scipy 1.16.2__cp314-cp314-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1530) hide show
  1. scipy/__config__.py +161 -0
  2. scipy/__init__.py +150 -0
  3. scipy/_cyutility.cp314-win_arm64.lib +0 -0
  4. scipy/_cyutility.cp314-win_arm64.pyd +0 -0
  5. scipy/_distributor_init.py +18 -0
  6. scipy/_lib/__init__.py +14 -0
  7. scipy/_lib/_array_api.py +931 -0
  8. scipy/_lib/_array_api_compat_vendor.py +9 -0
  9. scipy/_lib/_array_api_no_0d.py +103 -0
  10. scipy/_lib/_bunch.py +229 -0
  11. scipy/_lib/_ccallback.py +251 -0
  12. scipy/_lib/_ccallback_c.cp314-win_arm64.lib +0 -0
  13. scipy/_lib/_ccallback_c.cp314-win_arm64.pyd +0 -0
  14. scipy/_lib/_disjoint_set.py +254 -0
  15. scipy/_lib/_docscrape.py +761 -0
  16. scipy/_lib/_elementwise_iterative_method.py +346 -0
  17. scipy/_lib/_fpumode.cp314-win_arm64.lib +0 -0
  18. scipy/_lib/_fpumode.cp314-win_arm64.pyd +0 -0
  19. scipy/_lib/_gcutils.py +105 -0
  20. scipy/_lib/_pep440.py +487 -0
  21. scipy/_lib/_sparse.py +41 -0
  22. scipy/_lib/_test_ccallback.cp314-win_arm64.lib +0 -0
  23. scipy/_lib/_test_ccallback.cp314-win_arm64.pyd +0 -0
  24. scipy/_lib/_test_deprecation_call.cp314-win_arm64.lib +0 -0
  25. scipy/_lib/_test_deprecation_call.cp314-win_arm64.pyd +0 -0
  26. scipy/_lib/_test_deprecation_def.cp314-win_arm64.lib +0 -0
  27. scipy/_lib/_test_deprecation_def.cp314-win_arm64.pyd +0 -0
  28. scipy/_lib/_testutils.py +373 -0
  29. scipy/_lib/_threadsafety.py +58 -0
  30. scipy/_lib/_tmpdirs.py +86 -0
  31. scipy/_lib/_uarray/LICENSE +29 -0
  32. scipy/_lib/_uarray/__init__.py +116 -0
  33. scipy/_lib/_uarray/_backend.py +707 -0
  34. scipy/_lib/_uarray/_uarray.cp314-win_arm64.lib +0 -0
  35. scipy/_lib/_uarray/_uarray.cp314-win_arm64.pyd +0 -0
  36. scipy/_lib/_util.py +1283 -0
  37. scipy/_lib/array_api_compat/__init__.py +22 -0
  38. scipy/_lib/array_api_compat/_internal.py +59 -0
  39. scipy/_lib/array_api_compat/common/__init__.py +1 -0
  40. scipy/_lib/array_api_compat/common/_aliases.py +727 -0
  41. scipy/_lib/array_api_compat/common/_fft.py +213 -0
  42. scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
  43. scipy/_lib/array_api_compat/common/_linalg.py +232 -0
  44. scipy/_lib/array_api_compat/common/_typing.py +192 -0
  45. scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
  46. scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
  47. scipy/_lib/array_api_compat/cupy/_info.py +336 -0
  48. scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
  49. scipy/_lib/array_api_compat/cupy/fft.py +36 -0
  50. scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
  51. scipy/_lib/array_api_compat/dask/__init__.py +0 -0
  52. scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
  53. scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
  54. scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
  55. scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
  56. scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
  57. scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
  58. scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
  59. scipy/_lib/array_api_compat/numpy/_info.py +366 -0
  60. scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
  61. scipy/_lib/array_api_compat/numpy/fft.py +35 -0
  62. scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
  63. scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  64. scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
  65. scipy/_lib/array_api_compat/torch/_info.py +369 -0
  66. scipy/_lib/array_api_compat/torch/_typing.py +3 -0
  67. scipy/_lib/array_api_compat/torch/fft.py +85 -0
  68. scipy/_lib/array_api_compat/torch/linalg.py +121 -0
  69. scipy/_lib/array_api_extra/__init__.py +38 -0
  70. scipy/_lib/array_api_extra/_delegation.py +171 -0
  71. scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
  72. scipy/_lib/array_api_extra/_lib/_at.py +463 -0
  73. scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
  74. scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
  75. scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
  76. scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
  77. scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
  78. scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
  79. scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
  80. scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
  81. scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
  82. scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
  83. scipy/_lib/array_api_extra/testing.py +359 -0
  84. scipy/_lib/cobyqa/__init__.py +20 -0
  85. scipy/_lib/cobyqa/framework.py +1240 -0
  86. scipy/_lib/cobyqa/main.py +1506 -0
  87. scipy/_lib/cobyqa/models.py +1529 -0
  88. scipy/_lib/cobyqa/problem.py +1296 -0
  89. scipy/_lib/cobyqa/settings.py +132 -0
  90. scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
  91. scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
  92. scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
  93. scipy/_lib/cobyqa/utils/__init__.py +18 -0
  94. scipy/_lib/cobyqa/utils/exceptions.py +22 -0
  95. scipy/_lib/cobyqa/utils/math.py +77 -0
  96. scipy/_lib/cobyqa/utils/versions.py +67 -0
  97. scipy/_lib/decorator.py +399 -0
  98. scipy/_lib/deprecation.py +274 -0
  99. scipy/_lib/doccer.py +366 -0
  100. scipy/_lib/messagestream.cp314-win_arm64.lib +0 -0
  101. scipy/_lib/messagestream.cp314-win_arm64.pyd +0 -0
  102. scipy/_lib/pyprima/__init__.py +212 -0
  103. scipy/_lib/pyprima/cobyla/__init__.py +0 -0
  104. scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
  105. scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
  106. scipy/_lib/pyprima/cobyla/geometry.py +226 -0
  107. scipy/_lib/pyprima/cobyla/initialize.py +215 -0
  108. scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
  109. scipy/_lib/pyprima/cobyla/update.py +289 -0
  110. scipy/_lib/pyprima/common/__init__.py +0 -0
  111. scipy/_lib/pyprima/common/_bounds.py +34 -0
  112. scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
  113. scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
  114. scipy/_lib/pyprima/common/_project.py +173 -0
  115. scipy/_lib/pyprima/common/checkbreak.py +93 -0
  116. scipy/_lib/pyprima/common/consts.py +47 -0
  117. scipy/_lib/pyprima/common/evaluate.py +99 -0
  118. scipy/_lib/pyprima/common/history.py +38 -0
  119. scipy/_lib/pyprima/common/infos.py +30 -0
  120. scipy/_lib/pyprima/common/linalg.py +435 -0
  121. scipy/_lib/pyprima/common/message.py +290 -0
  122. scipy/_lib/pyprima/common/powalg.py +131 -0
  123. scipy/_lib/pyprima/common/preproc.py +277 -0
  124. scipy/_lib/pyprima/common/present.py +5 -0
  125. scipy/_lib/pyprima/common/ratio.py +54 -0
  126. scipy/_lib/pyprima/common/redrho.py +47 -0
  127. scipy/_lib/pyprima/common/selectx.py +296 -0
  128. scipy/_lib/tests/__init__.py +0 -0
  129. scipy/_lib/tests/test__gcutils.py +110 -0
  130. scipy/_lib/tests/test__pep440.py +67 -0
  131. scipy/_lib/tests/test__testutils.py +32 -0
  132. scipy/_lib/tests/test__threadsafety.py +51 -0
  133. scipy/_lib/tests/test__util.py +641 -0
  134. scipy/_lib/tests/test_array_api.py +322 -0
  135. scipy/_lib/tests/test_bunch.py +169 -0
  136. scipy/_lib/tests/test_ccallback.py +196 -0
  137. scipy/_lib/tests/test_config.py +45 -0
  138. scipy/_lib/tests/test_deprecation.py +10 -0
  139. scipy/_lib/tests/test_doccer.py +143 -0
  140. scipy/_lib/tests/test_import_cycles.py +18 -0
  141. scipy/_lib/tests/test_public_api.py +482 -0
  142. scipy/_lib/tests/test_scipy_version.py +28 -0
  143. scipy/_lib/tests/test_tmpdirs.py +48 -0
  144. scipy/_lib/tests/test_warnings.py +137 -0
  145. scipy/_lib/uarray.py +31 -0
  146. scipy/cluster/__init__.py +31 -0
  147. scipy/cluster/_hierarchy.cp314-win_arm64.lib +0 -0
  148. scipy/cluster/_hierarchy.cp314-win_arm64.pyd +0 -0
  149. scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.lib +0 -0
  150. scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.pyd +0 -0
  151. scipy/cluster/_vq.cp314-win_arm64.lib +0 -0
  152. scipy/cluster/_vq.cp314-win_arm64.pyd +0 -0
  153. scipy/cluster/hierarchy.py +4348 -0
  154. scipy/cluster/tests/__init__.py +0 -0
  155. scipy/cluster/tests/hierarchy_test_data.py +145 -0
  156. scipy/cluster/tests/test_disjoint_set.py +202 -0
  157. scipy/cluster/tests/test_hierarchy.py +1238 -0
  158. scipy/cluster/tests/test_vq.py +434 -0
  159. scipy/cluster/vq.py +832 -0
  160. scipy/conftest.py +683 -0
  161. scipy/constants/__init__.py +358 -0
  162. scipy/constants/_codata.py +2266 -0
  163. scipy/constants/_constants.py +369 -0
  164. scipy/constants/codata.py +21 -0
  165. scipy/constants/constants.py +53 -0
  166. scipy/constants/tests/__init__.py +0 -0
  167. scipy/constants/tests/test_codata.py +78 -0
  168. scipy/constants/tests/test_constants.py +83 -0
  169. scipy/datasets/__init__.py +90 -0
  170. scipy/datasets/_download_all.py +71 -0
  171. scipy/datasets/_fetchers.py +225 -0
  172. scipy/datasets/_registry.py +26 -0
  173. scipy/datasets/_utils.py +81 -0
  174. scipy/datasets/tests/__init__.py +0 -0
  175. scipy/datasets/tests/test_data.py +128 -0
  176. scipy/differentiate/__init__.py +27 -0
  177. scipy/differentiate/_differentiate.py +1129 -0
  178. scipy/differentiate/tests/__init__.py +0 -0
  179. scipy/differentiate/tests/test_differentiate.py +694 -0
  180. scipy/fft/__init__.py +114 -0
  181. scipy/fft/_backend.py +196 -0
  182. scipy/fft/_basic.py +1650 -0
  183. scipy/fft/_basic_backend.py +197 -0
  184. scipy/fft/_debug_backends.py +22 -0
  185. scipy/fft/_fftlog.py +223 -0
  186. scipy/fft/_fftlog_backend.py +200 -0
  187. scipy/fft/_helper.py +348 -0
  188. scipy/fft/_pocketfft/LICENSE.md +25 -0
  189. scipy/fft/_pocketfft/__init__.py +9 -0
  190. scipy/fft/_pocketfft/basic.py +251 -0
  191. scipy/fft/_pocketfft/helper.py +249 -0
  192. scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.lib +0 -0
  193. scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.pyd +0 -0
  194. scipy/fft/_pocketfft/realtransforms.py +109 -0
  195. scipy/fft/_pocketfft/tests/__init__.py +0 -0
  196. scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
  197. scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
  198. scipy/fft/_realtransforms.py +706 -0
  199. scipy/fft/_realtransforms_backend.py +63 -0
  200. scipy/fft/tests/__init__.py +0 -0
  201. scipy/fft/tests/mock_backend.py +96 -0
  202. scipy/fft/tests/test_backend.py +98 -0
  203. scipy/fft/tests/test_basic.py +504 -0
  204. scipy/fft/tests/test_fftlog.py +215 -0
  205. scipy/fft/tests/test_helper.py +558 -0
  206. scipy/fft/tests/test_multithreading.py +84 -0
  207. scipy/fft/tests/test_real_transforms.py +247 -0
  208. scipy/fftpack/__init__.py +103 -0
  209. scipy/fftpack/_basic.py +428 -0
  210. scipy/fftpack/_helper.py +115 -0
  211. scipy/fftpack/_pseudo_diffs.py +554 -0
  212. scipy/fftpack/_realtransforms.py +598 -0
  213. scipy/fftpack/basic.py +20 -0
  214. scipy/fftpack/convolve.cp314-win_arm64.lib +0 -0
  215. scipy/fftpack/convolve.cp314-win_arm64.pyd +0 -0
  216. scipy/fftpack/helper.py +19 -0
  217. scipy/fftpack/pseudo_diffs.py +22 -0
  218. scipy/fftpack/realtransforms.py +19 -0
  219. scipy/fftpack/tests/__init__.py +0 -0
  220. scipy/fftpack/tests/fftw_double_ref.npz +0 -0
  221. scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
  222. scipy/fftpack/tests/fftw_single_ref.npz +0 -0
  223. scipy/fftpack/tests/test.npz +0 -0
  224. scipy/fftpack/tests/test_basic.py +877 -0
  225. scipy/fftpack/tests/test_helper.py +54 -0
  226. scipy/fftpack/tests/test_import.py +33 -0
  227. scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
  228. scipy/fftpack/tests/test_real_transforms.py +836 -0
  229. scipy/integrate/__init__.py +122 -0
  230. scipy/integrate/_bvp.py +1160 -0
  231. scipy/integrate/_cubature.py +729 -0
  232. scipy/integrate/_dop.cp314-win_arm64.lib +0 -0
  233. scipy/integrate/_dop.cp314-win_arm64.pyd +0 -0
  234. scipy/integrate/_ivp/__init__.py +8 -0
  235. scipy/integrate/_ivp/base.py +290 -0
  236. scipy/integrate/_ivp/bdf.py +478 -0
  237. scipy/integrate/_ivp/common.py +451 -0
  238. scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  239. scipy/integrate/_ivp/ivp.py +755 -0
  240. scipy/integrate/_ivp/lsoda.py +224 -0
  241. scipy/integrate/_ivp/radau.py +572 -0
  242. scipy/integrate/_ivp/rk.py +601 -0
  243. scipy/integrate/_ivp/tests/__init__.py +0 -0
  244. scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
  245. scipy/integrate/_ivp/tests/test_rk.py +37 -0
  246. scipy/integrate/_lebedev.py +5450 -0
  247. scipy/integrate/_lsoda.cp314-win_arm64.lib +0 -0
  248. scipy/integrate/_lsoda.cp314-win_arm64.pyd +0 -0
  249. scipy/integrate/_ode.py +1395 -0
  250. scipy/integrate/_odepack.cp314-win_arm64.lib +0 -0
  251. scipy/integrate/_odepack.cp314-win_arm64.pyd +0 -0
  252. scipy/integrate/_odepack_py.py +273 -0
  253. scipy/integrate/_quad_vec.py +674 -0
  254. scipy/integrate/_quadpack.cp314-win_arm64.lib +0 -0
  255. scipy/integrate/_quadpack.cp314-win_arm64.pyd +0 -0
  256. scipy/integrate/_quadpack_py.py +1283 -0
  257. scipy/integrate/_quadrature.py +1336 -0
  258. scipy/integrate/_rules/__init__.py +12 -0
  259. scipy/integrate/_rules/_base.py +518 -0
  260. scipy/integrate/_rules/_gauss_kronrod.py +202 -0
  261. scipy/integrate/_rules/_gauss_legendre.py +62 -0
  262. scipy/integrate/_rules/_genz_malik.py +210 -0
  263. scipy/integrate/_tanhsinh.py +1385 -0
  264. scipy/integrate/_test_multivariate.cp314-win_arm64.lib +0 -0
  265. scipy/integrate/_test_multivariate.cp314-win_arm64.pyd +0 -0
  266. scipy/integrate/_test_odeint_banded.cp314-win_arm64.lib +0 -0
  267. scipy/integrate/_test_odeint_banded.cp314-win_arm64.pyd +0 -0
  268. scipy/integrate/_vode.cp314-win_arm64.lib +0 -0
  269. scipy/integrate/_vode.cp314-win_arm64.pyd +0 -0
  270. scipy/integrate/dop.py +15 -0
  271. scipy/integrate/lsoda.py +15 -0
  272. scipy/integrate/odepack.py +17 -0
  273. scipy/integrate/quadpack.py +23 -0
  274. scipy/integrate/tests/__init__.py +0 -0
  275. scipy/integrate/tests/test__quad_vec.py +211 -0
  276. scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
  277. scipy/integrate/tests/test_bvp.py +714 -0
  278. scipy/integrate/tests/test_cubature.py +1375 -0
  279. scipy/integrate/tests/test_integrate.py +840 -0
  280. scipy/integrate/tests/test_odeint_jac.py +74 -0
  281. scipy/integrate/tests/test_quadpack.py +680 -0
  282. scipy/integrate/tests/test_quadrature.py +730 -0
  283. scipy/integrate/tests/test_tanhsinh.py +1171 -0
  284. scipy/integrate/vode.py +15 -0
  285. scipy/interpolate/__init__.py +228 -0
  286. scipy/interpolate/_bary_rational.py +715 -0
  287. scipy/interpolate/_bsplines.py +2469 -0
  288. scipy/interpolate/_cubic.py +973 -0
  289. scipy/interpolate/_dfitpack.cp314-win_arm64.lib +0 -0
  290. scipy/interpolate/_dfitpack.cp314-win_arm64.pyd +0 -0
  291. scipy/interpolate/_dierckx.cp314-win_arm64.lib +0 -0
  292. scipy/interpolate/_dierckx.cp314-win_arm64.pyd +0 -0
  293. scipy/interpolate/_fitpack.cp314-win_arm64.lib +0 -0
  294. scipy/interpolate/_fitpack.cp314-win_arm64.pyd +0 -0
  295. scipy/interpolate/_fitpack2.py +2397 -0
  296. scipy/interpolate/_fitpack_impl.py +811 -0
  297. scipy/interpolate/_fitpack_py.py +898 -0
  298. scipy/interpolate/_fitpack_repro.py +996 -0
  299. scipy/interpolate/_interpnd.cp314-win_arm64.lib +0 -0
  300. scipy/interpolate/_interpnd.cp314-win_arm64.pyd +0 -0
  301. scipy/interpolate/_interpolate.py +2266 -0
  302. scipy/interpolate/_ndbspline.py +415 -0
  303. scipy/interpolate/_ndgriddata.py +329 -0
  304. scipy/interpolate/_pade.py +67 -0
  305. scipy/interpolate/_polyint.py +1025 -0
  306. scipy/interpolate/_ppoly.cp314-win_arm64.lib +0 -0
  307. scipy/interpolate/_ppoly.cp314-win_arm64.pyd +0 -0
  308. scipy/interpolate/_rbf.py +290 -0
  309. scipy/interpolate/_rbfinterp.py +550 -0
  310. scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.lib +0 -0
  311. scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.pyd +0 -0
  312. scipy/interpolate/_rgi.py +764 -0
  313. scipy/interpolate/_rgi_cython.cp314-win_arm64.lib +0 -0
  314. scipy/interpolate/_rgi_cython.cp314-win_arm64.pyd +0 -0
  315. scipy/interpolate/dfitpack.py +24 -0
  316. scipy/interpolate/fitpack.py +31 -0
  317. scipy/interpolate/fitpack2.py +29 -0
  318. scipy/interpolate/interpnd.py +24 -0
  319. scipy/interpolate/interpolate.py +30 -0
  320. scipy/interpolate/ndgriddata.py +23 -0
  321. scipy/interpolate/polyint.py +24 -0
  322. scipy/interpolate/rbf.py +18 -0
  323. scipy/interpolate/tests/__init__.py +0 -0
  324. scipy/interpolate/tests/data/bug-1310.npz +0 -0
  325. scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
  326. scipy/interpolate/tests/data/gcvspl.npz +0 -0
  327. scipy/interpolate/tests/test_bary_rational.py +368 -0
  328. scipy/interpolate/tests/test_bsplines.py +3754 -0
  329. scipy/interpolate/tests/test_fitpack.py +519 -0
  330. scipy/interpolate/tests/test_fitpack2.py +1431 -0
  331. scipy/interpolate/tests/test_gil.py +64 -0
  332. scipy/interpolate/tests/test_interpnd.py +452 -0
  333. scipy/interpolate/tests/test_interpolate.py +2630 -0
  334. scipy/interpolate/tests/test_ndgriddata.py +308 -0
  335. scipy/interpolate/tests/test_pade.py +107 -0
  336. scipy/interpolate/tests/test_polyint.py +972 -0
  337. scipy/interpolate/tests/test_rbf.py +246 -0
  338. scipy/interpolate/tests/test_rbfinterp.py +534 -0
  339. scipy/interpolate/tests/test_rgi.py +1151 -0
  340. scipy/io/__init__.py +116 -0
  341. scipy/io/_fast_matrix_market/__init__.py +600 -0
  342. scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.lib +0 -0
  343. scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.pyd +0 -0
  344. scipy/io/_fortran.py +354 -0
  345. scipy/io/_harwell_boeing/__init__.py +7 -0
  346. scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
  347. scipy/io/_harwell_boeing/hb.py +571 -0
  348. scipy/io/_harwell_boeing/tests/__init__.py +0 -0
  349. scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
  350. scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
  351. scipy/io/_idl.py +917 -0
  352. scipy/io/_mmio.py +968 -0
  353. scipy/io/_netcdf.py +1104 -0
  354. scipy/io/_test_fortran.cp314-win_arm64.lib +0 -0
  355. scipy/io/_test_fortran.cp314-win_arm64.pyd +0 -0
  356. scipy/io/arff/__init__.py +28 -0
  357. scipy/io/arff/_arffread.py +873 -0
  358. scipy/io/arff/arffread.py +19 -0
  359. scipy/io/arff/tests/__init__.py +0 -0
  360. scipy/io/arff/tests/data/iris.arff +225 -0
  361. scipy/io/arff/tests/data/missing.arff +8 -0
  362. scipy/io/arff/tests/data/nodata.arff +11 -0
  363. scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
  364. scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
  365. scipy/io/arff/tests/data/test1.arff +10 -0
  366. scipy/io/arff/tests/data/test10.arff +8 -0
  367. scipy/io/arff/tests/data/test11.arff +11 -0
  368. scipy/io/arff/tests/data/test2.arff +15 -0
  369. scipy/io/arff/tests/data/test3.arff +6 -0
  370. scipy/io/arff/tests/data/test4.arff +11 -0
  371. scipy/io/arff/tests/data/test5.arff +26 -0
  372. scipy/io/arff/tests/data/test6.arff +12 -0
  373. scipy/io/arff/tests/data/test7.arff +15 -0
  374. scipy/io/arff/tests/data/test8.arff +12 -0
  375. scipy/io/arff/tests/data/test9.arff +14 -0
  376. scipy/io/arff/tests/test_arffread.py +421 -0
  377. scipy/io/harwell_boeing.py +17 -0
  378. scipy/io/idl.py +17 -0
  379. scipy/io/matlab/__init__.py +66 -0
  380. scipy/io/matlab/_byteordercodes.py +75 -0
  381. scipy/io/matlab/_mio.py +375 -0
  382. scipy/io/matlab/_mio4.py +632 -0
  383. scipy/io/matlab/_mio5.py +901 -0
  384. scipy/io/matlab/_mio5_params.py +281 -0
  385. scipy/io/matlab/_mio5_utils.cp314-win_arm64.lib +0 -0
  386. scipy/io/matlab/_mio5_utils.cp314-win_arm64.pyd +0 -0
  387. scipy/io/matlab/_mio_utils.cp314-win_arm64.lib +0 -0
  388. scipy/io/matlab/_mio_utils.cp314-win_arm64.pyd +0 -0
  389. scipy/io/matlab/_miobase.py +435 -0
  390. scipy/io/matlab/_streams.cp314-win_arm64.lib +0 -0
  391. scipy/io/matlab/_streams.cp314-win_arm64.pyd +0 -0
  392. scipy/io/matlab/byteordercodes.py +17 -0
  393. scipy/io/matlab/mio.py +16 -0
  394. scipy/io/matlab/mio4.py +17 -0
  395. scipy/io/matlab/mio5.py +19 -0
  396. scipy/io/matlab/mio5_params.py +18 -0
  397. scipy/io/matlab/mio5_utils.py +17 -0
  398. scipy/io/matlab/mio_utils.py +17 -0
  399. scipy/io/matlab/miobase.py +16 -0
  400. scipy/io/matlab/streams.py +16 -0
  401. scipy/io/matlab/tests/__init__.py +0 -0
  402. scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  403. scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
  404. scipy/io/matlab/tests/data/big_endian.mat +0 -0
  405. scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
  406. scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
  407. scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  408. scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
  409. scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
  410. scipy/io/matlab/tests/data/little_endian.mat +0 -0
  411. scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  412. scipy/io/matlab/tests/data/malformed1.mat +0 -0
  413. scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  414. scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  415. scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  416. scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
  417. scipy/io/matlab/tests/data/parabola.mat +0 -0
  418. scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
  419. scipy/io/matlab/tests/data/some_functions.mat +0 -0
  420. scipy/io/matlab/tests/data/sqr.mat +0 -0
  421. scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
  422. scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
  423. scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
  424. scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  425. scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
  426. scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
  427. scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  428. scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
  429. scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  430. scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
  431. scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
  432. scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
  433. scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  434. scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  435. scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
  436. scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
  437. scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
  438. scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
  439. scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
  440. scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
  441. scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
  442. scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
  443. scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
  444. scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
  445. scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
  446. scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
  447. scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
  448. scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
  449. scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
  450. scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
  451. scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
  452. scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
  453. scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
  454. scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
  455. scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
  456. scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
  457. scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
  458. scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
  459. scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
  460. scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
  461. scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
  462. scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
  463. scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
  464. scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
  465. scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
  466. scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
  467. scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
  468. scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
  469. scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
  470. scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
  471. scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
  472. scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
  473. scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
  474. scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
  475. scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
  476. scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
  477. scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
  478. scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
  479. scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
  480. scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
  481. scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
  482. scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
  483. scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
  484. scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
  485. scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
  486. scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
  487. scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
  488. scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
  489. scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
  490. scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
  491. scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
  492. scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
  493. scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
  494. scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
  495. scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
  496. scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
  497. scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
  498. scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
  499. scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
  500. scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
  501. scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
  502. scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
  503. scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
  504. scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
  505. scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
  506. scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
  507. scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
  508. scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
  509. scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
  510. scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
  511. scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
  512. scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
  513. scipy/io/matlab/tests/test_byteordercodes.py +29 -0
  514. scipy/io/matlab/tests/test_mio.py +1399 -0
  515. scipy/io/matlab/tests/test_mio5_utils.py +179 -0
  516. scipy/io/matlab/tests/test_mio_funcs.py +51 -0
  517. scipy/io/matlab/tests/test_mio_utils.py +45 -0
  518. scipy/io/matlab/tests/test_miobase.py +32 -0
  519. scipy/io/matlab/tests/test_pathological.py +33 -0
  520. scipy/io/matlab/tests/test_streams.py +241 -0
  521. scipy/io/mmio.py +17 -0
  522. scipy/io/netcdf.py +17 -0
  523. scipy/io/tests/__init__.py +0 -0
  524. scipy/io/tests/data/Transparent Busy.ani +0 -0
  525. scipy/io/tests/data/array_float32_1d.sav +0 -0
  526. scipy/io/tests/data/array_float32_2d.sav +0 -0
  527. scipy/io/tests/data/array_float32_3d.sav +0 -0
  528. scipy/io/tests/data/array_float32_4d.sav +0 -0
  529. scipy/io/tests/data/array_float32_5d.sav +0 -0
  530. scipy/io/tests/data/array_float32_6d.sav +0 -0
  531. scipy/io/tests/data/array_float32_7d.sav +0 -0
  532. scipy/io/tests/data/array_float32_8d.sav +0 -0
  533. scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
  534. scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
  535. scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
  536. scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
  537. scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
  538. scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
  539. scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
  540. scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
  541. scipy/io/tests/data/example_1.nc +0 -0
  542. scipy/io/tests/data/example_2.nc +0 -0
  543. scipy/io/tests/data/example_3_maskedvals.nc +0 -0
  544. scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
  545. scipy/io/tests/data/fortran-mixed.dat +0 -0
  546. scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
  547. scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
  548. scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
  549. scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
  550. scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
  551. scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
  552. scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
  553. scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
  554. scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
  555. scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
  556. scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
  557. scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
  558. scipy/io/tests/data/invalid_pointer.sav +0 -0
  559. scipy/io/tests/data/null_pointer.sav +0 -0
  560. scipy/io/tests/data/scalar_byte.sav +0 -0
  561. scipy/io/tests/data/scalar_byte_descr.sav +0 -0
  562. scipy/io/tests/data/scalar_complex32.sav +0 -0
  563. scipy/io/tests/data/scalar_complex64.sav +0 -0
  564. scipy/io/tests/data/scalar_float32.sav +0 -0
  565. scipy/io/tests/data/scalar_float64.sav +0 -0
  566. scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
  567. scipy/io/tests/data/scalar_int16.sav +0 -0
  568. scipy/io/tests/data/scalar_int32.sav +0 -0
  569. scipy/io/tests/data/scalar_int64.sav +0 -0
  570. scipy/io/tests/data/scalar_string.sav +0 -0
  571. scipy/io/tests/data/scalar_uint16.sav +0 -0
  572. scipy/io/tests/data/scalar_uint32.sav +0 -0
  573. scipy/io/tests/data/scalar_uint64.sav +0 -0
  574. scipy/io/tests/data/struct_arrays.sav +0 -0
  575. scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
  576. scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
  577. scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
  578. scipy/io/tests/data/struct_inherit.sav +0 -0
  579. scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
  580. scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
  581. scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
  582. scipy/io/tests/data/struct_pointers.sav +0 -0
  583. scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
  584. scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
  585. scipy/io/tests/data/struct_scalars.sav +0 -0
  586. scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
  587. scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
  588. scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
  589. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
  590. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
  591. scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
  592. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
  593. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
  594. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
  595. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
  596. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
  597. scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
  598. scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
  599. scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
  600. scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
  601. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
  602. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
  603. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
  604. scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
  605. scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
  606. scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
  607. scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
  608. scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
  609. scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
  610. scipy/io/tests/data/various_compressed.sav +0 -0
  611. scipy/io/tests/test_fortran.py +264 -0
  612. scipy/io/tests/test_idl.py +483 -0
  613. scipy/io/tests/test_mmio.py +831 -0
  614. scipy/io/tests/test_netcdf.py +550 -0
  615. scipy/io/tests/test_paths.py +93 -0
  616. scipy/io/tests/test_wavfile.py +501 -0
  617. scipy/io/wavfile.py +938 -0
  618. scipy/linalg/__init__.pxd +1 -0
  619. scipy/linalg/__init__.py +236 -0
  620. scipy/linalg/_basic.py +2146 -0
  621. scipy/linalg/_blas_subroutines.h +164 -0
  622. scipy/linalg/_cythonized_array_utils.cp314-win_arm64.lib +0 -0
  623. scipy/linalg/_cythonized_array_utils.cp314-win_arm64.pyd +0 -0
  624. scipy/linalg/_cythonized_array_utils.pxd +40 -0
  625. scipy/linalg/_cythonized_array_utils.pyi +16 -0
  626. scipy/linalg/_decomp.py +1645 -0
  627. scipy/linalg/_decomp_cholesky.py +413 -0
  628. scipy/linalg/_decomp_cossin.py +236 -0
  629. scipy/linalg/_decomp_interpolative.cp314-win_arm64.lib +0 -0
  630. scipy/linalg/_decomp_interpolative.cp314-win_arm64.pyd +0 -0
  631. scipy/linalg/_decomp_ldl.py +356 -0
  632. scipy/linalg/_decomp_lu.py +401 -0
  633. scipy/linalg/_decomp_lu_cython.cp314-win_arm64.lib +0 -0
  634. scipy/linalg/_decomp_lu_cython.cp314-win_arm64.pyd +0 -0
  635. scipy/linalg/_decomp_lu_cython.pyi +6 -0
  636. scipy/linalg/_decomp_polar.py +113 -0
  637. scipy/linalg/_decomp_qr.py +494 -0
  638. scipy/linalg/_decomp_qz.py +452 -0
  639. scipy/linalg/_decomp_schur.py +336 -0
  640. scipy/linalg/_decomp_svd.py +545 -0
  641. scipy/linalg/_decomp_update.cp314-win_arm64.lib +0 -0
  642. scipy/linalg/_decomp_update.cp314-win_arm64.pyd +0 -0
  643. scipy/linalg/_expm_frechet.py +417 -0
  644. scipy/linalg/_fblas.cp314-win_arm64.lib +0 -0
  645. scipy/linalg/_fblas.cp314-win_arm64.pyd +0 -0
  646. scipy/linalg/_flapack.cp314-win_arm64.lib +0 -0
  647. scipy/linalg/_flapack.cp314-win_arm64.pyd +0 -0
  648. scipy/linalg/_lapack_subroutines.h +1521 -0
  649. scipy/linalg/_linalg_pythran.cp314-win_arm64.lib +0 -0
  650. scipy/linalg/_linalg_pythran.cp314-win_arm64.pyd +0 -0
  651. scipy/linalg/_matfuncs.py +1050 -0
  652. scipy/linalg/_matfuncs_expm.cp314-win_arm64.lib +0 -0
  653. scipy/linalg/_matfuncs_expm.cp314-win_arm64.pyd +0 -0
  654. scipy/linalg/_matfuncs_expm.pyi +6 -0
  655. scipy/linalg/_matfuncs_inv_ssq.py +886 -0
  656. scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.lib +0 -0
  657. scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.pyd +0 -0
  658. scipy/linalg/_matfuncs_sqrtm.py +107 -0
  659. scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.lib +0 -0
  660. scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.pyd +0 -0
  661. scipy/linalg/_misc.py +191 -0
  662. scipy/linalg/_procrustes.py +113 -0
  663. scipy/linalg/_sketches.py +189 -0
  664. scipy/linalg/_solve_toeplitz.cp314-win_arm64.lib +0 -0
  665. scipy/linalg/_solve_toeplitz.cp314-win_arm64.pyd +0 -0
  666. scipy/linalg/_solvers.py +862 -0
  667. scipy/linalg/_special_matrices.py +1322 -0
  668. scipy/linalg/_testutils.py +65 -0
  669. scipy/linalg/basic.py +23 -0
  670. scipy/linalg/blas.py +495 -0
  671. scipy/linalg/cython_blas.cp314-win_arm64.lib +0 -0
  672. scipy/linalg/cython_blas.cp314-win_arm64.pyd +0 -0
  673. scipy/linalg/cython_blas.pxd +169 -0
  674. scipy/linalg/cython_blas.pyx +1432 -0
  675. scipy/linalg/cython_lapack.cp314-win_arm64.lib +0 -0
  676. scipy/linalg/cython_lapack.cp314-win_arm64.pyd +0 -0
  677. scipy/linalg/cython_lapack.pxd +1528 -0
  678. scipy/linalg/cython_lapack.pyx +12045 -0
  679. scipy/linalg/decomp.py +23 -0
  680. scipy/linalg/decomp_cholesky.py +21 -0
  681. scipy/linalg/decomp_lu.py +21 -0
  682. scipy/linalg/decomp_qr.py +20 -0
  683. scipy/linalg/decomp_schur.py +21 -0
  684. scipy/linalg/decomp_svd.py +21 -0
  685. scipy/linalg/interpolative.py +989 -0
  686. scipy/linalg/lapack.py +1081 -0
  687. scipy/linalg/matfuncs.py +23 -0
  688. scipy/linalg/misc.py +21 -0
  689. scipy/linalg/special_matrices.py +22 -0
  690. scipy/linalg/tests/__init__.py +0 -0
  691. scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
  692. scipy/linalg/tests/_cython_examples/meson.build +34 -0
  693. scipy/linalg/tests/data/carex_15_data.npz +0 -0
  694. scipy/linalg/tests/data/carex_18_data.npz +0 -0
  695. scipy/linalg/tests/data/carex_19_data.npz +0 -0
  696. scipy/linalg/tests/data/carex_20_data.npz +0 -0
  697. scipy/linalg/tests/data/carex_6_data.npz +0 -0
  698. scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
  699. scipy/linalg/tests/test_basic.py +2074 -0
  700. scipy/linalg/tests/test_batch.py +588 -0
  701. scipy/linalg/tests/test_blas.py +1127 -0
  702. scipy/linalg/tests/test_cython_blas.py +118 -0
  703. scipy/linalg/tests/test_cython_lapack.py +22 -0
  704. scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
  705. scipy/linalg/tests/test_decomp.py +3189 -0
  706. scipy/linalg/tests/test_decomp_cholesky.py +268 -0
  707. scipy/linalg/tests/test_decomp_cossin.py +314 -0
  708. scipy/linalg/tests/test_decomp_ldl.py +137 -0
  709. scipy/linalg/tests/test_decomp_lu.py +308 -0
  710. scipy/linalg/tests/test_decomp_polar.py +110 -0
  711. scipy/linalg/tests/test_decomp_update.py +1701 -0
  712. scipy/linalg/tests/test_extending.py +46 -0
  713. scipy/linalg/tests/test_fblas.py +607 -0
  714. scipy/linalg/tests/test_interpolative.py +232 -0
  715. scipy/linalg/tests/test_lapack.py +3620 -0
  716. scipy/linalg/tests/test_matfuncs.py +1125 -0
  717. scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
  718. scipy/linalg/tests/test_procrustes.py +214 -0
  719. scipy/linalg/tests/test_sketches.py +118 -0
  720. scipy/linalg/tests/test_solve_toeplitz.py +150 -0
  721. scipy/linalg/tests/test_solvers.py +844 -0
  722. scipy/linalg/tests/test_special_matrices.py +636 -0
  723. scipy/misc/__init__.py +6 -0
  724. scipy/misc/common.py +6 -0
  725. scipy/misc/doccer.py +6 -0
  726. scipy/ndimage/__init__.py +174 -0
  727. scipy/ndimage/_ctest.cp314-win_arm64.lib +0 -0
  728. scipy/ndimage/_ctest.cp314-win_arm64.pyd +0 -0
  729. scipy/ndimage/_cytest.cp314-win_arm64.lib +0 -0
  730. scipy/ndimage/_cytest.cp314-win_arm64.pyd +0 -0
  731. scipy/ndimage/_delegators.py +303 -0
  732. scipy/ndimage/_filters.py +2422 -0
  733. scipy/ndimage/_fourier.py +306 -0
  734. scipy/ndimage/_interpolation.py +1033 -0
  735. scipy/ndimage/_measurements.py +1689 -0
  736. scipy/ndimage/_morphology.py +2634 -0
  737. scipy/ndimage/_nd_image.cp314-win_arm64.lib +0 -0
  738. scipy/ndimage/_nd_image.cp314-win_arm64.pyd +0 -0
  739. scipy/ndimage/_ndimage_api.py +16 -0
  740. scipy/ndimage/_ni_docstrings.py +214 -0
  741. scipy/ndimage/_ni_label.cp314-win_arm64.lib +0 -0
  742. scipy/ndimage/_ni_label.cp314-win_arm64.pyd +0 -0
  743. scipy/ndimage/_ni_support.py +139 -0
  744. scipy/ndimage/_rank_filter_1d.cp314-win_arm64.lib +0 -0
  745. scipy/ndimage/_rank_filter_1d.cp314-win_arm64.pyd +0 -0
  746. scipy/ndimage/_support_alternative_backends.py +84 -0
  747. scipy/ndimage/filters.py +27 -0
  748. scipy/ndimage/fourier.py +21 -0
  749. scipy/ndimage/interpolation.py +22 -0
  750. scipy/ndimage/measurements.py +24 -0
  751. scipy/ndimage/morphology.py +27 -0
  752. scipy/ndimage/tests/__init__.py +12 -0
  753. scipy/ndimage/tests/data/label_inputs.txt +21 -0
  754. scipy/ndimage/tests/data/label_results.txt +294 -0
  755. scipy/ndimage/tests/data/label_strels.txt +42 -0
  756. scipy/ndimage/tests/dots.png +0 -0
  757. scipy/ndimage/tests/test_c_api.py +102 -0
  758. scipy/ndimage/tests/test_datatypes.py +67 -0
  759. scipy/ndimage/tests/test_filters.py +3083 -0
  760. scipy/ndimage/tests/test_fourier.py +187 -0
  761. scipy/ndimage/tests/test_interpolation.py +1491 -0
  762. scipy/ndimage/tests/test_measurements.py +1592 -0
  763. scipy/ndimage/tests/test_morphology.py +2950 -0
  764. scipy/ndimage/tests/test_ni_support.py +78 -0
  765. scipy/ndimage/tests/test_splines.py +70 -0
  766. scipy/odr/__init__.py +131 -0
  767. scipy/odr/__odrpack.cp314-win_arm64.lib +0 -0
  768. scipy/odr/__odrpack.cp314-win_arm64.pyd +0 -0
  769. scipy/odr/_add_newdocs.py +34 -0
  770. scipy/odr/_models.py +315 -0
  771. scipy/odr/_odrpack.py +1154 -0
  772. scipy/odr/models.py +20 -0
  773. scipy/odr/odrpack.py +21 -0
  774. scipy/odr/tests/__init__.py +0 -0
  775. scipy/odr/tests/test_odr.py +607 -0
  776. scipy/optimize/__init__.pxd +1 -0
  777. scipy/optimize/__init__.py +460 -0
  778. scipy/optimize/_basinhopping.py +741 -0
  779. scipy/optimize/_bglu_dense.cp314-win_arm64.lib +0 -0
  780. scipy/optimize/_bglu_dense.cp314-win_arm64.pyd +0 -0
  781. scipy/optimize/_bracket.py +706 -0
  782. scipy/optimize/_chandrupatla.py +551 -0
  783. scipy/optimize/_cobyla_py.py +297 -0
  784. scipy/optimize/_cobyqa_py.py +72 -0
  785. scipy/optimize/_constraints.py +598 -0
  786. scipy/optimize/_dcsrch.py +728 -0
  787. scipy/optimize/_differentiable_functions.py +835 -0
  788. scipy/optimize/_differentialevolution.py +1970 -0
  789. scipy/optimize/_direct.cp314-win_arm64.lib +0 -0
  790. scipy/optimize/_direct.cp314-win_arm64.pyd +0 -0
  791. scipy/optimize/_direct_py.py +280 -0
  792. scipy/optimize/_dual_annealing.py +732 -0
  793. scipy/optimize/_elementwise.py +798 -0
  794. scipy/optimize/_group_columns.cp314-win_arm64.lib +0 -0
  795. scipy/optimize/_group_columns.cp314-win_arm64.pyd +0 -0
  796. scipy/optimize/_hessian_update_strategy.py +479 -0
  797. scipy/optimize/_highspy/__init__.py +0 -0
  798. scipy/optimize/_highspy/_core.cp314-win_arm64.lib +0 -0
  799. scipy/optimize/_highspy/_core.cp314-win_arm64.pyd +0 -0
  800. scipy/optimize/_highspy/_highs_options.cp314-win_arm64.lib +0 -0
  801. scipy/optimize/_highspy/_highs_options.cp314-win_arm64.pyd +0 -0
  802. scipy/optimize/_highspy/_highs_wrapper.py +338 -0
  803. scipy/optimize/_isotonic.py +157 -0
  804. scipy/optimize/_lbfgsb.cp314-win_arm64.lib +0 -0
  805. scipy/optimize/_lbfgsb.cp314-win_arm64.pyd +0 -0
  806. scipy/optimize/_lbfgsb_py.py +634 -0
  807. scipy/optimize/_linesearch.py +896 -0
  808. scipy/optimize/_linprog.py +733 -0
  809. scipy/optimize/_linprog_doc.py +1434 -0
  810. scipy/optimize/_linprog_highs.py +422 -0
  811. scipy/optimize/_linprog_ip.py +1141 -0
  812. scipy/optimize/_linprog_rs.py +572 -0
  813. scipy/optimize/_linprog_simplex.py +663 -0
  814. scipy/optimize/_linprog_util.py +1521 -0
  815. scipy/optimize/_lsap.cp314-win_arm64.lib +0 -0
  816. scipy/optimize/_lsap.cp314-win_arm64.pyd +0 -0
  817. scipy/optimize/_lsq/__init__.py +5 -0
  818. scipy/optimize/_lsq/bvls.py +183 -0
  819. scipy/optimize/_lsq/common.py +731 -0
  820. scipy/optimize/_lsq/dogbox.py +345 -0
  821. scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.lib +0 -0
  822. scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.pyd +0 -0
  823. scipy/optimize/_lsq/least_squares.py +1044 -0
  824. scipy/optimize/_lsq/lsq_linear.py +361 -0
  825. scipy/optimize/_lsq/trf.py +587 -0
  826. scipy/optimize/_lsq/trf_linear.py +249 -0
  827. scipy/optimize/_milp.py +394 -0
  828. scipy/optimize/_minimize.py +1199 -0
  829. scipy/optimize/_minpack.cp314-win_arm64.lib +0 -0
  830. scipy/optimize/_minpack.cp314-win_arm64.pyd +0 -0
  831. scipy/optimize/_minpack_py.py +1178 -0
  832. scipy/optimize/_moduleTNC.cp314-win_arm64.lib +0 -0
  833. scipy/optimize/_moduleTNC.cp314-win_arm64.pyd +0 -0
  834. scipy/optimize/_nnls.py +96 -0
  835. scipy/optimize/_nonlin.py +1634 -0
  836. scipy/optimize/_numdiff.py +963 -0
  837. scipy/optimize/_optimize.py +4169 -0
  838. scipy/optimize/_pava_pybind.cp314-win_arm64.lib +0 -0
  839. scipy/optimize/_pava_pybind.cp314-win_arm64.pyd +0 -0
  840. scipy/optimize/_qap.py +760 -0
  841. scipy/optimize/_remove_redundancy.py +522 -0
  842. scipy/optimize/_root.py +732 -0
  843. scipy/optimize/_root_scalar.py +538 -0
  844. scipy/optimize/_shgo.py +1606 -0
  845. scipy/optimize/_shgo_lib/__init__.py +0 -0
  846. scipy/optimize/_shgo_lib/_complex.py +1225 -0
  847. scipy/optimize/_shgo_lib/_vertex.py +460 -0
  848. scipy/optimize/_slsqp_py.py +603 -0
  849. scipy/optimize/_slsqplib.cp314-win_arm64.lib +0 -0
  850. scipy/optimize/_slsqplib.cp314-win_arm64.pyd +0 -0
  851. scipy/optimize/_spectral.py +260 -0
  852. scipy/optimize/_tnc.py +438 -0
  853. scipy/optimize/_trlib/__init__.py +12 -0
  854. scipy/optimize/_trlib/_trlib.cp314-win_arm64.lib +0 -0
  855. scipy/optimize/_trlib/_trlib.cp314-win_arm64.pyd +0 -0
  856. scipy/optimize/_trustregion.py +318 -0
  857. scipy/optimize/_trustregion_constr/__init__.py +6 -0
  858. scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
  859. scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
  860. scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
  861. scipy/optimize/_trustregion_constr/projections.py +411 -0
  862. scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
  863. scipy/optimize/_trustregion_constr/report.py +49 -0
  864. scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
  865. scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
  866. scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
  867. scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
  868. scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
  869. scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
  870. scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
  871. scipy/optimize/_trustregion_dogleg.py +122 -0
  872. scipy/optimize/_trustregion_exact.py +437 -0
  873. scipy/optimize/_trustregion_krylov.py +65 -0
  874. scipy/optimize/_trustregion_ncg.py +126 -0
  875. scipy/optimize/_tstutils.py +972 -0
  876. scipy/optimize/_zeros.cp314-win_arm64.lib +0 -0
  877. scipy/optimize/_zeros.cp314-win_arm64.pyd +0 -0
  878. scipy/optimize/_zeros_py.py +1475 -0
  879. scipy/optimize/cobyla.py +19 -0
  880. scipy/optimize/cython_optimize/__init__.py +133 -0
  881. scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.lib +0 -0
  882. scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.pyd +0 -0
  883. scipy/optimize/cython_optimize/_zeros.pxd +33 -0
  884. scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
  885. scipy/optimize/cython_optimize.pxd +11 -0
  886. scipy/optimize/elementwise.py +38 -0
  887. scipy/optimize/lbfgsb.py +23 -0
  888. scipy/optimize/linesearch.py +18 -0
  889. scipy/optimize/minpack.py +27 -0
  890. scipy/optimize/minpack2.py +17 -0
  891. scipy/optimize/moduleTNC.py +19 -0
  892. scipy/optimize/nonlin.py +29 -0
  893. scipy/optimize/optimize.py +40 -0
  894. scipy/optimize/slsqp.py +22 -0
  895. scipy/optimize/tests/__init__.py +0 -0
  896. scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
  897. scipy/optimize/tests/_cython_examples/meson.build +32 -0
  898. scipy/optimize/tests/test__basinhopping.py +535 -0
  899. scipy/optimize/tests/test__differential_evolution.py +1703 -0
  900. scipy/optimize/tests/test__dual_annealing.py +416 -0
  901. scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
  902. scipy/optimize/tests/test__numdiff.py +885 -0
  903. scipy/optimize/tests/test__remove_redundancy.py +228 -0
  904. scipy/optimize/tests/test__root.py +124 -0
  905. scipy/optimize/tests/test__shgo.py +1164 -0
  906. scipy/optimize/tests/test__spectral.py +226 -0
  907. scipy/optimize/tests/test_bracket.py +896 -0
  908. scipy/optimize/tests/test_chandrupatla.py +982 -0
  909. scipy/optimize/tests/test_cobyla.py +195 -0
  910. scipy/optimize/tests/test_cobyqa.py +252 -0
  911. scipy/optimize/tests/test_constraint_conversion.py +286 -0
  912. scipy/optimize/tests/test_constraints.py +255 -0
  913. scipy/optimize/tests/test_cython_optimize.py +92 -0
  914. scipy/optimize/tests/test_differentiable_functions.py +1025 -0
  915. scipy/optimize/tests/test_direct.py +321 -0
  916. scipy/optimize/tests/test_extending.py +28 -0
  917. scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
  918. scipy/optimize/tests/test_isotonic_regression.py +167 -0
  919. scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
  920. scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
  921. scipy/optimize/tests/test_least_squares.py +986 -0
  922. scipy/optimize/tests/test_linear_assignment.py +116 -0
  923. scipy/optimize/tests/test_linesearch.py +328 -0
  924. scipy/optimize/tests/test_linprog.py +2577 -0
  925. scipy/optimize/tests/test_lsq_common.py +297 -0
  926. scipy/optimize/tests/test_lsq_linear.py +287 -0
  927. scipy/optimize/tests/test_milp.py +459 -0
  928. scipy/optimize/tests/test_minimize_constrained.py +845 -0
  929. scipy/optimize/tests/test_minpack.py +1194 -0
  930. scipy/optimize/tests/test_nnls.py +469 -0
  931. scipy/optimize/tests/test_nonlin.py +572 -0
  932. scipy/optimize/tests/test_optimize.py +3344 -0
  933. scipy/optimize/tests/test_quadratic_assignment.py +455 -0
  934. scipy/optimize/tests/test_regression.py +40 -0
  935. scipy/optimize/tests/test_slsqp.py +645 -0
  936. scipy/optimize/tests/test_tnc.py +345 -0
  937. scipy/optimize/tests/test_trustregion.py +110 -0
  938. scipy/optimize/tests/test_trustregion_exact.py +351 -0
  939. scipy/optimize/tests/test_trustregion_krylov.py +170 -0
  940. scipy/optimize/tests/test_zeros.py +998 -0
  941. scipy/optimize/tnc.py +22 -0
  942. scipy/optimize/zeros.py +26 -0
  943. scipy/signal/__init__.py +316 -0
  944. scipy/signal/_arraytools.py +264 -0
  945. scipy/signal/_czt.py +575 -0
  946. scipy/signal/_delegators.py +568 -0
  947. scipy/signal/_filter_design.py +5893 -0
  948. scipy/signal/_fir_filter_design.py +1458 -0
  949. scipy/signal/_lti_conversion.py +534 -0
  950. scipy/signal/_ltisys.py +3546 -0
  951. scipy/signal/_max_len_seq.py +139 -0
  952. scipy/signal/_max_len_seq_inner.cp314-win_arm64.lib +0 -0
  953. scipy/signal/_max_len_seq_inner.cp314-win_arm64.pyd +0 -0
  954. scipy/signal/_peak_finding.py +1310 -0
  955. scipy/signal/_peak_finding_utils.cp314-win_arm64.lib +0 -0
  956. scipy/signal/_peak_finding_utils.cp314-win_arm64.pyd +0 -0
  957. scipy/signal/_polyutils.py +172 -0
  958. scipy/signal/_savitzky_golay.py +357 -0
  959. scipy/signal/_short_time_fft.py +2228 -0
  960. scipy/signal/_signal_api.py +30 -0
  961. scipy/signal/_signaltools.py +5309 -0
  962. scipy/signal/_sigtools.cp314-win_arm64.lib +0 -0
  963. scipy/signal/_sigtools.cp314-win_arm64.pyd +0 -0
  964. scipy/signal/_sosfilt.cp314-win_arm64.lib +0 -0
  965. scipy/signal/_sosfilt.cp314-win_arm64.pyd +0 -0
  966. scipy/signal/_spectral_py.py +2471 -0
  967. scipy/signal/_spline.cp314-win_arm64.lib +0 -0
  968. scipy/signal/_spline.cp314-win_arm64.pyd +0 -0
  969. scipy/signal/_spline.pyi +34 -0
  970. scipy/signal/_spline_filters.py +848 -0
  971. scipy/signal/_support_alternative_backends.py +73 -0
  972. scipy/signal/_upfirdn.py +219 -0
  973. scipy/signal/_upfirdn_apply.cp314-win_arm64.lib +0 -0
  974. scipy/signal/_upfirdn_apply.cp314-win_arm64.pyd +0 -0
  975. scipy/signal/_waveforms.py +687 -0
  976. scipy/signal/_wavelets.py +29 -0
  977. scipy/signal/bsplines.py +21 -0
  978. scipy/signal/filter_design.py +28 -0
  979. scipy/signal/fir_filter_design.py +21 -0
  980. scipy/signal/lti_conversion.py +20 -0
  981. scipy/signal/ltisys.py +25 -0
  982. scipy/signal/signaltools.py +27 -0
  983. scipy/signal/spectral.py +21 -0
  984. scipy/signal/spline.py +18 -0
  985. scipy/signal/tests/__init__.py +0 -0
  986. scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
  987. scipy/signal/tests/mpsig.py +122 -0
  988. scipy/signal/tests/test_array_tools.py +111 -0
  989. scipy/signal/tests/test_bsplines.py +365 -0
  990. scipy/signal/tests/test_cont2discrete.py +424 -0
  991. scipy/signal/tests/test_czt.py +221 -0
  992. scipy/signal/tests/test_dltisys.py +599 -0
  993. scipy/signal/tests/test_filter_design.py +4744 -0
  994. scipy/signal/tests/test_fir_filter_design.py +851 -0
  995. scipy/signal/tests/test_ltisys.py +1225 -0
  996. scipy/signal/tests/test_max_len_seq.py +71 -0
  997. scipy/signal/tests/test_peak_finding.py +915 -0
  998. scipy/signal/tests/test_result_type.py +51 -0
  999. scipy/signal/tests/test_savitzky_golay.py +363 -0
  1000. scipy/signal/tests/test_short_time_fft.py +1107 -0
  1001. scipy/signal/tests/test_signaltools.py +4735 -0
  1002. scipy/signal/tests/test_spectral.py +2141 -0
  1003. scipy/signal/tests/test_splines.py +427 -0
  1004. scipy/signal/tests/test_upfirdn.py +322 -0
  1005. scipy/signal/tests/test_waveforms.py +400 -0
  1006. scipy/signal/tests/test_wavelets.py +59 -0
  1007. scipy/signal/tests/test_windows.py +987 -0
  1008. scipy/signal/waveforms.py +20 -0
  1009. scipy/signal/wavelets.py +17 -0
  1010. scipy/signal/windows/__init__.py +52 -0
  1011. scipy/signal/windows/_windows.py +2513 -0
  1012. scipy/signal/windows/windows.py +23 -0
  1013. scipy/sparse/__init__.py +350 -0
  1014. scipy/sparse/_base.py +1613 -0
  1015. scipy/sparse/_bsr.py +880 -0
  1016. scipy/sparse/_compressed.py +1328 -0
  1017. scipy/sparse/_construct.py +1454 -0
  1018. scipy/sparse/_coo.py +1581 -0
  1019. scipy/sparse/_csc.py +367 -0
  1020. scipy/sparse/_csparsetools.cp314-win_arm64.lib +0 -0
  1021. scipy/sparse/_csparsetools.cp314-win_arm64.pyd +0 -0
  1022. scipy/sparse/_csr.py +558 -0
  1023. scipy/sparse/_data.py +569 -0
  1024. scipy/sparse/_dia.py +677 -0
  1025. scipy/sparse/_dok.py +669 -0
  1026. scipy/sparse/_extract.py +178 -0
  1027. scipy/sparse/_index.py +444 -0
  1028. scipy/sparse/_lil.py +632 -0
  1029. scipy/sparse/_matrix.py +169 -0
  1030. scipy/sparse/_matrix_io.py +167 -0
  1031. scipy/sparse/_sparsetools.cp314-win_arm64.lib +0 -0
  1032. scipy/sparse/_sparsetools.cp314-win_arm64.pyd +0 -0
  1033. scipy/sparse/_spfuncs.py +76 -0
  1034. scipy/sparse/_sputils.py +632 -0
  1035. scipy/sparse/base.py +24 -0
  1036. scipy/sparse/bsr.py +22 -0
  1037. scipy/sparse/compressed.py +20 -0
  1038. scipy/sparse/construct.py +38 -0
  1039. scipy/sparse/coo.py +23 -0
  1040. scipy/sparse/csc.py +22 -0
  1041. scipy/sparse/csgraph/__init__.py +210 -0
  1042. scipy/sparse/csgraph/_flow.cp314-win_arm64.lib +0 -0
  1043. scipy/sparse/csgraph/_flow.cp314-win_arm64.pyd +0 -0
  1044. scipy/sparse/csgraph/_laplacian.py +563 -0
  1045. scipy/sparse/csgraph/_matching.cp314-win_arm64.lib +0 -0
  1046. scipy/sparse/csgraph/_matching.cp314-win_arm64.pyd +0 -0
  1047. scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.lib +0 -0
  1048. scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.pyd +0 -0
  1049. scipy/sparse/csgraph/_reordering.cp314-win_arm64.lib +0 -0
  1050. scipy/sparse/csgraph/_reordering.cp314-win_arm64.pyd +0 -0
  1051. scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.lib +0 -0
  1052. scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.pyd +0 -0
  1053. scipy/sparse/csgraph/_tools.cp314-win_arm64.lib +0 -0
  1054. scipy/sparse/csgraph/_tools.cp314-win_arm64.pyd +0 -0
  1055. scipy/sparse/csgraph/_traversal.cp314-win_arm64.lib +0 -0
  1056. scipy/sparse/csgraph/_traversal.cp314-win_arm64.pyd +0 -0
  1057. scipy/sparse/csgraph/_validation.py +66 -0
  1058. scipy/sparse/csgraph/tests/__init__.py +0 -0
  1059. scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
  1060. scipy/sparse/csgraph/tests/test_conversions.py +61 -0
  1061. scipy/sparse/csgraph/tests/test_flow.py +209 -0
  1062. scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
  1063. scipy/sparse/csgraph/tests/test_matching.py +307 -0
  1064. scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
  1065. scipy/sparse/csgraph/tests/test_reordering.py +70 -0
  1066. scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
  1067. scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
  1068. scipy/sparse/csgraph/tests/test_traversal.py +148 -0
  1069. scipy/sparse/csr.py +22 -0
  1070. scipy/sparse/data.py +18 -0
  1071. scipy/sparse/dia.py +22 -0
  1072. scipy/sparse/dok.py +22 -0
  1073. scipy/sparse/extract.py +23 -0
  1074. scipy/sparse/lil.py +22 -0
  1075. scipy/sparse/linalg/__init__.py +148 -0
  1076. scipy/sparse/linalg/_dsolve/__init__.py +71 -0
  1077. scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
  1078. scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.lib +0 -0
  1079. scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.pyd +0 -0
  1080. scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
  1081. scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
  1082. scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
  1083. scipy/sparse/linalg/_eigen/__init__.py +22 -0
  1084. scipy/sparse/linalg/_eigen/_svds.py +540 -0
  1085. scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
  1086. scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
  1087. scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
  1088. scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.lib +0 -0
  1089. scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.pyd +0 -0
  1090. scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
  1091. scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
  1092. scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
  1093. scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
  1094. scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
  1095. scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
  1096. scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
  1097. scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
  1098. scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
  1099. scipy/sparse/linalg/_expm_multiply.py +816 -0
  1100. scipy/sparse/linalg/_interface.py +920 -0
  1101. scipy/sparse/linalg/_isolve/__init__.py +20 -0
  1102. scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
  1103. scipy/sparse/linalg/_isolve/iterative.py +1051 -0
  1104. scipy/sparse/linalg/_isolve/lgmres.py +230 -0
  1105. scipy/sparse/linalg/_isolve/lsmr.py +486 -0
  1106. scipy/sparse/linalg/_isolve/lsqr.py +589 -0
  1107. scipy/sparse/linalg/_isolve/minres.py +372 -0
  1108. scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
  1109. scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
  1110. scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
  1111. scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
  1112. scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
  1113. scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
  1114. scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
  1115. scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
  1116. scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
  1117. scipy/sparse/linalg/_isolve/utils.py +121 -0
  1118. scipy/sparse/linalg/_matfuncs.py +940 -0
  1119. scipy/sparse/linalg/_norm.py +195 -0
  1120. scipy/sparse/linalg/_onenormest.py +467 -0
  1121. scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.lib +0 -0
  1122. scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.pyd +0 -0
  1123. scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.lib +0 -0
  1124. scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.pyd +0 -0
  1125. scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.lib +0 -0
  1126. scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.pyd +0 -0
  1127. scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.lib +0 -0
  1128. scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.pyd +0 -0
  1129. scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
  1130. scipy/sparse/linalg/_svdp.py +309 -0
  1131. scipy/sparse/linalg/dsolve.py +22 -0
  1132. scipy/sparse/linalg/eigen.py +21 -0
  1133. scipy/sparse/linalg/interface.py +20 -0
  1134. scipy/sparse/linalg/isolve.py +22 -0
  1135. scipy/sparse/linalg/matfuncs.py +18 -0
  1136. scipy/sparse/linalg/tests/__init__.py +0 -0
  1137. scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
  1138. scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
  1139. scipy/sparse/linalg/tests/test_interface.py +561 -0
  1140. scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
  1141. scipy/sparse/linalg/tests/test_norm.py +154 -0
  1142. scipy/sparse/linalg/tests/test_onenormest.py +252 -0
  1143. scipy/sparse/linalg/tests/test_propack.py +165 -0
  1144. scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
  1145. scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
  1146. scipy/sparse/sparsetools.py +17 -0
  1147. scipy/sparse/spfuncs.py +17 -0
  1148. scipy/sparse/sputils.py +17 -0
  1149. scipy/sparse/tests/__init__.py +0 -0
  1150. scipy/sparse/tests/data/csc_py2.npz +0 -0
  1151. scipy/sparse/tests/data/csc_py3.npz +0 -0
  1152. scipy/sparse/tests/test_arithmetic1d.py +341 -0
  1153. scipy/sparse/tests/test_array_api.py +561 -0
  1154. scipy/sparse/tests/test_base.py +5870 -0
  1155. scipy/sparse/tests/test_common1d.py +447 -0
  1156. scipy/sparse/tests/test_construct.py +872 -0
  1157. scipy/sparse/tests/test_coo.py +1119 -0
  1158. scipy/sparse/tests/test_csc.py +98 -0
  1159. scipy/sparse/tests/test_csr.py +214 -0
  1160. scipy/sparse/tests/test_dok.py +209 -0
  1161. scipy/sparse/tests/test_extract.py +51 -0
  1162. scipy/sparse/tests/test_indexing1d.py +603 -0
  1163. scipy/sparse/tests/test_matrix_io.py +109 -0
  1164. scipy/sparse/tests/test_minmax1d.py +128 -0
  1165. scipy/sparse/tests/test_sparsetools.py +344 -0
  1166. scipy/sparse/tests/test_spfuncs.py +97 -0
  1167. scipy/sparse/tests/test_sputils.py +424 -0
  1168. scipy/spatial/__init__.py +129 -0
  1169. scipy/spatial/_ckdtree.cp314-win_arm64.lib +0 -0
  1170. scipy/spatial/_ckdtree.cp314-win_arm64.pyd +0 -0
  1171. scipy/spatial/_distance_pybind.cp314-win_arm64.lib +0 -0
  1172. scipy/spatial/_distance_pybind.cp314-win_arm64.pyd +0 -0
  1173. scipy/spatial/_distance_wrap.cp314-win_arm64.lib +0 -0
  1174. scipy/spatial/_distance_wrap.cp314-win_arm64.pyd +0 -0
  1175. scipy/spatial/_geometric_slerp.py +238 -0
  1176. scipy/spatial/_hausdorff.cp314-win_arm64.lib +0 -0
  1177. scipy/spatial/_hausdorff.cp314-win_arm64.pyd +0 -0
  1178. scipy/spatial/_kdtree.py +920 -0
  1179. scipy/spatial/_plotutils.py +274 -0
  1180. scipy/spatial/_procrustes.py +132 -0
  1181. scipy/spatial/_qhull.cp314-win_arm64.lib +0 -0
  1182. scipy/spatial/_qhull.cp314-win_arm64.pyd +0 -0
  1183. scipy/spatial/_qhull.pyi +213 -0
  1184. scipy/spatial/_spherical_voronoi.py +341 -0
  1185. scipy/spatial/_voronoi.cp314-win_arm64.lib +0 -0
  1186. scipy/spatial/_voronoi.cp314-win_arm64.pyd +0 -0
  1187. scipy/spatial/_voronoi.pyi +4 -0
  1188. scipy/spatial/ckdtree.py +18 -0
  1189. scipy/spatial/distance.py +3147 -0
  1190. scipy/spatial/distance.pyi +210 -0
  1191. scipy/spatial/kdtree.py +25 -0
  1192. scipy/spatial/qhull.py +25 -0
  1193. scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
  1194. scipy/spatial/tests/__init__.py +0 -0
  1195. scipy/spatial/tests/data/cdist-X1.txt +10 -0
  1196. scipy/spatial/tests/data/cdist-X2.txt +20 -0
  1197. scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
  1198. scipy/spatial/tests/data/iris.txt +150 -0
  1199. scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  1200. scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
  1201. scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  1202. scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
  1203. scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  1204. scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
  1205. scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  1206. scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
  1207. scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  1208. scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  1209. scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
  1210. scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  1211. scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  1212. scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  1213. scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
  1214. scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  1215. scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
  1216. scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  1217. scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
  1218. scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
  1219. scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
  1220. scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
  1221. scipy/spatial/tests/data/random-bool-data.txt +100 -0
  1222. scipy/spatial/tests/data/random-double-data.txt +100 -0
  1223. scipy/spatial/tests/data/random-int-data.txt +100 -0
  1224. scipy/spatial/tests/data/random-uint-data.txt +100 -0
  1225. scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
  1226. scipy/spatial/tests/test__plotutils.py +91 -0
  1227. scipy/spatial/tests/test__procrustes.py +116 -0
  1228. scipy/spatial/tests/test_distance.py +2389 -0
  1229. scipy/spatial/tests/test_hausdorff.py +199 -0
  1230. scipy/spatial/tests/test_kdtree.py +1536 -0
  1231. scipy/spatial/tests/test_qhull.py +1313 -0
  1232. scipy/spatial/tests/test_slerp.py +417 -0
  1233. scipy/spatial/tests/test_spherical_voronoi.py +358 -0
  1234. scipy/spatial/transform/__init__.py +31 -0
  1235. scipy/spatial/transform/_rigid_transform.cp314-win_arm64.lib +0 -0
  1236. scipy/spatial/transform/_rigid_transform.cp314-win_arm64.pyd +0 -0
  1237. scipy/spatial/transform/_rotation.cp314-win_arm64.lib +0 -0
  1238. scipy/spatial/transform/_rotation.cp314-win_arm64.pyd +0 -0
  1239. scipy/spatial/transform/_rotation_groups.py +140 -0
  1240. scipy/spatial/transform/_rotation_spline.py +460 -0
  1241. scipy/spatial/transform/rotation.py +21 -0
  1242. scipy/spatial/transform/tests/__init__.py +0 -0
  1243. scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
  1244. scipy/spatial/transform/tests/test_rotation.py +2569 -0
  1245. scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
  1246. scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
  1247. scipy/special/__init__.pxd +1 -0
  1248. scipy/special/__init__.py +841 -0
  1249. scipy/special/_add_newdocs.py +9961 -0
  1250. scipy/special/_basic.py +3576 -0
  1251. scipy/special/_comb.cp314-win_arm64.lib +0 -0
  1252. scipy/special/_comb.cp314-win_arm64.pyd +0 -0
  1253. scipy/special/_ellip_harm.py +214 -0
  1254. scipy/special/_ellip_harm_2.cp314-win_arm64.lib +0 -0
  1255. scipy/special/_ellip_harm_2.cp314-win_arm64.pyd +0 -0
  1256. scipy/special/_gufuncs.cp314-win_arm64.lib +0 -0
  1257. scipy/special/_gufuncs.cp314-win_arm64.pyd +0 -0
  1258. scipy/special/_input_validation.py +17 -0
  1259. scipy/special/_lambertw.py +149 -0
  1260. scipy/special/_logsumexp.py +426 -0
  1261. scipy/special/_mptestutils.py +453 -0
  1262. scipy/special/_multiufuncs.py +610 -0
  1263. scipy/special/_orthogonal.py +2592 -0
  1264. scipy/special/_orthogonal.pyi +330 -0
  1265. scipy/special/_precompute/__init__.py +0 -0
  1266. scipy/special/_precompute/cosine_cdf.py +17 -0
  1267. scipy/special/_precompute/expn_asy.py +54 -0
  1268. scipy/special/_precompute/gammainc_asy.py +116 -0
  1269. scipy/special/_precompute/gammainc_data.py +124 -0
  1270. scipy/special/_precompute/hyp2f1_data.py +484 -0
  1271. scipy/special/_precompute/lambertw.py +68 -0
  1272. scipy/special/_precompute/loggamma.py +43 -0
  1273. scipy/special/_precompute/struve_convergence.py +131 -0
  1274. scipy/special/_precompute/utils.py +38 -0
  1275. scipy/special/_precompute/wright_bessel.py +342 -0
  1276. scipy/special/_precompute/wright_bessel_data.py +152 -0
  1277. scipy/special/_precompute/wrightomega.py +41 -0
  1278. scipy/special/_precompute/zetac.py +27 -0
  1279. scipy/special/_sf_error.py +15 -0
  1280. scipy/special/_specfun.cp314-win_arm64.lib +0 -0
  1281. scipy/special/_specfun.cp314-win_arm64.pyd +0 -0
  1282. scipy/special/_special_ufuncs.cp314-win_arm64.lib +0 -0
  1283. scipy/special/_special_ufuncs.cp314-win_arm64.pyd +0 -0
  1284. scipy/special/_spfun_stats.py +106 -0
  1285. scipy/special/_spherical_bessel.py +397 -0
  1286. scipy/special/_support_alternative_backends.py +295 -0
  1287. scipy/special/_test_internal.cp314-win_arm64.lib +0 -0
  1288. scipy/special/_test_internal.cp314-win_arm64.pyd +0 -0
  1289. scipy/special/_test_internal.pyi +9 -0
  1290. scipy/special/_testutils.py +321 -0
  1291. scipy/special/_ufuncs.cp314-win_arm64.lib +0 -0
  1292. scipy/special/_ufuncs.cp314-win_arm64.pyd +0 -0
  1293. scipy/special/_ufuncs.pyi +522 -0
  1294. scipy/special/_ufuncs.pyx +13173 -0
  1295. scipy/special/_ufuncs_cxx.cp314-win_arm64.lib +0 -0
  1296. scipy/special/_ufuncs_cxx.cp314-win_arm64.pyd +0 -0
  1297. scipy/special/_ufuncs_cxx.pxd +142 -0
  1298. scipy/special/_ufuncs_cxx.pyx +427 -0
  1299. scipy/special/_ufuncs_cxx_defs.h +147 -0
  1300. scipy/special/_ufuncs_defs.h +57 -0
  1301. scipy/special/add_newdocs.py +15 -0
  1302. scipy/special/basic.py +87 -0
  1303. scipy/special/cython_special.cp314-win_arm64.lib +0 -0
  1304. scipy/special/cython_special.cp314-win_arm64.pyd +0 -0
  1305. scipy/special/cython_special.pxd +259 -0
  1306. scipy/special/cython_special.pyi +3 -0
  1307. scipy/special/orthogonal.py +45 -0
  1308. scipy/special/sf_error.py +20 -0
  1309. scipy/special/specfun.py +24 -0
  1310. scipy/special/spfun_stats.py +17 -0
  1311. scipy/special/tests/__init__.py +0 -0
  1312. scipy/special/tests/_cython_examples/extending.pyx +12 -0
  1313. scipy/special/tests/_cython_examples/meson.build +34 -0
  1314. scipy/special/tests/data/__init__.py +0 -0
  1315. scipy/special/tests/data/boost.npz +0 -0
  1316. scipy/special/tests/data/gsl.npz +0 -0
  1317. scipy/special/tests/data/local.npz +0 -0
  1318. scipy/special/tests/test_basic.py +4815 -0
  1319. scipy/special/tests/test_bdtr.py +112 -0
  1320. scipy/special/tests/test_boost_ufuncs.py +64 -0
  1321. scipy/special/tests/test_boxcox.py +125 -0
  1322. scipy/special/tests/test_cdflib.py +712 -0
  1323. scipy/special/tests/test_cdft_asymptotic.py +49 -0
  1324. scipy/special/tests/test_cephes_intp_cast.py +29 -0
  1325. scipy/special/tests/test_cosine_distr.py +83 -0
  1326. scipy/special/tests/test_cython_special.py +363 -0
  1327. scipy/special/tests/test_data.py +719 -0
  1328. scipy/special/tests/test_dd.py +42 -0
  1329. scipy/special/tests/test_digamma.py +45 -0
  1330. scipy/special/tests/test_ellip_harm.py +278 -0
  1331. scipy/special/tests/test_erfinv.py +89 -0
  1332. scipy/special/tests/test_exponential_integrals.py +118 -0
  1333. scipy/special/tests/test_extending.py +28 -0
  1334. scipy/special/tests/test_faddeeva.py +85 -0
  1335. scipy/special/tests/test_gamma.py +12 -0
  1336. scipy/special/tests/test_gammainc.py +152 -0
  1337. scipy/special/tests/test_hyp2f1.py +2566 -0
  1338. scipy/special/tests/test_hypergeometric.py +234 -0
  1339. scipy/special/tests/test_iv_ratio.py +249 -0
  1340. scipy/special/tests/test_kolmogorov.py +491 -0
  1341. scipy/special/tests/test_lambertw.py +109 -0
  1342. scipy/special/tests/test_legendre.py +1518 -0
  1343. scipy/special/tests/test_log1mexp.py +85 -0
  1344. scipy/special/tests/test_loggamma.py +70 -0
  1345. scipy/special/tests/test_logit.py +162 -0
  1346. scipy/special/tests/test_logsumexp.py +469 -0
  1347. scipy/special/tests/test_mpmath.py +2293 -0
  1348. scipy/special/tests/test_nan_inputs.py +65 -0
  1349. scipy/special/tests/test_ndtr.py +77 -0
  1350. scipy/special/tests/test_ndtri_exp.py +94 -0
  1351. scipy/special/tests/test_orthogonal.py +821 -0
  1352. scipy/special/tests/test_orthogonal_eval.py +275 -0
  1353. scipy/special/tests/test_owens_t.py +53 -0
  1354. scipy/special/tests/test_pcf.py +24 -0
  1355. scipy/special/tests/test_pdtr.py +48 -0
  1356. scipy/special/tests/test_powm1.py +65 -0
  1357. scipy/special/tests/test_precompute_expn_asy.py +24 -0
  1358. scipy/special/tests/test_precompute_gammainc.py +108 -0
  1359. scipy/special/tests/test_precompute_utils.py +36 -0
  1360. scipy/special/tests/test_round.py +18 -0
  1361. scipy/special/tests/test_sf_error.py +146 -0
  1362. scipy/special/tests/test_sici.py +36 -0
  1363. scipy/special/tests/test_specfun.py +48 -0
  1364. scipy/special/tests/test_spence.py +32 -0
  1365. scipy/special/tests/test_spfun_stats.py +61 -0
  1366. scipy/special/tests/test_sph_harm.py +85 -0
  1367. scipy/special/tests/test_spherical_bessel.py +400 -0
  1368. scipy/special/tests/test_support_alternative_backends.py +248 -0
  1369. scipy/special/tests/test_trig.py +72 -0
  1370. scipy/special/tests/test_ufunc_signatures.py +46 -0
  1371. scipy/special/tests/test_wright_bessel.py +205 -0
  1372. scipy/special/tests/test_wrightomega.py +117 -0
  1373. scipy/special/tests/test_zeta.py +301 -0
  1374. scipy/stats/__init__.py +670 -0
  1375. scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.lib +0 -0
  1376. scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.pyd +0 -0
  1377. scipy/stats/_axis_nan_policy.py +692 -0
  1378. scipy/stats/_biasedurn.cp314-win_arm64.lib +0 -0
  1379. scipy/stats/_biasedurn.cp314-win_arm64.pyd +0 -0
  1380. scipy/stats/_biasedurn.pxd +27 -0
  1381. scipy/stats/_binned_statistic.py +795 -0
  1382. scipy/stats/_binomtest.py +375 -0
  1383. scipy/stats/_bws_test.py +177 -0
  1384. scipy/stats/_censored_data.py +459 -0
  1385. scipy/stats/_common.py +5 -0
  1386. scipy/stats/_constants.py +42 -0
  1387. scipy/stats/_continued_fraction.py +387 -0
  1388. scipy/stats/_continuous_distns.py +12486 -0
  1389. scipy/stats/_correlation.py +210 -0
  1390. scipy/stats/_covariance.py +636 -0
  1391. scipy/stats/_crosstab.py +204 -0
  1392. scipy/stats/_discrete_distns.py +2098 -0
  1393. scipy/stats/_distn_infrastructure.py +4201 -0
  1394. scipy/stats/_distr_params.py +299 -0
  1395. scipy/stats/_distribution_infrastructure.py +5750 -0
  1396. scipy/stats/_entropy.py +428 -0
  1397. scipy/stats/_finite_differences.py +145 -0
  1398. scipy/stats/_fit.py +1351 -0
  1399. scipy/stats/_hypotests.py +2060 -0
  1400. scipy/stats/_kde.py +732 -0
  1401. scipy/stats/_ksstats.py +600 -0
  1402. scipy/stats/_levy_stable/__init__.py +1231 -0
  1403. scipy/stats/_levy_stable/levyst.cp314-win_arm64.lib +0 -0
  1404. scipy/stats/_levy_stable/levyst.cp314-win_arm64.pyd +0 -0
  1405. scipy/stats/_mannwhitneyu.py +492 -0
  1406. scipy/stats/_mgc.py +550 -0
  1407. scipy/stats/_morestats.py +4626 -0
  1408. scipy/stats/_mstats_basic.py +3658 -0
  1409. scipy/stats/_mstats_extras.py +521 -0
  1410. scipy/stats/_multicomp.py +449 -0
  1411. scipy/stats/_multivariate.py +7281 -0
  1412. scipy/stats/_new_distributions.py +452 -0
  1413. scipy/stats/_odds_ratio.py +466 -0
  1414. scipy/stats/_page_trend_test.py +486 -0
  1415. scipy/stats/_probability_distribution.py +1964 -0
  1416. scipy/stats/_qmc.py +2956 -0
  1417. scipy/stats/_qmc_cy.cp314-win_arm64.lib +0 -0
  1418. scipy/stats/_qmc_cy.cp314-win_arm64.pyd +0 -0
  1419. scipy/stats/_qmc_cy.pyi +54 -0
  1420. scipy/stats/_qmvnt.py +454 -0
  1421. scipy/stats/_qmvnt_cy.cp314-win_arm64.lib +0 -0
  1422. scipy/stats/_qmvnt_cy.cp314-win_arm64.pyd +0 -0
  1423. scipy/stats/_quantile.py +335 -0
  1424. scipy/stats/_rcont/__init__.py +4 -0
  1425. scipy/stats/_rcont/rcont.cp314-win_arm64.lib +0 -0
  1426. scipy/stats/_rcont/rcont.cp314-win_arm64.pyd +0 -0
  1427. scipy/stats/_relative_risk.py +263 -0
  1428. scipy/stats/_resampling.py +2352 -0
  1429. scipy/stats/_result_classes.py +40 -0
  1430. scipy/stats/_sampling.py +1314 -0
  1431. scipy/stats/_sensitivity_analysis.py +713 -0
  1432. scipy/stats/_sobol.cp314-win_arm64.lib +0 -0
  1433. scipy/stats/_sobol.cp314-win_arm64.pyd +0 -0
  1434. scipy/stats/_sobol.pyi +54 -0
  1435. scipy/stats/_sobol_direction_numbers.npz +0 -0
  1436. scipy/stats/_stats.cp314-win_arm64.lib +0 -0
  1437. scipy/stats/_stats.cp314-win_arm64.pyd +0 -0
  1438. scipy/stats/_stats.pxd +10 -0
  1439. scipy/stats/_stats_mstats_common.py +322 -0
  1440. scipy/stats/_stats_py.py +11089 -0
  1441. scipy/stats/_stats_pythran.cp314-win_arm64.lib +0 -0
  1442. scipy/stats/_stats_pythran.cp314-win_arm64.pyd +0 -0
  1443. scipy/stats/_survival.py +683 -0
  1444. scipy/stats/_tukeylambda_stats.py +199 -0
  1445. scipy/stats/_unuran/__init__.py +0 -0
  1446. scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.lib +0 -0
  1447. scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.pyd +0 -0
  1448. scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
  1449. scipy/stats/_variation.py +126 -0
  1450. scipy/stats/_warnings_errors.py +38 -0
  1451. scipy/stats/_wilcoxon.py +265 -0
  1452. scipy/stats/biasedurn.py +16 -0
  1453. scipy/stats/contingency.py +521 -0
  1454. scipy/stats/distributions.py +24 -0
  1455. scipy/stats/kde.py +18 -0
  1456. scipy/stats/morestats.py +27 -0
  1457. scipy/stats/mstats.py +140 -0
  1458. scipy/stats/mstats_basic.py +42 -0
  1459. scipy/stats/mstats_extras.py +25 -0
  1460. scipy/stats/mvn.py +17 -0
  1461. scipy/stats/qmc.py +236 -0
  1462. scipy/stats/sampling.py +73 -0
  1463. scipy/stats/stats.py +41 -0
  1464. scipy/stats/tests/__init__.py +0 -0
  1465. scipy/stats/tests/common_tests.py +356 -0
  1466. scipy/stats/tests/data/_mvt.py +171 -0
  1467. scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  1468. scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
  1469. scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
  1470. scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
  1471. scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
  1472. scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  1473. scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  1474. scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  1475. scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  1476. scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
  1477. scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  1478. scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  1479. scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
  1480. scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  1481. scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  1482. scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
  1483. scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  1484. scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
  1485. scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  1486. scipy/stats/tests/test_axis_nan_policy.py +1388 -0
  1487. scipy/stats/tests/test_binned_statistic.py +568 -0
  1488. scipy/stats/tests/test_censored_data.py +152 -0
  1489. scipy/stats/tests/test_contingency.py +294 -0
  1490. scipy/stats/tests/test_continued_fraction.py +173 -0
  1491. scipy/stats/tests/test_continuous.py +2198 -0
  1492. scipy/stats/tests/test_continuous_basic.py +1053 -0
  1493. scipy/stats/tests/test_continuous_fit_censored.py +683 -0
  1494. scipy/stats/tests/test_correlation.py +80 -0
  1495. scipy/stats/tests/test_crosstab.py +115 -0
  1496. scipy/stats/tests/test_discrete_basic.py +580 -0
  1497. scipy/stats/tests/test_discrete_distns.py +700 -0
  1498. scipy/stats/tests/test_distributions.py +10413 -0
  1499. scipy/stats/tests/test_entropy.py +322 -0
  1500. scipy/stats/tests/test_fast_gen_inversion.py +435 -0
  1501. scipy/stats/tests/test_fit.py +1090 -0
  1502. scipy/stats/tests/test_hypotests.py +1991 -0
  1503. scipy/stats/tests/test_kdeoth.py +676 -0
  1504. scipy/stats/tests/test_marray.py +289 -0
  1505. scipy/stats/tests/test_mgc.py +217 -0
  1506. scipy/stats/tests/test_morestats.py +3259 -0
  1507. scipy/stats/tests/test_mstats_basic.py +2071 -0
  1508. scipy/stats/tests/test_mstats_extras.py +172 -0
  1509. scipy/stats/tests/test_multicomp.py +405 -0
  1510. scipy/stats/tests/test_multivariate.py +4381 -0
  1511. scipy/stats/tests/test_odds_ratio.py +148 -0
  1512. scipy/stats/tests/test_qmc.py +1492 -0
  1513. scipy/stats/tests/test_quantile.py +199 -0
  1514. scipy/stats/tests/test_rank.py +345 -0
  1515. scipy/stats/tests/test_relative_risk.py +95 -0
  1516. scipy/stats/tests/test_resampling.py +2000 -0
  1517. scipy/stats/tests/test_sampling.py +1450 -0
  1518. scipy/stats/tests/test_sensitivity_analysis.py +310 -0
  1519. scipy/stats/tests/test_stats.py +9707 -0
  1520. scipy/stats/tests/test_survival.py +466 -0
  1521. scipy/stats/tests/test_tukeylambda_stats.py +85 -0
  1522. scipy/stats/tests/test_variation.py +216 -0
  1523. scipy/version.py +12 -0
  1524. scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
  1525. scipy-1.16.2.dist-info/LICENSE.txt +912 -0
  1526. scipy-1.16.2.dist-info/METADATA +1061 -0
  1527. scipy-1.16.2.dist-info/RECORD +1530 -0
  1528. scipy-1.16.2.dist-info/WHEEL +4 -0
  1529. scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  1530. scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,3754 @@
1
+ import os
2
+ import operator
3
+ import itertools
4
+ import math
5
+ import threading
6
+ import copy
7
+
8
+ import numpy as np
9
+ from numpy.testing import suppress_warnings
10
+ from scipy._lib._array_api import xp_assert_equal, xp_assert_close
11
+ from pytest import raises as assert_raises
12
+ import pytest
13
+
14
+ from scipy.interpolate import (
15
+ BSpline, BPoly, PPoly, make_interp_spline, make_lsq_spline,
16
+ splev, splrep, splprep, splder, splantider, sproot, splint, insert,
17
+ CubicSpline, NdBSpline, make_smoothing_spline, RegularGridInterpolator,
18
+ )
19
+ import scipy.linalg as sl
20
+ import scipy.sparse.linalg as ssl
21
+
22
+ from scipy.interpolate._bsplines import (_not_a_knot, _augknt,
23
+ _woodbury_algorithm, _periodic_knots,
24
+ _make_interp_per_full_matr)
25
+
26
+ from scipy.interpolate import generate_knots, make_splrep, make_splprep
27
+
28
+ import scipy.interpolate._fitpack_impl as _impl
29
+ from scipy._lib._util import AxisError
30
+ from scipy._lib._testutils import _run_concurrent_barrier
31
+
32
+ # XXX: move to the interpolate namespace
33
+ from scipy.interpolate._ndbspline import make_ndbspl
34
+
35
+ from scipy.interpolate import _dfitpack as dfitpack
36
+ from scipy.interpolate import _bsplines as _b
37
+ from scipy.interpolate import _dierckx
38
+
39
+
40
+ class TestBSpline:
41
+
42
+ def test_ctor(self):
43
+ # knots should be an ordered 1-D array of finite real numbers
44
+ assert_raises((TypeError, ValueError), BSpline,
45
+ **dict(t=[1, 1.j], c=[1.], k=0))
46
+ with np.errstate(invalid='ignore'):
47
+ assert_raises(ValueError, BSpline, **dict(t=[1, np.nan], c=[1.], k=0))
48
+ assert_raises(ValueError, BSpline, **dict(t=[1, np.inf], c=[1.], k=0))
49
+ assert_raises(ValueError, BSpline, **dict(t=[1, -1], c=[1.], k=0))
50
+ assert_raises(ValueError, BSpline, **dict(t=[[1], [1]], c=[1.], k=0))
51
+
52
+ # for n+k+1 knots and degree k need at least n coefficients
53
+ assert_raises(ValueError, BSpline, **dict(t=[0, 1, 2], c=[1], k=0))
54
+ assert_raises(ValueError, BSpline,
55
+ **dict(t=[0, 1, 2, 3, 4], c=[1., 1.], k=2))
56
+
57
+ # non-integer orders
58
+ assert_raises(TypeError, BSpline,
59
+ **dict(t=[0., 0., 1., 2., 3., 4.], c=[1., 1., 1.], k="cubic"))
60
+ assert_raises(TypeError, BSpline,
61
+ **dict(t=[0., 0., 1., 2., 3., 4.], c=[1., 1., 1.], k=2.5))
62
+
63
+ # basic interval cannot have measure zero (here: [1..1])
64
+ assert_raises(ValueError, BSpline,
65
+ **dict(t=[0., 0, 1, 1, 2, 3], c=[1., 1, 1], k=2))
66
+
67
+ # tck vs self.tck
68
+ n, k = 11, 3
69
+ t = np.arange(n+k+1, dtype=np.float64)
70
+ c = np.random.random(n)
71
+ b = BSpline(t, c, k)
72
+
73
+ xp_assert_close(t, b.t)
74
+ xp_assert_close(c, b.c)
75
+ assert k == b.k
76
+
77
+ def test_tck(self):
78
+ b = _make_random_spline()
79
+ tck = b.tck
80
+
81
+ xp_assert_close(b.t, tck[0], atol=1e-15, rtol=1e-15)
82
+ xp_assert_close(b.c, tck[1], atol=1e-15, rtol=1e-15)
83
+ assert b.k == tck[2]
84
+
85
+ # b.tck is read-only
86
+ with pytest.raises(AttributeError):
87
+ b.tck = 'foo'
88
+
89
+ def test_degree_0(self):
90
+ xx = np.linspace(0, 1, 10)
91
+
92
+ b = BSpline(t=[0, 1], c=[3.], k=0)
93
+ xp_assert_close(b(xx), np.ones_like(xx) * 3.0)
94
+
95
+ b = BSpline(t=[0, 0.35, 1], c=[3, 4], k=0)
96
+ xp_assert_close(b(xx), np.where(xx < 0.35, 3.0, 4.0))
97
+
98
+ def test_degree_1(self):
99
+ t = [0, 1, 2, 3, 4]
100
+ c = [1, 2, 3]
101
+ k = 1
102
+ b = BSpline(t, c, k)
103
+
104
+ x = np.linspace(1, 3, 50)
105
+ xp_assert_close(c[0]*B_012(x) + c[1]*B_012(x-1) + c[2]*B_012(x-2),
106
+ b(x), atol=1e-14)
107
+ xp_assert_close(splev(x, (t, c, k)), b(x), atol=1e-14)
108
+
109
+ def test_bernstein(self):
110
+ # a special knot vector: Bernstein polynomials
111
+ k = 3
112
+ t = np.asarray([0]*(k+1) + [1]*(k+1))
113
+ c = np.asarray([1., 2., 3., 4.])
114
+ bp = BPoly(c.reshape(-1, 1), [0, 1])
115
+ bspl = BSpline(t, c, k)
116
+
117
+ xx = np.linspace(-1., 2., 10)
118
+ xp_assert_close(bp(xx, extrapolate=True),
119
+ bspl(xx, extrapolate=True), atol=1e-14)
120
+ xp_assert_close(splev(xx, (t, c, k)),
121
+ bspl(xx), atol=1e-14)
122
+
123
+ def test_rndm_naive_eval(self):
124
+ # test random coefficient spline *on the base interval*,
125
+ # t[k] <= x < t[-k-1]
126
+ b = _make_random_spline()
127
+ t, c, k = b.tck
128
+ xx = np.linspace(t[k], t[-k-1], 50)
129
+ y_b = b(xx)
130
+
131
+ y_n = [_naive_eval(x, t, c, k) for x in xx]
132
+ xp_assert_close(y_b, y_n, atol=1e-14)
133
+
134
+ y_n2 = [_naive_eval_2(x, t, c, k) for x in xx]
135
+ xp_assert_close(y_b, y_n2, atol=1e-14)
136
+
137
+ def test_rndm_splev(self):
138
+ b = _make_random_spline()
139
+ t, c, k = b.tck
140
+ xx = np.linspace(t[k], t[-k-1], 50)
141
+ xp_assert_close(b(xx), splev(xx, (t, c, k)), atol=1e-14)
142
+
143
+ def test_rndm_splrep(self):
144
+ rng = np.random.RandomState(1234)
145
+ x = np.sort(rng.random(20))
146
+ y = rng.random(20)
147
+
148
+ tck = splrep(x, y)
149
+ b = BSpline(*tck)
150
+
151
+ t, k = b.t, b.k
152
+ xx = np.linspace(t[k], t[-k-1], 80)
153
+ xp_assert_close(b(xx), splev(xx, tck), atol=1e-14)
154
+
155
+ def test_rndm_unity(self):
156
+ b = _make_random_spline()
157
+ b.c = np.ones_like(b.c)
158
+ xx = np.linspace(b.t[b.k], b.t[-b.k-1], 100)
159
+ xp_assert_close(b(xx), np.ones_like(xx))
160
+
161
+ def test_vectorization(self):
162
+ rng = np.random.RandomState(1234)
163
+ n, k = 22, 3
164
+ t = np.sort(rng.random(n))
165
+ c = rng.random(size=(n, 6, 7))
166
+ b = BSpline(t, c, k)
167
+ tm, tp = t[k], t[-k-1]
168
+ xx = tm + (tp - tm) * rng.random((3, 4, 5))
169
+ assert b(xx).shape == (3, 4, 5, 6, 7)
170
+
171
+ def test_len_c(self):
172
+ # for n+k+1 knots, only first n coefs are used.
173
+ # and BTW this is consistent with FITPACK
174
+ rng = np.random.RandomState(1234)
175
+ n, k = 33, 3
176
+ t = np.sort(rng.random(n+k+1))
177
+ c = rng.random(n)
178
+
179
+ # pad coefficients with random garbage
180
+ c_pad = np.r_[c, rng.random(k+1)]
181
+
182
+ b, b_pad = BSpline(t, c, k), BSpline(t, c_pad, k)
183
+
184
+ dt = t[-1] - t[0]
185
+ xx = np.linspace(t[0] - dt, t[-1] + dt, 50)
186
+ xp_assert_close(b(xx), b_pad(xx), atol=1e-14)
187
+ xp_assert_close(b(xx), splev(xx, (t, c, k)), atol=1e-14)
188
+ xp_assert_close(b(xx), splev(xx, (t, c_pad, k)), atol=1e-14)
189
+
190
+ def test_endpoints(self, num_parallel_threads):
191
+ # base interval is closed
192
+ b = _make_random_spline()
193
+ t, _, k = b.tck
194
+ tm, tp = t[k], t[-k-1]
195
+ # atol = 1e-9 if num_parallel_threads == 1 else 1e-7
196
+ for extrap in (True, False):
197
+ xp_assert_close(b([tm, tp], extrap),
198
+ b([tm + 1e-10, tp - 1e-10], extrap), atol=1e-9, rtol=1e-7)
199
+
200
+ def test_continuity(self, num_parallel_threads):
201
+ # assert continuity at internal knots
202
+ b = _make_random_spline()
203
+ t, _, k = b.tck
204
+ xp_assert_close(b(t[k+1:-k-1] - 1e-10), b(t[k+1:-k-1] + 1e-10),
205
+ atol=1e-9)
206
+
207
+ def test_extrap(self):
208
+ b = _make_random_spline()
209
+ t, c, k = b.tck
210
+ dt = t[-1] - t[0]
211
+ xx = np.linspace(t[k] - dt, t[-k-1] + dt, 50)
212
+ mask = (t[k] < xx) & (xx < t[-k-1])
213
+
214
+ # extrap has no effect within the base interval
215
+ xp_assert_close(b(xx[mask], extrapolate=True),
216
+ b(xx[mask], extrapolate=False))
217
+
218
+ # extrapolated values agree with FITPACK
219
+ xp_assert_close(b(xx, extrapolate=True),
220
+ splev(xx, (t, c, k), ext=0))
221
+
222
+ def test_default_extrap(self):
223
+ # BSpline defaults to extrapolate=True
224
+ b = _make_random_spline()
225
+ t, _, k = b.tck
226
+ xx = [t[0] - 1, t[-1] + 1]
227
+ yy = b(xx)
228
+ assert not np.all(np.isnan(yy))
229
+
230
+ def test_periodic_extrap(self):
231
+ rng = np.random.RandomState(1234)
232
+ t = np.sort(rng.random(8))
233
+ c = rng.random(4)
234
+ k = 3
235
+ b = BSpline(t, c, k, extrapolate='periodic')
236
+ n = t.size - (k + 1)
237
+
238
+ dt = t[-1] - t[0]
239
+ xx = np.linspace(t[k] - dt, t[n] + dt, 50)
240
+ xy = t[k] + (xx - t[k]) % (t[n] - t[k])
241
+ xp_assert_close(b(xx), splev(xy, (t, c, k)))
242
+
243
+ # Direct check
244
+ xx = [-1, 0, 0.5, 1]
245
+ xy = t[k] + (xx - t[k]) % (t[n] - t[k])
246
+ xp_assert_equal(b(xx, extrapolate='periodic'), b(xy, extrapolate=True))
247
+
248
+ def test_ppoly(self):
249
+ b = _make_random_spline()
250
+ t, c, k = b.tck
251
+ pp = PPoly.from_spline((t, c, k))
252
+
253
+ xx = np.linspace(t[k], t[-k], 100)
254
+ xp_assert_close(b(xx), pp(xx), atol=1e-14, rtol=1e-14)
255
+
256
+ def test_derivative_rndm(self):
257
+ b = _make_random_spline()
258
+ t, c, k = b.tck
259
+ xx = np.linspace(t[0], t[-1], 50)
260
+ xx = np.r_[xx, t]
261
+
262
+ for der in range(1, k+1):
263
+ yd = splev(xx, (t, c, k), der=der)
264
+ xp_assert_close(yd, b(xx, nu=der), atol=1e-14)
265
+
266
+ # higher derivatives all vanish
267
+ xp_assert_close(b(xx, nu=k+1), np.zeros_like(xx), atol=1e-14)
268
+
269
+ def test_derivative_jumps(self):
270
+ # example from de Boor, Chap IX, example (24)
271
+ # NB: knots augmented & corresp coefs are zeroed out
272
+ # in agreement with the convention (29)
273
+ k = 2
274
+ t = [-1, -1, 0, 1, 1, 3, 4, 6, 6, 6, 7, 7]
275
+ rng = np.random.RandomState(1234)
276
+ c = np.r_[0, 0, rng.random(5), 0, 0]
277
+ b = BSpline(t, c, k)
278
+
279
+ # b is continuous at x != 6 (triple knot)
280
+ x = np.asarray([1, 3, 4, 6])
281
+ xp_assert_close(b(x[x != 6] - 1e-10),
282
+ b(x[x != 6] + 1e-10))
283
+ assert not np.allclose(b(6.-1e-10), b(6+1e-10))
284
+
285
+ # 1st derivative jumps at double knots, 1 & 6:
286
+ x0 = np.asarray([3, 4])
287
+ xp_assert_close(b(x0 - 1e-10, nu=1),
288
+ b(x0 + 1e-10, nu=1))
289
+ x1 = np.asarray([1, 6])
290
+ assert not np.allclose(b(x1 - 1e-10, nu=1), b(x1 + 1e-10, nu=1))
291
+
292
+ # 2nd derivative is not guaranteed to be continuous either
293
+ assert not np.allclose(b(x - 1e-10, nu=2), b(x + 1e-10, nu=2))
294
+
295
+ def test_basis_element_quadratic(self):
296
+ xx = np.linspace(-1, 4, 20)
297
+ b = BSpline.basis_element(t=[0, 1, 2, 3])
298
+ xp_assert_close(b(xx),
299
+ splev(xx, (b.t, b.c, b.k)), atol=1e-14)
300
+ xp_assert_close(b(xx),
301
+ B_0123(xx), atol=1e-14)
302
+
303
+ b = BSpline.basis_element(t=[0, 1, 1, 2])
304
+ xx = np.linspace(0, 2, 10)
305
+ xp_assert_close(b(xx),
306
+ np.where(xx < 1, xx*xx, (2.-xx)**2), atol=1e-14)
307
+
308
+ def test_basis_element_rndm(self):
309
+ b = _make_random_spline()
310
+ t, c, k = b.tck
311
+ xx = np.linspace(t[k], t[-k-1], 20)
312
+ xp_assert_close(b(xx), _sum_basis_elements(xx, t, c, k), atol=1e-14)
313
+
314
+ def test_cmplx(self):
315
+ b = _make_random_spline()
316
+ t, c, k = b.tck
317
+ cc = c * (1. + 3.j)
318
+
319
+ b = BSpline(t, cc, k)
320
+ b_re = BSpline(t, b.c.real, k)
321
+ b_im = BSpline(t, b.c.imag, k)
322
+
323
+ xx = np.linspace(t[k], t[-k-1], 20)
324
+ xp_assert_close(b(xx).real, b_re(xx), atol=1e-14)
325
+ xp_assert_close(b(xx).imag, b_im(xx), atol=1e-14)
326
+
327
+ def test_nan(self):
328
+ # nan in, nan out.
329
+ b = BSpline.basis_element([0, 1, 1, 2])
330
+ assert np.isnan(b(np.nan))
331
+
332
+ def test_derivative_method(self):
333
+ b = _make_random_spline(k=5)
334
+ t, c, k = b.tck
335
+ b0 = BSpline(t, c, k)
336
+ xx = np.linspace(t[k], t[-k-1], 20)
337
+ for j in range(1, k):
338
+ b = b.derivative()
339
+ xp_assert_close(b0(xx, j), b(xx), atol=1e-12, rtol=1e-12)
340
+
341
+ def test_antiderivative_method(self):
342
+ b = _make_random_spline()
343
+ t, c, k = b.tck
344
+ xx = np.linspace(t[k], t[-k-1], 20)
345
+ xp_assert_close(b.antiderivative().derivative()(xx),
346
+ b(xx), atol=1e-14, rtol=1e-14)
347
+
348
+ # repeat with N-D array for c
349
+ c = np.c_[c, c, c]
350
+ c = np.dstack((c, c))
351
+ b = BSpline(t, c, k)
352
+ xp_assert_close(b.antiderivative().derivative()(xx),
353
+ b(xx), atol=1e-14, rtol=1e-14)
354
+
355
+ def test_integral(self):
356
+ b = BSpline.basis_element([0, 1, 2]) # x for x < 1 else 2 - x
357
+ xp_assert_close(b.integrate(0, 1), np.asarray(0.5))
358
+ xp_assert_close(b.integrate(1, 0), np.asarray(-1 * 0.5))
359
+ xp_assert_close(b.integrate(1, 0), np.asarray(-0.5))
360
+
361
+ # extrapolate or zeros outside of [0, 2]; default is yes
362
+ xp_assert_close(b.integrate(-1, 1), np.asarray(0.0))
363
+ xp_assert_close(b.integrate(-1, 1, extrapolate=True), np.asarray(0.0))
364
+ xp_assert_close(b.integrate(-1, 1, extrapolate=False), np.asarray(0.5))
365
+ xp_assert_close(b.integrate(1, -1, extrapolate=False), np.asarray(-1 * 0.5))
366
+
367
+ # Test ``_fitpack._splint()``
368
+ xp_assert_close(b.integrate(1, -1, extrapolate=False),
369
+ np.asarray(_impl.splint(1, -1, b.tck)))
370
+
371
+ # Test ``extrapolate='periodic'``.
372
+ b.extrapolate = 'periodic'
373
+ i = b.antiderivative()
374
+ period_int = np.asarray(i(2) - i(0))
375
+
376
+ xp_assert_close(b.integrate(0, 2), period_int)
377
+ xp_assert_close(b.integrate(2, 0), np.asarray(-1 * period_int))
378
+ xp_assert_close(b.integrate(-9, -7), period_int)
379
+ xp_assert_close(b.integrate(-8, -4), np.asarray(2 * period_int))
380
+
381
+ xp_assert_close(b.integrate(0.5, 1.5),
382
+ np.asarray(i(1.5) - i(0.5)))
383
+ xp_assert_close(b.integrate(1.5, 3),
384
+ np.asarray(i(1) - i(0) + i(2) - i(1.5)))
385
+ xp_assert_close(b.integrate(1.5 + 12, 3 + 12),
386
+ np.asarray(i(1) - i(0) + i(2) - i(1.5)))
387
+ xp_assert_close(b.integrate(1.5, 3 + 12),
388
+ np.asarray(i(1) - i(0) + i(2) - i(1.5) + 6 * period_int))
389
+
390
+ xp_assert_close(b.integrate(0, -1), np.asarray(i(0) - i(1)))
391
+ xp_assert_close(b.integrate(-9, -10), np.asarray(i(0) - i(1)))
392
+ xp_assert_close(b.integrate(0, -9),
393
+ np.asarray(i(1) - i(2) - 4 * period_int))
394
+
395
+ def test_integrate_ppoly(self):
396
+ # test .integrate method to be consistent with PPoly.integrate
397
+ x = [0, 1, 2, 3, 4]
398
+ b = make_interp_spline(x, x)
399
+ b.extrapolate = 'periodic'
400
+ p = PPoly.from_spline(b)
401
+
402
+ for x0, x1 in [(-5, 0.5), (0.5, 5), (-4, 13)]:
403
+ xp_assert_close(b.integrate(x0, x1),
404
+ p.integrate(x0, x1))
405
+
406
+ def test_integrate_0D_always(self):
407
+ # make sure the result is always a 0D array (not a python scalar)
408
+ b = BSpline.basis_element([0, 1, 2])
409
+ for extrapolate in (True, False):
410
+ res = b.integrate(0, 1, extrapolate=extrapolate)
411
+ assert isinstance(res, np.ndarray)
412
+ assert res.ndim == 0
413
+
414
+ def test_subclassing(self):
415
+ # classmethods should not decay to the base class
416
+ class B(BSpline):
417
+ pass
418
+
419
+ b = B.basis_element([0, 1, 2, 2])
420
+ assert b.__class__ == B
421
+ assert b.derivative().__class__ == B
422
+ assert b.antiderivative().__class__ == B
423
+
424
+ @pytest.mark.parametrize('axis', range(-4, 4))
425
+ def test_axis(self, axis):
426
+ n, k = 22, 3
427
+ t = np.linspace(0, 1, n + k + 1)
428
+ sh = [6, 7, 8]
429
+ # We need the positive axis for some of the indexing and slices used
430
+ # in this test.
431
+ pos_axis = axis % 4
432
+ sh.insert(pos_axis, n) # [22, 6, 7, 8] etc
433
+ sh = tuple(sh)
434
+ rng = np.random.RandomState(1234)
435
+ c = rng.random(size=sh)
436
+ b = BSpline(t, c, k, axis=axis)
437
+ assert b.c.shape == (sh[pos_axis],) + sh[:pos_axis] + sh[pos_axis+1:]
438
+
439
+ xp = rng.random((3, 4, 5))
440
+ assert b(xp).shape == sh[:pos_axis] + xp.shape + sh[pos_axis+1:]
441
+
442
+ # -c.ndim <= axis < c.ndim
443
+ for ax in [-c.ndim - 1, c.ndim]:
444
+ assert_raises(AxisError, BSpline,
445
+ **dict(t=t, c=c, k=k, axis=ax))
446
+
447
+ # derivative, antiderivative keeps the axis
448
+ for b1 in [BSpline(t, c, k, axis=axis).derivative(),
449
+ BSpline(t, c, k, axis=axis).derivative(2),
450
+ BSpline(t, c, k, axis=axis).antiderivative(),
451
+ BSpline(t, c, k, axis=axis).antiderivative(2)]:
452
+ assert b1.axis == b.axis
453
+
454
+ def test_neg_axis(self):
455
+ k = 2
456
+ t = [0, 1, 2, 3, 4, 5, 6]
457
+ c = np.array([[-1, 2, 0, -1], [2, 0, -3, 1]])
458
+
459
+ spl = BSpline(t, c, k, axis=-1)
460
+ spl0 = BSpline(t, c[0], k)
461
+ spl1 = BSpline(t, c[1], k)
462
+ xp_assert_equal(spl(2.5), [spl0(2.5), spl1(2.5)])
463
+
464
+ @pytest.mark.thread_unsafe
465
+ def test_design_matrix_bc_types(self):
466
+ '''
467
+ Splines with different boundary conditions are built on different
468
+ types of vectors of knots. As far as design matrix depends only on
469
+ vector of knots, `k` and `x` it is useful to make tests for different
470
+ boundary conditions (and as following different vectors of knots).
471
+ '''
472
+ def run_design_matrix_tests(n, k, bc_type):
473
+ '''
474
+ To avoid repetition of code the following function is provided.
475
+ '''
476
+ rng = np.random.RandomState(1234)
477
+ x = np.sort(rng.random_sample(n) * 40 - 20)
478
+ y = rng.random_sample(n) * 40 - 20
479
+ if bc_type == "periodic":
480
+ y[0] = y[-1]
481
+
482
+ bspl = make_interp_spline(x, y, k=k, bc_type=bc_type)
483
+
484
+ c = np.eye(len(bspl.t) - k - 1)
485
+ des_matr_def = BSpline(bspl.t, c, k)(x)
486
+ des_matr_csr = BSpline.design_matrix(x,
487
+ bspl.t,
488
+ k).toarray()
489
+ xp_assert_close(des_matr_csr @ bspl.c, y, atol=1e-14)
490
+ xp_assert_close(des_matr_def, des_matr_csr, atol=1e-14)
491
+
492
+ # "clamped" and "natural" work only with `k = 3`
493
+ n = 11
494
+ k = 3
495
+ for bc in ["clamped", "natural"]:
496
+ run_design_matrix_tests(n, k, bc)
497
+
498
+ # "not-a-knot" works with odd `k`
499
+ for k in range(3, 8, 2):
500
+ run_design_matrix_tests(n, k, "not-a-knot")
501
+
502
+ # "periodic" works with any `k` (even more than `n`)
503
+ n = 5 # smaller `n` to test `k > n` case
504
+ for k in range(2, 7):
505
+ run_design_matrix_tests(n, k, "periodic")
506
+
507
+ @pytest.mark.parametrize('extrapolate', [False, True, 'periodic'])
508
+ @pytest.mark.parametrize('degree', range(5))
509
+ def test_design_matrix_same_as_BSpline_call(self, extrapolate, degree):
510
+ """Test that design_matrix(x) is equivalent to BSpline(..)(x)."""
511
+ rng = np.random.RandomState(1234)
512
+ x = rng.random_sample(10 * (degree + 1))
513
+ xmin, xmax = np.amin(x), np.amax(x)
514
+ k = degree
515
+ t = np.r_[np.linspace(xmin - 2, xmin - 1, degree),
516
+ np.linspace(xmin, xmax, 2 * (degree + 1)),
517
+ np.linspace(xmax + 1, xmax + 2, degree)]
518
+ c = np.eye(len(t) - k - 1)
519
+ bspline = BSpline(t, c, k, extrapolate)
520
+ xp_assert_close(
521
+ bspline(x), BSpline.design_matrix(x, t, k, extrapolate).toarray()
522
+ )
523
+
524
+ # extrapolation regime
525
+ x = np.array([xmin - 10, xmin - 1, xmax + 1.5, xmax + 10])
526
+ if not extrapolate:
527
+ with pytest.raises(ValueError):
528
+ BSpline.design_matrix(x, t, k, extrapolate)
529
+ else:
530
+ xp_assert_close(
531
+ bspline(x),
532
+ BSpline.design_matrix(x, t, k, extrapolate).toarray()
533
+ )
534
+
535
+ def test_design_matrix_x_shapes(self):
536
+ # test for different `x` shapes
537
+ rng = np.random.RandomState(1234)
538
+ n = 10
539
+ k = 3
540
+ x = np.sort(rng.random_sample(n) * 40 - 20)
541
+ y = rng.random_sample(n) * 40 - 20
542
+
543
+ bspl = make_interp_spline(x, y, k=k)
544
+ for i in range(1, 4):
545
+ xc = x[:i]
546
+ yc = y[:i]
547
+ des_matr_csr = BSpline.design_matrix(xc,
548
+ bspl.t,
549
+ k).toarray()
550
+ xp_assert_close(des_matr_csr @ bspl.c, yc, atol=1e-14)
551
+
552
+ def test_design_matrix_t_shapes(self):
553
+ # test for minimal possible `t` shape
554
+ t = [1., 1., 1., 2., 3., 4., 4., 4.]
555
+ des_matr = BSpline.design_matrix(2., t, 3).toarray()
556
+ xp_assert_close(des_matr,
557
+ [[0.25, 0.58333333, 0.16666667, 0.]],
558
+ atol=1e-14)
559
+
560
+ def test_design_matrix_asserts(self):
561
+ rng = np.random.RandomState(1234)
562
+ n = 10
563
+ k = 3
564
+ x = np.sort(rng.random_sample(n) * 40 - 20)
565
+ y = rng.random_sample(n) * 40 - 20
566
+ bspl = make_interp_spline(x, y, k=k)
567
+ # invalid vector of knots (should be a 1D non-descending array)
568
+ # here the actual vector of knots is reversed, so it is invalid
569
+ with assert_raises(ValueError):
570
+ BSpline.design_matrix(x, bspl.t[::-1], k)
571
+ k = 2
572
+ t = [0., 1., 2., 3., 4., 5.]
573
+ x = [1., 2., 3., 4.]
574
+ # out of bounds
575
+ with assert_raises(ValueError):
576
+ BSpline.design_matrix(x, t, k)
577
+
578
+ @pytest.mark.parametrize('bc_type', ['natural', 'clamped',
579
+ 'periodic', 'not-a-knot'])
580
+ def test_from_power_basis(self, bc_type):
581
+ rng = np.random.RandomState(1234)
582
+ x = np.sort(rng.random(20))
583
+ y = rng.random(20)
584
+ if bc_type == 'periodic':
585
+ y[-1] = y[0]
586
+ cb = CubicSpline(x, y, bc_type=bc_type)
587
+ bspl = BSpline.from_power_basis(cb, bc_type=bc_type)
588
+ xx = np.linspace(0, 1, 20)
589
+ xp_assert_close(cb(xx), bspl(xx), atol=1e-15)
590
+ bspl_new = make_interp_spline(x, y, bc_type=bc_type)
591
+ xp_assert_close(bspl.c, bspl_new.c, atol=1e-15)
592
+
593
+ @pytest.mark.parametrize('bc_type', ['natural', 'clamped',
594
+ 'periodic', 'not-a-knot'])
595
+ def test_from_power_basis_complex(self, bc_type):
596
+ rng = np.random.RandomState(1234)
597
+ x = np.sort(rng.random(20))
598
+ y = rng.random(20) + rng.random(20) * 1j
599
+ if bc_type == 'periodic':
600
+ y[-1] = y[0]
601
+ cb = CubicSpline(x, y, bc_type=bc_type)
602
+ bspl = BSpline.from_power_basis(cb, bc_type=bc_type)
603
+ bspl_new_real = make_interp_spline(x, y.real, bc_type=bc_type)
604
+ bspl_new_imag = make_interp_spline(x, y.imag, bc_type=bc_type)
605
+ xp_assert_close(bspl.c, bspl_new_real.c + 1j * bspl_new_imag.c, atol=1e-15)
606
+
607
+ def test_from_power_basis_exmp(self):
608
+ '''
609
+ For x = [0, 1, 2, 3, 4] and y = [1, 1, 1, 1, 1]
610
+ the coefficients of Cubic Spline in the power basis:
611
+
612
+ $[[0, 0, 0, 0, 0],\\$
613
+ $[0, 0, 0, 0, 0],\\$
614
+ $[0, 0, 0, 0, 0],\\$
615
+ $[1, 1, 1, 1, 1]]$
616
+
617
+ It could be shown explicitly that coefficients of the interpolating
618
+ function in B-spline basis are c = [1, 1, 1, 1, 1, 1, 1]
619
+ '''
620
+ x = np.array([0, 1, 2, 3, 4])
621
+ y = np.array([1, 1, 1, 1, 1])
622
+ bspl = BSpline.from_power_basis(CubicSpline(x, y, bc_type='natural'),
623
+ bc_type='natural')
624
+ xp_assert_close(bspl.c, [1.0, 1, 1, 1, 1, 1, 1], atol=1e-15)
625
+
626
+ def test_read_only(self):
627
+ # BSpline must work on read-only knots and coefficients.
628
+ t = np.array([0, 1])
629
+ c = np.array([3.0])
630
+ t.setflags(write=False)
631
+ c.setflags(write=False)
632
+
633
+ xx = np.linspace(0, 1, 10)
634
+ xx.setflags(write=False)
635
+
636
+ b = BSpline(t=t, c=c, k=0)
637
+ xp_assert_close(b(xx), np.ones_like(xx) * 3.0)
638
+
639
+ @pytest.mark.thread_unsafe
640
+ def test_concurrency(self):
641
+ # Check that no segfaults appear with concurrent access to BSpline
642
+ b = _make_random_spline()
643
+
644
+ def worker_fn(_, b):
645
+ t, _, k = b.tck
646
+ xx = np.linspace(t[k], t[-k-1], 10000)
647
+ b(xx)
648
+
649
+ _run_concurrent_barrier(10, worker_fn, b)
650
+
651
+
652
+ def test_memmap(self, tmpdir):
653
+ # Make sure that memmaps can be used as t and c atrributes after the
654
+ # spline has been constructed. This is similar to what happens in a
655
+ # scikit-learn context, where joblib can create read-only memmap to
656
+ # share objects between workers. For more details, see
657
+ # https://github.com/scipy/scipy/issues/22143
658
+ b = _make_random_spline()
659
+ xx = np.linspace(0, 1, 10)
660
+
661
+ expected = b(xx)
662
+
663
+ tid = threading.get_native_id()
664
+ t_mm = np.memmap(str(tmpdir.join(f't{tid}.dat')), mode='w+',
665
+ dtype=b.t.dtype, shape=b.t.shape)
666
+ t_mm[:] = b.t
667
+ c_mm = np.memmap(str(tmpdir.join(f'c{tid}.dat')), mode='w+',
668
+ dtype=b.c.dtype, shape=b.c.shape)
669
+ c_mm[:] = b.c
670
+ b.t = t_mm
671
+ b.c = c_mm
672
+
673
+ xp_assert_close(b(xx), expected)
674
+
675
+
676
+ class TestInsert:
677
+
678
+ @pytest.mark.parametrize('xval', [0.0, 1.0, 2.5, 4, 6.5, 7.0])
679
+ def test_insert(self, xval):
680
+ # insert a knot, incl edges (0.0, 7.0) and exactly at an existing knot (4.0)
681
+ x = np.arange(8)
682
+ y = np.sin(x)**3
683
+ spl = make_interp_spline(x, y, k=3)
684
+
685
+ spl_1f = insert(xval, spl) # FITPACK
686
+ spl_1 = spl.insert_knot(xval)
687
+
688
+ xp_assert_close(spl_1.t, spl_1f.t, atol=1e-15)
689
+ xp_assert_close(spl_1.c, spl_1f.c[:-spl.k-1], atol=1e-15)
690
+
691
+ # knot insertion preserves values, unless multiplicity >= k+1
692
+ xx = x if xval != x[-1] else x[:-1]
693
+ xx = np.r_[xx, 0.5*(x[1:] + x[:-1])]
694
+ xp_assert_close(spl(xx), spl_1(xx), atol=1e-15)
695
+
696
+ # ... repeat with ndim > 1
697
+ y1 = np.cos(x)**3
698
+ spl_y1 = make_interp_spline(x, y1, k=3)
699
+ spl_yy = make_interp_spline(x, np.c_[y, y1], k=3)
700
+ spl_yy1 = spl_yy.insert_knot(xval)
701
+
702
+ xp_assert_close(spl_yy1.t, spl_1.t, atol=1e-15)
703
+ xp_assert_close(spl_yy1.c, np.c_[spl.insert_knot(xval).c,
704
+ spl_y1.insert_knot(xval).c], atol=1e-15)
705
+
706
+ xx = x if xval != x[-1] else x[:-1]
707
+ xx = np.r_[xx, 0.5*(x[1:] + x[:-1])]
708
+ xp_assert_close(spl_yy(xx), spl_yy1(xx), atol=1e-15)
709
+
710
+
711
+ @pytest.mark.parametrize(
712
+ 'xval, m', [(0.0, 2), (1.0, 3), (1.5, 5), (4, 2), (7.0, 2)]
713
+ )
714
+ def test_insert_multi(self, xval, m):
715
+ x = np.arange(8)
716
+ y = np.sin(x)**3
717
+ spl = make_interp_spline(x, y, k=3)
718
+
719
+ spl_1f = insert(xval, spl, m=m)
720
+ spl_1 = spl.insert_knot(xval, m)
721
+
722
+ xp_assert_close(spl_1.t, spl_1f.t, atol=1e-15)
723
+ xp_assert_close(spl_1.c, spl_1f.c[:-spl.k-1], atol=1e-15)
724
+
725
+ xx = x if xval != x[-1] else x[:-1]
726
+ xx = np.r_[xx, 0.5*(x[1:] + x[:-1])]
727
+ xp_assert_close(spl(xx), spl_1(xx), atol=1e-15)
728
+
729
+ def test_insert_random(self):
730
+ rng = np.random.default_rng(12345)
731
+ n, k = 11, 3
732
+
733
+ t = np.sort(rng.uniform(size=n+k+1))
734
+ c = rng.uniform(size=(n, 3, 2))
735
+ spl = BSpline(t, c, k)
736
+
737
+ xv = rng.uniform(low=t[k+1], high=t[-k-1])
738
+ spl_1 = spl.insert_knot(xv)
739
+
740
+ xx = rng.uniform(low=t[k+1], high=t[-k-1], size=33)
741
+ xp_assert_close(spl(xx), spl_1(xx), atol=1e-15)
742
+
743
+ @pytest.mark.parametrize('xv', [0, 0.1, 2.0, 4.0, 4.5, # l.h. edge
744
+ 5.5, 6.0, 6.1, 7.0] # r.h. edge
745
+ )
746
+ def test_insert_periodic(self, xv):
747
+ x = np.arange(8)
748
+ y = np.sin(x)**3
749
+ tck = splrep(x, y, k=3)
750
+ spl = BSpline(*tck, extrapolate="periodic")
751
+
752
+ spl_1 = spl.insert_knot(xv)
753
+ tf, cf, k = insert(xv, spl.tck, per=True)
754
+
755
+ xp_assert_close(spl_1.t, tf, atol=1e-15)
756
+ xp_assert_close(spl_1.c[:-k-1], cf[:-k-1], atol=1e-15)
757
+
758
+ xx = np.random.default_rng(1234).uniform(low=0, high=7, size=41)
759
+ xp_assert_close(spl_1(xx), splev(xx, (tf, cf, k)), atol=1e-15)
760
+
761
+ @pytest.mark.parametrize('extrapolate', [None, 'periodic'])
762
+ def test_complex(self, extrapolate):
763
+ x = np.arange(8)*2*np.pi
764
+ y_re, y_im = np.sin(x), np.cos(x)
765
+
766
+ spl = make_interp_spline(x, y_re + 1j*y_im, k=3)
767
+ spl.extrapolate = extrapolate
768
+
769
+ spl_re = make_interp_spline(x, y_re, k=3)
770
+ spl_re.extrapolate = extrapolate
771
+
772
+ spl_im = make_interp_spline(x, y_im, k=3)
773
+ spl_im.extrapolate = extrapolate
774
+
775
+ xv = 3.5
776
+ spl_1 = spl.insert_knot(xv)
777
+ spl_1re = spl_re.insert_knot(xv)
778
+ spl_1im = spl_im.insert_knot(xv)
779
+
780
+ xp_assert_close(spl_1.t, spl_1re.t, atol=1e-15)
781
+ xp_assert_close(spl_1.t, spl_1im.t, atol=1e-15)
782
+ xp_assert_close(spl_1.c, spl_1re.c + 1j*spl_1im.c, atol=1e-15)
783
+
784
+ def test_insert_periodic_too_few_internal_knots(self):
785
+ # both FITPACK and spl.insert_knot raise when there's not enough
786
+ # internal knots to make a periodic extension.
787
+ # Below the internal knots are 2, 3, , 4, 5
788
+ # ^
789
+ # 2, 3, 3.5, 4, 5
790
+ # so two knots from each side from the new one, while need at least
791
+ # from either left or right.
792
+ xv = 3.5
793
+ k = 3
794
+ t = np.array([0]*(k+1) + [2, 3, 4, 5] + [7]*(k+1))
795
+ c = np.ones(len(t) - k - 1)
796
+ spl = BSpline(t, c, k, extrapolate="periodic")
797
+
798
+ with assert_raises(ValueError):
799
+ insert(xv, (t, c, k), per=True)
800
+
801
+ with assert_raises(ValueError):
802
+ spl.insert_knot(xv)
803
+
804
+ def test_insert_no_extrap(self):
805
+ k = 3
806
+ t = np.array([0]*(k+1) + [2, 3, 4, 5] + [7]*(k+1))
807
+ c = np.ones(len(t) - k - 1)
808
+ spl = BSpline(t, c, k)
809
+
810
+ with assert_raises(ValueError):
811
+ spl.insert_knot(-1)
812
+
813
+ with assert_raises(ValueError):
814
+ spl.insert_knot(8)
815
+
816
+ with assert_raises(ValueError):
817
+ spl.insert_knot(3, m=0)
818
+
819
+
820
+ def test_knots_multiplicity():
821
+ # Take a spline w/ random coefficients, throw in knots of varying
822
+ # multiplicity.
823
+
824
+ def check_splev(b, j, der=0, atol=1e-14, rtol=1e-14):
825
+ # check evaluations against FITPACK, incl extrapolations
826
+ t, c, k = b.tck
827
+ x = np.unique(t)
828
+ x = np.r_[t[0]-0.1, 0.5*(x[1:] + x[:1]), t[-1]+0.1]
829
+ xp_assert_close(splev(x, (t, c, k), der), b(x, der),
830
+ atol=atol, rtol=rtol, err_msg=f'der = {der} k = {b.k}')
831
+
832
+ # test loop itself
833
+ # [the index `j` is for interpreting the traceback in case of a failure]
834
+ for k in [1, 2, 3, 4, 5]:
835
+ b = _make_random_spline(k=k)
836
+ for j, b1 in enumerate(_make_multiples(b)):
837
+ check_splev(b1, j)
838
+ for der in range(1, k+1):
839
+ check_splev(b1, j, der, 1e-12, 1e-12)
840
+
841
+
842
+ ### stolen from @pv, verbatim
843
+ def _naive_B(x, k, i, t):
844
+ """
845
+ Naive way to compute B-spline basis functions. Useful only for testing!
846
+ computes B(x; t[i],..., t[i+k+1])
847
+ """
848
+ if k == 0:
849
+ return 1.0 if t[i] <= x < t[i+1] else 0.0
850
+ if t[i+k] == t[i]:
851
+ c1 = 0.0
852
+ else:
853
+ c1 = (x - t[i])/(t[i+k] - t[i]) * _naive_B(x, k-1, i, t)
854
+ if t[i+k+1] == t[i+1]:
855
+ c2 = 0.0
856
+ else:
857
+ c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * _naive_B(x, k-1, i+1, t)
858
+ return (c1 + c2)
859
+
860
+
861
+ ### stolen from @pv, verbatim
862
+ def _naive_eval(x, t, c, k):
863
+ """
864
+ Naive B-spline evaluation. Useful only for testing!
865
+ """
866
+ if x == t[k]:
867
+ i = k
868
+ else:
869
+ i = np.searchsorted(t, x) - 1
870
+ assert t[i] <= x <= t[i+1]
871
+ assert i >= k and i < len(t) - k
872
+ return sum(c[i-j] * _naive_B(x, k, i-j, t) for j in range(0, k+1))
873
+
874
+
875
+ def _naive_eval_2(x, t, c, k):
876
+ """Naive B-spline evaluation, another way."""
877
+ n = len(t) - (k+1)
878
+ assert n >= k+1
879
+ assert len(c) >= n
880
+ assert t[k] <= x <= t[n]
881
+ return sum(c[i] * _naive_B(x, k, i, t) for i in range(n))
882
+
883
+
884
+ def _sum_basis_elements(x, t, c, k):
885
+ n = len(t) - (k+1)
886
+ assert n >= k+1
887
+ assert len(c) >= n
888
+ s = 0.
889
+ for i in range(n):
890
+ b = BSpline.basis_element(t[i:i+k+2], extrapolate=False)(x)
891
+ s += c[i] * np.nan_to_num(b) # zero out out-of-bounds elements
892
+ return s
893
+
894
+
895
+ def B_012(x):
896
+ """ A linear B-spline function B(x | 0, 1, 2)."""
897
+ x = np.atleast_1d(x)
898
+ return np.piecewise(x, [(x < 0) | (x > 2),
899
+ (x >= 0) & (x < 1),
900
+ (x >= 1) & (x <= 2)],
901
+ [lambda x: 0., lambda x: x, lambda x: 2.-x])
902
+
903
+
904
+ def B_0123(x, der=0):
905
+ """A quadratic B-spline function B(x | 0, 1, 2, 3)."""
906
+ x = np.atleast_1d(x)
907
+ conds = [x < 1, (x > 1) & (x < 2), x > 2]
908
+ if der == 0:
909
+ funcs = [lambda x: x*x/2.,
910
+ lambda x: 3./4 - (x-3./2)**2,
911
+ lambda x: (3.-x)**2 / 2]
912
+ elif der == 2:
913
+ funcs = [lambda x: 1.,
914
+ lambda x: -2.,
915
+ lambda x: 1.]
916
+ else:
917
+ raise ValueError(f'never be here: der={der}')
918
+ pieces = np.piecewise(x, conds, funcs)
919
+ return pieces
920
+
921
+
922
+ def _make_random_spline(n=35, k=3):
923
+ rng = np.random.RandomState(123)
924
+ t = np.sort(rng.random(n+k+1))
925
+ c = rng.random(n)
926
+ return BSpline.construct_fast(t, c, k)
927
+
928
+
929
+ def _make_multiples(b):
930
+ """Increase knot multiplicity."""
931
+ c, k = b.c, b.k
932
+
933
+ t1 = b.t.copy()
934
+ t1[17:19] = t1[17]
935
+ t1[22] = t1[21]
936
+ yield BSpline(t1, c, k)
937
+
938
+ t1 = b.t.copy()
939
+ t1[:k+1] = t1[0]
940
+ yield BSpline(t1, c, k)
941
+
942
+ t1 = b.t.copy()
943
+ t1[-k-1:] = t1[-1]
944
+ yield BSpline(t1, c, k)
945
+
946
+
947
+ class TestInterop:
948
+ #
949
+ # Test that FITPACK-based spl* functions can deal with BSpline objects
950
+ #
951
+ def setup_method(self):
952
+ xx = np.linspace(0, 4.*np.pi, 41)
953
+ yy = np.cos(xx)
954
+ b = make_interp_spline(xx, yy)
955
+ self.tck = (b.t, b.c, b.k)
956
+ self.xx, self.yy, self.b = xx, yy, b
957
+
958
+ self.xnew = np.linspace(0, 4.*np.pi, 21)
959
+
960
+ c2 = np.c_[b.c, b.c, b.c]
961
+ self.c2 = np.dstack((c2, c2))
962
+ self.b2 = BSpline(b.t, self.c2, b.k)
963
+
964
+ def test_splev(self):
965
+ xnew, b, b2 = self.xnew, self.b, self.b2
966
+
967
+ # check that splev works with 1-D array of coefficients
968
+ # for array and scalar `x`
969
+ xp_assert_close(splev(xnew, b),
970
+ b(xnew), atol=1e-15, rtol=1e-15)
971
+ xp_assert_close(splev(xnew, b.tck),
972
+ b(xnew), atol=1e-15, rtol=1e-15)
973
+ xp_assert_close(np.asarray([splev(x, b) for x in xnew]),
974
+ b(xnew), atol=1e-15, rtol=1e-15)
975
+
976
+ # With N-D coefficients, there's a quirck:
977
+ # splev(x, BSpline) is equivalent to BSpline(x)
978
+ with assert_raises(ValueError, match="Calling splev.. with BSpline"):
979
+ splev(xnew, b2)
980
+
981
+ # However, splev(x, BSpline.tck) needs some transposes. This is because
982
+ # BSpline interpolates along the first axis, while the legacy FITPACK
983
+ # wrapper does list(map(...)) which effectively interpolates along the
984
+ # last axis. Like so:
985
+ sh = tuple(range(1, b2.c.ndim)) + (0,) # sh = (1, 2, 0)
986
+ cc = b2.c.transpose(sh)
987
+ tck = (b2.t, cc, b2.k)
988
+ xp_assert_close(np.asarray(splev(xnew, tck)),
989
+ b2(xnew).transpose(sh), atol=1e-15, rtol=1e-15)
990
+
991
+ def test_splrep(self):
992
+ x, y = self.xx, self.yy
993
+ # test that "new" splrep is equivalent to _impl.splrep
994
+ tck = splrep(x, y)
995
+ t, c, k = _impl.splrep(x, y)
996
+ xp_assert_close(tck[0], t, atol=1e-15)
997
+ xp_assert_close(tck[1], c, atol=1e-15)
998
+ assert tck[2] == k
999
+
1000
+ # also cover the `full_output=True` branch
1001
+ tck_f, _, _, _ = splrep(x, y, full_output=True)
1002
+ xp_assert_close(tck_f[0], t, atol=1e-15)
1003
+ xp_assert_close(tck_f[1], c, atol=1e-15)
1004
+ assert tck_f[2] == k
1005
+
1006
+ # test that the result of splrep roundtrips with splev:
1007
+ # evaluate the spline on the original `x` points
1008
+ yy = splev(x, tck)
1009
+ xp_assert_close(y, yy, atol=1e-15)
1010
+
1011
+ # ... and also it roundtrips if wrapped in a BSpline
1012
+ b = BSpline(*tck)
1013
+ xp_assert_close(y, b(x), atol=1e-15)
1014
+
1015
+ def test_splrep_errors(self):
1016
+ # test that both "old" and "new" splrep raise for an N-D ``y`` array
1017
+ # with n > 1
1018
+ x, y = self.xx, self.yy
1019
+ y2 = np.c_[y, y]
1020
+ with assert_raises(ValueError):
1021
+ splrep(x, y2)
1022
+ with assert_raises(ValueError):
1023
+ _impl.splrep(x, y2)
1024
+
1025
+ # input below minimum size
1026
+ with assert_raises(TypeError, match="m > k must hold"):
1027
+ splrep(x[:3], y[:3])
1028
+ with assert_raises(TypeError, match="m > k must hold"):
1029
+ _impl.splrep(x[:3], y[:3])
1030
+
1031
+ def test_splprep(self):
1032
+ x = np.arange(15, dtype=np.float64).reshape((3, 5))
1033
+ b, u = splprep(x)
1034
+ tck, u1 = _impl.splprep(x)
1035
+
1036
+ # test the roundtrip with splev for both "old" and "new" output
1037
+ xp_assert_close(u, u1, atol=1e-15)
1038
+ xp_assert_close(np.asarray(splev(u, b)), x, atol=1e-15)
1039
+ xp_assert_close(np.asarray(splev(u, tck)), x, atol=1e-15)
1040
+
1041
+ # cover the ``full_output=True`` branch
1042
+ (b_f, u_f), _, _, _ = splprep(x, s=0, full_output=True)
1043
+ xp_assert_close(u, u_f, atol=1e-15)
1044
+ xp_assert_close(np.asarray(splev(u_f, b_f)), x, atol=1e-15)
1045
+
1046
+ def test_splprep_errors(self):
1047
+ # test that both "old" and "new" code paths raise for x.ndim > 2
1048
+ x = np.arange(3*4*5).reshape((3, 4, 5))
1049
+ with assert_raises(ValueError, match="too many values to unpack"):
1050
+ splprep(x)
1051
+ with assert_raises(ValueError, match="too many values to unpack"):
1052
+ _impl.splprep(x)
1053
+
1054
+ # input below minimum size
1055
+ x = np.linspace(0, 40, num=3)
1056
+ with assert_raises(TypeError, match="m > k must hold"):
1057
+ splprep([x])
1058
+ with assert_raises(TypeError, match="m > k must hold"):
1059
+ _impl.splprep([x])
1060
+
1061
+ # automatically calculated parameters are non-increasing
1062
+ # see gh-7589
1063
+ x = [-50.49072266, -50.49072266, -54.49072266, -54.49072266]
1064
+ with assert_raises(ValueError, match="Invalid inputs"):
1065
+ splprep([x])
1066
+ with assert_raises(ValueError, match="Invalid inputs"):
1067
+ _impl.splprep([x])
1068
+
1069
+ # given non-increasing parameter values u
1070
+ x = [1, 3, 2, 4]
1071
+ u = [0, 0.3, 0.2, 1]
1072
+ with assert_raises(ValueError, match="Invalid inputs"):
1073
+ splprep(*[[x], None, u])
1074
+
1075
+ def test_sproot(self):
1076
+ b, b2 = self.b, self.b2
1077
+ roots = np.array([0.5, 1.5, 2.5, 3.5])*np.pi
1078
+ # sproot accepts a BSpline obj w/ 1-D coef array
1079
+ xp_assert_close(sproot(b), roots, atol=1e-7, rtol=1e-7)
1080
+ xp_assert_close(sproot((b.t, b.c, b.k)), roots, atol=1e-7, rtol=1e-7)
1081
+
1082
+ # ... and deals with trailing dimensions if coef array is N-D
1083
+ with assert_raises(ValueError, match="Calling sproot.. with BSpline"):
1084
+ sproot(b2, mest=50)
1085
+
1086
+ # and legacy behavior is preserved for a tck tuple w/ N-D coef
1087
+ c2r = b2.c.transpose(1, 2, 0)
1088
+ rr = np.asarray(sproot((b2.t, c2r, b2.k), mest=50))
1089
+ assert rr.shape == (3, 2, 4)
1090
+ xp_assert_close(rr - roots, np.zeros_like(rr), atol=1e-12)
1091
+
1092
+ def test_splint(self):
1093
+ # test that splint accepts BSpline objects
1094
+ b, b2 = self.b, self.b2
1095
+
1096
+ xp_assert_close(splint(0, 1, b),
1097
+ splint(0, 1, b.tck), atol=1e-14, check_0d=False)
1098
+ xp_assert_close(splint(0, 1, b),
1099
+ b.integrate(0, 1), atol=1e-14, check_0d=False)
1100
+
1101
+ # ... and deals with N-D arrays of coefficients
1102
+ with assert_raises(ValueError, match="Calling splint.. with BSpline"):
1103
+ splint(0, 1, b2)
1104
+
1105
+ # and the legacy behavior is preserved for a tck tuple w/ N-D coef
1106
+ c2r = b2.c.transpose(1, 2, 0)
1107
+ integr = np.asarray(splint(0, 1, (b2.t, c2r, b2.k)))
1108
+ assert integr.shape == (3, 2)
1109
+ xp_assert_close(integr,
1110
+ splint(0, 1, b), atol=1e-14, check_shape=False)
1111
+
1112
+ def test_splder(self):
1113
+ for b in [self.b, self.b2]:
1114
+ # pad the c array (FITPACK convention)
1115
+ ct = len(b.t) - len(b.c)
1116
+ b_c = b.c.copy()
1117
+ if ct > 0:
1118
+ b_c = np.r_[b_c, np.zeros((ct,) + b_c.shape[1:])]
1119
+
1120
+ for n in [1, 2, 3]:
1121
+ bd = splder(b)
1122
+ tck_d = _impl.splder((b.t.copy(), b_c, b.k))
1123
+ xp_assert_close(bd.t, tck_d[0], atol=1e-15)
1124
+ xp_assert_close(bd.c, tck_d[1], atol=1e-15)
1125
+ assert bd.k == tck_d[2]
1126
+ assert isinstance(bd, BSpline)
1127
+ assert isinstance(tck_d, tuple) # back-compat: tck in and out
1128
+
1129
+ def test_splantider(self):
1130
+ for b in [self.b, self.b2]:
1131
+ # pad the c array (FITPACK convention)
1132
+ ct = len(b.t) - len(b.c)
1133
+ b_c = b.c.copy()
1134
+ if ct > 0:
1135
+ b_c = np.r_[b_c, np.zeros((ct,) + b_c.shape[1:])]
1136
+
1137
+ for n in [1, 2, 3]:
1138
+ bd = splantider(b)
1139
+ tck_d = _impl.splantider((b.t.copy(), b_c, b.k))
1140
+ xp_assert_close(bd.t, tck_d[0], atol=1e-15)
1141
+ xp_assert_close(bd.c, tck_d[1], atol=1e-15)
1142
+ assert bd.k == tck_d[2]
1143
+ assert isinstance(bd, BSpline)
1144
+ assert isinstance(tck_d, tuple) # back-compat: tck in and out
1145
+
1146
+ def test_insert(self):
1147
+ b, b2, xx = self.b, self.b2, self.xx
1148
+
1149
+ j = b.t.size // 2
1150
+ tn = 0.5*(b.t[j] + b.t[j+1])
1151
+
1152
+ bn, tck_n = insert(tn, b), insert(tn, (b.t, b.c, b.k))
1153
+ xp_assert_close(splev(xx, bn),
1154
+ splev(xx, tck_n), atol=1e-15)
1155
+ assert isinstance(bn, BSpline)
1156
+ assert isinstance(tck_n, tuple) # back-compat: tck in, tck out
1157
+
1158
+ # for N-D array of coefficients, BSpline.c needs to be transposed
1159
+ # after that, the results are equivalent.
1160
+ sh = tuple(range(b2.c.ndim))
1161
+ c_ = b2.c.transpose(sh[1:] + (0,))
1162
+ tck_n2 = insert(tn, (b2.t, c_, b2.k))
1163
+
1164
+ bn2 = insert(tn, b2)
1165
+
1166
+ # need a transpose for comparing the results, cf test_splev
1167
+ xp_assert_close(np.asarray(splev(xx, tck_n2)).transpose(2, 0, 1),
1168
+ bn2(xx), atol=1e-15)
1169
+ assert isinstance(bn2, BSpline)
1170
+ assert isinstance(tck_n2, tuple) # back-compat: tck in, tck out
1171
+
1172
+
1173
+ class TestInterp:
1174
+ #
1175
+ # Test basic ways of constructing interpolating splines.
1176
+ #
1177
+ xx = np.linspace(0., 2.*np.pi)
1178
+ yy = np.sin(xx)
1179
+
1180
+ def test_non_int_order(self):
1181
+ with assert_raises(TypeError):
1182
+ make_interp_spline(self.xx, self.yy, k=2.5)
1183
+
1184
+ def test_order_0(self):
1185
+ b = make_interp_spline(self.xx, self.yy, k=0)
1186
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1187
+ b = make_interp_spline(self.xx, self.yy, k=0, axis=-1)
1188
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1189
+
1190
+ def test_linear(self):
1191
+ b = make_interp_spline(self.xx, self.yy, k=1)
1192
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1193
+ b = make_interp_spline(self.xx, self.yy, k=1, axis=-1)
1194
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1195
+
1196
+ @pytest.mark.parametrize('k', [0, 1, 2, 3])
1197
+ def test_incompatible_x_y(self, k):
1198
+ x = [0, 1, 2, 3, 4, 5]
1199
+ y = [0, 1, 2, 3, 4, 5, 6, 7]
1200
+ with assert_raises(ValueError, match="Shapes of x"):
1201
+ make_interp_spline(x, y, k=k)
1202
+
1203
+ @pytest.mark.parametrize('k', [0, 1, 2, 3])
1204
+ def test_broken_x(self, k):
1205
+ x = [0, 1, 1, 2, 3, 4] # duplicates
1206
+ y = [0, 1, 2, 3, 4, 5]
1207
+ with assert_raises(ValueError, match="x to not have duplicates"):
1208
+ make_interp_spline(x, y, k=k)
1209
+
1210
+ x = [0, 2, 1, 3, 4, 5] # unsorted
1211
+ with assert_raises(ValueError, match="Expect x to be a 1D strictly"):
1212
+ make_interp_spline(x, y, k=k)
1213
+
1214
+ x = [0, 1, 2, 3, 4, 5]
1215
+ x = np.asarray(x).reshape((1, -1)) # 1D
1216
+ with assert_raises(ValueError, match="Expect x to be a 1D strictly"):
1217
+ make_interp_spline(x, y, k=k)
1218
+
1219
+ def test_not_a_knot(self):
1220
+ for k in [2, 3, 4, 5, 6, 7]:
1221
+ b = make_interp_spline(self.xx, self.yy, k)
1222
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1223
+
1224
+ def test_periodic(self):
1225
+ # k = 5 here for more derivatives
1226
+ b = make_interp_spline(self.xx, self.yy, k=5, bc_type='periodic')
1227
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1228
+ # in periodic case it is expected equality of k-1 first
1229
+ # derivatives at the boundaries
1230
+ for i in range(1, 5):
1231
+ xp_assert_close(b(self.xx[0], nu=i), b(self.xx[-1], nu=i), atol=1e-11)
1232
+ # tests for axis=-1
1233
+ b = make_interp_spline(self.xx, self.yy, k=5, bc_type='periodic', axis=-1)
1234
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1235
+ for i in range(1, 5):
1236
+ xp_assert_close(b(self.xx[0], nu=i), b(self.xx[-1], nu=i), atol=1e-11)
1237
+
1238
+ @pytest.mark.parametrize('k', [2, 3, 4, 5, 6, 7])
1239
+ def test_periodic_random(self, k):
1240
+ # tests for both cases (k > n and k <= n)
1241
+ n = 5
1242
+ rng = np.random.RandomState(1234)
1243
+ x = np.sort(rng.random_sample(n) * 10)
1244
+ y = rng.random_sample(n) * 100
1245
+ y[0] = y[-1]
1246
+ b = make_interp_spline(x, y, k=k, bc_type='periodic')
1247
+ xp_assert_close(b(x), y, atol=1e-14)
1248
+
1249
+ def test_periodic_axis(self):
1250
+ n = self.xx.shape[0]
1251
+ rng = np.random.RandomState(1234)
1252
+ x = rng.random_sample(n) * 2 * np.pi
1253
+ x = np.sort(x)
1254
+ x[0] = 0.
1255
+ x[-1] = 2 * np.pi
1256
+ y = np.zeros((2, n))
1257
+ y[0] = np.sin(x)
1258
+ y[1] = np.cos(x)
1259
+ b = make_interp_spline(x, y, k=5, bc_type='periodic', axis=1)
1260
+ for i in range(n):
1261
+ xp_assert_close(b(x[i]), y[:, i], atol=1e-14)
1262
+ xp_assert_close(b(x[0]), b(x[-1]), atol=1e-14)
1263
+
1264
+ def test_periodic_points_exception(self):
1265
+ # first and last points should match when periodic case expected
1266
+ rng = np.random.RandomState(1234)
1267
+ k = 5
1268
+ n = 8
1269
+ x = np.sort(rng.random_sample(n))
1270
+ y = rng.random_sample(n)
1271
+ y[0] = y[-1] - 1 # to be sure that they are not equal
1272
+ with assert_raises(ValueError):
1273
+ make_interp_spline(x, y, k=k, bc_type='periodic')
1274
+
1275
+ def test_periodic_knots_exception(self):
1276
+ # `periodic` case does not work with passed vector of knots
1277
+ rng = np.random.RandomState(1234)
1278
+ k = 3
1279
+ n = 7
1280
+ x = np.sort(rng.random_sample(n))
1281
+ y = rng.random_sample(n)
1282
+ t = np.zeros(n + 2 * k)
1283
+ with assert_raises(ValueError):
1284
+ make_interp_spline(x, y, k, t, 'periodic')
1285
+
1286
+ @pytest.mark.parametrize('k', [2, 3, 4, 5])
1287
+ def test_periodic_splev(self, k):
1288
+ # comparison values of periodic b-spline with splev
1289
+ b = make_interp_spline(self.xx, self.yy, k=k, bc_type='periodic')
1290
+ tck = splrep(self.xx, self.yy, per=True, k=k)
1291
+ spl = splev(self.xx, tck)
1292
+ xp_assert_close(spl, b(self.xx), atol=1e-14)
1293
+
1294
+ # comparison derivatives of periodic b-spline with splev
1295
+ for i in range(1, k):
1296
+ spl = splev(self.xx, tck, der=i)
1297
+ xp_assert_close(spl, b(self.xx, nu=i), atol=1e-10)
1298
+
1299
+ def test_periodic_cubic(self):
1300
+ # comparison values of cubic periodic b-spline with CubicSpline
1301
+ b = make_interp_spline(self.xx, self.yy, k=3, bc_type='periodic')
1302
+ cub = CubicSpline(self.xx, self.yy, bc_type='periodic')
1303
+ xp_assert_close(b(self.xx), cub(self.xx), atol=1e-14)
1304
+
1305
+ # edge case: Cubic interpolation on 3 points
1306
+ rng = np.random.RandomState(1234)
1307
+ n = 3
1308
+ x = np.sort(rng.random_sample(n) * 10)
1309
+ y = rng.random_sample(n) * 100
1310
+ y[0] = y[-1]
1311
+ b = make_interp_spline(x, y, k=3, bc_type='periodic')
1312
+ cub = CubicSpline(x, y, bc_type='periodic')
1313
+ xp_assert_close(b(x), cub(x), atol=1e-14)
1314
+
1315
+ def test_periodic_full_matrix(self):
1316
+ # comparison values of cubic periodic b-spline with
1317
+ # solution of the system with full matrix
1318
+ k = 3
1319
+ b = make_interp_spline(self.xx, self.yy, k=k, bc_type='periodic')
1320
+ t = _periodic_knots(self.xx, k)
1321
+ c = _make_interp_per_full_matr(self.xx, self.yy, t, k)
1322
+ b1 = np.vectorize(lambda x: _naive_eval(x, t, c, k))
1323
+ xp_assert_close(b(self.xx), b1(self.xx), atol=1e-14)
1324
+
1325
+ def test_quadratic_deriv(self):
1326
+ der = [(1, 8.)] # order, value: f'(x) = 8.
1327
+
1328
+ # derivative at right-hand edge
1329
+ b = make_interp_spline(self.xx, self.yy, k=2, bc_type=(None, der))
1330
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1331
+ xp_assert_close(
1332
+ b(self.xx[-1], 1), der[0][1], atol=1e-14, rtol=1e-14, check_0d=False
1333
+ )
1334
+
1335
+ # derivative at left-hand edge
1336
+ b = make_interp_spline(self.xx, self.yy, k=2, bc_type=(der, None))
1337
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1338
+ xp_assert_close(
1339
+ b(self.xx[0], 1), der[0][1], atol=1e-14, rtol=1e-14, check_0d=False
1340
+ )
1341
+
1342
+ def test_cubic_deriv(self):
1343
+ k = 3
1344
+
1345
+ # first derivatives at left & right edges:
1346
+ der_l, der_r = [(1, 3.)], [(1, 4.)]
1347
+ b = make_interp_spline(self.xx, self.yy, k, bc_type=(der_l, der_r))
1348
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1349
+ xp_assert_close(np.asarray([b(self.xx[0], 1), b(self.xx[-1], 1)]),
1350
+ np.asarray([der_l[0][1], der_r[0][1]]), atol=1e-14, rtol=1e-14)
1351
+
1352
+ # 'natural' cubic spline, zero out 2nd derivatives at the boundaries
1353
+ der_l, der_r = [(2, 0)], [(2, 0)]
1354
+ b = make_interp_spline(self.xx, self.yy, k, bc_type=(der_l, der_r))
1355
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1356
+
1357
+ def test_quintic_derivs(self):
1358
+ k, n = 5, 7
1359
+ x = np.arange(n).astype(np.float64)
1360
+ y = np.sin(x)
1361
+ der_l = [(1, -12.), (2, 1)]
1362
+ der_r = [(1, 8.), (2, 3.)]
1363
+ b = make_interp_spline(x, y, k=k, bc_type=(der_l, der_r))
1364
+ xp_assert_close(b(x), y, atol=1e-14, rtol=1e-14)
1365
+ xp_assert_close(np.asarray([b(x[0], 1), b(x[0], 2)]),
1366
+ np.asarray([val for (nu, val) in der_l]))
1367
+ xp_assert_close(np.asarray([b(x[-1], 1), b(x[-1], 2)]),
1368
+ np.asarray([val for (nu, val) in der_r]))
1369
+
1370
+ @pytest.mark.xfail(reason='unstable')
1371
+ def test_cubic_deriv_unstable(self):
1372
+ # 1st and 2nd derivative at x[0], no derivative information at x[-1]
1373
+ # The problem is not that it fails [who would use this anyway],
1374
+ # the problem is that it fails *silently*, and I've no idea
1375
+ # how to detect this sort of instability.
1376
+ # In this particular case: it's OK for len(t) < 20, goes haywire
1377
+ # at larger `len(t)`.
1378
+ k = 3
1379
+ t = _augknt(self.xx, k)
1380
+
1381
+ der_l = [(1, 3.), (2, 4.)]
1382
+ b = make_interp_spline(self.xx, self.yy, k, t, bc_type=(der_l, None))
1383
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1384
+
1385
+ def test_knots_not_data_sites(self):
1386
+ # Knots need not coincide with the data sites.
1387
+ # use a quadratic spline, knots are at data averages,
1388
+ # two additional constraints are zero 2nd derivatives at edges
1389
+ k = 2
1390
+ t = np.r_[(self.xx[0],)*(k+1),
1391
+ (self.xx[1:] + self.xx[:-1]) / 2.,
1392
+ (self.xx[-1],)*(k+1)]
1393
+ b = make_interp_spline(self.xx, self.yy, k, t,
1394
+ bc_type=([(2, 0)], [(2, 0)]))
1395
+
1396
+ xp_assert_close(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
1397
+ xp_assert_close(b(self.xx[0], 2), np.asarray(0.0), atol=1e-14)
1398
+ xp_assert_close(b(self.xx[-1], 2), np.asarray(0.0), atol=1e-14)
1399
+
1400
+ def test_minimum_points_and_deriv(self):
1401
+ # interpolation of f(x) = x**3 between 0 and 1. f'(x) = 3 * xx**2 and
1402
+ # f'(0) = 0, f'(1) = 3.
1403
+ k = 3
1404
+ x = [0., 1.]
1405
+ y = [0., 1.]
1406
+ b = make_interp_spline(x, y, k, bc_type=([(1, 0.)], [(1, 3.)]))
1407
+
1408
+ xx = np.linspace(0., 1.)
1409
+ yy = xx**3
1410
+ xp_assert_close(b(xx), yy, atol=1e-14, rtol=1e-14)
1411
+
1412
+ def test_deriv_spec(self):
1413
+ # If one of the derivatives is omitted, the spline definition is
1414
+ # incomplete.
1415
+ x = y = [1.0, 2, 3, 4, 5, 6]
1416
+
1417
+ with assert_raises(ValueError):
1418
+ make_interp_spline(x, y, bc_type=([(1, 0.)], None))
1419
+
1420
+ with assert_raises(ValueError):
1421
+ make_interp_spline(x, y, bc_type=(1, 0.))
1422
+
1423
+ with assert_raises(ValueError):
1424
+ make_interp_spline(x, y, bc_type=[(1, 0.)])
1425
+
1426
+ with assert_raises(ValueError):
1427
+ make_interp_spline(x, y, bc_type=42)
1428
+
1429
+ # CubicSpline expects`bc_type=(left_pair, right_pair)`, while
1430
+ # here we expect `bc_type=(iterable, iterable)`.
1431
+ l, r = (1, 0.0), (1, 0.0)
1432
+ with assert_raises(ValueError):
1433
+ make_interp_spline(x, y, bc_type=(l, r))
1434
+
1435
+ def test_deriv_order_too_large(self):
1436
+ x = np.arange(7)
1437
+ y = x**2
1438
+ l, r = [(6, 0)], [(1, 0)] # 6th derivative = 0 at x[0] for k=3
1439
+ with assert_raises(ValueError, match="Bad boundary conditions at 0."):
1440
+ # cannot fix 6th derivative at x[0]: does not segfault
1441
+ make_interp_spline(x, y, bc_type=(l, r))
1442
+
1443
+ l, r = [(1, 0)], [(-6, 0)] # derivative order < 0 at x[-1]
1444
+ with assert_raises(ValueError, match="Bad boundary conditions at 6."):
1445
+ # does not segfault
1446
+ make_interp_spline(x, y, bc_type=(l, r))
1447
+
1448
+ def test_complex(self):
1449
+ k = 3
1450
+ xx = self.xx
1451
+ yy = self.yy + 1.j*self.yy
1452
+
1453
+ # first derivatives at left & right edges:
1454
+ der_l, der_r = [(1, 3.j)], [(1, 4.+2.j)]
1455
+ b = make_interp_spline(xx, yy, k, bc_type=(der_l, der_r))
1456
+ xp_assert_close(b(xx), yy, atol=1e-14, rtol=1e-14)
1457
+ xp_assert_close(
1458
+ b(xx[0], 1), der_l[0][1], atol=1e-14, rtol=1e-14, check_0d=False
1459
+ )
1460
+ xp_assert_close(
1461
+ b(xx[-1], 1), der_r[0][1], atol=1e-14, rtol=1e-14, check_0d=False
1462
+ )
1463
+
1464
+ # also test zero and first order
1465
+ for k in (0, 1):
1466
+ b = make_interp_spline(xx, yy, k=k)
1467
+ xp_assert_close(b(xx), yy, atol=1e-14, rtol=1e-14)
1468
+
1469
+ def test_int_xy(self):
1470
+ x = np.arange(10).astype(int)
1471
+ y = np.arange(10).astype(int)
1472
+
1473
+ # Cython chokes on "buffer type mismatch" (construction) or
1474
+ # "no matching signature found" (evaluation)
1475
+ for k in (0, 1, 2, 3):
1476
+ b = make_interp_spline(x, y, k=k)
1477
+ b(x)
1478
+
1479
+ def test_sliced_input(self):
1480
+ # Cython code chokes on non C contiguous arrays
1481
+ xx = np.linspace(-1, 1, 100)
1482
+
1483
+ x = xx[::5]
1484
+ y = xx[::5]
1485
+
1486
+ for k in (0, 1, 2, 3):
1487
+ make_interp_spline(x, y, k=k)
1488
+
1489
+ def test_check_finite(self):
1490
+ # check_finite defaults to True; nans and such trigger a ValueError
1491
+ x = np.arange(10).astype(float)
1492
+ y = x**2
1493
+
1494
+ for z in [np.nan, np.inf, -np.inf]:
1495
+ y[-1] = z
1496
+ assert_raises(ValueError, make_interp_spline, x, y)
1497
+
1498
+ @pytest.mark.parametrize('k', [1, 2, 3, 5])
1499
+ def test_list_input(self, k):
1500
+ # regression test for gh-8714: TypeError for x, y being lists and k=2
1501
+ x = list(range(10))
1502
+ y = [a**2 for a in x]
1503
+ make_interp_spline(x, y, k=k)
1504
+
1505
+ def test_multiple_rhs(self):
1506
+ yy = np.c_[np.sin(self.xx), np.cos(self.xx)]
1507
+ der_l = [(1, [1., 2.])]
1508
+ der_r = [(1, [3., 4.])]
1509
+
1510
+ b = make_interp_spline(self.xx, yy, k=3, bc_type=(der_l, der_r))
1511
+ xp_assert_close(b(self.xx), yy, atol=1e-14, rtol=1e-14)
1512
+ xp_assert_close(b(self.xx[0], 1), der_l[0][1], atol=1e-14, rtol=1e-14)
1513
+ xp_assert_close(b(self.xx[-1], 1), der_r[0][1], atol=1e-14, rtol=1e-14)
1514
+
1515
+ def test_shapes(self):
1516
+ rng = np.random.RandomState(1234)
1517
+ k, n = 3, 22
1518
+ x = np.sort(rng.random(size=n))
1519
+ y = rng.random(size=(n, 5, 6, 7))
1520
+
1521
+ b = make_interp_spline(x, y, k)
1522
+ assert b.c.shape == (n, 5, 6, 7)
1523
+
1524
+ # now throw in some derivatives
1525
+ d_l = [(1, rng.random((5, 6, 7)))]
1526
+ d_r = [(1, rng.random((5, 6, 7)))]
1527
+ b = make_interp_spline(x, y, k, bc_type=(d_l, d_r))
1528
+ assert b.c.shape == (n + k - 1, 5, 6, 7)
1529
+
1530
+ def test_string_aliases(self):
1531
+ yy = np.sin(self.xx)
1532
+
1533
+ # a single string is duplicated
1534
+ b1 = make_interp_spline(self.xx, yy, k=3, bc_type='natural')
1535
+ b2 = make_interp_spline(self.xx, yy, k=3, bc_type=([(2, 0)], [(2, 0)]))
1536
+ xp_assert_close(b1.c, b2.c, atol=1e-15)
1537
+
1538
+ # two strings are handled
1539
+ b1 = make_interp_spline(self.xx, yy, k=3,
1540
+ bc_type=('natural', 'clamped'))
1541
+ b2 = make_interp_spline(self.xx, yy, k=3,
1542
+ bc_type=([(2, 0)], [(1, 0)]))
1543
+ xp_assert_close(b1.c, b2.c, atol=1e-15)
1544
+
1545
+ # one-sided BCs are OK
1546
+ b1 = make_interp_spline(self.xx, yy, k=2, bc_type=(None, 'clamped'))
1547
+ b2 = make_interp_spline(self.xx, yy, k=2, bc_type=(None, [(1, 0.0)]))
1548
+ xp_assert_close(b1.c, b2.c, atol=1e-15)
1549
+
1550
+ # 'not-a-knot' is equivalent to None
1551
+ b1 = make_interp_spline(self.xx, yy, k=3, bc_type='not-a-knot')
1552
+ b2 = make_interp_spline(self.xx, yy, k=3, bc_type=None)
1553
+ xp_assert_close(b1.c, b2.c, atol=1e-15)
1554
+
1555
+ # unknown strings do not pass
1556
+ with assert_raises(ValueError):
1557
+ make_interp_spline(self.xx, yy, k=3, bc_type='typo')
1558
+
1559
+ # string aliases are handled for 2D values
1560
+ yy = np.c_[np.sin(self.xx), np.cos(self.xx)]
1561
+ der_l = [(1, [0., 0.])]
1562
+ der_r = [(2, [0., 0.])]
1563
+ b2 = make_interp_spline(self.xx, yy, k=3, bc_type=(der_l, der_r))
1564
+ b1 = make_interp_spline(self.xx, yy, k=3,
1565
+ bc_type=('clamped', 'natural'))
1566
+ xp_assert_close(b1.c, b2.c, atol=1e-15)
1567
+
1568
+ # ... and for N-D values:
1569
+ rng = np.random.RandomState(1234)
1570
+ k, n = 3, 22
1571
+ x = np.sort(rng.random(size=n))
1572
+ y = rng.random(size=(n, 5, 6, 7))
1573
+
1574
+ # now throw in some derivatives
1575
+ d_l = [(1, np.zeros((5, 6, 7)))]
1576
+ d_r = [(1, np.zeros((5, 6, 7)))]
1577
+ b1 = make_interp_spline(x, y, k, bc_type=(d_l, d_r))
1578
+ b2 = make_interp_spline(x, y, k, bc_type='clamped')
1579
+ xp_assert_close(b1.c, b2.c, atol=1e-15)
1580
+
1581
+ def test_full_matrix(self):
1582
+ rng = np.random.RandomState(1234)
1583
+ k, n = 3, 7
1584
+ x = np.sort(rng.random(size=n))
1585
+ y = rng.random(size=n)
1586
+ t = _not_a_knot(x, k)
1587
+
1588
+ b = make_interp_spline(x, y, k, t)
1589
+ cf = make_interp_full_matr(x, y, t, k)
1590
+ xp_assert_close(b.c, cf, atol=1e-14, rtol=1e-14)
1591
+
1592
+ def test_woodbury(self):
1593
+ '''
1594
+ Random elements in diagonal matrix with blocks in the
1595
+ left lower and right upper corners checking the
1596
+ implementation of Woodbury algorithm.
1597
+ '''
1598
+ rng = np.random.RandomState(1234)
1599
+ n = 201
1600
+ for k in range(3, 32, 2):
1601
+ offset = int((k - 1) / 2)
1602
+ a = np.diagflat(rng.random((1, n)))
1603
+ for i in range(1, offset + 1):
1604
+ a[:-i, i:] += np.diagflat(rng.random((1, n - i)))
1605
+ a[i:, :-i] += np.diagflat(rng.random((1, n - i)))
1606
+ ur = rng.random((offset, offset))
1607
+ a[:offset, -offset:] = ur
1608
+ ll = rng.random((offset, offset))
1609
+ a[-offset:, :offset] = ll
1610
+ d = np.zeros((k, n))
1611
+ for i, j in enumerate(range(offset, -offset - 1, -1)):
1612
+ if j < 0:
1613
+ d[i, :j] = np.diagonal(a, offset=j)
1614
+ else:
1615
+ d[i, j:] = np.diagonal(a, offset=j)
1616
+ b = rng.random(n)
1617
+ xp_assert_close(_woodbury_algorithm(d, ur, ll, b, k),
1618
+ np.linalg.solve(a, b), atol=1e-14)
1619
+
1620
+
1621
+ def make_interp_full_matr(x, y, t, k):
1622
+ """Assemble an spline order k with knots t to interpolate
1623
+ y(x) using full matrices.
1624
+ Not-a-knot BC only.
1625
+
1626
+ This routine is here for testing only (even though it's functional).
1627
+ """
1628
+ assert x.size == y.size
1629
+ assert t.size == x.size + k + 1
1630
+ n = x.size
1631
+
1632
+ A = np.zeros((n, n), dtype=np.float64)
1633
+
1634
+ for j in range(n):
1635
+ xval = x[j]
1636
+ if xval == t[k]:
1637
+ left = k
1638
+ else:
1639
+ left = np.searchsorted(t, xval) - 1
1640
+
1641
+ # fill a row
1642
+ bb = _dierckx.evaluate_all_bspl(t, k, xval, left)
1643
+ A[j, left-k:left+1] = bb
1644
+
1645
+ c = sl.solve(A, y)
1646
+ return c
1647
+
1648
+
1649
+ def make_lsq_full_matrix(x, y, t, k=3):
1650
+ """Make the least-square spline, full matrices."""
1651
+ x, y, t = map(np.asarray, (x, y, t))
1652
+ m = x.size
1653
+ n = t.size - k - 1
1654
+
1655
+ A = np.zeros((m, n), dtype=np.float64)
1656
+
1657
+ for j in range(m):
1658
+ xval = x[j]
1659
+ # find interval
1660
+ if xval == t[k]:
1661
+ left = k
1662
+ else:
1663
+ left = np.searchsorted(t, xval) - 1
1664
+
1665
+ # fill a row
1666
+ bb = _dierckx.evaluate_all_bspl(t, k, xval, left)
1667
+ A[j, left-k:left+1] = bb
1668
+
1669
+ # have observation matrix, can solve the LSQ problem
1670
+ B = np.dot(A.T, A)
1671
+ Y = np.dot(A.T, y)
1672
+ c = sl.solve(B, Y)
1673
+
1674
+ return c, (A, Y)
1675
+
1676
+
1677
+ parametrize_lsq_methods = pytest.mark.parametrize("method", ["norm-eq", "qr"])
1678
+
1679
+ class TestLSQ:
1680
+ #
1681
+ # Test make_lsq_spline
1682
+ #
1683
+ rng = np.random.RandomState(1234)
1684
+ n, k = 13, 3
1685
+ x = np.sort(rng.random(n))
1686
+ y = rng.random(n)
1687
+ t = _augknt(np.linspace(x[0], x[-1], 7), k)
1688
+
1689
+ @parametrize_lsq_methods
1690
+ def test_lstsq(self, method):
1691
+ # check LSQ construction vs a full matrix version
1692
+ x, y, t, k = self.x, self.y, self.t, self.k
1693
+
1694
+ c0, AY = make_lsq_full_matrix(x, y, t, k)
1695
+ b = make_lsq_spline(x, y, t, k, method=method)
1696
+
1697
+ xp_assert_close(b.c, c0)
1698
+ assert b.c.shape == (t.size - k - 1,)
1699
+
1700
+ # also check against numpy.lstsq
1701
+ aa, yy = AY
1702
+ c1, _, _, _ = np.linalg.lstsq(aa, y, rcond=-1)
1703
+ xp_assert_close(b.c, c1)
1704
+
1705
+ @parametrize_lsq_methods
1706
+ def test_weights(self, method):
1707
+ # weights = 1 is same as None
1708
+ x, y, t, k = self.x, self.y, self.t, self.k
1709
+ w = np.ones_like(x)
1710
+
1711
+ b = make_lsq_spline(x, y, t, k, method=method)
1712
+ b_w = make_lsq_spline(x, y, t, k, w=w, method=method)
1713
+
1714
+ xp_assert_close(b.t, b_w.t, atol=1e-14)
1715
+ xp_assert_close(b.c, b_w.c, atol=1e-14)
1716
+ assert b.k == b_w.k
1717
+
1718
+ def test_weights_same(self):
1719
+ # both methods treat weights
1720
+ x, y, t, k = self.x, self.y, self.t, self.k
1721
+ w = np.random.default_rng(1234).uniform(size=x.shape[0])
1722
+
1723
+ b_ne = make_lsq_spline(x, y, t, k, w=w, method="norm-eq")
1724
+ b_qr = make_lsq_spline(x, y, t, k, w=w, method="qr")
1725
+ b_no_w = make_lsq_spline(x, y, t, k, method="qr")
1726
+
1727
+ xp_assert_close(b_ne.c, b_qr.c, atol=1e-14)
1728
+ assert not np.allclose(b_no_w.c, b_qr.c, atol=1e-14)
1729
+
1730
+ @parametrize_lsq_methods
1731
+ def test_multiple_rhs(self, method):
1732
+ x, t, k, n = self.x, self.t, self.k, self.n
1733
+ rng = np.random.RandomState(1234)
1734
+ y = rng.random(size=(n, 5, 6, 7))
1735
+ b = make_lsq_spline(x, y, t, k, method=method)
1736
+ assert b.c.shape == (t.size-k-1, 5, 6, 7)
1737
+
1738
+ @parametrize_lsq_methods
1739
+ def test_multiple_rhs_2(self, method):
1740
+ x, t, k, n = self.x, self.t, self.k, self.n
1741
+ nrhs = 3
1742
+ rng = np.random.RandomState(1234)
1743
+ y = rng.random(size=(n, nrhs))
1744
+ b = make_lsq_spline(x, y, t, k, method=method)
1745
+
1746
+ bb = [make_lsq_spline(x, y[:, i], t, k, method=method)
1747
+ for i in range(nrhs)]
1748
+ coefs = np.vstack([bb[i].c for i in range(nrhs)]).T
1749
+
1750
+ xp_assert_close(coefs, b.c, atol=1e-15)
1751
+
1752
+ def test_multiple_rhs_3(self):
1753
+ x, t, k, n = self.x, self.t, self.k, self.n
1754
+ nrhs = 3
1755
+ y = np.random.random(size=(n, nrhs))
1756
+ b_qr = make_lsq_spline(x, y, t, k, method="qr")
1757
+ b_neq = make_lsq_spline(x, y, t, k, method="norm-eq")
1758
+ xp_assert_close(b_qr.c, b_neq.c, atol=1e-15)
1759
+
1760
+ @parametrize_lsq_methods
1761
+ def test_complex(self, method):
1762
+ # cmplx-valued `y`
1763
+ x, t, k = self.x, self.t, self.k
1764
+ yc = self.y * (1. + 2.j)
1765
+
1766
+ b = make_lsq_spline(x, yc, t, k, method=method)
1767
+ b_re = make_lsq_spline(x, yc.real, t, k, method=method)
1768
+ b_im = make_lsq_spline(x, yc.imag, t, k, method=method)
1769
+
1770
+ xp_assert_close(b(x), b_re(x) + 1.j*b_im(x), atol=1e-15, rtol=1e-15)
1771
+
1772
+ def test_complex_2(self):
1773
+ # test complex-valued y with y.ndim > 1
1774
+
1775
+ x, t, k = self.x, self.t, self.k
1776
+ yc = self.y * (1. + 2.j)
1777
+ yc = np.stack((yc, yc), axis=1)
1778
+
1779
+ b = make_lsq_spline(x, yc, t, k)
1780
+ b_re = make_lsq_spline(x, yc.real, t, k)
1781
+ b_im = make_lsq_spline(x, yc.imag, t, k)
1782
+
1783
+ xp_assert_close(b(x), b_re(x) + 1.j*b_im(x), atol=1e-15, rtol=1e-15)
1784
+
1785
+ # repeat with num_trailing_dims > 1 : yc.shape[1:] = (2, 2)
1786
+ yc = np.stack((yc, yc), axis=1)
1787
+
1788
+ b = make_lsq_spline(x, yc, t, k)
1789
+ b_re = make_lsq_spline(x, yc.real, t, k)
1790
+ b_im = make_lsq_spline(x, yc.imag, t, k)
1791
+
1792
+ xp_assert_close(b(x), b_re(x) + 1.j*b_im(x), atol=1e-15, rtol=1e-15)
1793
+
1794
+ @parametrize_lsq_methods
1795
+ def test_int_xy(self, method):
1796
+ x = np.arange(10).astype(int)
1797
+ y = np.arange(10).astype(int)
1798
+ t = _augknt(x, k=1)
1799
+ # Cython chokes on "buffer type mismatch"
1800
+ make_lsq_spline(x, y, t, k=1, method=method)
1801
+
1802
+ @parametrize_lsq_methods
1803
+ def test_f32_xy(self, method):
1804
+ x = np.arange(10, dtype=np.float32)
1805
+ y = np.arange(10, dtype=np.float32)
1806
+ t = _augknt(x, k=1)
1807
+ spl_f32 = make_lsq_spline(x, y, t, k=1, method=method)
1808
+ spl_f64 = make_lsq_spline(
1809
+ x.astype(float), y.astype(float), t.astype(float), k=1, method=method
1810
+ )
1811
+
1812
+ x2 = (x[1:] + x[:-1]) / 2.0
1813
+ xp_assert_close(spl_f32(x2), spl_f64(x2), atol=1e-15)
1814
+
1815
+ @parametrize_lsq_methods
1816
+ def test_sliced_input(self, method):
1817
+ # Cython code chokes on non C contiguous arrays
1818
+ xx = np.linspace(-1, 1, 100)
1819
+
1820
+ x = xx[::3]
1821
+ y = xx[::3]
1822
+ t = _augknt(x, 1)
1823
+ make_lsq_spline(x, y, t, k=1, method=method)
1824
+
1825
+ @parametrize_lsq_methods
1826
+ def test_checkfinite(self, method):
1827
+ # check_finite defaults to True; nans and such trigger a ValueError
1828
+ x = np.arange(12).astype(float)
1829
+ y = x**2
1830
+ t = _augknt(x, 3)
1831
+
1832
+ for z in [np.nan, np.inf, -np.inf]:
1833
+ y[-1] = z
1834
+ assert_raises(ValueError, make_lsq_spline, x, y, t, method=method)
1835
+
1836
+ @parametrize_lsq_methods
1837
+ def test_read_only(self, method):
1838
+ # Check that make_lsq_spline works with read only arrays
1839
+ x, y, t = self.x, self.y, self.t
1840
+ x.setflags(write=False)
1841
+ y.setflags(write=False)
1842
+ t.setflags(write=False)
1843
+ make_lsq_spline(x=x, y=y, t=t, method=method)
1844
+
1845
+ @pytest.mark.parametrize('k', list(range(1, 7)))
1846
+ def test_qr_vs_norm_eq(self, k):
1847
+ # check that QR and normal eq solutions match
1848
+ x, y = self.x, self.y
1849
+ t = _augknt(np.linspace(x[0], x[-1], 7), k)
1850
+ spl_norm_eq = make_lsq_spline(x, y, t, k=k, method='norm-eq')
1851
+ spl_qr = make_lsq_spline(x, y, t, k=k, method='qr')
1852
+
1853
+ xx = (x[1:] + x[:-1]) / 2.0
1854
+ xp_assert_close(spl_norm_eq(xx), spl_qr(xx), atol=1e-15)
1855
+
1856
+ def test_duplicates(self):
1857
+ # method="qr" can handle duplicated data points
1858
+ x = np.repeat(self.x, 2)
1859
+ y = np.repeat(self.y, 2)
1860
+ spl_1 = make_lsq_spline(self.x, self.y, self.t, k=3, method='qr')
1861
+ spl_2 = make_lsq_spline(x, y, self.t, k=3, method='qr')
1862
+
1863
+ xx = (x[1:] + x[:-1]) / 2.0
1864
+ xp_assert_close(spl_1(xx), spl_2(xx), atol=1e-15)
1865
+
1866
+
1867
+ class PackedMatrix:
1868
+ """A simplified CSR format for when non-zeros in each row are consecutive.
1869
+
1870
+ Assuming that each row of an `(m, nc)` matrix 1) only has `nz` non-zeros, and
1871
+ 2) these non-zeros are consecutive, we only store an `(m, nz)` matrix of
1872
+ non-zeros and a 1D array of row offsets. This way, a row `i` of the original
1873
+ matrix A is ``A[i, offset[i]: offset[i] + nz]``.
1874
+
1875
+ """
1876
+ def __init__(self, a, offset, nc):
1877
+ self.a = a
1878
+ self.offset = offset
1879
+ self.nc = nc
1880
+
1881
+ assert a.ndim == 2
1882
+ assert offset.ndim == 1
1883
+ assert a.shape[0] == offset.shape[0]
1884
+
1885
+ @property
1886
+ def shape(self):
1887
+ return self.a.shape[0], self.nc
1888
+
1889
+ def todense(self):
1890
+ out = np.zeros(self.shape)
1891
+ nelem = self.a.shape[1]
1892
+ for i in range(out.shape[0]):
1893
+ nel = min(self.nc - self.offset[i], nelem)
1894
+ out[i, self.offset[i]:self.offset[i] + nel] = self.a[i, :nel]
1895
+ return out
1896
+
1897
+
1898
+ def _qr_reduce_py(a_p, y, startrow=1):
1899
+ """This is a python counterpart of the `_qr_reduce` routine,
1900
+ declared in interpolate/src/__fitpack.h
1901
+ """
1902
+ from scipy.linalg.lapack import dlartg
1903
+
1904
+ # unpack the packed format
1905
+ a = a_p.a
1906
+ offset = a_p.offset
1907
+ nc = a_p.nc
1908
+
1909
+ m, nz = a.shape
1910
+
1911
+ assert y.shape[0] == m
1912
+ R = a.copy()
1913
+ y1 = y.copy()
1914
+
1915
+ for i in range(startrow, m):
1916
+ oi = offset[i]
1917
+ for j in range(oi, nc):
1918
+ # rotate only the lower diagonal
1919
+ if j >= min(i, nc):
1920
+ break
1921
+
1922
+ # In dense format: diag a1[j, j] vs a1[i, j]
1923
+ c, s, r = dlartg(R[j, 0], R[i, 0])
1924
+
1925
+ # rotate l.h.s.
1926
+ R[j, 0] = r
1927
+ for l in range(1, nz):
1928
+ R[j, l], R[i, l-1] = fprota(c, s, R[j, l], R[i, l])
1929
+ R[i, -1] = 0.0
1930
+
1931
+ # rotate r.h.s.
1932
+ for l in range(y1.shape[1]):
1933
+ y1[j, l], y1[i, l] = fprota(c, s, y1[j, l], y1[i, l])
1934
+
1935
+ # convert to packed
1936
+ offs = list(range(R.shape[0]))
1937
+ R_p = PackedMatrix(R, np.array(offs, dtype=np.int64), nc)
1938
+
1939
+ return R_p, y1
1940
+
1941
+
1942
+ def fprota(c, s, a, b):
1943
+ """Givens rotate [a, b].
1944
+
1945
+ [aa] = [ c s] @ [a]
1946
+ [bb] [-s c] [b]
1947
+
1948
+ """
1949
+ aa = c*a + s*b
1950
+ bb = -s*a + c*b
1951
+ return aa, bb
1952
+
1953
+
1954
+ def fpback(R_p, y):
1955
+ """Backsubsitution solve upper triangular banded `R @ c = y.`
1956
+
1957
+ `R` is in the "packed" format: `R[i, :]` is `a[i, i:i+k+1]`
1958
+ """
1959
+ R = R_p.a
1960
+ _, nz = R.shape
1961
+ nc = R_p.nc
1962
+ assert y.shape[0] == R.shape[0]
1963
+
1964
+ c = np.zeros_like(y[:nc])
1965
+ c[nc-1, ...] = y[nc-1] / R[nc-1, 0]
1966
+ for i in range(nc-2, -1, -1):
1967
+ nel = min(nz, nc-i)
1968
+ # NB: broadcast R across trailing dimensions of `c`.
1969
+ summ = (R[i, 1:nel, None] * c[i+1:i+nel, ...]).sum(axis=0)
1970
+ c[i, ...] = ( y[i] - summ ) / R[i, 0]
1971
+ return c
1972
+
1973
+
1974
+ class TestGivensQR:
1975
+ # Test row-by-row QR factorization, used for the LSQ spline construction.
1976
+ # This is implementation detail; still test it separately.
1977
+ def _get_xyt(self, n):
1978
+ k = 3
1979
+ x = np.arange(n, dtype=float)
1980
+ y = x**3 + 1/(1+x)
1981
+ t = _not_a_knot(x, k)
1982
+ return x, y, t, k
1983
+
1984
+ def test_vs_full(self):
1985
+ n = 10
1986
+ x, y, t, k = self._get_xyt(n)
1987
+
1988
+ # design matrix
1989
+ a_csr = BSpline.design_matrix(x, t, k)
1990
+
1991
+ # dense QR
1992
+ q, r = sl.qr(a_csr.todense())
1993
+ qTy = q.T @ y
1994
+
1995
+ # prepare the PackedMatrix to factorize
1996
+ # convert to "packed" format
1997
+ m, nc = a_csr.shape
1998
+ assert nc == t.shape[0] - k - 1
1999
+
2000
+ offset = a_csr.indices[::(k+1)]
2001
+ offset = np.ascontiguousarray(offset, dtype=np.int64)
2002
+ A = a_csr.data.reshape(m, k+1)
2003
+
2004
+ R = PackedMatrix(A, offset, nc)
2005
+ y_ = y[:, None] # _qr_reduce requires `y` a 2D array
2006
+ _dierckx.qr_reduce(A, offset, nc, y_) # modifies arguments in-place
2007
+
2008
+ # signs may differ
2009
+ xp_assert_close(np.minimum(R.todense() + r,
2010
+ R.todense() - r), np.zeros_like(r), atol=1e-15)
2011
+ xp_assert_close(np.minimum(abs(qTy - y_[:, 0]),
2012
+ abs(qTy + y_[:, 0])), np.zeros_like(qTy), atol=2e-13)
2013
+
2014
+ # sign changes are consistent between Q and R:
2015
+ c_full = sl.solve(r, qTy)
2016
+ c_banded = _dierckx.fpback(R.a, R.nc, y_)
2017
+ xp_assert_close(c_full, c_banded[:, 0], atol=5e-13)
2018
+
2019
+ def test_py_vs_compiled(self):
2020
+ # test _qr_reduce vs a python implementation
2021
+ n = 10
2022
+ x, y, t, k = self._get_xyt(n)
2023
+
2024
+ # design matrix
2025
+ a_csr = BSpline.design_matrix(x, t, k)
2026
+ m, nc = a_csr.shape
2027
+ assert nc == t.shape[0] - k - 1
2028
+
2029
+ offset = a_csr.indices[::(k+1)]
2030
+ offset = np.ascontiguousarray(offset, dtype=np.int64)
2031
+ A = a_csr.data.reshape(m, k+1)
2032
+
2033
+ R = PackedMatrix(A, offset, nc)
2034
+ y_ = y[:, None]
2035
+
2036
+ RR, yy = _qr_reduce_py(R, y_)
2037
+ _dierckx.qr_reduce(A, offset, nc , y_) # in-place
2038
+
2039
+ xp_assert_close(RR.a, R.a, atol=1e-15)
2040
+ xp_assert_equal(RR.offset, R.offset, check_dtype=False)
2041
+ assert RR.nc == R.nc
2042
+ xp_assert_close(yy, y_, atol=1e-15)
2043
+
2044
+ # Test C-level construction of the design matrix
2045
+
2046
+ def test_data_matrix(self):
2047
+ n = 10
2048
+ x, y, t, k = self._get_xyt(n)
2049
+ w = np.arange(1, n+1, dtype=float)
2050
+
2051
+ A, offset, nc = _dierckx.data_matrix(x, t, k, w)
2052
+
2053
+ m = x.shape[0]
2054
+ a_csr = BSpline.design_matrix(x, t, k)
2055
+ a_w = (a_csr * w[:, None]).tocsr()
2056
+ A_ = a_w.data.reshape((m, k+1))
2057
+ offset_ = a_w.indices[::(k+1)].astype(np.int64)
2058
+
2059
+ xp_assert_close(A, A_, atol=1e-15)
2060
+ xp_assert_equal(offset, offset_)
2061
+ assert nc == t.shape[0] - k - 1
2062
+
2063
+ def test_fpback(self):
2064
+ n = 10
2065
+ x, y, t, k = self._get_xyt(n)
2066
+ y = np.c_[y, y**2]
2067
+ A, offset, nc = _dierckx.data_matrix(x, t, k, np.ones_like(x))
2068
+ R = PackedMatrix(A, offset, nc)
2069
+ _dierckx.qr_reduce(A, offset, nc, y)
2070
+
2071
+ c = fpback(R, y)
2072
+ cc = _dierckx.fpback(A, nc, y)
2073
+
2074
+ xp_assert_close(cc, c, atol=1e-14)
2075
+
2076
+
2077
+ def data_file(basename):
2078
+ return os.path.join(os.path.abspath(os.path.dirname(__file__)),
2079
+ 'data', basename)
2080
+
2081
+
2082
+ class TestSmoothingSpline:
2083
+ #
2084
+ # test make_smoothing_spline
2085
+ #
2086
+ def test_invalid_input(self):
2087
+ rng = np.random.RandomState(1234)
2088
+ n = 100
2089
+ x = np.sort(rng.random_sample(n) * 4 - 2)
2090
+ y = x**2 * np.sin(4 * x) + x**3 + rng.normal(0., 1.5, n)
2091
+
2092
+ # ``x`` and ``y`` should have same shapes (1-D array)
2093
+ with assert_raises(ValueError):
2094
+ make_smoothing_spline(x, y[1:])
2095
+ with assert_raises(ValueError):
2096
+ make_smoothing_spline(x[1:], y)
2097
+ with assert_raises(ValueError):
2098
+ make_smoothing_spline(x.reshape(1, n), y)
2099
+
2100
+ # ``x`` should be an ascending array
2101
+ with assert_raises(ValueError):
2102
+ make_smoothing_spline(x[::-1], y)
2103
+
2104
+ x_dupl = np.copy(x)
2105
+ x_dupl[0] = x_dupl[1]
2106
+
2107
+ with assert_raises(ValueError):
2108
+ make_smoothing_spline(x_dupl, y)
2109
+
2110
+ # x and y length must be >= 5
2111
+ x = np.arange(4)
2112
+ y = np.ones(4)
2113
+ exception_message = "``x`` and ``y`` length must be at least 5"
2114
+ with pytest.raises(ValueError, match=exception_message):
2115
+ make_smoothing_spline(x, y)
2116
+
2117
+ def test_compare_with_GCVSPL(self):
2118
+ """
2119
+ Data is generated in the following way:
2120
+ >>> np.random.seed(1234)
2121
+ >>> n = 100
2122
+ >>> x = np.sort(np.random.random_sample(n) * 4 - 2)
2123
+ >>> y = np.sin(x) + np.random.normal(scale=.5, size=n)
2124
+ >>> np.savetxt('x.csv', x)
2125
+ >>> np.savetxt('y.csv', y)
2126
+
2127
+ We obtain the result of performing the GCV smoothing splines
2128
+ package (by Woltring, gcvspl) on the sample data points
2129
+ using its version for Octave (https://github.com/srkuberski/gcvspl).
2130
+ In order to use this implementation, one should clone the repository
2131
+ and open the folder in Octave.
2132
+ In Octave, we load up ``x`` and ``y`` (generated from Python code
2133
+ above):
2134
+
2135
+ >>> x = csvread('x.csv');
2136
+ >>> y = csvread('y.csv');
2137
+
2138
+ Then, in order to access the implementation, we compile gcvspl files in
2139
+ Octave:
2140
+
2141
+ >>> mex gcvsplmex.c gcvspl.c
2142
+ >>> mex spldermex.c gcvspl.c
2143
+
2144
+ The first function computes the vector of unknowns from the dataset
2145
+ (x, y) while the second one evaluates the spline in certain points
2146
+ with known vector of coefficients.
2147
+
2148
+ >>> c = gcvsplmex( x, y, 2 );
2149
+ >>> y0 = spldermex( x, c, 2, x, 0 );
2150
+
2151
+ If we want to compare the results of the gcvspl code, we can save
2152
+ ``y0`` in csv file:
2153
+
2154
+ >>> csvwrite('y0.csv', y0);
2155
+
2156
+ """
2157
+ # load the data sample
2158
+ with np.load(data_file('gcvspl.npz')) as data:
2159
+ # data points
2160
+ x = data['x']
2161
+ y = data['y']
2162
+
2163
+ y_GCVSPL = data['y_GCVSPL']
2164
+ y_compr = make_smoothing_spline(x, y)(x)
2165
+
2166
+ # such tolerance is explained by the fact that the spline is built
2167
+ # using an iterative algorithm for minimizing the GCV criteria. These
2168
+ # algorithms may vary, so the tolerance should be rather low.
2169
+ # Not checking dtypes as gcvspl.npz stores little endian arrays, which
2170
+ # result in conflicting dtypes on big endian systems.
2171
+ xp_assert_close(y_compr, y_GCVSPL, atol=1e-4, rtol=1e-4, check_dtype=False)
2172
+
2173
+ def test_non_regularized_case(self):
2174
+ """
2175
+ In case the regularization parameter is 0, the resulting spline
2176
+ is an interpolation spline with natural boundary conditions.
2177
+ """
2178
+ # create data sample
2179
+ rng = np.random.RandomState(1234)
2180
+ n = 100
2181
+ x = np.sort(rng.random_sample(n) * 4 - 2)
2182
+ y = x**2 * np.sin(4 * x) + x**3 + rng.normal(0., 1.5, n)
2183
+
2184
+ spline_GCV = make_smoothing_spline(x, y, lam=0.)
2185
+ spline_interp = make_interp_spline(x, y, 3, bc_type='natural')
2186
+
2187
+ grid = np.linspace(x[0], x[-1], 2 * n)
2188
+ xp_assert_close(spline_GCV(grid),
2189
+ spline_interp(grid),
2190
+ atol=1e-15)
2191
+
2192
+ @pytest.mark.fail_slow(2)
2193
+ def test_weighted_smoothing_spline(self):
2194
+ # create data sample
2195
+ rng = np.random.RandomState(1234)
2196
+ n = 100
2197
+ x = np.sort(rng.random_sample(n) * 4 - 2)
2198
+ y = x**2 * np.sin(4 * x) + x**3 + rng.normal(0., 1.5, n)
2199
+
2200
+ spl = make_smoothing_spline(x, y)
2201
+
2202
+ # in order not to iterate over all of the indices, we select 10 of
2203
+ # them randomly
2204
+ for ind in rng.choice(range(100), size=10):
2205
+ w = np.ones(n)
2206
+ w[ind] = 30.
2207
+ spl_w = make_smoothing_spline(x, y, w)
2208
+ # check that spline with weight in a certain point is closer to the
2209
+ # original point than the one without weights
2210
+ orig = abs(spl(x[ind]) - y[ind])
2211
+ weighted = abs(spl_w(x[ind]) - y[ind])
2212
+
2213
+ if orig < weighted:
2214
+ raise ValueError(f'Spline with weights should be closer to the'
2215
+ f' points than the original one: {orig:.4} < '
2216
+ f'{weighted:.4}')
2217
+
2218
+
2219
+ ################################
2220
+ # NdBSpline tests
2221
+ def bspline2(xy, t, c, k):
2222
+ """A naive 2D tensort product spline evaluation."""
2223
+ x, y = xy
2224
+ tx, ty = t
2225
+ nx = len(tx) - k - 1
2226
+ assert (nx >= k+1)
2227
+ ny = len(ty) - k - 1
2228
+ assert (ny >= k+1)
2229
+ res = sum(c[ix, iy] * B(x, k, ix, tx) * B(y, k, iy, ty)
2230
+ for ix in range(nx) for iy in range(ny))
2231
+ return np.asarray(res)
2232
+
2233
+
2234
+ def B(x, k, i, t):
2235
+ if k == 0:
2236
+ return 1.0 if t[i] <= x < t[i+1] else 0.0
2237
+ if t[i+k] == t[i]:
2238
+ c1 = 0.0
2239
+ else:
2240
+ c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t)
2241
+ if t[i+k+1] == t[i+1]:
2242
+ c2 = 0.0
2243
+ else:
2244
+ c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t)
2245
+ return c1 + c2
2246
+
2247
+
2248
+ def bspline(x, t, c, k):
2249
+ n = len(t) - k - 1
2250
+ assert (n >= k+1) and (len(c) >= n)
2251
+ return sum(c[i] * B(x, k, i, t) for i in range(n))
2252
+
2253
+
2254
+ class NdBSpline0:
2255
+ def __init__(self, t, c, k=3):
2256
+ """Tensor product spline object.
2257
+
2258
+ c[i1, i2, ..., id] * B(x1, i1) * B(x2, i2) * ... * B(xd, id)
2259
+
2260
+ Parameters
2261
+ ----------
2262
+ c : ndarray, shape (n1, n2, ..., nd, ...)
2263
+ b-spline coefficients
2264
+ t : tuple of 1D ndarrays
2265
+ knot vectors in directions 1, 2, ... d
2266
+ ``len(t[i]) == n[i] + k + 1``
2267
+ k : int or length-d tuple of integers
2268
+ spline degrees.
2269
+ """
2270
+ ndim = len(t)
2271
+ assert ndim <= len(c.shape)
2272
+
2273
+ try:
2274
+ len(k)
2275
+ except TypeError:
2276
+ # make k a tuple
2277
+ k = (k,)*ndim
2278
+
2279
+ self.k = tuple(operator.index(ki) for ki in k)
2280
+ self.t = tuple(np.asarray(ti, dtype=float) for ti in t)
2281
+ self.c = c
2282
+
2283
+ def __call__(self, x):
2284
+ ndim = len(self.t)
2285
+ # a single evaluation point: `x` is a 1D array_like, shape (ndim,)
2286
+ assert len(x) == ndim
2287
+
2288
+ # get the indices in an ndim-dimensional vector
2289
+ i = ['none', ]*ndim
2290
+ for d in range(ndim):
2291
+ td, xd = self.t[d], x[d]
2292
+ k = self.k[d]
2293
+
2294
+ # find the index for x[d]
2295
+ if xd == td[k]:
2296
+ i[d] = k
2297
+ else:
2298
+ i[d] = np.searchsorted(td, xd) - 1
2299
+ assert td[i[d]] <= xd <= td[i[d]+1]
2300
+ assert i[d] >= k and i[d] < len(td) - k
2301
+ i = tuple(i)
2302
+
2303
+ # iterate over the dimensions, form linear combinations of
2304
+ # products B(x_1) * B(x_2) * ... B(x_N) of (k+1)**N b-splines
2305
+ # which are non-zero at `i = (i_1, i_2, ..., i_N)`.
2306
+ result = 0
2307
+ iters = [range(i[d] - self.k[d], i[d] + 1) for d in range(ndim)]
2308
+ for idx in itertools.product(*iters):
2309
+ term = self.c[idx] * np.prod([B(x[d], self.k[d], idx[d], self.t[d])
2310
+ for d in range(ndim)])
2311
+ result += term
2312
+ return np.asarray(result)
2313
+
2314
+
2315
+ class TestNdBSpline:
2316
+
2317
+ def test_1D(self):
2318
+ # test ndim=1 agrees with BSpline
2319
+ rng = np.random.default_rng(12345)
2320
+ n, k = 11, 3
2321
+ n_tr = 7
2322
+ t = np.sort(rng.uniform(size=n + k + 1))
2323
+ c = rng.uniform(size=(n, n_tr))
2324
+
2325
+ b = BSpline(t, c, k)
2326
+ nb = NdBSpline((t,), c, k)
2327
+
2328
+ xi = rng.uniform(size=21)
2329
+ # NdBSpline expects xi.shape=(npts, ndim)
2330
+ xp_assert_close(nb(xi[:, None]),
2331
+ b(xi), atol=1e-14)
2332
+ assert nb(xi[:, None]).shape == (xi.shape[0], c.shape[1])
2333
+
2334
+ def make_2d_case(self):
2335
+ # make a 2D separable spline
2336
+ x = np.arange(6)
2337
+ y = x**3
2338
+ spl = make_interp_spline(x, y, k=3)
2339
+
2340
+ y_1 = x**3 + 2*x
2341
+ spl_1 = make_interp_spline(x, y_1, k=3)
2342
+
2343
+ t2 = (spl.t, spl_1.t)
2344
+ c2 = spl.c[:, None] * spl_1.c[None, :]
2345
+
2346
+ return t2, c2, 3
2347
+
2348
+ def make_2d_mixed(self):
2349
+ # make a 2D separable spline w/ kx=3, ky=2
2350
+ x = np.arange(6)
2351
+ y = x**3
2352
+ spl = make_interp_spline(x, y, k=3)
2353
+
2354
+ x = np.arange(5) + 1.5
2355
+ y_1 = x**2 + 2*x
2356
+ spl_1 = make_interp_spline(x, y_1, k=2)
2357
+
2358
+ t2 = (spl.t, spl_1.t)
2359
+ c2 = spl.c[:, None] * spl_1.c[None, :]
2360
+
2361
+ return t2, c2, spl.k, spl_1.k
2362
+
2363
+ def test_2D_separable(self):
2364
+ xi = [(1.5, 2.5), (2.5, 1), (0.5, 1.5)]
2365
+ t2, c2, k = self.make_2d_case()
2366
+ target = [x**3 * (y**3 + 2*y) for (x, y) in xi]
2367
+
2368
+ # sanity check: bspline2 gives the product as constructed
2369
+ xp_assert_close(np.asarray([bspline2(xy, t2, c2, k) for xy in xi]),
2370
+ np.asarray(target),
2371
+ check_shape=False,
2372
+ atol=1e-14)
2373
+
2374
+ # check evaluation on a 2D array: the 1D array of 2D points
2375
+ bspl2 = NdBSpline(t2, c2, k=3)
2376
+ assert bspl2(xi).shape == (len(xi), )
2377
+ xp_assert_close(bspl2(xi),
2378
+ target, atol=1e-14)
2379
+
2380
+ # test that a nan in -> nan out
2381
+ xi = np.asarray(xi)
2382
+ xi[0, 1] = np.nan
2383
+ xp_assert_equal(np.isnan(bspl2(xi)), np.asarray([True, False, False]))
2384
+
2385
+ # now check on a multidim xi
2386
+ rng = np.random.default_rng(12345)
2387
+ xi = rng.uniform(size=(4, 3, 2)) * 5
2388
+ result = bspl2(xi)
2389
+ assert result.shape == (4, 3)
2390
+
2391
+ # also check the values
2392
+ x, y = xi.reshape((-1, 2)).T
2393
+ xp_assert_close(result.ravel(),
2394
+ x**3 * (y**3 + 2*y), atol=1e-14)
2395
+
2396
+ def test_2D_separable_2(self):
2397
+ # test `c` with trailing dimensions, i.e. c.ndim > ndim
2398
+ ndim = 2
2399
+ xi = [(1.5, 2.5), (2.5, 1), (0.5, 1.5)]
2400
+ target = [x**3 * (y**3 + 2*y) for (x, y) in xi]
2401
+
2402
+ t2, c2, k = self.make_2d_case()
2403
+ c2_4 = np.dstack((c2, c2, c2, c2)) # c22.shape = (6, 6, 4)
2404
+
2405
+ xy = (1.5, 2.5)
2406
+ bspl2_4 = NdBSpline(t2, c2_4, k=3)
2407
+ result = bspl2_4(xy)
2408
+ val_single = NdBSpline(t2, c2, k)(xy)
2409
+ assert result.shape == (4,)
2410
+ xp_assert_close(result,
2411
+ [val_single, ]*4, atol=1e-14)
2412
+
2413
+ # now try the array xi : the output.shape is (3, 4) where 3
2414
+ # is the number of points in xi and 4 is the trailing dimension of c
2415
+ assert bspl2_4(xi).shape == np.shape(xi)[:-1] + bspl2_4.c.shape[ndim:]
2416
+ xp_assert_close(bspl2_4(xi), np.asarray(target)[:, None],
2417
+ check_shape=False,
2418
+ atol=5e-14)
2419
+
2420
+ # two trailing dimensions
2421
+ c2_22 = c2_4.reshape((6, 6, 2, 2))
2422
+ bspl2_22 = NdBSpline(t2, c2_22, k=3)
2423
+
2424
+ result = bspl2_22(xy)
2425
+ assert result.shape == (2, 2)
2426
+ xp_assert_close(result,
2427
+ [[val_single, val_single],
2428
+ [val_single, val_single]], atol=1e-14)
2429
+
2430
+ # now try the array xi : the output shape is (3, 2, 2)
2431
+ # for 3 points in xi and c trailing dimensions being (2, 2)
2432
+ assert (bspl2_22(xi).shape ==
2433
+ np.shape(xi)[:-1] + bspl2_22.c.shape[ndim:])
2434
+ xp_assert_close(bspl2_22(xi), np.asarray(target)[:, None, None],
2435
+ check_shape=False,
2436
+ atol=5e-14)
2437
+
2438
+
2439
+ def test_2D_separable_2_complex(self):
2440
+ # test `c` with c.dtype == complex, with and w/o trailing dims
2441
+ xi = [(1.5, 2.5), (2.5, 1), (0.5, 1.5)]
2442
+ target = [x**3 * (y**3 + 2*y) for (x, y) in xi]
2443
+
2444
+ target = [t + 2j*t for t in target]
2445
+
2446
+ t2, c2, k = self.make_2d_case()
2447
+ c2 = c2 * (1 + 2j)
2448
+ c2_4 = np.dstack((c2, c2, c2, c2)) # c2_4.shape = (6, 6, 4)
2449
+
2450
+ xy = (1.5, 2.5)
2451
+ bspl2_4 = NdBSpline(t2, c2_4, k=3)
2452
+ result = bspl2_4(xy)
2453
+ val_single = NdBSpline(t2, c2, k)(xy)
2454
+ assert result.shape == (4,)
2455
+ xp_assert_close(result,
2456
+ [val_single, ]*4, atol=1e-14)
2457
+
2458
+ def test_2D_random(self):
2459
+ rng = np.random.default_rng(12345)
2460
+ k = 3
2461
+ tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3]
2462
+ ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4]
2463
+ c = rng.uniform(size=(tx.size-k-1, ty.size-k-1))
2464
+
2465
+ spl = NdBSpline((tx, ty), c, k=k)
2466
+
2467
+ xi = (1., 1.)
2468
+ xp_assert_close(spl(xi),
2469
+ bspline2(xi, (tx, ty), c, k), atol=1e-14)
2470
+
2471
+ xi = np.c_[[1, 1.5, 2],
2472
+ [1.1, 1.6, 2.1]]
2473
+ xp_assert_close(spl(xi),
2474
+ [bspline2(xy, (tx, ty), c, k) for xy in xi],
2475
+ atol=1e-14)
2476
+
2477
+ def test_2D_mixed(self):
2478
+ t2, c2, kx, ky = self.make_2d_mixed()
2479
+ xi = [(1.4, 4.5), (2.5, 2.4), (4.5, 3.5)]
2480
+ target = [x**3 * (y**2 + 2*y) for (x, y) in xi]
2481
+ bspl2 = NdBSpline(t2, c2, k=(kx, ky))
2482
+ assert bspl2(xi).shape == (len(xi), )
2483
+ xp_assert_close(bspl2(xi),
2484
+ target, atol=1e-14)
2485
+
2486
+ def test_2D_derivative(self):
2487
+ t2, c2, kx, ky = self.make_2d_mixed()
2488
+ xi = [(1.4, 4.5), (2.5, 2.4), (4.5, 3.5)]
2489
+ bspl2 = NdBSpline(t2, c2, k=(kx, ky))
2490
+
2491
+ der = bspl2(xi, nu=(1, 0))
2492
+ xp_assert_close(der,
2493
+ [3*x**2 * (y**2 + 2*y) for x, y in xi], atol=1e-14)
2494
+
2495
+ der = bspl2(xi, nu=(1, 1))
2496
+ xp_assert_close(der,
2497
+ [3*x**2 * (2*y + 2) for x, y in xi], atol=1e-14)
2498
+
2499
+ der = bspl2(xi, nu=(0, 0))
2500
+ xp_assert_close(der,
2501
+ [x**3 * (y**2 + 2*y) for x, y in xi], atol=1e-14)
2502
+
2503
+ with assert_raises(ValueError):
2504
+ # all(nu >= 0)
2505
+ der = bspl2(xi, nu=(-1, 0))
2506
+
2507
+ with assert_raises(ValueError):
2508
+ # len(nu) == ndim
2509
+ der = bspl2(xi, nu=(-1, 0, 1))
2510
+
2511
+ def test_2D_mixed_random(self):
2512
+ rng = np.random.default_rng(12345)
2513
+ kx, ky = 2, 3
2514
+ tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3]
2515
+ ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4]
2516
+ c = rng.uniform(size=(tx.size - kx - 1, ty.size - ky - 1))
2517
+
2518
+ xi = np.c_[[1, 1.5, 2],
2519
+ [1.1, 1.6, 2.1]]
2520
+
2521
+ bspl2 = NdBSpline((tx, ty), c, k=(kx, ky))
2522
+ bspl2_0 = NdBSpline0((tx, ty), c, k=(kx, ky))
2523
+
2524
+ xp_assert_close(bspl2(xi),
2525
+ [bspl2_0(xp) for xp in xi], atol=1e-14)
2526
+
2527
+ def test_tx_neq_ty(self):
2528
+ # 2D separable spline w/ len(tx) != len(ty)
2529
+ x = np.arange(6)
2530
+ y = np.arange(7) + 1.5
2531
+
2532
+ spl_x = make_interp_spline(x, x**3, k=3)
2533
+ spl_y = make_interp_spline(y, y**2 + 2*y, k=3)
2534
+ cc = spl_x.c[:, None] * spl_y.c[None, :]
2535
+ bspl = NdBSpline((spl_x.t, spl_y.t), cc, (spl_x.k, spl_y.k))
2536
+
2537
+ values = (x**3)[:, None] * (y**2 + 2*y)[None, :]
2538
+ rgi = RegularGridInterpolator((x, y), values)
2539
+
2540
+ xi = [(a, b) for a, b in itertools.product(x, y)]
2541
+ bxi = bspl(xi)
2542
+
2543
+ assert not np.isnan(bxi).any()
2544
+ xp_assert_close(bxi, rgi(xi), atol=1e-14)
2545
+ xp_assert_close(bxi.reshape(values.shape), values, atol=1e-14)
2546
+
2547
+ def make_3d_case(self):
2548
+ # make a 3D separable spline
2549
+ x = np.arange(6)
2550
+ y = x**3
2551
+ spl = make_interp_spline(x, y, k=3)
2552
+
2553
+ y_1 = x**3 + 2*x
2554
+ spl_1 = make_interp_spline(x, y_1, k=3)
2555
+
2556
+ y_2 = x**3 + 3*x + 1
2557
+ spl_2 = make_interp_spline(x, y_2, k=3)
2558
+
2559
+ t2 = (spl.t, spl_1.t, spl_2.t)
2560
+ c2 = (spl.c[:, None, None] *
2561
+ spl_1.c[None, :, None] *
2562
+ spl_2.c[None, None, :])
2563
+
2564
+ return t2, c2, 3
2565
+
2566
+ def test_3D_separable(self):
2567
+ rng = np.random.default_rng(12345)
2568
+ x, y, z = rng.uniform(size=(3, 11)) * 5
2569
+ target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1)
2570
+
2571
+ t3, c3, k = self.make_3d_case()
2572
+ bspl3 = NdBSpline(t3, c3, k=3)
2573
+
2574
+ xi = [_ for _ in zip(x, y, z)]
2575
+ result = bspl3(xi)
2576
+ assert result.shape == (11,)
2577
+ xp_assert_close(result, target, atol=1e-14)
2578
+
2579
+ def test_3D_derivative(self):
2580
+ t3, c3, k = self.make_3d_case()
2581
+ bspl3 = NdBSpline(t3, c3, k=3)
2582
+ rng = np.random.default_rng(12345)
2583
+ x, y, z = rng.uniform(size=(3, 11)) * 5
2584
+ xi = [_ for _ in zip(x, y, z)]
2585
+
2586
+ xp_assert_close(bspl3(xi, nu=(1, 0, 0)),
2587
+ 3*x**2 * (y**3 + 2*y) * (z**3 + 3*z + 1), atol=1e-14)
2588
+
2589
+ xp_assert_close(bspl3(xi, nu=(2, 0, 0)),
2590
+ 6*x * (y**3 + 2*y) * (z**3 + 3*z + 1), atol=1e-14)
2591
+
2592
+ xp_assert_close(bspl3(xi, nu=(2, 1, 0)),
2593
+ 6*x * (3*y**2 + 2) * (z**3 + 3*z + 1), atol=1e-14)
2594
+
2595
+ xp_assert_close(bspl3(xi, nu=(2, 1, 3)),
2596
+ 6*x * (3*y**2 + 2) * (6), atol=1e-14)
2597
+
2598
+ xp_assert_close(bspl3(xi, nu=(2, 1, 4)),
2599
+ np.zeros(len(xi)), atol=1e-14)
2600
+
2601
+ def test_3D_random(self):
2602
+ rng = np.random.default_rng(12345)
2603
+ k = 3
2604
+ tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3]
2605
+ ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4]
2606
+ tz = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4]
2607
+ c = rng.uniform(size=(tx.size-k-1, ty.size-k-1, tz.size-k-1))
2608
+
2609
+ spl = NdBSpline((tx, ty, tz), c, k=k)
2610
+ spl_0 = NdBSpline0((tx, ty, tz), c, k=k)
2611
+
2612
+ xi = (1., 1., 1)
2613
+ xp_assert_close(spl(xi), spl_0(xi), atol=1e-14)
2614
+
2615
+ xi = np.c_[[1, 1.5, 2],
2616
+ [1.1, 1.6, 2.1],
2617
+ [0.9, 1.4, 1.9]]
2618
+ xp_assert_close(spl(xi), [spl_0(xp) for xp in xi], atol=1e-14)
2619
+
2620
+ def test_3D_random_complex(self):
2621
+ rng = np.random.default_rng(12345)
2622
+ k = 3
2623
+ tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3]
2624
+ ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4]
2625
+ tz = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4]
2626
+ c = (rng.uniform(size=(tx.size-k-1, ty.size-k-1, tz.size-k-1)) +
2627
+ rng.uniform(size=(tx.size-k-1, ty.size-k-1, tz.size-k-1))*1j)
2628
+
2629
+ spl = NdBSpline((tx, ty, tz), c, k=k)
2630
+ spl_re = NdBSpline((tx, ty, tz), c.real, k=k)
2631
+ spl_im = NdBSpline((tx, ty, tz), c.imag, k=k)
2632
+
2633
+ xi = np.c_[[1, 1.5, 2],
2634
+ [1.1, 1.6, 2.1],
2635
+ [0.9, 1.4, 1.9]]
2636
+ xp_assert_close(spl(xi),
2637
+ spl_re(xi) + 1j*spl_im(xi), atol=1e-14)
2638
+
2639
+ @pytest.mark.parametrize('cls_extrap', [None, True])
2640
+ @pytest.mark.parametrize('call_extrap', [None, True])
2641
+ def test_extrapolate_3D_separable(self, cls_extrap, call_extrap):
2642
+ # test that extrapolate=True does extrapolate
2643
+ t3, c3, k = self.make_3d_case()
2644
+ bspl3 = NdBSpline(t3, c3, k=3, extrapolate=cls_extrap)
2645
+
2646
+ # evaluate out of bounds
2647
+ x, y, z = [-2, -1, 7], [-3, -0.5, 6.5], [-1, -1.5, 7.5]
2648
+ x, y, z = map(np.asarray, (x, y, z))
2649
+ xi = [_ for _ in zip(x, y, z)]
2650
+ target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1)
2651
+
2652
+ result = bspl3(xi, extrapolate=call_extrap)
2653
+ xp_assert_close(result, target, atol=1e-14)
2654
+
2655
+ @pytest.mark.parametrize('extrap', [(False, True), (True, None)])
2656
+ def test_extrapolate_3D_separable_2(self, extrap):
2657
+ # test that call(..., extrapolate=None) defers to self.extrapolate,
2658
+ # otherwise supersedes self.extrapolate
2659
+ t3, c3, k = self.make_3d_case()
2660
+ cls_extrap, call_extrap = extrap
2661
+ bspl3 = NdBSpline(t3, c3, k=3, extrapolate=cls_extrap)
2662
+
2663
+ # evaluate out of bounds
2664
+ x, y, z = [-2, -1, 7], [-3, -0.5, 6.5], [-1, -1.5, 7.5]
2665
+ x, y, z = map(np.asarray, (x, y, z))
2666
+ xi = [_ for _ in zip(x, y, z)]
2667
+ target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1)
2668
+
2669
+ result = bspl3(xi, extrapolate=call_extrap)
2670
+ xp_assert_close(result, target, atol=1e-14)
2671
+
2672
+ def test_extrapolate_false_3D_separable(self):
2673
+ # test that extrapolate=False produces nans for out-of-bounds values
2674
+ t3, c3, k = self.make_3d_case()
2675
+ bspl3 = NdBSpline(t3, c3, k=3)
2676
+
2677
+ # evaluate out of bounds and inside
2678
+ x, y, z = [-2, 1, 7], [-3, 0.5, 6.5], [-1, 1.5, 7.5]
2679
+ x, y, z = map(np.asarray, (x, y, z))
2680
+ xi = [_ for _ in zip(x, y, z)]
2681
+ target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1)
2682
+
2683
+ result = bspl3(xi, extrapolate=False)
2684
+ assert np.isnan(result[0])
2685
+ assert np.isnan(result[-1])
2686
+ xp_assert_close(result[1:-1], target[1:-1], atol=1e-14)
2687
+
2688
+ def test_x_nan_3D(self):
2689
+ # test that spline(nan) is nan
2690
+ t3, c3, k = self.make_3d_case()
2691
+ bspl3 = NdBSpline(t3, c3, k=3)
2692
+
2693
+ # evaluate out of bounds and inside
2694
+ x = np.asarray([-2, 3, np.nan, 1, 2, 7, np.nan])
2695
+ y = np.asarray([-3, 3.5, 1, np.nan, 3, 6.5, 6.5])
2696
+ z = np.asarray([-1, 3.5, 2, 3, np.nan, 7.5, 7.5])
2697
+ xi = [_ for _ in zip(x, y, z)]
2698
+ target = x**3 * (y**3 + 2*y) * (z**3 + 3*z + 1)
2699
+ mask = np.isnan(x) | np.isnan(y) | np.isnan(z)
2700
+ target[mask] = np.nan
2701
+
2702
+ result = bspl3(xi)
2703
+ assert np.isnan(result[mask]).all()
2704
+ xp_assert_close(result, target, atol=1e-14)
2705
+
2706
+ def test_non_c_contiguous(self):
2707
+ # check that non C-contiguous inputs are OK
2708
+ rng = np.random.default_rng(12345)
2709
+ kx, ky = 3, 3
2710
+ tx = np.sort(rng.uniform(low=0, high=4, size=16))
2711
+ tx = np.r_[(tx[0],)*kx, tx, (tx[-1],)*kx]
2712
+ ty = np.sort(rng.uniform(low=0, high=4, size=16))
2713
+ ty = np.r_[(ty[0],)*ky, ty, (ty[-1],)*ky]
2714
+
2715
+ assert not tx[::2].flags.c_contiguous
2716
+ assert not ty[::2].flags.c_contiguous
2717
+
2718
+ c = rng.uniform(size=(tx.size//2 - kx - 1, ty.size//2 - ky - 1))
2719
+ c = c.T
2720
+ assert not c.flags.c_contiguous
2721
+
2722
+ xi = np.c_[[1, 1.5, 2],
2723
+ [1.1, 1.6, 2.1]]
2724
+
2725
+ bspl2 = NdBSpline((tx[::2], ty[::2]), c, k=(kx, ky))
2726
+ bspl2_0 = NdBSpline0((tx[::2], ty[::2]), c, k=(kx, ky))
2727
+
2728
+ xp_assert_close(bspl2(xi),
2729
+ [bspl2_0(xp) for xp in xi], atol=1e-14)
2730
+
2731
+ def test_readonly(self):
2732
+ t3, c3, k = self.make_3d_case()
2733
+ bspl3 = NdBSpline(t3, c3, k=3)
2734
+
2735
+ for i in range(3):
2736
+ t3[i].flags.writeable = False
2737
+ c3.flags.writeable = False
2738
+
2739
+ bspl3_ = NdBSpline(t3, c3, k=3)
2740
+
2741
+ assert bspl3((1, 2, 3)) == bspl3_((1, 2, 3))
2742
+
2743
+ def test_design_matrix(self):
2744
+ t3, c3, k = self.make_3d_case()
2745
+
2746
+ xi = np.asarray([[1, 2, 3], [4, 5, 6]])
2747
+ dm = NdBSpline(t3, c3, k).design_matrix(xi, t3, k)
2748
+ dm1 = NdBSpline.design_matrix(xi, t3, [k, k, k])
2749
+ assert dm.shape[0] == xi.shape[0]
2750
+ xp_assert_close(dm.todense(), dm1.todense(), atol=1e-16)
2751
+
2752
+ with assert_raises(ValueError):
2753
+ NdBSpline.design_matrix([1, 2, 3], t3, [k]*3)
2754
+
2755
+ with assert_raises(ValueError, match="Data and knots*"):
2756
+ NdBSpline.design_matrix([[1, 2]], t3, [k]*3)
2757
+
2758
+ @pytest.mark.thread_unsafe
2759
+ def test_concurrency(self):
2760
+ rng = np.random.default_rng(12345)
2761
+ k = 3
2762
+ tx = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7)) * 3, 3, 3, 3, 3]
2763
+ ty = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4]
2764
+ tz = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=8)) * 4, 4, 4, 4, 4]
2765
+ c = rng.uniform(size=(tx.size-k-1, ty.size-k-1, tz.size-k-1))
2766
+
2767
+ spl = NdBSpline((tx, ty, tz), c, k=k)
2768
+
2769
+ def worker_fn(_, spl):
2770
+ xi = np.c_[[1, 1.5, 2],
2771
+ [1.1, 1.6, 2.1],
2772
+ [0.9, 1.4, 1.9]]
2773
+ spl(xi)
2774
+
2775
+ _run_concurrent_barrier(10, worker_fn, spl)
2776
+
2777
+
2778
+ class TestMakeND:
2779
+ def test_2D_separable_simple(self):
2780
+ x = np.arange(6)
2781
+ y = np.arange(6) + 0.5
2782
+ values = x[:, None]**3 * (y**3 + 2*y)[None, :]
2783
+ xi = [(a, b) for a, b in itertools.product(x, y)]
2784
+
2785
+ bspl = make_ndbspl((x, y), values, k=1)
2786
+ xp_assert_close(bspl(xi), values.ravel(), atol=1e-15)
2787
+
2788
+ # test the coefficients vs outer product of 1D coefficients
2789
+ spl_x = make_interp_spline(x, x**3, k=1)
2790
+ spl_y = make_interp_spline(y, y**3 + 2*y, k=1)
2791
+ cc = spl_x.c[:, None] * spl_y.c[None, :]
2792
+ xp_assert_close(cc, bspl.c, atol=1e-11, rtol=0)
2793
+
2794
+ # test against RGI
2795
+ from scipy.interpolate import RegularGridInterpolator as RGI
2796
+ rgi = RGI((x, y), values, method='linear')
2797
+ xp_assert_close(rgi(xi), bspl(xi), atol=1e-14)
2798
+
2799
+ def test_2D_separable_trailing_dims(self):
2800
+ # test `c` with trailing dimensions, i.e. c.ndim > ndim
2801
+ x = np.arange(6)
2802
+ y = np.arange(6)
2803
+ xi = [(a, b) for a, b in itertools.product(x, y)]
2804
+
2805
+ # make values4.shape = (6, 6, 4)
2806
+ values = x[:, None]**3 * (y**3 + 2*y)[None, :]
2807
+ values4 = np.dstack((values, values, values, values))
2808
+ bspl = make_ndbspl((x, y), values4, k=3, solver=ssl.spsolve)
2809
+
2810
+ result = bspl(xi)
2811
+ target = np.dstack((values, values, values, values)).astype(float)
2812
+ assert result.shape == (36, 4)
2813
+ xp_assert_close(result.reshape(6, 6, 4),
2814
+ target, atol=1e-14)
2815
+
2816
+ # now two trailing dimensions
2817
+ values22 = values4.reshape((6, 6, 2, 2))
2818
+ bspl = make_ndbspl((x, y), values22, k=3, solver=ssl.spsolve)
2819
+
2820
+ result = bspl(xi)
2821
+ assert result.shape == (36, 2, 2)
2822
+ xp_assert_close(result.reshape(6, 6, 2, 2),
2823
+ target.reshape((6, 6, 2, 2)), atol=1e-14)
2824
+
2825
+ @pytest.mark.parametrize('k', [(3, 3), (1, 1), (3, 1), (1, 3), (3, 5)])
2826
+ def test_2D_mixed(self, k):
2827
+ # make a 2D separable spline w/ len(tx) != len(ty)
2828
+ x = np.arange(6)
2829
+ y = np.arange(7) + 1.5
2830
+ xi = [(a, b) for a, b in itertools.product(x, y)]
2831
+
2832
+ values = (x**3)[:, None] * (y**2 + 2*y)[None, :]
2833
+ bspl = make_ndbspl((x, y), values, k=k, solver=ssl.spsolve)
2834
+ xp_assert_close(bspl(xi), values.ravel(), atol=1e-15)
2835
+
2836
+ def test_2D_nans(self):
2837
+ x = np.arange(6)
2838
+ y = np.arange(6) + 0.5
2839
+ y[-1] = np.nan
2840
+ values = x[:, None]**3 * (y**3 + 2*y)[None, :]
2841
+
2842
+ with assert_raises(ValueError):
2843
+ make_ndbspl((x, y), values, k=1)
2844
+
2845
+ def _get_sample_2d_data(self):
2846
+ # from test_rgi.py::TestIntepN
2847
+ x = np.array([.5, 2., 3., 4., 5.5, 6.])
2848
+ y = np.array([.5, 2., 3., 4., 5.5, 6.])
2849
+ z = np.array(
2850
+ [
2851
+ [1, 2, 1, 2, 1, 1],
2852
+ [1, 2, 1, 2, 1, 1],
2853
+ [1, 2, 3, 2, 1, 1],
2854
+ [1, 2, 2, 2, 1, 1],
2855
+ [1, 2, 1, 2, 1, 1],
2856
+ [1, 2, 2, 2, 1, 1],
2857
+ ]
2858
+ )
2859
+ return x, y, z
2860
+
2861
+ def test_2D_vs_RGI_linear(self):
2862
+ x, y, z = self._get_sample_2d_data()
2863
+ bspl = make_ndbspl((x, y), z, k=1)
2864
+ rgi = RegularGridInterpolator((x, y), z, method='linear')
2865
+
2866
+ xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
2867
+ [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
2868
+
2869
+ xp_assert_close(bspl(xi), rgi(xi), atol=1e-14)
2870
+
2871
+ def test_2D_vs_RGI_cubic(self):
2872
+ x, y, z = self._get_sample_2d_data()
2873
+ bspl = make_ndbspl((x, y), z, k=3, solver=ssl.spsolve)
2874
+ rgi = RegularGridInterpolator((x, y), z, method='cubic_legacy')
2875
+
2876
+ xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
2877
+ [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
2878
+
2879
+ xp_assert_close(bspl(xi), rgi(xi), atol=1e-14)
2880
+
2881
+ @pytest.mark.parametrize('solver', [ssl.gmres, ssl.gcrotmk])
2882
+ def test_2D_vs_RGI_cubic_iterative(self, solver):
2883
+ # same as `test_2D_vs_RGI_cubic`, only with an iterative solver.
2884
+ # Note the need to add an explicit `rtol` solver_arg to achieve the
2885
+ # target accuracy of 1e-14. (the relation between solver atol/rtol
2886
+ # and the accuracy of the final result is not direct and needs experimenting)
2887
+ x, y, z = self._get_sample_2d_data()
2888
+ bspl = make_ndbspl((x, y), z, k=3, solver=solver, rtol=1e-6)
2889
+ rgi = RegularGridInterpolator((x, y), z, method='cubic_legacy')
2890
+
2891
+ xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
2892
+ [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
2893
+
2894
+ xp_assert_close(bspl(xi), rgi(xi), atol=1e-14, rtol=1e-7)
2895
+
2896
+ def test_2D_vs_RGI_quintic(self):
2897
+ x, y, z = self._get_sample_2d_data()
2898
+ bspl = make_ndbspl((x, y), z, k=5, solver=ssl.spsolve)
2899
+ rgi = RegularGridInterpolator((x, y), z, method='quintic_legacy')
2900
+
2901
+ xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
2902
+ [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
2903
+
2904
+ xp_assert_close(bspl(xi), rgi(xi), atol=1e-14)
2905
+
2906
+ @pytest.mark.parametrize(
2907
+ 'k, meth', [(1, 'linear'), (3, 'cubic_legacy'), (5, 'quintic_legacy')]
2908
+ )
2909
+ def test_3D_random_vs_RGI(self, k, meth):
2910
+ rndm = np.random.default_rng(123456)
2911
+ x = np.cumsum(rndm.uniform(size=6))
2912
+ y = np.cumsum(rndm.uniform(size=7))
2913
+ z = np.cumsum(rndm.uniform(size=8))
2914
+ values = rndm.uniform(size=(6, 7, 8))
2915
+
2916
+ bspl = make_ndbspl((x, y, z), values, k=k, solver=ssl.spsolve)
2917
+ rgi = RegularGridInterpolator((x, y, z), values, method=meth)
2918
+
2919
+ xi = np.random.uniform(low=0.7, high=2.1, size=(11, 3))
2920
+ xp_assert_close(bspl(xi), rgi(xi), atol=1e-14)
2921
+
2922
+ def test_solver_err_not_converged(self):
2923
+ x, y, z = self._get_sample_2d_data()
2924
+ solver_args = {'maxiter': 1}
2925
+ with assert_raises(ValueError, match='solver'):
2926
+ make_ndbspl((x, y), z, k=3, **solver_args)
2927
+
2928
+ with assert_raises(ValueError, match='solver'):
2929
+ make_ndbspl((x, y), np.dstack((z, z)), k=3, **solver_args)
2930
+
2931
+
2932
+ class TestFpchec:
2933
+ # https://github.com/scipy/scipy/blob/main/scipy/interpolate/fitpack/fpchec.f
2934
+
2935
+ def test_1D_x_t(self):
2936
+ k = 1
2937
+ t = np.arange(12).reshape(2, 6)
2938
+ x = np.arange(12)
2939
+
2940
+ with pytest.raises(ValueError, match="1D sequence"):
2941
+ _b.fpcheck(x, t, k)
2942
+
2943
+ with pytest.raises(ValueError, match="1D sequence"):
2944
+ _b.fpcheck(t, x, k)
2945
+
2946
+ def test_condition_1(self):
2947
+ # c 1) k+1 <= n-k-1 <= m
2948
+ k = 3
2949
+ n = 2*(k + 1) - 1 # not OK
2950
+ m = n + 11 # OK
2951
+ t = np.arange(n)
2952
+ x = np.arange(m)
2953
+
2954
+ assert dfitpack.fpchec(x, t, k) == 10
2955
+ with pytest.raises(ValueError, match="Need k+1*"):
2956
+ _b.fpcheck(x, t, k)
2957
+
2958
+ n = 2*(k+1) + 1 # OK
2959
+ m = n - k - 2 # not OK
2960
+ t = np.arange(n)
2961
+ x = np.arange(m)
2962
+
2963
+ assert dfitpack.fpchec(x, t, k) == 10
2964
+ with pytest.raises(ValueError, match="Need k+1*"):
2965
+ _b.fpcheck(x, t, k)
2966
+
2967
+ def test_condition_2(self):
2968
+ # c 2) t(1) <= t(2) <= ... <= t(k+1)
2969
+ # c t(n-k) <= t(n-k+1) <= ... <= t(n)
2970
+ k = 3
2971
+ t = [0]*(k+1) + [2] + [5]*(k+1) # this is OK
2972
+ x = [1, 2, 3, 4, 4.5]
2973
+
2974
+ assert dfitpack.fpchec(x, t, k) == 0
2975
+ assert _b.fpcheck(x, t, k) is None # does not raise
2976
+
2977
+ tt = t.copy()
2978
+ tt[-1] = tt[0] # not OK
2979
+ assert dfitpack.fpchec(x, tt, k) == 20
2980
+ with pytest.raises(ValueError, match="Last k knots*"):
2981
+ _b.fpcheck(x, tt, k)
2982
+
2983
+ tt = t.copy()
2984
+ tt[0] = tt[-1] # not OK
2985
+ assert dfitpack.fpchec(x, tt, k) == 20
2986
+ with pytest.raises(ValueError, match="First k knots*"):
2987
+ _b.fpcheck(x, tt, k)
2988
+
2989
+ def test_condition_3(self):
2990
+ # c 3) t(k+1) < t(k+2) < ... < t(n-k)
2991
+ k = 3
2992
+ t = [0]*(k+1) + [2, 3] + [5]*(k+1) # this is OK
2993
+ x = [1, 2, 3, 3.5, 4, 4.5]
2994
+ assert dfitpack.fpchec(x, t, k) == 0
2995
+ assert _b.fpcheck(x, t, k) is None
2996
+
2997
+ t = [0]*(k+1) + [2, 2] + [5]*(k+1) # this is not OK
2998
+ assert dfitpack.fpchec(x, t, k) == 30
2999
+ with pytest.raises(ValueError, match="Internal knots*"):
3000
+ _b.fpcheck(x, t, k)
3001
+
3002
+ def test_condition_4(self):
3003
+ # c 4) t(k+1) <= x(i) <= t(n-k)
3004
+ # NB: FITPACK's fpchec only checks x[0] & x[-1], so we follow.
3005
+ k = 3
3006
+ t = [0]*(k+1) + [5]*(k+1)
3007
+ x = [1, 2, 3, 3.5, 4, 4.5] # this is OK
3008
+ assert dfitpack.fpchec(x, t, k) == 0
3009
+ assert _b.fpcheck(x, t, k) is None
3010
+
3011
+ xx = x.copy()
3012
+ xx[0] = t[0] # still OK
3013
+ assert dfitpack.fpchec(xx, t, k) == 0
3014
+ assert _b.fpcheck(x, t, k) is None
3015
+
3016
+ xx = x.copy()
3017
+ xx[0] = t[0] - 1 # not OK
3018
+ assert dfitpack.fpchec(xx, t, k) == 40
3019
+ with pytest.raises(ValueError, match="Out of bounds*"):
3020
+ _b.fpcheck(xx, t, k)
3021
+
3022
+ xx = x.copy()
3023
+ xx[-1] = t[-1] + 1 # not OK
3024
+ assert dfitpack.fpchec(xx, t, k) == 40
3025
+ with pytest.raises(ValueError, match="Out of bounds*"):
3026
+ _b.fpcheck(xx, t, k)
3027
+
3028
+ # ### Test the S-W condition (no 5)
3029
+ # c 5) the conditions specified by schoenberg and whitney must hold
3030
+ # c for at least one subset of data points, i.e. there must be a
3031
+ # c subset of data points y(j) such that
3032
+ # c t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
3033
+ def test_condition_5_x1xm(self):
3034
+ # x(1).ge.t(k2) .or. x(m).le.t(nk1)
3035
+ k = 1
3036
+ t = [0, 0, 1, 2, 2]
3037
+ x = [1.1, 1.1, 1.1]
3038
+ assert dfitpack.fpchec(x, t, k) == 50
3039
+ with pytest.raises(ValueError, match="Schoenberg-Whitney*"):
3040
+ _b.fpcheck(x, t, k)
3041
+
3042
+ x = [0.5, 0.5, 0.5]
3043
+ assert dfitpack.fpchec(x, t, k) == 50
3044
+ with pytest.raises(ValueError, match="Schoenberg-Whitney*"):
3045
+ _b.fpcheck(x, t, k)
3046
+
3047
+ def test_condition_5_k1(self):
3048
+ # special case nk3 (== n - k - 2) < 2
3049
+ k = 1
3050
+ t = [0, 0, 1, 1]
3051
+ x = [0.5, 0.6]
3052
+ assert dfitpack.fpchec(x, t, k) == 0
3053
+ assert _b.fpcheck(x, t, k) is None
3054
+
3055
+ def test_condition_5_1(self):
3056
+ # basically, there can't be an interval of t[j]..t[j+k+1] with no x
3057
+ k = 3
3058
+ t = [0]*(k+1) + [2] + [5]*(k+1)
3059
+ x = [3]*5
3060
+ assert dfitpack.fpchec(x, t, k) == 50
3061
+ with pytest.raises(ValueError, match="Schoenberg-Whitney*"):
3062
+ _b.fpcheck(x, t, k)
3063
+
3064
+ t = [0]*(k+1) + [2] + [5]*(k+1)
3065
+ x = [1]*5
3066
+ assert dfitpack.fpchec(x, t, k) == 50
3067
+ with pytest.raises(ValueError, match="Schoenberg-Whitney*"):
3068
+ _b.fpcheck(x, t, k)
3069
+
3070
+ def test_condition_5_2(self):
3071
+ # same as _5_1, only the empty interval is in the middle
3072
+ k = 3
3073
+ t = [0]*(k+1) + [2, 3] + [5]*(k+1)
3074
+ x = [1.1]*5 + [4]
3075
+
3076
+ assert dfitpack.fpchec(x, t, k) == 50
3077
+ with pytest.raises(ValueError, match="Schoenberg-Whitney*"):
3078
+ _b.fpcheck(x, t, k)
3079
+
3080
+ # and this one is OK
3081
+ x = [1.1]*4 + [4, 4]
3082
+ assert dfitpack.fpchec(x, t, k) == 0
3083
+ assert _b.fpcheck(x, t, k) is None
3084
+
3085
+ def test_condition_5_3(self):
3086
+ # similar to _5_2, covers a different failure branch
3087
+ k = 1
3088
+ t = [0, 0, 2, 3, 4, 5, 6, 7, 7]
3089
+ x = [1, 1, 1, 5.2, 5.2, 5.2, 6.5]
3090
+
3091
+ assert dfitpack.fpchec(x, t, k) == 50
3092
+ with pytest.raises(ValueError, match="Schoenberg-Whitney*"):
3093
+ _b.fpcheck(x, t, k)
3094
+
3095
+
3096
+ # ### python replicas of generate_knots(...) implementation details, for testing.
3097
+ # ### see TestGenerateKnots::test_split_and_add_knot
3098
+ def _split(x, t, k, residuals):
3099
+ """Split the knot interval into "runs".
3100
+ """
3101
+ ix = np.searchsorted(x, t[k:-k])
3102
+ # sum half-open intervals
3103
+ fparts = [residuals[ix[i]:ix[i+1]].sum() for i in range(len(ix)-1)]
3104
+ carries = residuals[ix[1:-1]]
3105
+
3106
+ for i in range(len(carries)): # split residuals at internal knots
3107
+ carry = carries[i] / 2
3108
+ fparts[i] += carry
3109
+ fparts[i+1] -= carry
3110
+
3111
+ fparts[-1] += residuals[-1] # add the contribution of the last knot
3112
+
3113
+ xp_assert_close(sum(fparts), sum(residuals), atol=1e-15)
3114
+
3115
+ return fparts, ix
3116
+
3117
+
3118
+ def _add_knot(x, t, k, residuals):
3119
+ """Insert a new knot given reduals."""
3120
+ fparts, ix = _split(x, t, k, residuals)
3121
+
3122
+ # find the interval with max fparts and non-zero number of x values inside
3123
+ idx_max = -101
3124
+ fpart_max = -1e100
3125
+ for i in range(len(fparts)):
3126
+ if ix[i+1] - ix[i] > 1 and fparts[i] > fpart_max:
3127
+ idx_max = i
3128
+ fpart_max = fparts[i]
3129
+
3130
+ if idx_max == -101:
3131
+ raise ValueError("Internal error, please report it to SciPy developers.")
3132
+
3133
+ # round up, like Dierckx does? This is really arbitrary though.
3134
+ idx_newknot = (ix[idx_max] + ix[idx_max+1] + 1) // 2
3135
+ new_knot = x[idx_newknot]
3136
+ idx_t = np.searchsorted(t, new_knot)
3137
+ t_new = np.r_[t[:idx_t], new_knot, t[idx_t:]]
3138
+ return t_new
3139
+
3140
+
3141
+ class TestGenerateKnots:
3142
+ def test_split_add_knot(self):
3143
+ # smoke test implementation details: insert a new knot given residuals
3144
+ x = np.arange(8, dtype=float)
3145
+ y = x**3 + 1./(1 + x)
3146
+ k = 3
3147
+ t = np.array([0.]*(k+1) + [7.]*(k+1))
3148
+ spl = make_lsq_spline(x, y, k=k, t=t)
3149
+ residuals = (spl(x) - y)**2
3150
+
3151
+ from scipy.interpolate import _fitpack_repro as _fr
3152
+ new_t = _fr.add_knot(x, t, k, residuals)
3153
+ new_t_py = _add_knot(x, t, k, residuals)
3154
+
3155
+ xp_assert_close(new_t, new_t_py, atol=1e-15)
3156
+
3157
+ # redo with new knots
3158
+ spl2 = make_lsq_spline(x, y, k=k, t=new_t)
3159
+ residuals2 = (spl2(x) - y)**2
3160
+
3161
+ new_t2 = _fr.add_knot(x, new_t, k, residuals2)
3162
+ new_t2_py = _add_knot(x, new_t, k, residuals2)
3163
+
3164
+ xp_assert_close(new_t2, new_t2_py, atol=1e-15)
3165
+
3166
+ @pytest.mark.parametrize('k', [1, 2, 3, 4, 5])
3167
+ def test_s0(self, k):
3168
+ x = np.arange(8, dtype=np.float64)
3169
+ y = np.sin(x*np.pi/8)
3170
+ t = list(generate_knots(x, y, k=k, s=0))[-1]
3171
+
3172
+ tt = splrep(x, y, k=k, s=0)[0]
3173
+ xp_assert_close(t, tt, atol=1e-15)
3174
+
3175
+ def test_s0_1(self):
3176
+ # with these data, naive algorithm tries to insert >= nmax knots
3177
+ n = 10
3178
+ x = np.arange(n)
3179
+ y = x**3
3180
+ knots = list(generate_knots(x, y, k=3, s=0)) # does not error out
3181
+ xp_assert_close(knots[-1], _not_a_knot(x, 3), atol=1e-15)
3182
+
3183
+ def test_s0_n20(self):
3184
+ n = 20
3185
+ x = np.arange(n)
3186
+ y = x**3
3187
+ knots = list(generate_knots(x, y, k=3, s=0))
3188
+ xp_assert_close(knots[-1], _not_a_knot(x, 3), atol=1e-15)
3189
+
3190
+ def test_s0_nest(self):
3191
+ # s=0 and non-default nest: not implemented, errors out
3192
+ x = np.arange(10)
3193
+ y = x**3
3194
+ with assert_raises(ValueError):
3195
+ list(generate_knots(x, y, k=3, s=0, nest=10))
3196
+
3197
+ def test_s_switch(self):
3198
+ # test the process switching to interpolating knots when len(t) == m + k + 1
3199
+ """
3200
+ To generate the `wanted` list below apply the following diff and rerun
3201
+ the test. The stdout will contain successive iterations of the `t`
3202
+ array.
3203
+
3204
+ $ git diff scipy/interpolate/fitpack/fpcurf.f
3205
+ diff --git a/scipy/interpolate/fitpack/fpcurf.f b/scipy/interpolate/fitpack/fpcurf.f
3206
+ index 1afb1900f1..d817e51ad8 100644
3207
+ --- a/scipy/interpolate/fitpack/fpcurf.f
3208
+ +++ b/scipy/interpolate/fitpack/fpcurf.f
3209
+ @@ -216,6 +216,9 @@ c t(j+k) <= x(i) <= t(j+k+1) and store it in fpint(j),j=1,2,...nrint.
3210
+ do 190 l=1,nplus
3211
+ c add a new knot.
3212
+ call fpknot(x,m,t,n,fpint,nrdata,nrint,nest,1)
3213
+ + print*, l, nest, ': ', t
3214
+ + print*, "n, nmax = ", n, nmax
3215
+ +
3216
+ c if n=nmax we locate the knots as for interpolation.
3217
+ if(n.eq.nmax) go to 10
3218
+ c test whether we cannot further increase the number of knots.
3219
+ """ # NOQA: E501
3220
+ x = np.arange(8)
3221
+ y = np.sin(x*np.pi/8)
3222
+ k = 3
3223
+
3224
+ knots = list(generate_knots(x, y, k=k, s=1e-7))
3225
+ wanted = [[0., 0., 0., 0., 7., 7., 7., 7.],
3226
+ [0., 0., 0., 0., 4., 7., 7., 7., 7.],
3227
+ [0., 0., 0., 0., 2., 4., 7., 7., 7., 7.],
3228
+ [0., 0., 0., 0., 2., 4., 6., 7., 7., 7., 7.],
3229
+ [0., 0., 0., 0., 2., 3., 4., 5., 7, 7., 7., 7.]
3230
+ ]
3231
+
3232
+ assert len(knots) == len(wanted)
3233
+ for t, tt in zip(knots, wanted):
3234
+ xp_assert_close(t, tt, atol=1e-15)
3235
+
3236
+ # also check that the last knot vector matches FITPACK
3237
+ t, _, _ = splrep(x, y, k=k, s=1e-7)
3238
+ xp_assert_close(knots[-1], t, atol=1e-15)
3239
+
3240
+ def test_list_input(self):
3241
+ # test that list inputs are accepted
3242
+ x = list(range(8))
3243
+ gen = generate_knots(x, x, s=0.1, k=1)
3244
+ next(gen)
3245
+
3246
+ def test_nest(self):
3247
+ # test that nest < nmax stops the process early (and we get 10 knots not 12)
3248
+ x = np.arange(8)
3249
+ y = np.sin(x*np.pi/8)
3250
+ s = 1e-7
3251
+
3252
+ knots = list(generate_knots(x, y, k=3, s=s, nest=10))
3253
+ xp_assert_close(knots[-1],
3254
+ [0., 0., 0., 0., 2., 4., 7., 7., 7., 7.], atol=1e-15)
3255
+
3256
+ with assert_raises(ValueError):
3257
+ # nest < 2*(k+1)
3258
+ list(generate_knots(x, y, k=3, nest=4))
3259
+
3260
+ def test_weights(self):
3261
+ x = np.arange(8)
3262
+ y = np.sin(x*np.pi/8)
3263
+
3264
+ with assert_raises(ValueError):
3265
+ list(generate_knots(x, y, w=np.arange(11))) # len(w) != len(x)
3266
+
3267
+ with assert_raises(ValueError):
3268
+ list(generate_knots(x, y, w=-np.ones(8))) # w < 0
3269
+
3270
+ @pytest.mark.parametrize("npts", [30, 50, 100])
3271
+ @pytest.mark.parametrize("s", [0.1, 1e-2, 0])
3272
+ def test_vs_splrep(self, s, npts):
3273
+ # XXX this test is brittle: differences start apearing for k=3 and s=1e-6,
3274
+ # also for k != 3. Might be worth investigating at some point.
3275
+ # I think we do not really guarantee exact agreement with splrep. Instead,
3276
+ # we guarantee it is the same *in most cases*; otherwise slight differences
3277
+ # are allowed. There is no theorem, it is al heuristics by P. Dierckx.
3278
+ # The best we can do it to best-effort reproduce it.
3279
+ rndm = np.random.RandomState(12345)
3280
+ x = 10*np.sort(rndm.uniform(size=npts))
3281
+ y = np.sin(x*np.pi/10) + np.exp(-(x-6)**2)
3282
+
3283
+ k = 3
3284
+ t = splrep(x, y, k=k, s=s)[0]
3285
+ tt = list(generate_knots(x, y, k=k, s=s))[-1]
3286
+
3287
+ xp_assert_close(tt, t, atol=1e-15)
3288
+
3289
+ @pytest.mark.thread_unsafe
3290
+ def test_s_too_small(self):
3291
+ n = 14
3292
+ x = np.arange(n)
3293
+ y = x**3
3294
+
3295
+ # XXX splrep warns that "s too small": ier=2
3296
+ knots = list(generate_knots(x, y, k=3, s=1e-50))
3297
+
3298
+ with suppress_warnings() as sup:
3299
+ r = sup.record(RuntimeWarning)
3300
+ tck = splrep(x, y, k=3, s=1e-50)
3301
+ assert len(r) == 1
3302
+ xp_assert_equal(knots[-1], tck[0])
3303
+
3304
+
3305
+ def disc_naive(t, k):
3306
+ """Straitforward way to compute the discontinuity matrix. For testing ONLY.
3307
+
3308
+ This routine returns a dense matrix, while `_fitpack_repro.disc` returns
3309
+ a packed one.
3310
+ """
3311
+ n = t.shape[0]
3312
+
3313
+ delta = t[n - k - 1] - t[k]
3314
+ nrint = n - 2*k - 1
3315
+
3316
+ ti = t[k+1:n-k-1] # internal knots
3317
+ tii = np.repeat(ti, 2)
3318
+ tii[::2] += 1e-10
3319
+ tii[1::2] -= 1e-10
3320
+ m = BSpline(t, np.eye(n - k - 1), k)(tii, nu=k)
3321
+
3322
+ matr = np.empty((nrint-1, m.shape[1]), dtype=float)
3323
+ for i in range(0, m.shape[0], 2):
3324
+ matr[i//2, :] = m[i, :] - m[i+1, :]
3325
+
3326
+ matr *= (delta/nrint)**k / math.factorial(k)
3327
+ return matr
3328
+
3329
+
3330
+ class F_dense:
3331
+ """ The r.h.s. of ``f(p) = s``, an analog of _fitpack_repro.F
3332
+ Uses full matrices, so is for tests only.
3333
+ """
3334
+ def __init__(self, x, y, t, k, s, w=None):
3335
+ self.x = x
3336
+ self.y = y
3337
+ self.t = t
3338
+ self.k = k
3339
+ self.w = np.ones_like(x, dtype=float) if w is None else w
3340
+ assert self.w.ndim == 1
3341
+
3342
+ # lhs
3343
+ a_dense = BSpline(t, np.eye(t.shape[0] - k - 1), k)(x)
3344
+ self.a_dense = a_dense * self.w[:, None]
3345
+
3346
+ from scipy.interpolate import _fitpack_repro as _fr
3347
+ self.b_dense = PackedMatrix(*_fr.disc(t, k)).todense()
3348
+
3349
+ # rhs
3350
+ assert y.ndim == 1
3351
+ yy = y * self.w
3352
+ self.yy = np.r_[yy, np.zeros(self.b_dense.shape[0])]
3353
+
3354
+ self.s = s
3355
+
3356
+ def __call__(self, p):
3357
+ ab = np.vstack((self.a_dense, self.b_dense / p))
3358
+
3359
+ # LSQ solution of ab @ c = yy
3360
+ from scipy.linalg import qr, solve
3361
+ q, r = qr(ab, mode='economic')
3362
+
3363
+ qy = q.T @ self.yy
3364
+
3365
+ nc = r.shape[1]
3366
+ c = solve(r[:nc, :nc], qy[:nc])
3367
+
3368
+ spl = BSpline(self.t, c, self.k)
3369
+ fp = np.sum(self.w**2 * (spl(self.x) - self.y)**2)
3370
+
3371
+ self.spl = spl # store it
3372
+
3373
+ return fp - self.s
3374
+
3375
+
3376
+ class TestMakeSplrep:
3377
+ def test_input_errors(self):
3378
+ x = np.linspace(0, 10, 11)
3379
+ y = np.linspace(0, 10, 12)
3380
+ with assert_raises(ValueError):
3381
+ # len(x) != len(y)
3382
+ make_splrep(x, y)
3383
+
3384
+ with assert_raises(ValueError):
3385
+ # 0D inputs
3386
+ make_splrep(1, 2, s=0.1)
3387
+
3388
+ with assert_raises(ValueError):
3389
+ # y.ndim > 2
3390
+ y = np.ones((x.size, 2, 2, 2))
3391
+ make_splrep(x, y, s=0.1)
3392
+
3393
+ w = np.ones(12)
3394
+ with assert_raises(ValueError):
3395
+ # len(weights) != len(x)
3396
+ make_splrep(x, x**3, w=w, s=0.1)
3397
+
3398
+ w = -np.ones(12)
3399
+ with assert_raises(ValueError):
3400
+ # w < 0
3401
+ make_splrep(x, x**3, w=w, s=0.1)
3402
+
3403
+ w = np.ones((x.shape[0], 2))
3404
+ with assert_raises(ValueError):
3405
+ # w.ndim != 1
3406
+ make_splrep(x, x**3, w=w, s=0.1)
3407
+
3408
+ with assert_raises(ValueError):
3409
+ # x not ordered
3410
+ make_splrep(x[::-1], x**3, s=0.1)
3411
+
3412
+ with assert_raises(TypeError):
3413
+ # k != int(k)
3414
+ make_splrep(x, x**3, k=2.5, s=0.1)
3415
+
3416
+ with assert_raises(ValueError):
3417
+ # s < 0
3418
+ make_splrep(x, x**3, s=-1)
3419
+
3420
+ with assert_raises(ValueError):
3421
+ # nest < 2*k + 2
3422
+ make_splrep(x, x**3, k=3, nest=2, s=0.1)
3423
+
3424
+ with assert_raises(ValueError):
3425
+ # nest not None and s==0
3426
+ make_splrep(x, x**3, s=0, nest=11)
3427
+
3428
+ with assert_raises(ValueError):
3429
+ # len(x) != len(y)
3430
+ make_splrep(np.arange(8), np.arange(9), s=0.1)
3431
+
3432
+ def _get_xykt(self):
3433
+ x = np.linspace(0, 5, 11)
3434
+ y = np.sin(x*3.14 / 5)**2
3435
+ k = 3
3436
+ s = 1.7e-4
3437
+ tt = np.array([0]*(k+1) + [2.5, 4.0] + [5]*(k+1))
3438
+
3439
+ return x, y, k, s, tt
3440
+
3441
+ def test_fitpack_F(self):
3442
+ # test an implementation detail: banded/packed linalg vs full matrices
3443
+ from scipy.interpolate._fitpack_repro import F
3444
+
3445
+ x, y, k, s, t = self._get_xykt()
3446
+ f = F(x, y[:, None], t, k, s) # F expects y to be 2D
3447
+ f_d = F_dense(x, y, t, k, s)
3448
+ for p in [1, 10, 100]:
3449
+ xp_assert_close(f(p), f_d(p), atol=1e-15)
3450
+
3451
+ def test_fitpack_F_with_weights(self):
3452
+ # repeat test_fitpack_F, with weights
3453
+ from scipy.interpolate._fitpack_repro import F
3454
+
3455
+ x, y, k, s, t = self._get_xykt()
3456
+ w = np.arange(x.shape[0], dtype=float)
3457
+ fw = F(x, y[:, None], t, k, s, w=w) # F expects y to be 2D
3458
+ fw_d = F_dense(x, y, t, k, s, w=w)
3459
+
3460
+ f_d = F_dense(x, y, t, k, s) # no weights
3461
+
3462
+ for p in [1, 10, 100]:
3463
+ xp_assert_close(fw(p), fw_d(p), atol=1e-15)
3464
+ assert not np.allclose(f_d(p), fw_d(p), atol=1e-15)
3465
+
3466
+ def test_disc_matrix(self):
3467
+ # test an implementation detail: discontinuity matrix
3468
+ # (jumps of k-th derivative at knots)
3469
+ import scipy.interpolate._fitpack_repro as _fr
3470
+
3471
+ rng = np.random.default_rng(12345)
3472
+ t = np.r_[0, 0, 0, 0, np.sort(rng.uniform(size=7))*5, 5, 5, 5, 5]
3473
+
3474
+ n, k = len(t), 3
3475
+ D = PackedMatrix(*_fr.disc(t, k)).todense()
3476
+ D_dense = disc_naive(t, k)
3477
+ assert D.shape[0] == n - 2*k - 2 # number of internal knots
3478
+ xp_assert_close(D, D_dense, atol=1e-15)
3479
+
3480
+ def test_simple_vs_splrep(self):
3481
+ x, y, k, s, tt = self._get_xykt()
3482
+ tt = np.array([0]*(k+1) + [2.5, 4.0] + [5]*(k+1))
3483
+
3484
+ t,c,k = splrep(x, y, k=k, s=s)
3485
+ assert all(t == tt)
3486
+
3487
+ spl = make_splrep(x, y, k=k, s=s)
3488
+ xp_assert_close(c[:spl.c.size], spl.c, atol=1e-15)
3489
+
3490
+ def test_with_knots(self):
3491
+ x, y, k, s, _ = self._get_xykt()
3492
+
3493
+ t = list(generate_knots(x, y, k=k, s=s))[-1]
3494
+
3495
+ spl_auto = make_splrep(x, y, k=k, s=s)
3496
+ spl_t = make_splrep(x, y, t=t, k=k, s=s)
3497
+
3498
+ xp_assert_close(spl_auto.t, spl_t.t, atol=1e-15)
3499
+ xp_assert_close(spl_auto.c, spl_t.c, atol=1e-15)
3500
+ assert spl_auto.k == spl_t.k
3501
+
3502
+ def test_no_internal_knots(self):
3503
+ # should not fail if there are no internal knots
3504
+ n = 10
3505
+ x = np.arange(n)
3506
+ y = x**3
3507
+ k = 3
3508
+ spl = make_splrep(x, y, k=k, s=1)
3509
+ assert spl.t.shape[0] == 2*(k+1)
3510
+
3511
+ def test_default_s(self):
3512
+ n = 10
3513
+ x = np.arange(n)
3514
+ y = x**3
3515
+ spl = make_splrep(x, y, k=3)
3516
+ spl_i = make_interp_spline(x, y, k=3)
3517
+
3518
+ xp_assert_close(spl.c, spl_i.c, atol=1e-15)
3519
+
3520
+ @pytest.mark.thread_unsafe
3521
+ def test_s_too_small(self):
3522
+ # both splrep and make_splrep warn that "s too small": ier=2
3523
+ n = 14
3524
+ x = np.arange(n)
3525
+ y = x**3
3526
+
3527
+ with suppress_warnings() as sup:
3528
+ r = sup.record(RuntimeWarning)
3529
+ tck = splrep(x, y, k=3, s=1e-50)
3530
+ spl = make_splrep(x, y, k=3, s=1e-50)
3531
+ assert len(r) == 2
3532
+ xp_assert_equal(spl.t, tck[0])
3533
+ xp_assert_close(np.r_[spl.c, [0]*(spl.k+1)],
3534
+ tck[1], atol=5e-13)
3535
+
3536
+ def test_issue_22704(self):
3537
+ # Reference - https://github.com/scipy/scipy/issues/22704
3538
+ x = np.asarray([20.00, 153.81, 175.57, 202.47, 237.11,
3539
+ 253.61, 258.56, 273.40, 284.54, 293.61,
3540
+ 298.56, 301.86, 305.57, 307.22, 308.45,
3541
+ 310.10, 310.10, 310.50], dtype=np.float64)
3542
+ y = np.asarray([53.00, 49.50, 48.60, 46.80, 43.20,
3543
+ 40.32, 39.60, 36.00, 32.40, 28.80,
3544
+ 25.20, 21.60, 18.00, 14.40, 10.80,
3545
+ 7.20, 3.60, 0.0], dtype=np.float64)
3546
+ w = np.asarray([1.38723] * y.shape[0], dtype=np.float64)
3547
+ with assert_raises(ValueError):
3548
+ make_splrep(x, y, w=w, k=2, s=12)
3549
+
3550
+ def test_shape(self):
3551
+ # make sure coefficients have the right shape (not extra dims)
3552
+ n, k = 10, 3
3553
+ x = np.arange(n)
3554
+ y = x**3
3555
+
3556
+ spl = make_splrep(x, y, k=k)
3557
+ spl_1 = make_splrep(x, y, k=k, s=1e-5)
3558
+
3559
+ assert spl.c.ndim == 1
3560
+ assert spl_1.c.ndim == 1
3561
+
3562
+ # force the general code path, not shortcuts
3563
+ spl_2 = make_splrep(x, y + 1/(1+y), k=k, s=1e-5)
3564
+ assert spl_2.c.ndim == 1
3565
+
3566
+ def test_s0_vs_not(self):
3567
+ # check that the shapes are consistent
3568
+ n, k = 10, 3
3569
+ x = np.arange(n)
3570
+ y = x**3
3571
+
3572
+ spl_0 = make_splrep(x, y, k=3, s=0)
3573
+ spl_1 = make_splrep(x, y, k=3, s=1)
3574
+
3575
+ assert spl_0.c.ndim == 1
3576
+ assert spl_1.c.ndim == 1
3577
+
3578
+ assert spl_0.t.shape[0] == n + k + 1
3579
+ assert spl_1.t.shape[0] == 2 * (k + 1)
3580
+
3581
+
3582
+ class TestMakeSplprep:
3583
+ def _get_xyk(self, m=10, k=3):
3584
+ x = np.arange(m) * np.pi / m
3585
+ y = [np.sin(x), np.cos(x)]
3586
+ return x, y, k
3587
+
3588
+ @pytest.mark.parametrize('s', [0, 0.1, 1e-3, 1e-5])
3589
+ def test_simple_vs_splprep(self, s):
3590
+ # Check/document the interface vs splPrep
3591
+ # The four values of `s` are to probe all code paths and shortcuts
3592
+ m, k = 10, 3
3593
+ x = np.arange(m) * np.pi / m
3594
+ y = [np.sin(x), np.cos(x)]
3595
+
3596
+ # the number of knots depends on `s` (this is by construction)
3597
+ num_knots = {0: 14, 0.1: 8, 1e-3: 8 + 1, 1e-5: 8 + 2}
3598
+
3599
+ # construct the splines
3600
+ (t, c, k), u_ = splprep(y, s=s)
3601
+ spl, u = make_splprep(y, s=s)
3602
+
3603
+ # parameters
3604
+ xp_assert_close(u, u_, atol=1e-15)
3605
+
3606
+ # knots
3607
+ xp_assert_close(spl.t, t, atol=1e-15)
3608
+ assert len(t) == num_knots[s]
3609
+
3610
+ # coefficients: note the transpose
3611
+ cc = np.asarray(c).T
3612
+ xp_assert_close(spl.c, cc, atol=1e-15)
3613
+
3614
+ # values: note axis=1
3615
+ xp_assert_close(spl(u),
3616
+ BSpline(t, c, k, axis=1)(u), atol=1e-15)
3617
+
3618
+ @pytest.mark.parametrize('s', [0, 0.1, 1e-3, 1e-5])
3619
+ def test_array_not_list(self, s):
3620
+ # the argument of splPrep is either a list of arrays or a 2D array (sigh)
3621
+ _, y, _ = self._get_xyk()
3622
+ assert isinstance(y, list)
3623
+ assert np.shape(y)[0] == 2
3624
+
3625
+ # assert the behavior of FITPACK's splrep
3626
+ tck, u = splprep(y, s=s)
3627
+ tck_a, u_a = splprep(np.asarray(y), s=s)
3628
+ xp_assert_close(u, u_a, atol=s)
3629
+ xp_assert_close(tck[0], tck_a[0], atol=1e-15)
3630
+ assert len(tck[1]) == len(tck_a[1])
3631
+ for c1, c2 in zip(tck[1], tck_a[1]):
3632
+ xp_assert_close(c1, c2, atol=1e-15)
3633
+ assert tck[2] == tck_a[2]
3634
+ assert np.shape(splev(u, tck)) == np.shape(y)
3635
+
3636
+ spl, u = make_splprep(y, s=s)
3637
+ xp_assert_close(u, u_a, atol=1e-15)
3638
+ xp_assert_close(spl.t, tck_a[0], atol=1e-15)
3639
+ xp_assert_close(spl.c.T, tck_a[1], atol=1e-15)
3640
+ assert spl.k == tck_a[2]
3641
+ assert spl(u).shape == np.shape(y)
3642
+
3643
+ spl, u = make_splprep(np.asarray(y), s=s)
3644
+ xp_assert_close(u, u_a, atol=1e-15)
3645
+ xp_assert_close(spl.t, tck_a[0], atol=1e-15)
3646
+ xp_assert_close(spl.c.T, tck_a[1], atol=1e-15)
3647
+ assert spl.k == tck_a[2]
3648
+ assert spl(u).shape == np.shape(y)
3649
+
3650
+ with assert_raises(ValueError):
3651
+ make_splprep(np.asarray(y).T, s=s)
3652
+
3653
+ def test_default_s_is_zero(self):
3654
+ x, y, k = self._get_xyk(m=10)
3655
+
3656
+ spl, u = make_splprep(y)
3657
+ xp_assert_close(spl(u), y, atol=1e-15)
3658
+
3659
+ def test_s_zero_vs_near_zero(self):
3660
+ # s=0 and s \approx 0 are consistent
3661
+ x, y, k = self._get_xyk(m=10)
3662
+
3663
+ spl_i, u_i = make_splprep(y, s=0)
3664
+ spl_n, u_n = make_splprep(y, s=1e-15)
3665
+
3666
+ xp_assert_close(u_i, u_n, atol=1e-15)
3667
+ xp_assert_close(spl_i(u_i), y, atol=1e-15)
3668
+ xp_assert_close(spl_n(u_n), y, atol=1e-7)
3669
+ assert spl_i.axis == spl_n.axis
3670
+ assert spl_i.c.shape == spl_n.c.shape
3671
+
3672
+ def test_1D(self):
3673
+ x = np.arange(8, dtype=float)
3674
+ with assert_raises(ValueError):
3675
+ splprep(x)
3676
+
3677
+ with assert_raises(ValueError):
3678
+ make_splprep(x, s=0)
3679
+
3680
+ with assert_raises(ValueError):
3681
+ make_splprep(x, s=0.1)
3682
+
3683
+ tck, u_ = splprep([x], s=1e-5)
3684
+ spl, u = make_splprep([x], s=1e-5)
3685
+
3686
+ assert spl(u).shape == (1, 8)
3687
+ xp_assert_close(spl(u), [x], atol=1e-15)
3688
+
3689
+
3690
+ class BatchSpline:
3691
+ # BSpline-line class with reference batch behavior
3692
+ def __init__(self, x, y, axis, *, spline, **kwargs):
3693
+ y = np.moveaxis(y, axis, -1)
3694
+ self._batch_shape = y.shape[:-1]
3695
+ self._splines = [spline(x, yi, **kwargs) for yi in y.reshape(-1, y.shape[-1])]
3696
+ self._axis = axis
3697
+
3698
+ def __call__(self, x):
3699
+ y = [spline(x) for spline in self._splines]
3700
+ y = np.reshape(y, self._batch_shape + x.shape)
3701
+ return np.moveaxis(y, -1, self._axis) if x.shape else y
3702
+
3703
+ def integrate(self, a, b, extrapolate=None):
3704
+ y = [spline.integrate(a, b, extrapolate) for spline in self._splines]
3705
+ return np.reshape(y, self._batch_shape)
3706
+
3707
+ def derivative(self, nu):
3708
+ res = copy.deepcopy(self)
3709
+ res._splines = [spline.derivative(nu) for spline in res._splines]
3710
+ return res
3711
+
3712
+ def antiderivative(self, nu):
3713
+ res = copy.deepcopy(self)
3714
+ res._splines = [spline.antiderivative(nu) for spline in res._splines]
3715
+ return res
3716
+
3717
+
3718
+ class TestBatch:
3719
+ @pytest.mark.parametrize('make_spline, kwargs',
3720
+ [(make_interp_spline, {}),
3721
+ (make_smoothing_spline, {}),
3722
+ (make_smoothing_spline, {'lam': 1.0}),
3723
+ (make_lsq_spline, {'method': "norm-eq"}),
3724
+ (make_lsq_spline, {'method': "qr"}),
3725
+ ])
3726
+ @pytest.mark.parametrize('eval_shape', [(), (1,), (3,)])
3727
+ @pytest.mark.parametrize('axis', [-1, 0, 1])
3728
+ def test_batch(self, make_spline, kwargs, axis, eval_shape):
3729
+ rng = np.random.default_rng(4329872134985134)
3730
+ n = 10
3731
+ shape = (2, 3, 4, n)
3732
+ domain = (0, 10)
3733
+
3734
+ x = np.linspace(*domain, n)
3735
+ y = np.moveaxis(rng.random(shape), -1, axis)
3736
+
3737
+ if make_spline == make_lsq_spline:
3738
+ k = 3 # spline degree, if needed
3739
+ t = (x[0],) * (k + 1) + (x[-1],) * (k + 1) # valid knots, if needed
3740
+ kwargs = kwargs | dict(t=t, k=k)
3741
+
3742
+ res = make_spline(x, y, axis=axis, **kwargs)
3743
+ ref = BatchSpline(x, y, axis=axis, spline=make_spline, **kwargs)
3744
+
3745
+ x = rng.uniform(*domain, size=eval_shape)
3746
+ np.testing.assert_allclose(res(x), ref(x))
3747
+
3748
+ res, ref = res.antiderivative(1), ref.antiderivative(1)
3749
+ np.testing.assert_allclose(res(x), ref(x))
3750
+
3751
+ res, ref = res.derivative(2), ref.derivative(2)
3752
+ np.testing.assert_allclose(res(x), ref(x))
3753
+
3754
+ np.testing.assert_allclose(res.integrate(*domain), ref.integrate(*domain))