 6, 7, 8))
|
2206
|
+
pp = BPoly.from_derivatives(xi, yi)
|
2207
|
+
assert pp.c.shape == (2*k, m, 6, 7, 8)
|
2208
|
+
|
2209
|
+
def test_gh_5430(self):
|
2210
|
+
# At least one of these raises an error unless gh-5430 is
|
2211
|
+
# fixed. In py2k an int is implemented using a C long, so
|
2212
|
+
# which one fails depends on your system. In py3k there is only
|
2213
|
+
# one arbitrary precision integer type, so both should fail.
|
2214
|
+
orders = np.int32(1)
|
2215
|
+
p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders)
|
2216
|
+
assert_almost_equal(p(0), np.asarray(0))
|
2217
|
+
orders = np.int64(1)
|
2218
|
+
p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders)
|
2219
|
+
assert_almost_equal(p(0), np.asarray(0))
|
2220
|
+
orders = 1
|
2221
|
+
# This worked before; make sure it still works
|
2222
|
+
p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders)
|
2223
|
+
assert_almost_equal(p(0), np.asarray(0))
|
2224
|
+
orders = 1
|
2225
|
+
|
2226
|
+
|
2227
|
+
class TestNdPPoly:
|
2228
|
+
def test_simple_1d(self):
|
2229
|
+
rng = np.random.RandomState(1234)
|
2230
|
+
|
2231
|
+
c = rng.rand(4, 5)
|
2232
|
+
x = np.linspace(0, 1, 5+1)
|
2233
|
+
|
2234
|
+
xi = rng.rand(200)
|
2235
|
+
|
2236
|
+
p = NdPPoly(c, (x,))
|
2237
|
+
v1 = p((xi,))
|
2238
|
+
|
2239
|
+
v2 = _ppoly_eval_1(c[:,:,None], x, xi).ravel()
|
2240
|
+
xp_assert_close(v1, v2)
|
2241
|
+
|
2242
|
+
def test_simple_2d(self):
|
2243
|
+
rng = np.random.RandomState(1234)
|
2244
|
+
|
2245
|
+
c = rng.rand(4, 5, 6, 7)
|
2246
|
+
x = np.linspace(0, 1, 6+1)
|
2247
|
+
y = np.linspace(0, 1, 7+1)**2
|
2248
|
+
|
2249
|
+
xi = rng.rand(200)
|
2250
|
+
yi = rng.rand(200)
|
2251
|
+
|
2252
|
+
v1 = np.empty([len(xi), 1], dtype=c.dtype)
|
2253
|
+
v1.fill(np.nan)
|
2254
|
+
_ppoly.evaluate_nd(c.reshape(4*5, 6*7, 1),
|
2255
|
+
(x, y),
|
2256
|
+
np.array([4, 5], dtype=np.intc),
|
2257
|
+
np.c_[xi, yi],
|
2258
|
+
np.array([0, 0], dtype=np.intc),
|
2259
|
+
1,
|
2260
|
+
v1)
|
2261
|
+
v1 = v1.ravel()
|
2262
|
+
v2 = _ppoly2d_eval(c, (x, y), xi, yi)
|
2263
|
+
xp_assert_close(v1, v2)
|
2264
|
+
|
2265
|
+
p = NdPPoly(c, (x, y))
|
2266
|
+
for nu in (None, (0, 0), (0, 1), (1, 0), (2, 3), (9, 2)):
|
2267
|
+
v1 = p(np.c_[xi, yi], nu=nu)
|
2268
|
+
v2 = _ppoly2d_eval(c, (x, y), xi, yi, nu=nu)
|
2269
|
+
xp_assert_close(v1, v2, err_msg=repr(nu))
|
2270
|
+
|
2271
|
+
def test_simple_3d(self):
|
2272
|
+
rng = np.random.RandomState(1234)
|
2273
|
+
|
2274
|
+
c = rng.rand(4, 5, 6, 7, 8, 9)
|
2275
|
+
x = np.linspace(0, 1, 7+1)
|
2276
|
+
y = np.linspace(0, 1, 8+1)**2
|
2277
|
+
z = np.linspace(0, 1, 9+1)**3
|
2278
|
+
|
2279
|
+
xi = rng.rand(40)
|
2280
|
+
yi = rng.rand(40)
|
2281
|
+
zi = rng.rand(40)
|
2282
|
+
|
2283
|
+
p = NdPPoly(c, (x, y, z))
|
2284
|
+
|
2285
|
+
for nu in (None, (0, 0, 0), (0, 1, 0), (1, 0, 0), (2, 3, 0),
|
2286
|
+
(6, 0, 2)):
|
2287
|
+
v1 = p((xi, yi, zi), nu=nu)
|
2288
|
+
v2 = _ppoly3d_eval(c, (x, y, z), xi, yi, zi, nu=nu)
|
2289
|
+
xp_assert_close(v1, v2, err_msg=repr(nu))
|
2290
|
+
|
2291
|
+
def test_simple_4d(self):
|
2292
|
+
rng = np.random.RandomState(1234)
|
2293
|
+
|
2294
|
+
c = rng.rand(4, 5, 6, 7, 8, 9, 10, 11)
|
2295
|
+
x = np.linspace(0, 1, 8+1)
|
2296
|
+
y = np.linspace(0, 1, 9+1)**2
|
2297
|
+
z = np.linspace(0, 1, 10+1)**3
|
2298
|
+
u = np.linspace(0, 1, 11+1)**4
|
2299
|
+
|
2300
|
+
xi = rng.rand(20)
|
2301
|
+
yi = rng.rand(20)
|
2302
|
+
zi = rng.rand(20)
|
2303
|
+
ui = rng.rand(20)
|
2304
|
+
|
2305
|
+
p = NdPPoly(c, (x, y, z, u))
|
2306
|
+
v1 = p((xi, yi, zi, ui))
|
2307
|
+
|
2308
|
+
v2 = _ppoly4d_eval(c, (x, y, z, u), xi, yi, zi, ui)
|
2309
|
+
xp_assert_close(v1, v2)
|
2310
|
+
|
2311
|
+
def test_deriv_1d(self):
|
2312
|
+
rng = np.random.RandomState(1234)
|
2313
|
+
|
2314
|
+
c = rng.rand(4, 5)
|
2315
|
+
x = np.linspace(0, 1, 5+1)
|
2316
|
+
|
2317
|
+
p = NdPPoly(c, (x,))
|
2318
|
+
|
2319
|
+
# derivative
|
2320
|
+
dp = p.derivative(nu=[1])
|
2321
|
+
p1 = PPoly(c, x)
|
2322
|
+
dp1 = p1.derivative()
|
2323
|
+
xp_assert_close(dp.c, dp1.c)
|
2324
|
+
|
2325
|
+
# antiderivative
|
2326
|
+
dp = p.antiderivative(nu=[2])
|
2327
|
+
p1 = PPoly(c, x)
|
2328
|
+
dp1 = p1.antiderivative(2)
|
2329
|
+
xp_assert_close(dp.c, dp1.c)
|
2330
|
+
|
2331
|
+
def test_deriv_3d(self):
|
2332
|
+
rng = np.random.RandomState(1234)
|
2333
|
+
|
2334
|
+
c = rng.rand(4, 5, 6, 7, 8, 9)
|
2335
|
+
x = np.linspace(0, 1, 7+1)
|
2336
|
+
y = np.linspace(0, 1, 8+1)**2
|
2337
|
+
z = np.linspace(0, 1, 9+1)**3
|
2338
|
+
|
2339
|
+
p = NdPPoly(c, (x, y, z))
|
2340
|
+
|
2341
|
+
# differentiate vs x
|
2342
|
+
p1 = PPoly(c.transpose(0, 3, 1, 2, 4, 5), x)
|
2343
|
+
dp = p.derivative(nu=[2])
|
2344
|
+
dp1 = p1.derivative(2)
|
2345
|
+
xp_assert_close(dp.c,
|
2346
|
+
dp1.c.transpose(0, 2, 3, 1, 4, 5))
|
2347
|
+
|
2348
|
+
# antidifferentiate vs y
|
2349
|
+
p1 = PPoly(c.transpose(1, 4, 0, 2, 3, 5), y)
|
2350
|
+
dp = p.antiderivative(nu=[0, 1, 0])
|
2351
|
+
dp1 = p1.antiderivative(1)
|
2352
|
+
xp_assert_close(dp.c,
|
2353
|
+
dp1.c.transpose(2, 0, 3, 4, 1, 5))
|
2354
|
+
|
2355
|
+
# differentiate vs z
|
2356
|
+
p1 = PPoly(c.transpose(2, 5, 0, 1, 3, 4), z)
|
2357
|
+
dp = p.derivative(nu=[0, 0, 3])
|
2358
|
+
dp1 = p1.derivative(3)
|
2359
|
+
xp_assert_close(dp.c,
|
2360
|
+
dp1.c.transpose(2, 3, 0, 4, 5, 1))
|
2361
|
+
|
2362
|
+
def test_deriv_3d_simple(self):
|
2363
|
+
# Integrate to obtain function x y**2 z**4 / (2! 4!)
|
2364
|
+
rng = np.random.RandomState(1234)
|
2365
|
+
|
2366
|
+
c = np.ones((1, 1, 1, 3, 4, 5))
|
2367
|
+
x = np.linspace(0, 1, 3+1)**1
|
2368
|
+
y = np.linspace(0, 1, 4+1)**2
|
2369
|
+
z = np.linspace(0, 1, 5+1)**3
|
2370
|
+
|
2371
|
+
p = NdPPoly(c, (x, y, z))
|
2372
|
+
ip = p.antiderivative((1, 0, 4))
|
2373
|
+
ip = ip.antiderivative((0, 2, 0))
|
2374
|
+
|
2375
|
+
xi = rng.rand(20)
|
2376
|
+
yi = rng.rand(20)
|
2377
|
+
zi = rng.rand(20)
|
2378
|
+
|
2379
|
+
xp_assert_close(ip((xi, yi, zi)),
|
2380
|
+
xi * yi**2 * zi**4 / (gamma(3)*gamma(5)))
|
2381
|
+
|
2382
|
+
def test_integrate_2d(self):
|
2383
|
+
rng = np.random.RandomState(1234)
|
2384
|
+
c = rng.rand(4, 5, 16, 17)
|
2385
|
+
x = np.linspace(0, 1, 16+1)**1
|
2386
|
+
y = np.linspace(0, 1, 17+1)**2
|
2387
|
+
|
2388
|
+
# make continuously differentiable so that nquad() has an
|
2389
|
+
# easier time
|
2390
|
+
c = c.transpose(0, 2, 1, 3)
|
2391
|
+
cx = c.reshape(c.shape[0], c.shape[1], -1).copy()
|
2392
|
+
_ppoly.fix_continuity(cx, x, 2)
|
2393
|
+
c = cx.reshape(c.shape)
|
2394
|
+
c = c.transpose(0, 2, 1, 3)
|
2395
|
+
c = c.transpose(1, 3, 0, 2)
|
2396
|
+
cx = c.reshape(c.shape[0], c.shape[1], -1).copy()
|
2397
|
+
_ppoly.fix_continuity(cx, y, 2)
|
2398
|
+
c = cx.reshape(c.shape)
|
2399
|
+
c = c.transpose(2, 0, 3, 1).copy()
|
2400
|
+
|
2401
|
+
# Check integration
|
2402
|
+
p = NdPPoly(c, (x, y))
|
2403
|
+
|
2404
|
+
for ranges in [[(0, 1), (0, 1)],
|
2405
|
+
[(0, 0.5), (0, 1)],
|
2406
|
+
[(0, 1), (0, 0.5)],
|
2407
|
+
[(0.3, 0.7), (0.6, 0.2)]]:
|
2408
|
+
|
2409
|
+
ig = p.integrate(ranges)
|
2410
|
+
ig2, err2 = nquad(lambda x, y: p((x, y)), ranges,
|
2411
|
+
opts=[dict(epsrel=1e-5, epsabs=1e-5)]*2)
|
2412
|
+
xp_assert_close(ig, ig2, rtol=1e-5, atol=1e-5, check_0d=False,
|
2413
|
+
err_msg=repr(ranges))
|
2414
|
+
|
2415
|
+
def test_integrate_1d(self):
|
2416
|
+
rng = np.random.RandomState(1234)
|
2417
|
+
c = rng.rand(4, 5, 6, 16, 17, 18)
|
2418
|
+
x = np.linspace(0, 1, 16+1)**1
|
2419
|
+
y = np.linspace(0, 1, 17+1)**2
|
2420
|
+
z = np.linspace(0, 1, 18+1)**3
|
2421
|
+
|
2422
|
+
# Check 1-D integration
|
2423
|
+
p = NdPPoly(c, (x, y, z))
|
2424
|
+
|
2425
|
+
u = rng.rand(200)
|
2426
|
+
v = rng.rand(200)
|
2427
|
+
a, b = 0.2, 0.7
|
2428
|
+
|
2429
|
+
px = p.integrate_1d(a, b, axis=0)
|
2430
|
+
pax = p.antiderivative((1, 0, 0))
|
2431
|
+
xp_assert_close(px((u, v)), pax((b, u, v)) - pax((a, u, v)))
|
2432
|
+
|
2433
|
+
py = p.integrate_1d(a, b, axis=1)
|
2434
|
+
pay = p.antiderivative((0, 1, 0))
|
2435
|
+
xp_assert_close(py((u, v)), pay((u, b, v)) - pay((u, a, v)))
|
2436
|
+
|
2437
|
+
pz = p.integrate_1d(a, b, axis=2)
|
2438
|
+
paz = p.antiderivative((0, 0, 1))
|
2439
|
+
xp_assert_close(pz((u, v)), paz((u, v, b)) - paz((u, v, a)))
|
2440
|
+
|
2441
|
+
@pytest.mark.thread_unsafe
|
2442
|
+
def test_concurrency(self):
|
2443
|
+
rng = np.random.default_rng(12345)
|
2444
|
+
|
2445
|
+
c = rng.uniform(size=(4, 5, 6, 7, 8, 9))
|
2446
|
+
x = np.linspace(0, 1, 7+1)
|
2447
|
+
y = np.linspace(0, 1, 8+1)**2
|
2448
|
+
z = np.linspace(0, 1, 9+1)**3
|
2449
|
+
|
2450
|
+
p = NdPPoly(c, (x, y, z))
|
2451
|
+
|
2452
|
+
def worker_fn(_, spl):
|
2453
|
+
xi = rng.uniform(size=40)
|
2454
|
+
yi = rng.uniform(size=40)
|
2455
|
+
zi = rng.uniform(size=40)
|
2456
|
+
spl((xi, yi, zi))
|
2457
|
+
|
2458
|
+
_run_concurrent_barrier(10, worker_fn, p)
|
2459
|
+
|
2460
|
+
|
2461
|
+
def _ppoly_eval_1(c, x, xps):
|
2462
|
+
"""Evaluate piecewise polynomial manually"""
|
2463
|
+
out = np.zeros((len(xps), c.shape[2]))
|
2464
|
+
for i, xp in enumerate(xps):
|
2465
|
+
if xp < 0 or xp > 1:
|
2466
|
+
out[i,:] = np.nan
|
2467
|
+
continue
|
2468
|
+
j = np.searchsorted(x, xp) - 1
|
2469
|
+
d = xp - x[j]
|
2470
|
+
assert x[j] <= xp < x[j+1]
|
2471
|
+
r = sum(c[k,j] * d**(c.shape[0]-k-1)
|
2472
|
+
for k in range(c.shape[0]))
|
2473
|
+
out[i,:] = r
|
2474
|
+
return out
|
2475
|
+
|
2476
|
+
|
2477
|
+
def _ppoly_eval_2(coeffs, breaks, xnew, fill=np.nan):
|
2478
|
+
"""Evaluate piecewise polynomial manually (another way)"""
|
2479
|
+
a = breaks[0]
|
2480
|
+
b = breaks[-1]
|
2481
|
+
K = coeffs.shape[0]
|
2482
|
+
|
2483
|
+
saveshape = np.shape(xnew)
|
2484
|
+
xnew = np.ravel(xnew)
|
2485
|
+
res = np.empty_like(xnew)
|
2486
|
+
mask = (xnew >= a) & (xnew <= b)
|
2487
|
+
res[~mask] = fill
|
2488
|
+
xx = xnew.compress(mask)
|
2489
|
+
indxs = np.searchsorted(breaks, xx)-1
|
2490
|
+
indxs = indxs.clip(0, len(breaks))
|
2491
|
+
pp = coeffs
|
2492
|
+
diff = xx - breaks.take(indxs)
|
2493
|
+
V = np.vander(diff, N=K)
|
2494
|
+
values = np.array([np.dot(V[k, :], pp[:, indxs[k]]) for k in range(len(xx))])
|
2495
|
+
res[mask] = values
|
2496
|
+
res.shape = saveshape
|
2497
|
+
return res
|
2498
|
+
|
2499
|
+
|
2500
|
+
def _dpow(x, y, n):
|
2501
|
+
"""
|
2502
|
+
d^n (x**y) / dx^n
|
2503
|
+
"""
|
2504
|
+
if n < 0:
|
2505
|
+
raise ValueError("invalid derivative order")
|
2506
|
+
elif n > y:
|
2507
|
+
return 0
|
2508
|
+
else:
|
2509
|
+
return poch(y - n + 1, n) * x**(y - n)
|
2510
|
+
|
2511
|
+
|
2512
|
+
def _ppoly2d_eval(c, xs, xnew, ynew, nu=None):
|
2513
|
+
"""
|
2514
|
+
Straightforward evaluation of 2-D piecewise polynomial
|
2515
|
+
"""
|
2516
|
+
if nu is None:
|
2517
|
+
nu = (0, 0)
|
2518
|
+
|
2519
|
+
out = np.empty((len(xnew),), dtype=c.dtype)
|
2520
|
+
|
2521
|
+
nx, ny = c.shape[:2]
|
2522
|
+
|
2523
|
+
for jout, (x, y) in enumerate(zip(xnew, ynew)):
|
2524
|
+
if not ((xs[0][0] <= x <= xs[0][-1]) and
|
2525
|
+
(xs[1][0] <= y <= xs[1][-1])):
|
2526
|
+
out[jout] = np.nan
|
2527
|
+
continue
|
2528
|
+
|
2529
|
+
j1 = np.searchsorted(xs[0], x) - 1
|
2530
|
+
j2 = np.searchsorted(xs[1], y) - 1
|
2531
|
+
|
2532
|
+
s1 = x - xs[0][j1]
|
2533
|
+
s2 = y - xs[1][j2]
|
2534
|
+
|
2535
|
+
val = 0
|
2536
|
+
|
2537
|
+
for k1 in range(c.shape[0]):
|
2538
|
+
for k2 in range(c.shape[1]):
|
2539
|
+
val += (c[nx-k1-1,ny-k2-1,j1,j2]
|
2540
|
+
* _dpow(s1, k1, nu[0])
|
2541
|
+
* _dpow(s2, k2, nu[1]))
|
2542
|
+
|
2543
|
+
out[jout] = val
|
2544
|
+
|
2545
|
+
return out
|
2546
|
+
|
2547
|
+
|
2548
|
+
def _ppoly3d_eval(c, xs, xnew, ynew, znew, nu=None):
|
2549
|
+
"""
|
2550
|
+
Straightforward evaluation of 3-D piecewise polynomial
|
2551
|
+
"""
|
2552
|
+
if nu is None:
|
2553
|
+
nu = (0, 0, 0)
|
2554
|
+
|
2555
|
+
out = np.empty((len(xnew),), dtype=c.dtype)
|
2556
|
+
|
2557
|
+
nx, ny, nz = c.shape[:3]
|
2558
|
+
|
2559
|
+
for jout, (x, y, z) in enumerate(zip(xnew, ynew, znew)):
|
2560
|
+
if not ((xs[0][0] <= x <= xs[0][-1]) and
|
2561
|
+
(xs[1][0] <= y <= xs[1][-1]) and
|
2562
|
+
(xs[2][0] <= z <= xs[2][-1])):
|
2563
|
+
out[jout] = np.nan
|
2564
|
+
continue
|
2565
|
+
|
2566
|
+
j1 = np.searchsorted(xs[0], x) - 1
|
2567
|
+
j2 = np.searchsorted(xs[1], y) - 1
|
2568
|
+
j3 = np.searchsorted(xs[2], z) - 1
|
2569
|
+
|
2570
|
+
s1 = x - xs[0][j1]
|
2571
|
+
s2 = y - xs[1][j2]
|
2572
|
+
s3 = z - xs[2][j3]
|
2573
|
+
|
2574
|
+
val = 0
|
2575
|
+
for k1 in range(c.shape[0]):
|
2576
|
+
for k2 in range(c.shape[1]):
|
2577
|
+
for k3 in range(c.shape[2]):
|
2578
|
+
val += (c[nx-k1-1,ny-k2-1,nz-k3-1,j1,j2,j3]
|
2579
|
+
* _dpow(s1, k1, nu[0])
|
2580
|
+
* _dpow(s2, k2, nu[1])
|
2581
|
+
* _dpow(s3, k3, nu[2]))
|
2582
|
+
|
2583
|
+
out[jout] = val
|
2584
|
+
|
2585
|
+
return out
|
2586
|
+
|
2587
|
+
|
2588
|
+
def _ppoly4d_eval(c, xs, xnew, ynew, znew, unew, nu=None):
|
2589
|
+
"""
|
2590
|
+
Straightforward evaluation of 4-D piecewise polynomial
|
2591
|
+
"""
|
2592
|
+
if nu is None:
|
2593
|
+
nu = (0, 0, 0, 0)
|
2594
|
+
|
2595
|
+
out = np.empty((len(xnew),), dtype=c.dtype)
|
2596
|
+
|
2597
|
+
mx, my, mz, mu = c.shape[:4]
|
2598
|
+
|
2599
|
+
for jout, (x, y, z, u) in enumerate(zip(xnew, ynew, znew, unew)):
|
2600
|
+
if not ((xs[0][0] <= x <= xs[0][-1]) and
|
2601
|
+
(xs[1][0] <= y <= xs[1][-1]) and
|
2602
|
+
(xs[2][0] <= z <= xs[2][-1]) and
|
2603
|
+
(xs[3][0] <= u <= xs[3][-1])):
|
2604
|
+
out[jout] = np.nan
|
2605
|
+
continue
|
2606
|
+
|
2607
|
+
j1 = np.searchsorted(xs[0], x) - 1
|
2608
|
+
j2 = np.searchsorted(xs[1], y) - 1
|
2609
|
+
j3 = np.searchsorted(xs[2], z) - 1
|
2610
|
+
j4 = np.searchsorted(xs[3], u) - 1
|
2611
|
+
|
2612
|
+
s1 = x - xs[0][j1]
|
2613
|
+
s2 = y - xs[1][j2]
|
2614
|
+
s3 = z - xs[2][j3]
|
2615
|
+
s4 = u - xs[3][j4]
|
2616
|
+
|
2617
|
+
val = 0
|
2618
|
+
for k1 in range(c.shape[0]):
|
2619
|
+
for k2 in range(c.shape[1]):
|
2620
|
+
for k3 in range(c.shape[2]):
|
2621
|
+
for k4 in range(c.shape[3]):
|
2622
|
+
val += (c[mx-k1-1,my-k2-1,mz-k3-1,mu-k4-1,j1,j2,j3,j4]
|
2623
|
+
* _dpow(s1, k1, nu[0])
|
2624
|
+
* _dpow(s2, k2, nu[1])
|
2625
|
+
* _dpow(s3, k3, nu[2])
|
2626
|
+
* _dpow(s4, k4, nu[3]))
|
2627
|
+
|
2628
|
+
out[jout] = val
|
2629
|
+
|
2630
|
+
return out
|