scipy 1.16.2__cp314-cp314-win_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1530) hide show
  1. scipy/__config__.py +161 -0
  2. scipy/__init__.py +150 -0
  3. scipy/_cyutility.cp314-win_arm64.lib +0 -0
  4. scipy/_cyutility.cp314-win_arm64.pyd +0 -0
  5. scipy/_distributor_init.py +18 -0
  6. scipy/_lib/__init__.py +14 -0
  7. scipy/_lib/_array_api.py +931 -0
  8. scipy/_lib/_array_api_compat_vendor.py +9 -0
  9. scipy/_lib/_array_api_no_0d.py +103 -0
  10. scipy/_lib/_bunch.py +229 -0
  11. scipy/_lib/_ccallback.py +251 -0
  12. scipy/_lib/_ccallback_c.cp314-win_arm64.lib +0 -0
  13. scipy/_lib/_ccallback_c.cp314-win_arm64.pyd +0 -0
  14. scipy/_lib/_disjoint_set.py +254 -0
  15. scipy/_lib/_docscrape.py +761 -0
  16. scipy/_lib/_elementwise_iterative_method.py +346 -0
  17. scipy/_lib/_fpumode.cp314-win_arm64.lib +0 -0
  18. scipy/_lib/_fpumode.cp314-win_arm64.pyd +0 -0
  19. scipy/_lib/_gcutils.py +105 -0
  20. scipy/_lib/_pep440.py +487 -0
  21. scipy/_lib/_sparse.py +41 -0
  22. scipy/_lib/_test_ccallback.cp314-win_arm64.lib +0 -0
  23. scipy/_lib/_test_ccallback.cp314-win_arm64.pyd +0 -0
  24. scipy/_lib/_test_deprecation_call.cp314-win_arm64.lib +0 -0
  25. scipy/_lib/_test_deprecation_call.cp314-win_arm64.pyd +0 -0
  26. scipy/_lib/_test_deprecation_def.cp314-win_arm64.lib +0 -0
  27. scipy/_lib/_test_deprecation_def.cp314-win_arm64.pyd +0 -0
  28. scipy/_lib/_testutils.py +373 -0
  29. scipy/_lib/_threadsafety.py +58 -0
  30. scipy/_lib/_tmpdirs.py +86 -0
  31. scipy/_lib/_uarray/LICENSE +29 -0
  32. scipy/_lib/_uarray/__init__.py +116 -0
  33. scipy/_lib/_uarray/_backend.py +707 -0
  34. scipy/_lib/_uarray/_uarray.cp314-win_arm64.lib +0 -0
  35. scipy/_lib/_uarray/_uarray.cp314-win_arm64.pyd +0 -0
  36. scipy/_lib/_util.py +1283 -0
  37. scipy/_lib/array_api_compat/__init__.py +22 -0
  38. scipy/_lib/array_api_compat/_internal.py +59 -0
  39. scipy/_lib/array_api_compat/common/__init__.py +1 -0
  40. scipy/_lib/array_api_compat/common/_aliases.py +727 -0
  41. scipy/_lib/array_api_compat/common/_fft.py +213 -0
  42. scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
  43. scipy/_lib/array_api_compat/common/_linalg.py +232 -0
  44. scipy/_lib/array_api_compat/common/_typing.py +192 -0
  45. scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
  46. scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
  47. scipy/_lib/array_api_compat/cupy/_info.py +336 -0
  48. scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
  49. scipy/_lib/array_api_compat/cupy/fft.py +36 -0
  50. scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
  51. scipy/_lib/array_api_compat/dask/__init__.py +0 -0
  52. scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
  53. scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
  54. scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
  55. scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
  56. scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
  57. scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
  58. scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
  59. scipy/_lib/array_api_compat/numpy/_info.py +366 -0
  60. scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
  61. scipy/_lib/array_api_compat/numpy/fft.py +35 -0
  62. scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
  63. scipy/_lib/array_api_compat/torch/__init__.py +22 -0
  64. scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
  65. scipy/_lib/array_api_compat/torch/_info.py +369 -0
  66. scipy/_lib/array_api_compat/torch/_typing.py +3 -0
  67. scipy/_lib/array_api_compat/torch/fft.py +85 -0
  68. scipy/_lib/array_api_compat/torch/linalg.py +121 -0
  69. scipy/_lib/array_api_extra/__init__.py +38 -0
  70. scipy/_lib/array_api_extra/_delegation.py +171 -0
  71. scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
  72. scipy/_lib/array_api_extra/_lib/_at.py +463 -0
  73. scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
  74. scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
  75. scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
  76. scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
  77. scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
  78. scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
  79. scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
  80. scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
  81. scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
  82. scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
  83. scipy/_lib/array_api_extra/testing.py +359 -0
  84. scipy/_lib/cobyqa/__init__.py +20 -0
  85. scipy/_lib/cobyqa/framework.py +1240 -0
  86. scipy/_lib/cobyqa/main.py +1506 -0
  87. scipy/_lib/cobyqa/models.py +1529 -0
  88. scipy/_lib/cobyqa/problem.py +1296 -0
  89. scipy/_lib/cobyqa/settings.py +132 -0
  90. scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
  91. scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
  92. scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
  93. scipy/_lib/cobyqa/utils/__init__.py +18 -0
  94. scipy/_lib/cobyqa/utils/exceptions.py +22 -0
  95. scipy/_lib/cobyqa/utils/math.py +77 -0
  96. scipy/_lib/cobyqa/utils/versions.py +67 -0
  97. scipy/_lib/decorator.py +399 -0
  98. scipy/_lib/deprecation.py +274 -0
  99. scipy/_lib/doccer.py +366 -0
  100. scipy/_lib/messagestream.cp314-win_arm64.lib +0 -0
  101. scipy/_lib/messagestream.cp314-win_arm64.pyd +0 -0
  102. scipy/_lib/pyprima/__init__.py +212 -0
  103. scipy/_lib/pyprima/cobyla/__init__.py +0 -0
  104. scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
  105. scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
  106. scipy/_lib/pyprima/cobyla/geometry.py +226 -0
  107. scipy/_lib/pyprima/cobyla/initialize.py +215 -0
  108. scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
  109. scipy/_lib/pyprima/cobyla/update.py +289 -0
  110. scipy/_lib/pyprima/common/__init__.py +0 -0
  111. scipy/_lib/pyprima/common/_bounds.py +34 -0
  112. scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
  113. scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
  114. scipy/_lib/pyprima/common/_project.py +173 -0
  115. scipy/_lib/pyprima/common/checkbreak.py +93 -0
  116. scipy/_lib/pyprima/common/consts.py +47 -0
  117. scipy/_lib/pyprima/common/evaluate.py +99 -0
  118. scipy/_lib/pyprima/common/history.py +38 -0
  119. scipy/_lib/pyprima/common/infos.py +30 -0
  120. scipy/_lib/pyprima/common/linalg.py +435 -0
  121. scipy/_lib/pyprima/common/message.py +290 -0
  122. scipy/_lib/pyprima/common/powalg.py +131 -0
  123. scipy/_lib/pyprima/common/preproc.py +277 -0
  124. scipy/_lib/pyprima/common/present.py +5 -0
  125. scipy/_lib/pyprima/common/ratio.py +54 -0
  126. scipy/_lib/pyprima/common/redrho.py +47 -0
  127. scipy/_lib/pyprima/common/selectx.py +296 -0
  128. scipy/_lib/tests/__init__.py +0 -0
  129. scipy/_lib/tests/test__gcutils.py +110 -0
  130. scipy/_lib/tests/test__pep440.py +67 -0
  131. scipy/_lib/tests/test__testutils.py +32 -0
  132. scipy/_lib/tests/test__threadsafety.py +51 -0
  133. scipy/_lib/tests/test__util.py +641 -0
  134. scipy/_lib/tests/test_array_api.py +322 -0
  135. scipy/_lib/tests/test_bunch.py +169 -0
  136. scipy/_lib/tests/test_ccallback.py +196 -0
  137. scipy/_lib/tests/test_config.py +45 -0
  138. scipy/_lib/tests/test_deprecation.py +10 -0
  139. scipy/_lib/tests/test_doccer.py +143 -0
  140. scipy/_lib/tests/test_import_cycles.py +18 -0
  141. scipy/_lib/tests/test_public_api.py +482 -0
  142. scipy/_lib/tests/test_scipy_version.py +28 -0
  143. scipy/_lib/tests/test_tmpdirs.py +48 -0
  144. scipy/_lib/tests/test_warnings.py +137 -0
  145. scipy/_lib/uarray.py +31 -0
  146. scipy/cluster/__init__.py +31 -0
  147. scipy/cluster/_hierarchy.cp314-win_arm64.lib +0 -0
  148. scipy/cluster/_hierarchy.cp314-win_arm64.pyd +0 -0
  149. scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.lib +0 -0
  150. scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.pyd +0 -0
  151. scipy/cluster/_vq.cp314-win_arm64.lib +0 -0
  152. scipy/cluster/_vq.cp314-win_arm64.pyd +0 -0
  153. scipy/cluster/hierarchy.py +4348 -0
  154. scipy/cluster/tests/__init__.py +0 -0
  155. scipy/cluster/tests/hierarchy_test_data.py +145 -0
  156. scipy/cluster/tests/test_disjoint_set.py +202 -0
  157. scipy/cluster/tests/test_hierarchy.py +1238 -0
  158. scipy/cluster/tests/test_vq.py +434 -0
  159. scipy/cluster/vq.py +832 -0
  160. scipy/conftest.py +683 -0
  161. scipy/constants/__init__.py +358 -0
  162. scipy/constants/_codata.py +2266 -0
  163. scipy/constants/_constants.py +369 -0
  164. scipy/constants/codata.py +21 -0
  165. scipy/constants/constants.py +53 -0
  166. scipy/constants/tests/__init__.py +0 -0
  167. scipy/constants/tests/test_codata.py +78 -0
  168. scipy/constants/tests/test_constants.py +83 -0
  169. scipy/datasets/__init__.py +90 -0
  170. scipy/datasets/_download_all.py +71 -0
  171. scipy/datasets/_fetchers.py +225 -0
  172. scipy/datasets/_registry.py +26 -0
  173. scipy/datasets/_utils.py +81 -0
  174. scipy/datasets/tests/__init__.py +0 -0
  175. scipy/datasets/tests/test_data.py +128 -0
  176. scipy/differentiate/__init__.py +27 -0
  177. scipy/differentiate/_differentiate.py +1129 -0
  178. scipy/differentiate/tests/__init__.py +0 -0
  179. scipy/differentiate/tests/test_differentiate.py +694 -0
  180. scipy/fft/__init__.py +114 -0
  181. scipy/fft/_backend.py +196 -0
  182. scipy/fft/_basic.py +1650 -0
  183. scipy/fft/_basic_backend.py +197 -0
  184. scipy/fft/_debug_backends.py +22 -0
  185. scipy/fft/_fftlog.py +223 -0
  186. scipy/fft/_fftlog_backend.py +200 -0
  187. scipy/fft/_helper.py +348 -0
  188. scipy/fft/_pocketfft/LICENSE.md +25 -0
  189. scipy/fft/_pocketfft/__init__.py +9 -0
  190. scipy/fft/_pocketfft/basic.py +251 -0
  191. scipy/fft/_pocketfft/helper.py +249 -0
  192. scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.lib +0 -0
  193. scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.pyd +0 -0
  194. scipy/fft/_pocketfft/realtransforms.py +109 -0
  195. scipy/fft/_pocketfft/tests/__init__.py +0 -0
  196. scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
  197. scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
  198. scipy/fft/_realtransforms.py +706 -0
  199. scipy/fft/_realtransforms_backend.py +63 -0
  200. scipy/fft/tests/__init__.py +0 -0
  201. scipy/fft/tests/mock_backend.py +96 -0
  202. scipy/fft/tests/test_backend.py +98 -0
  203. scipy/fft/tests/test_basic.py +504 -0
  204. scipy/fft/tests/test_fftlog.py +215 -0
  205. scipy/fft/tests/test_helper.py +558 -0
  206. scipy/fft/tests/test_multithreading.py +84 -0
  207. scipy/fft/tests/test_real_transforms.py +247 -0
  208. scipy/fftpack/__init__.py +103 -0
  209. scipy/fftpack/_basic.py +428 -0
  210. scipy/fftpack/_helper.py +115 -0
  211. scipy/fftpack/_pseudo_diffs.py +554 -0
  212. scipy/fftpack/_realtransforms.py +598 -0
  213. scipy/fftpack/basic.py +20 -0
  214. scipy/fftpack/convolve.cp314-win_arm64.lib +0 -0
  215. scipy/fftpack/convolve.cp314-win_arm64.pyd +0 -0
  216. scipy/fftpack/helper.py +19 -0
  217. scipy/fftpack/pseudo_diffs.py +22 -0
  218. scipy/fftpack/realtransforms.py +19 -0
  219. scipy/fftpack/tests/__init__.py +0 -0
  220. scipy/fftpack/tests/fftw_double_ref.npz +0 -0
  221. scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
  222. scipy/fftpack/tests/fftw_single_ref.npz +0 -0
  223. scipy/fftpack/tests/test.npz +0 -0
  224. scipy/fftpack/tests/test_basic.py +877 -0
  225. scipy/fftpack/tests/test_helper.py +54 -0
  226. scipy/fftpack/tests/test_import.py +33 -0
  227. scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
  228. scipy/fftpack/tests/test_real_transforms.py +836 -0
  229. scipy/integrate/__init__.py +122 -0
  230. scipy/integrate/_bvp.py +1160 -0
  231. scipy/integrate/_cubature.py +729 -0
  232. scipy/integrate/_dop.cp314-win_arm64.lib +0 -0
  233. scipy/integrate/_dop.cp314-win_arm64.pyd +0 -0
  234. scipy/integrate/_ivp/__init__.py +8 -0
  235. scipy/integrate/_ivp/base.py +290 -0
  236. scipy/integrate/_ivp/bdf.py +478 -0
  237. scipy/integrate/_ivp/common.py +451 -0
  238. scipy/integrate/_ivp/dop853_coefficients.py +193 -0
  239. scipy/integrate/_ivp/ivp.py +755 -0
  240. scipy/integrate/_ivp/lsoda.py +224 -0
  241. scipy/integrate/_ivp/radau.py +572 -0
  242. scipy/integrate/_ivp/rk.py +601 -0
  243. scipy/integrate/_ivp/tests/__init__.py +0 -0
  244. scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
  245. scipy/integrate/_ivp/tests/test_rk.py +37 -0
  246. scipy/integrate/_lebedev.py +5450 -0
  247. scipy/integrate/_lsoda.cp314-win_arm64.lib +0 -0
  248. scipy/integrate/_lsoda.cp314-win_arm64.pyd +0 -0
  249. scipy/integrate/_ode.py +1395 -0
  250. scipy/integrate/_odepack.cp314-win_arm64.lib +0 -0
  251. scipy/integrate/_odepack.cp314-win_arm64.pyd +0 -0
  252. scipy/integrate/_odepack_py.py +273 -0
  253. scipy/integrate/_quad_vec.py +674 -0
  254. scipy/integrate/_quadpack.cp314-win_arm64.lib +0 -0
  255. scipy/integrate/_quadpack.cp314-win_arm64.pyd +0 -0
  256. scipy/integrate/_quadpack_py.py +1283 -0
  257. scipy/integrate/_quadrature.py +1336 -0
  258. scipy/integrate/_rules/__init__.py +12 -0
  259. scipy/integrate/_rules/_base.py +518 -0
  260. scipy/integrate/_rules/_gauss_kronrod.py +202 -0
  261. scipy/integrate/_rules/_gauss_legendre.py +62 -0
  262. scipy/integrate/_rules/_genz_malik.py +210 -0
  263. scipy/integrate/_tanhsinh.py +1385 -0
  264. scipy/integrate/_test_multivariate.cp314-win_arm64.lib +0 -0
  265. scipy/integrate/_test_multivariate.cp314-win_arm64.pyd +0 -0
  266. scipy/integrate/_test_odeint_banded.cp314-win_arm64.lib +0 -0
  267. scipy/integrate/_test_odeint_banded.cp314-win_arm64.pyd +0 -0
  268. scipy/integrate/_vode.cp314-win_arm64.lib +0 -0
  269. scipy/integrate/_vode.cp314-win_arm64.pyd +0 -0
  270. scipy/integrate/dop.py +15 -0
  271. scipy/integrate/lsoda.py +15 -0
  272. scipy/integrate/odepack.py +17 -0
  273. scipy/integrate/quadpack.py +23 -0
  274. scipy/integrate/tests/__init__.py +0 -0
  275. scipy/integrate/tests/test__quad_vec.py +211 -0
  276. scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
  277. scipy/integrate/tests/test_bvp.py +714 -0
  278. scipy/integrate/tests/test_cubature.py +1375 -0
  279. scipy/integrate/tests/test_integrate.py +840 -0
  280. scipy/integrate/tests/test_odeint_jac.py +74 -0
  281. scipy/integrate/tests/test_quadpack.py +680 -0
  282. scipy/integrate/tests/test_quadrature.py +730 -0
  283. scipy/integrate/tests/test_tanhsinh.py +1171 -0
  284. scipy/integrate/vode.py +15 -0
  285. scipy/interpolate/__init__.py +228 -0
  286. scipy/interpolate/_bary_rational.py +715 -0
  287. scipy/interpolate/_bsplines.py +2469 -0
  288. scipy/interpolate/_cubic.py +973 -0
  289. scipy/interpolate/_dfitpack.cp314-win_arm64.lib +0 -0
  290. scipy/interpolate/_dfitpack.cp314-win_arm64.pyd +0 -0
  291. scipy/interpolate/_dierckx.cp314-win_arm64.lib +0 -0
  292. scipy/interpolate/_dierckx.cp314-win_arm64.pyd +0 -0
  293. scipy/interpolate/_fitpack.cp314-win_arm64.lib +0 -0
  294. scipy/interpolate/_fitpack.cp314-win_arm64.pyd +0 -0
  295. scipy/interpolate/_fitpack2.py +2397 -0
  296. scipy/interpolate/_fitpack_impl.py +811 -0
  297. scipy/interpolate/_fitpack_py.py +898 -0
  298. scipy/interpolate/_fitpack_repro.py +996 -0
  299. scipy/interpolate/_interpnd.cp314-win_arm64.lib +0 -0
  300. scipy/interpolate/_interpnd.cp314-win_arm64.pyd +0 -0
  301. scipy/interpolate/_interpolate.py +2266 -0
  302. scipy/interpolate/_ndbspline.py +415 -0
  303. scipy/interpolate/_ndgriddata.py +329 -0
  304. scipy/interpolate/_pade.py +67 -0
  305. scipy/interpolate/_polyint.py +1025 -0
  306. scipy/interpolate/_ppoly.cp314-win_arm64.lib +0 -0
  307. scipy/interpolate/_ppoly.cp314-win_arm64.pyd +0 -0
  308. scipy/interpolate/_rbf.py +290 -0
  309. scipy/interpolate/_rbfinterp.py +550 -0
  310. scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.lib +0 -0
  311. scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.pyd +0 -0
  312. scipy/interpolate/_rgi.py +764 -0
  313. scipy/interpolate/_rgi_cython.cp314-win_arm64.lib +0 -0
  314. scipy/interpolate/_rgi_cython.cp314-win_arm64.pyd +0 -0
  315. scipy/interpolate/dfitpack.py +24 -0
  316. scipy/interpolate/fitpack.py +31 -0
  317. scipy/interpolate/fitpack2.py +29 -0
  318. scipy/interpolate/interpnd.py +24 -0
  319. scipy/interpolate/interpolate.py +30 -0
  320. scipy/interpolate/ndgriddata.py +23 -0
  321. scipy/interpolate/polyint.py +24 -0
  322. scipy/interpolate/rbf.py +18 -0
  323. scipy/interpolate/tests/__init__.py +0 -0
  324. scipy/interpolate/tests/data/bug-1310.npz +0 -0
  325. scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
  326. scipy/interpolate/tests/data/gcvspl.npz +0 -0
  327. scipy/interpolate/tests/test_bary_rational.py +368 -0
  328. scipy/interpolate/tests/test_bsplines.py +3754 -0
  329. scipy/interpolate/tests/test_fitpack.py +519 -0
  330. scipy/interpolate/tests/test_fitpack2.py +1431 -0
  331. scipy/interpolate/tests/test_gil.py +64 -0
  332. scipy/interpolate/tests/test_interpnd.py +452 -0
  333. scipy/interpolate/tests/test_interpolate.py +2630 -0
  334. scipy/interpolate/tests/test_ndgriddata.py +308 -0
  335. scipy/interpolate/tests/test_pade.py +107 -0
  336. scipy/interpolate/tests/test_polyint.py +972 -0
  337. scipy/interpolate/tests/test_rbf.py +246 -0
  338. scipy/interpolate/tests/test_rbfinterp.py +534 -0
  339. scipy/interpolate/tests/test_rgi.py +1151 -0
  340. scipy/io/__init__.py +116 -0
  341. scipy/io/_fast_matrix_market/__init__.py +600 -0
  342. scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.lib +0 -0
  343. scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.pyd +0 -0
  344. scipy/io/_fortran.py +354 -0
  345. scipy/io/_harwell_boeing/__init__.py +7 -0
  346. scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
  347. scipy/io/_harwell_boeing/hb.py +571 -0
  348. scipy/io/_harwell_boeing/tests/__init__.py +0 -0
  349. scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
  350. scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
  351. scipy/io/_idl.py +917 -0
  352. scipy/io/_mmio.py +968 -0
  353. scipy/io/_netcdf.py +1104 -0
  354. scipy/io/_test_fortran.cp314-win_arm64.lib +0 -0
  355. scipy/io/_test_fortran.cp314-win_arm64.pyd +0 -0
  356. scipy/io/arff/__init__.py +28 -0
  357. scipy/io/arff/_arffread.py +873 -0
  358. scipy/io/arff/arffread.py +19 -0
  359. scipy/io/arff/tests/__init__.py +0 -0
  360. scipy/io/arff/tests/data/iris.arff +225 -0
  361. scipy/io/arff/tests/data/missing.arff +8 -0
  362. scipy/io/arff/tests/data/nodata.arff +11 -0
  363. scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
  364. scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
  365. scipy/io/arff/tests/data/test1.arff +10 -0
  366. scipy/io/arff/tests/data/test10.arff +8 -0
  367. scipy/io/arff/tests/data/test11.arff +11 -0
  368. scipy/io/arff/tests/data/test2.arff +15 -0
  369. scipy/io/arff/tests/data/test3.arff +6 -0
  370. scipy/io/arff/tests/data/test4.arff +11 -0
  371. scipy/io/arff/tests/data/test5.arff +26 -0
  372. scipy/io/arff/tests/data/test6.arff +12 -0
  373. scipy/io/arff/tests/data/test7.arff +15 -0
  374. scipy/io/arff/tests/data/test8.arff +12 -0
  375. scipy/io/arff/tests/data/test9.arff +14 -0
  376. scipy/io/arff/tests/test_arffread.py +421 -0
  377. scipy/io/harwell_boeing.py +17 -0
  378. scipy/io/idl.py +17 -0
  379. scipy/io/matlab/__init__.py +66 -0
  380. scipy/io/matlab/_byteordercodes.py +75 -0
  381. scipy/io/matlab/_mio.py +375 -0
  382. scipy/io/matlab/_mio4.py +632 -0
  383. scipy/io/matlab/_mio5.py +901 -0
  384. scipy/io/matlab/_mio5_params.py +281 -0
  385. scipy/io/matlab/_mio5_utils.cp314-win_arm64.lib +0 -0
  386. scipy/io/matlab/_mio5_utils.cp314-win_arm64.pyd +0 -0
  387. scipy/io/matlab/_mio_utils.cp314-win_arm64.lib +0 -0
  388. scipy/io/matlab/_mio_utils.cp314-win_arm64.pyd +0 -0
  389. scipy/io/matlab/_miobase.py +435 -0
  390. scipy/io/matlab/_streams.cp314-win_arm64.lib +0 -0
  391. scipy/io/matlab/_streams.cp314-win_arm64.pyd +0 -0
  392. scipy/io/matlab/byteordercodes.py +17 -0
  393. scipy/io/matlab/mio.py +16 -0
  394. scipy/io/matlab/mio4.py +17 -0
  395. scipy/io/matlab/mio5.py +19 -0
  396. scipy/io/matlab/mio5_params.py +18 -0
  397. scipy/io/matlab/mio5_utils.py +17 -0
  398. scipy/io/matlab/mio_utils.py +17 -0
  399. scipy/io/matlab/miobase.py +16 -0
  400. scipy/io/matlab/streams.py +16 -0
  401. scipy/io/matlab/tests/__init__.py +0 -0
  402. scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  403. scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
  404. scipy/io/matlab/tests/data/big_endian.mat +0 -0
  405. scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
  406. scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
  407. scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  408. scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
  409. scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
  410. scipy/io/matlab/tests/data/little_endian.mat +0 -0
  411. scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  412. scipy/io/matlab/tests/data/malformed1.mat +0 -0
  413. scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  414. scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  415. scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  416. scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
  417. scipy/io/matlab/tests/data/parabola.mat +0 -0
  418. scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
  419. scipy/io/matlab/tests/data/some_functions.mat +0 -0
  420. scipy/io/matlab/tests/data/sqr.mat +0 -0
  421. scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
  422. scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
  423. scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
  424. scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  425. scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
  426. scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
  427. scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  428. scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
  429. scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  430. scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
  431. scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
  432. scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
  433. scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  434. scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  435. scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
  436. scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
  437. scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
  438. scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
  439. scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
  440. scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
  441. scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
  442. scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
  443. scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
  444. scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
  445. scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
  446. scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
  447. scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
  448. scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
  449. scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
  450. scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
  451. scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
  452. scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
  453. scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
  454. scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
  455. scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
  456. scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
  457. scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
  458. scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
  459. scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
  460. scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
  461. scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
  462. scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
  463. scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
  464. scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
  465. scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
  466. scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
  467. scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
  468. scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
  469. scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
  470. scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
  471. scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
  472. scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
  473. scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
  474. scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
  475. scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
  476. scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
  477. scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
  478. scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
  479. scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
  480. scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
  481. scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
  482. scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
  483. scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
  484. scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
  485. scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
  486. scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
  487. scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
  488. scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
  489. scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
  490. scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
  491. scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
  492. scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
  493. scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
  494. scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
  495. scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
  496. scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
  497. scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
  498. scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
  499. scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
  500. scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
  501. scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
  502. scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
  503. scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
  504. scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
  505. scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
  506. scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
  507. scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
  508. scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
  509. scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
  510. scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
  511. scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
  512. scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
  513. scipy/io/matlab/tests/test_byteordercodes.py +29 -0
  514. scipy/io/matlab/tests/test_mio.py +1399 -0
  515. scipy/io/matlab/tests/test_mio5_utils.py +179 -0
  516. scipy/io/matlab/tests/test_mio_funcs.py +51 -0
  517. scipy/io/matlab/tests/test_mio_utils.py +45 -0
  518. scipy/io/matlab/tests/test_miobase.py +32 -0
  519. scipy/io/matlab/tests/test_pathological.py +33 -0
  520. scipy/io/matlab/tests/test_streams.py +241 -0
  521. scipy/io/mmio.py +17 -0
  522. scipy/io/netcdf.py +17 -0
  523. scipy/io/tests/__init__.py +0 -0
  524. scipy/io/tests/data/Transparent Busy.ani +0 -0
  525. scipy/io/tests/data/array_float32_1d.sav +0 -0
  526. scipy/io/tests/data/array_float32_2d.sav +0 -0
  527. scipy/io/tests/data/array_float32_3d.sav +0 -0
  528. scipy/io/tests/data/array_float32_4d.sav +0 -0
  529. scipy/io/tests/data/array_float32_5d.sav +0 -0
  530. scipy/io/tests/data/array_float32_6d.sav +0 -0
  531. scipy/io/tests/data/array_float32_7d.sav +0 -0
  532. scipy/io/tests/data/array_float32_8d.sav +0 -0
  533. scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
  534. scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
  535. scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
  536. scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
  537. scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
  538. scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
  539. scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
  540. scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
  541. scipy/io/tests/data/example_1.nc +0 -0
  542. scipy/io/tests/data/example_2.nc +0 -0
  543. scipy/io/tests/data/example_3_maskedvals.nc +0 -0
  544. scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
  545. scipy/io/tests/data/fortran-mixed.dat +0 -0
  546. scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
  547. scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
  548. scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
  549. scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
  550. scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
  551. scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
  552. scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
  553. scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
  554. scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
  555. scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
  556. scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
  557. scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
  558. scipy/io/tests/data/invalid_pointer.sav +0 -0
  559. scipy/io/tests/data/null_pointer.sav +0 -0
  560. scipy/io/tests/data/scalar_byte.sav +0 -0
  561. scipy/io/tests/data/scalar_byte_descr.sav +0 -0
  562. scipy/io/tests/data/scalar_complex32.sav +0 -0
  563. scipy/io/tests/data/scalar_complex64.sav +0 -0
  564. scipy/io/tests/data/scalar_float32.sav +0 -0
  565. scipy/io/tests/data/scalar_float64.sav +0 -0
  566. scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
  567. scipy/io/tests/data/scalar_int16.sav +0 -0
  568. scipy/io/tests/data/scalar_int32.sav +0 -0
  569. scipy/io/tests/data/scalar_int64.sav +0 -0
  570. scipy/io/tests/data/scalar_string.sav +0 -0
  571. scipy/io/tests/data/scalar_uint16.sav +0 -0
  572. scipy/io/tests/data/scalar_uint32.sav +0 -0
  573. scipy/io/tests/data/scalar_uint64.sav +0 -0
  574. scipy/io/tests/data/struct_arrays.sav +0 -0
  575. scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
  576. scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
  577. scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
  578. scipy/io/tests/data/struct_inherit.sav +0 -0
  579. scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
  580. scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
  581. scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
  582. scipy/io/tests/data/struct_pointers.sav +0 -0
  583. scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
  584. scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
  585. scipy/io/tests/data/struct_scalars.sav +0 -0
  586. scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
  587. scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
  588. scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
  589. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
  590. scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
  591. scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
  592. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
  593. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
  594. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
  595. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
  596. scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
  597. scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
  598. scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
  599. scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
  600. scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
  601. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
  602. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
  603. scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
  604. scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
  605. scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
  606. scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
  607. scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
  608. scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
  609. scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
  610. scipy/io/tests/data/various_compressed.sav +0 -0
  611. scipy/io/tests/test_fortran.py +264 -0
  612. scipy/io/tests/test_idl.py +483 -0
  613. scipy/io/tests/test_mmio.py +831 -0
  614. scipy/io/tests/test_netcdf.py +550 -0
  615. scipy/io/tests/test_paths.py +93 -0
  616. scipy/io/tests/test_wavfile.py +501 -0
  617. scipy/io/wavfile.py +938 -0
  618. scipy/linalg/__init__.pxd +1 -0
  619. scipy/linalg/__init__.py +236 -0
  620. scipy/linalg/_basic.py +2146 -0
  621. scipy/linalg/_blas_subroutines.h +164 -0
  622. scipy/linalg/_cythonized_array_utils.cp314-win_arm64.lib +0 -0
  623. scipy/linalg/_cythonized_array_utils.cp314-win_arm64.pyd +0 -0
  624. scipy/linalg/_cythonized_array_utils.pxd +40 -0
  625. scipy/linalg/_cythonized_array_utils.pyi +16 -0
  626. scipy/linalg/_decomp.py +1645 -0
  627. scipy/linalg/_decomp_cholesky.py +413 -0
  628. scipy/linalg/_decomp_cossin.py +236 -0
  629. scipy/linalg/_decomp_interpolative.cp314-win_arm64.lib +0 -0
  630. scipy/linalg/_decomp_interpolative.cp314-win_arm64.pyd +0 -0
  631. scipy/linalg/_decomp_ldl.py +356 -0
  632. scipy/linalg/_decomp_lu.py +401 -0
  633. scipy/linalg/_decomp_lu_cython.cp314-win_arm64.lib +0 -0
  634. scipy/linalg/_decomp_lu_cython.cp314-win_arm64.pyd +0 -0
  635. scipy/linalg/_decomp_lu_cython.pyi +6 -0
  636. scipy/linalg/_decomp_polar.py +113 -0
  637. scipy/linalg/_decomp_qr.py +494 -0
  638. scipy/linalg/_decomp_qz.py +452 -0
  639. scipy/linalg/_decomp_schur.py +336 -0
  640. scipy/linalg/_decomp_svd.py +545 -0
  641. scipy/linalg/_decomp_update.cp314-win_arm64.lib +0 -0
  642. scipy/linalg/_decomp_update.cp314-win_arm64.pyd +0 -0
  643. scipy/linalg/_expm_frechet.py +417 -0
  644. scipy/linalg/_fblas.cp314-win_arm64.lib +0 -0
  645. scipy/linalg/_fblas.cp314-win_arm64.pyd +0 -0
  646. scipy/linalg/_flapack.cp314-win_arm64.lib +0 -0
  647. scipy/linalg/_flapack.cp314-win_arm64.pyd +0 -0
  648. scipy/linalg/_lapack_subroutines.h +1521 -0
  649. scipy/linalg/_linalg_pythran.cp314-win_arm64.lib +0 -0
  650. scipy/linalg/_linalg_pythran.cp314-win_arm64.pyd +0 -0
  651. scipy/linalg/_matfuncs.py +1050 -0
  652. scipy/linalg/_matfuncs_expm.cp314-win_arm64.lib +0 -0
  653. scipy/linalg/_matfuncs_expm.cp314-win_arm64.pyd +0 -0
  654. scipy/linalg/_matfuncs_expm.pyi +6 -0
  655. scipy/linalg/_matfuncs_inv_ssq.py +886 -0
  656. scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.lib +0 -0
  657. scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.pyd +0 -0
  658. scipy/linalg/_matfuncs_sqrtm.py +107 -0
  659. scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.lib +0 -0
  660. scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.pyd +0 -0
  661. scipy/linalg/_misc.py +191 -0
  662. scipy/linalg/_procrustes.py +113 -0
  663. scipy/linalg/_sketches.py +189 -0
  664. scipy/linalg/_solve_toeplitz.cp314-win_arm64.lib +0 -0
  665. scipy/linalg/_solve_toeplitz.cp314-win_arm64.pyd +0 -0
  666. scipy/linalg/_solvers.py +862 -0
  667. scipy/linalg/_special_matrices.py +1322 -0
  668. scipy/linalg/_testutils.py +65 -0
  669. scipy/linalg/basic.py +23 -0
  670. scipy/linalg/blas.py +495 -0
  671. scipy/linalg/cython_blas.cp314-win_arm64.lib +0 -0
  672. scipy/linalg/cython_blas.cp314-win_arm64.pyd +0 -0
  673. scipy/linalg/cython_blas.pxd +169 -0
  674. scipy/linalg/cython_blas.pyx +1432 -0
  675. scipy/linalg/cython_lapack.cp314-win_arm64.lib +0 -0
  676. scipy/linalg/cython_lapack.cp314-win_arm64.pyd +0 -0
  677. scipy/linalg/cython_lapack.pxd +1528 -0
  678. scipy/linalg/cython_lapack.pyx +12045 -0
  679. scipy/linalg/decomp.py +23 -0
  680. scipy/linalg/decomp_cholesky.py +21 -0
  681. scipy/linalg/decomp_lu.py +21 -0
  682. scipy/linalg/decomp_qr.py +20 -0
  683. scipy/linalg/decomp_schur.py +21 -0
  684. scipy/linalg/decomp_svd.py +21 -0
  685. scipy/linalg/interpolative.py +989 -0
  686. scipy/linalg/lapack.py +1081 -0
  687. scipy/linalg/matfuncs.py +23 -0
  688. scipy/linalg/misc.py +21 -0
  689. scipy/linalg/special_matrices.py +22 -0
  690. scipy/linalg/tests/__init__.py +0 -0
  691. scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
  692. scipy/linalg/tests/_cython_examples/meson.build +34 -0
  693. scipy/linalg/tests/data/carex_15_data.npz +0 -0
  694. scipy/linalg/tests/data/carex_18_data.npz +0 -0
  695. scipy/linalg/tests/data/carex_19_data.npz +0 -0
  696. scipy/linalg/tests/data/carex_20_data.npz +0 -0
  697. scipy/linalg/tests/data/carex_6_data.npz +0 -0
  698. scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
  699. scipy/linalg/tests/test_basic.py +2074 -0
  700. scipy/linalg/tests/test_batch.py +588 -0
  701. scipy/linalg/tests/test_blas.py +1127 -0
  702. scipy/linalg/tests/test_cython_blas.py +118 -0
  703. scipy/linalg/tests/test_cython_lapack.py +22 -0
  704. scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
  705. scipy/linalg/tests/test_decomp.py +3189 -0
  706. scipy/linalg/tests/test_decomp_cholesky.py +268 -0
  707. scipy/linalg/tests/test_decomp_cossin.py +314 -0
  708. scipy/linalg/tests/test_decomp_ldl.py +137 -0
  709. scipy/linalg/tests/test_decomp_lu.py +308 -0
  710. scipy/linalg/tests/test_decomp_polar.py +110 -0
  711. scipy/linalg/tests/test_decomp_update.py +1701 -0
  712. scipy/linalg/tests/test_extending.py +46 -0
  713. scipy/linalg/tests/test_fblas.py +607 -0
  714. scipy/linalg/tests/test_interpolative.py +232 -0
  715. scipy/linalg/tests/test_lapack.py +3620 -0
  716. scipy/linalg/tests/test_matfuncs.py +1125 -0
  717. scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
  718. scipy/linalg/tests/test_procrustes.py +214 -0
  719. scipy/linalg/tests/test_sketches.py +118 -0
  720. scipy/linalg/tests/test_solve_toeplitz.py +150 -0
  721. scipy/linalg/tests/test_solvers.py +844 -0
  722. scipy/linalg/tests/test_special_matrices.py +636 -0
  723. scipy/misc/__init__.py +6 -0
  724. scipy/misc/common.py +6 -0
  725. scipy/misc/doccer.py +6 -0
  726. scipy/ndimage/__init__.py +174 -0
  727. scipy/ndimage/_ctest.cp314-win_arm64.lib +0 -0
  728. scipy/ndimage/_ctest.cp314-win_arm64.pyd +0 -0
  729. scipy/ndimage/_cytest.cp314-win_arm64.lib +0 -0
  730. scipy/ndimage/_cytest.cp314-win_arm64.pyd +0 -0
  731. scipy/ndimage/_delegators.py +303 -0
  732. scipy/ndimage/_filters.py +2422 -0
  733. scipy/ndimage/_fourier.py +306 -0
  734. scipy/ndimage/_interpolation.py +1033 -0
  735. scipy/ndimage/_measurements.py +1689 -0
  736. scipy/ndimage/_morphology.py +2634 -0
  737. scipy/ndimage/_nd_image.cp314-win_arm64.lib +0 -0
  738. scipy/ndimage/_nd_image.cp314-win_arm64.pyd +0 -0
  739. scipy/ndimage/_ndimage_api.py +16 -0
  740. scipy/ndimage/_ni_docstrings.py +214 -0
  741. scipy/ndimage/_ni_label.cp314-win_arm64.lib +0 -0
  742. scipy/ndimage/_ni_label.cp314-win_arm64.pyd +0 -0
  743. scipy/ndimage/_ni_support.py +139 -0
  744. scipy/ndimage/_rank_filter_1d.cp314-win_arm64.lib +0 -0
  745. scipy/ndimage/_rank_filter_1d.cp314-win_arm64.pyd +0 -0
  746. scipy/ndimage/_support_alternative_backends.py +84 -0
  747. scipy/ndimage/filters.py +27 -0
  748. scipy/ndimage/fourier.py +21 -0
  749. scipy/ndimage/interpolation.py +22 -0
  750. scipy/ndimage/measurements.py +24 -0
  751. scipy/ndimage/morphology.py +27 -0
  752. scipy/ndimage/tests/__init__.py +12 -0
  753. scipy/ndimage/tests/data/label_inputs.txt +21 -0
  754. scipy/ndimage/tests/data/label_results.txt +294 -0
  755. scipy/ndimage/tests/data/label_strels.txt +42 -0
  756. scipy/ndimage/tests/dots.png +0 -0
  757. scipy/ndimage/tests/test_c_api.py +102 -0
  758. scipy/ndimage/tests/test_datatypes.py +67 -0
  759. scipy/ndimage/tests/test_filters.py +3083 -0
  760. scipy/ndimage/tests/test_fourier.py +187 -0
  761. scipy/ndimage/tests/test_interpolation.py +1491 -0
  762. scipy/ndimage/tests/test_measurements.py +1592 -0
  763. scipy/ndimage/tests/test_morphology.py +2950 -0
  764. scipy/ndimage/tests/test_ni_support.py +78 -0
  765. scipy/ndimage/tests/test_splines.py +70 -0
  766. scipy/odr/__init__.py +131 -0
  767. scipy/odr/__odrpack.cp314-win_arm64.lib +0 -0
  768. scipy/odr/__odrpack.cp314-win_arm64.pyd +0 -0
  769. scipy/odr/_add_newdocs.py +34 -0
  770. scipy/odr/_models.py +315 -0
  771. scipy/odr/_odrpack.py +1154 -0
  772. scipy/odr/models.py +20 -0
  773. scipy/odr/odrpack.py +21 -0
  774. scipy/odr/tests/__init__.py +0 -0
  775. scipy/odr/tests/test_odr.py +607 -0
  776. scipy/optimize/__init__.pxd +1 -0
  777. scipy/optimize/__init__.py +460 -0
  778. scipy/optimize/_basinhopping.py +741 -0
  779. scipy/optimize/_bglu_dense.cp314-win_arm64.lib +0 -0
  780. scipy/optimize/_bglu_dense.cp314-win_arm64.pyd +0 -0
  781. scipy/optimize/_bracket.py +706 -0
  782. scipy/optimize/_chandrupatla.py +551 -0
  783. scipy/optimize/_cobyla_py.py +297 -0
  784. scipy/optimize/_cobyqa_py.py +72 -0
  785. scipy/optimize/_constraints.py +598 -0
  786. scipy/optimize/_dcsrch.py +728 -0
  787. scipy/optimize/_differentiable_functions.py +835 -0
  788. scipy/optimize/_differentialevolution.py +1970 -0
  789. scipy/optimize/_direct.cp314-win_arm64.lib +0 -0
  790. scipy/optimize/_direct.cp314-win_arm64.pyd +0 -0
  791. scipy/optimize/_direct_py.py +280 -0
  792. scipy/optimize/_dual_annealing.py +732 -0
  793. scipy/optimize/_elementwise.py +798 -0
  794. scipy/optimize/_group_columns.cp314-win_arm64.lib +0 -0
  795. scipy/optimize/_group_columns.cp314-win_arm64.pyd +0 -0
  796. scipy/optimize/_hessian_update_strategy.py +479 -0
  797. scipy/optimize/_highspy/__init__.py +0 -0
  798. scipy/optimize/_highspy/_core.cp314-win_arm64.lib +0 -0
  799. scipy/optimize/_highspy/_core.cp314-win_arm64.pyd +0 -0
  800. scipy/optimize/_highspy/_highs_options.cp314-win_arm64.lib +0 -0
  801. scipy/optimize/_highspy/_highs_options.cp314-win_arm64.pyd +0 -0
  802. scipy/optimize/_highspy/_highs_wrapper.py +338 -0
  803. scipy/optimize/_isotonic.py +157 -0
  804. scipy/optimize/_lbfgsb.cp314-win_arm64.lib +0 -0
  805. scipy/optimize/_lbfgsb.cp314-win_arm64.pyd +0 -0
  806. scipy/optimize/_lbfgsb_py.py +634 -0
  807. scipy/optimize/_linesearch.py +896 -0
  808. scipy/optimize/_linprog.py +733 -0
  809. scipy/optimize/_linprog_doc.py +1434 -0
  810. scipy/optimize/_linprog_highs.py +422 -0
  811. scipy/optimize/_linprog_ip.py +1141 -0
  812. scipy/optimize/_linprog_rs.py +572 -0
  813. scipy/optimize/_linprog_simplex.py +663 -0
  814. scipy/optimize/_linprog_util.py +1521 -0
  815. scipy/optimize/_lsap.cp314-win_arm64.lib +0 -0
  816. scipy/optimize/_lsap.cp314-win_arm64.pyd +0 -0
  817. scipy/optimize/_lsq/__init__.py +5 -0
  818. scipy/optimize/_lsq/bvls.py +183 -0
  819. scipy/optimize/_lsq/common.py +731 -0
  820. scipy/optimize/_lsq/dogbox.py +345 -0
  821. scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.lib +0 -0
  822. scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.pyd +0 -0
  823. scipy/optimize/_lsq/least_squares.py +1044 -0
  824. scipy/optimize/_lsq/lsq_linear.py +361 -0
  825. scipy/optimize/_lsq/trf.py +587 -0
  826. scipy/optimize/_lsq/trf_linear.py +249 -0
  827. scipy/optimize/_milp.py +394 -0
  828. scipy/optimize/_minimize.py +1199 -0
  829. scipy/optimize/_minpack.cp314-win_arm64.lib +0 -0
  830. scipy/optimize/_minpack.cp314-win_arm64.pyd +0 -0
  831. scipy/optimize/_minpack_py.py +1178 -0
  832. scipy/optimize/_moduleTNC.cp314-win_arm64.lib +0 -0
  833. scipy/optimize/_moduleTNC.cp314-win_arm64.pyd +0 -0
  834. scipy/optimize/_nnls.py +96 -0
  835. scipy/optimize/_nonlin.py +1634 -0
  836. scipy/optimize/_numdiff.py +963 -0
  837. scipy/optimize/_optimize.py +4169 -0
  838. scipy/optimize/_pava_pybind.cp314-win_arm64.lib +0 -0
  839. scipy/optimize/_pava_pybind.cp314-win_arm64.pyd +0 -0
  840. scipy/optimize/_qap.py +760 -0
  841. scipy/optimize/_remove_redundancy.py +522 -0
  842. scipy/optimize/_root.py +732 -0
  843. scipy/optimize/_root_scalar.py +538 -0
  844. scipy/optimize/_shgo.py +1606 -0
  845. scipy/optimize/_shgo_lib/__init__.py +0 -0
  846. scipy/optimize/_shgo_lib/_complex.py +1225 -0
  847. scipy/optimize/_shgo_lib/_vertex.py +460 -0
  848. scipy/optimize/_slsqp_py.py +603 -0
  849. scipy/optimize/_slsqplib.cp314-win_arm64.lib +0 -0
  850. scipy/optimize/_slsqplib.cp314-win_arm64.pyd +0 -0
  851. scipy/optimize/_spectral.py +260 -0
  852. scipy/optimize/_tnc.py +438 -0
  853. scipy/optimize/_trlib/__init__.py +12 -0
  854. scipy/optimize/_trlib/_trlib.cp314-win_arm64.lib +0 -0
  855. scipy/optimize/_trlib/_trlib.cp314-win_arm64.pyd +0 -0
  856. scipy/optimize/_trustregion.py +318 -0
  857. scipy/optimize/_trustregion_constr/__init__.py +6 -0
  858. scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
  859. scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
  860. scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
  861. scipy/optimize/_trustregion_constr/projections.py +411 -0
  862. scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
  863. scipy/optimize/_trustregion_constr/report.py +49 -0
  864. scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
  865. scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
  866. scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
  867. scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
  868. scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
  869. scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
  870. scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
  871. scipy/optimize/_trustregion_dogleg.py +122 -0
  872. scipy/optimize/_trustregion_exact.py +437 -0
  873. scipy/optimize/_trustregion_krylov.py +65 -0
  874. scipy/optimize/_trustregion_ncg.py +126 -0
  875. scipy/optimize/_tstutils.py +972 -0
  876. scipy/optimize/_zeros.cp314-win_arm64.lib +0 -0
  877. scipy/optimize/_zeros.cp314-win_arm64.pyd +0 -0
  878. scipy/optimize/_zeros_py.py +1475 -0
  879. scipy/optimize/cobyla.py +19 -0
  880. scipy/optimize/cython_optimize/__init__.py +133 -0
  881. scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.lib +0 -0
  882. scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.pyd +0 -0
  883. scipy/optimize/cython_optimize/_zeros.pxd +33 -0
  884. scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
  885. scipy/optimize/cython_optimize.pxd +11 -0
  886. scipy/optimize/elementwise.py +38 -0
  887. scipy/optimize/lbfgsb.py +23 -0
  888. scipy/optimize/linesearch.py +18 -0
  889. scipy/optimize/minpack.py +27 -0
  890. scipy/optimize/minpack2.py +17 -0
  891. scipy/optimize/moduleTNC.py +19 -0
  892. scipy/optimize/nonlin.py +29 -0
  893. scipy/optimize/optimize.py +40 -0
  894. scipy/optimize/slsqp.py +22 -0
  895. scipy/optimize/tests/__init__.py +0 -0
  896. scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
  897. scipy/optimize/tests/_cython_examples/meson.build +32 -0
  898. scipy/optimize/tests/test__basinhopping.py +535 -0
  899. scipy/optimize/tests/test__differential_evolution.py +1703 -0
  900. scipy/optimize/tests/test__dual_annealing.py +416 -0
  901. scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
  902. scipy/optimize/tests/test__numdiff.py +885 -0
  903. scipy/optimize/tests/test__remove_redundancy.py +228 -0
  904. scipy/optimize/tests/test__root.py +124 -0
  905. scipy/optimize/tests/test__shgo.py +1164 -0
  906. scipy/optimize/tests/test__spectral.py +226 -0
  907. scipy/optimize/tests/test_bracket.py +896 -0
  908. scipy/optimize/tests/test_chandrupatla.py +982 -0
  909. scipy/optimize/tests/test_cobyla.py +195 -0
  910. scipy/optimize/tests/test_cobyqa.py +252 -0
  911. scipy/optimize/tests/test_constraint_conversion.py +286 -0
  912. scipy/optimize/tests/test_constraints.py +255 -0
  913. scipy/optimize/tests/test_cython_optimize.py +92 -0
  914. scipy/optimize/tests/test_differentiable_functions.py +1025 -0
  915. scipy/optimize/tests/test_direct.py +321 -0
  916. scipy/optimize/tests/test_extending.py +28 -0
  917. scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
  918. scipy/optimize/tests/test_isotonic_regression.py +167 -0
  919. scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
  920. scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
  921. scipy/optimize/tests/test_least_squares.py +986 -0
  922. scipy/optimize/tests/test_linear_assignment.py +116 -0
  923. scipy/optimize/tests/test_linesearch.py +328 -0
  924. scipy/optimize/tests/test_linprog.py +2577 -0
  925. scipy/optimize/tests/test_lsq_common.py +297 -0
  926. scipy/optimize/tests/test_lsq_linear.py +287 -0
  927. scipy/optimize/tests/test_milp.py +459 -0
  928. scipy/optimize/tests/test_minimize_constrained.py +845 -0
  929. scipy/optimize/tests/test_minpack.py +1194 -0
  930. scipy/optimize/tests/test_nnls.py +469 -0
  931. scipy/optimize/tests/test_nonlin.py +572 -0
  932. scipy/optimize/tests/test_optimize.py +3344 -0
  933. scipy/optimize/tests/test_quadratic_assignment.py +455 -0
  934. scipy/optimize/tests/test_regression.py +40 -0
  935. scipy/optimize/tests/test_slsqp.py +645 -0
  936. scipy/optimize/tests/test_tnc.py +345 -0
  937. scipy/optimize/tests/test_trustregion.py +110 -0
  938. scipy/optimize/tests/test_trustregion_exact.py +351 -0
  939. scipy/optimize/tests/test_trustregion_krylov.py +170 -0
  940. scipy/optimize/tests/test_zeros.py +998 -0
  941. scipy/optimize/tnc.py +22 -0
  942. scipy/optimize/zeros.py +26 -0
  943. scipy/signal/__init__.py +316 -0
  944. scipy/signal/_arraytools.py +264 -0
  945. scipy/signal/_czt.py +575 -0
  946. scipy/signal/_delegators.py +568 -0
  947. scipy/signal/_filter_design.py +5893 -0
  948. scipy/signal/_fir_filter_design.py +1458 -0
  949. scipy/signal/_lti_conversion.py +534 -0
  950. scipy/signal/_ltisys.py +3546 -0
  951. scipy/signal/_max_len_seq.py +139 -0
  952. scipy/signal/_max_len_seq_inner.cp314-win_arm64.lib +0 -0
  953. scipy/signal/_max_len_seq_inner.cp314-win_arm64.pyd +0 -0
  954. scipy/signal/_peak_finding.py +1310 -0
  955. scipy/signal/_peak_finding_utils.cp314-win_arm64.lib +0 -0
  956. scipy/signal/_peak_finding_utils.cp314-win_arm64.pyd +0 -0
  957. scipy/signal/_polyutils.py +172 -0
  958. scipy/signal/_savitzky_golay.py +357 -0
  959. scipy/signal/_short_time_fft.py +2228 -0
  960. scipy/signal/_signal_api.py +30 -0
  961. scipy/signal/_signaltools.py +5309 -0
  962. scipy/signal/_sigtools.cp314-win_arm64.lib +0 -0
  963. scipy/signal/_sigtools.cp314-win_arm64.pyd +0 -0
  964. scipy/signal/_sosfilt.cp314-win_arm64.lib +0 -0
  965. scipy/signal/_sosfilt.cp314-win_arm64.pyd +0 -0
  966. scipy/signal/_spectral_py.py +2471 -0
  967. scipy/signal/_spline.cp314-win_arm64.lib +0 -0
  968. scipy/signal/_spline.cp314-win_arm64.pyd +0 -0
  969. scipy/signal/_spline.pyi +34 -0
  970. scipy/signal/_spline_filters.py +848 -0
  971. scipy/signal/_support_alternative_backends.py +73 -0
  972. scipy/signal/_upfirdn.py +219 -0
  973. scipy/signal/_upfirdn_apply.cp314-win_arm64.lib +0 -0
  974. scipy/signal/_upfirdn_apply.cp314-win_arm64.pyd +0 -0
  975. scipy/signal/_waveforms.py +687 -0
  976. scipy/signal/_wavelets.py +29 -0
  977. scipy/signal/bsplines.py +21 -0
  978. scipy/signal/filter_design.py +28 -0
  979. scipy/signal/fir_filter_design.py +21 -0
  980. scipy/signal/lti_conversion.py +20 -0
  981. scipy/signal/ltisys.py +25 -0
  982. scipy/signal/signaltools.py +27 -0
  983. scipy/signal/spectral.py +21 -0
  984. scipy/signal/spline.py +18 -0
  985. scipy/signal/tests/__init__.py +0 -0
  986. scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
  987. scipy/signal/tests/mpsig.py +122 -0
  988. scipy/signal/tests/test_array_tools.py +111 -0
  989. scipy/signal/tests/test_bsplines.py +365 -0
  990. scipy/signal/tests/test_cont2discrete.py +424 -0
  991. scipy/signal/tests/test_czt.py +221 -0
  992. scipy/signal/tests/test_dltisys.py +599 -0
  993. scipy/signal/tests/test_filter_design.py +4744 -0
  994. scipy/signal/tests/test_fir_filter_design.py +851 -0
  995. scipy/signal/tests/test_ltisys.py +1225 -0
  996. scipy/signal/tests/test_max_len_seq.py +71 -0
  997. scipy/signal/tests/test_peak_finding.py +915 -0
  998. scipy/signal/tests/test_result_type.py +51 -0
  999. scipy/signal/tests/test_savitzky_golay.py +363 -0
  1000. scipy/signal/tests/test_short_time_fft.py +1107 -0
  1001. scipy/signal/tests/test_signaltools.py +4735 -0
  1002. scipy/signal/tests/test_spectral.py +2141 -0
  1003. scipy/signal/tests/test_splines.py +427 -0
  1004. scipy/signal/tests/test_upfirdn.py +322 -0
  1005. scipy/signal/tests/test_waveforms.py +400 -0
  1006. scipy/signal/tests/test_wavelets.py +59 -0
  1007. scipy/signal/tests/test_windows.py +987 -0
  1008. scipy/signal/waveforms.py +20 -0
  1009. scipy/signal/wavelets.py +17 -0
  1010. scipy/signal/windows/__init__.py +52 -0
  1011. scipy/signal/windows/_windows.py +2513 -0
  1012. scipy/signal/windows/windows.py +23 -0
  1013. scipy/sparse/__init__.py +350 -0
  1014. scipy/sparse/_base.py +1613 -0
  1015. scipy/sparse/_bsr.py +880 -0
  1016. scipy/sparse/_compressed.py +1328 -0
  1017. scipy/sparse/_construct.py +1454 -0
  1018. scipy/sparse/_coo.py +1581 -0
  1019. scipy/sparse/_csc.py +367 -0
  1020. scipy/sparse/_csparsetools.cp314-win_arm64.lib +0 -0
  1021. scipy/sparse/_csparsetools.cp314-win_arm64.pyd +0 -0
  1022. scipy/sparse/_csr.py +558 -0
  1023. scipy/sparse/_data.py +569 -0
  1024. scipy/sparse/_dia.py +677 -0
  1025. scipy/sparse/_dok.py +669 -0
  1026. scipy/sparse/_extract.py +178 -0
  1027. scipy/sparse/_index.py +444 -0
  1028. scipy/sparse/_lil.py +632 -0
  1029. scipy/sparse/_matrix.py +169 -0
  1030. scipy/sparse/_matrix_io.py +167 -0
  1031. scipy/sparse/_sparsetools.cp314-win_arm64.lib +0 -0
  1032. scipy/sparse/_sparsetools.cp314-win_arm64.pyd +0 -0
  1033. scipy/sparse/_spfuncs.py +76 -0
  1034. scipy/sparse/_sputils.py +632 -0
  1035. scipy/sparse/base.py +24 -0
  1036. scipy/sparse/bsr.py +22 -0
  1037. scipy/sparse/compressed.py +20 -0
  1038. scipy/sparse/construct.py +38 -0
  1039. scipy/sparse/coo.py +23 -0
  1040. scipy/sparse/csc.py +22 -0
  1041. scipy/sparse/csgraph/__init__.py +210 -0
  1042. scipy/sparse/csgraph/_flow.cp314-win_arm64.lib +0 -0
  1043. scipy/sparse/csgraph/_flow.cp314-win_arm64.pyd +0 -0
  1044. scipy/sparse/csgraph/_laplacian.py +563 -0
  1045. scipy/sparse/csgraph/_matching.cp314-win_arm64.lib +0 -0
  1046. scipy/sparse/csgraph/_matching.cp314-win_arm64.pyd +0 -0
  1047. scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.lib +0 -0
  1048. scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.pyd +0 -0
  1049. scipy/sparse/csgraph/_reordering.cp314-win_arm64.lib +0 -0
  1050. scipy/sparse/csgraph/_reordering.cp314-win_arm64.pyd +0 -0
  1051. scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.lib +0 -0
  1052. scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.pyd +0 -0
  1053. scipy/sparse/csgraph/_tools.cp314-win_arm64.lib +0 -0
  1054. scipy/sparse/csgraph/_tools.cp314-win_arm64.pyd +0 -0
  1055. scipy/sparse/csgraph/_traversal.cp314-win_arm64.lib +0 -0
  1056. scipy/sparse/csgraph/_traversal.cp314-win_arm64.pyd +0 -0
  1057. scipy/sparse/csgraph/_validation.py +66 -0
  1058. scipy/sparse/csgraph/tests/__init__.py +0 -0
  1059. scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
  1060. scipy/sparse/csgraph/tests/test_conversions.py +61 -0
  1061. scipy/sparse/csgraph/tests/test_flow.py +209 -0
  1062. scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
  1063. scipy/sparse/csgraph/tests/test_matching.py +307 -0
  1064. scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
  1065. scipy/sparse/csgraph/tests/test_reordering.py +70 -0
  1066. scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
  1067. scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
  1068. scipy/sparse/csgraph/tests/test_traversal.py +148 -0
  1069. scipy/sparse/csr.py +22 -0
  1070. scipy/sparse/data.py +18 -0
  1071. scipy/sparse/dia.py +22 -0
  1072. scipy/sparse/dok.py +22 -0
  1073. scipy/sparse/extract.py +23 -0
  1074. scipy/sparse/lil.py +22 -0
  1075. scipy/sparse/linalg/__init__.py +148 -0
  1076. scipy/sparse/linalg/_dsolve/__init__.py +71 -0
  1077. scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
  1078. scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.lib +0 -0
  1079. scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.pyd +0 -0
  1080. scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
  1081. scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
  1082. scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
  1083. scipy/sparse/linalg/_eigen/__init__.py +22 -0
  1084. scipy/sparse/linalg/_eigen/_svds.py +540 -0
  1085. scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
  1086. scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
  1087. scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
  1088. scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.lib +0 -0
  1089. scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.pyd +0 -0
  1090. scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
  1091. scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
  1092. scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
  1093. scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
  1094. scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
  1095. scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
  1096. scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
  1097. scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
  1098. scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
  1099. scipy/sparse/linalg/_expm_multiply.py +816 -0
  1100. scipy/sparse/linalg/_interface.py +920 -0
  1101. scipy/sparse/linalg/_isolve/__init__.py +20 -0
  1102. scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
  1103. scipy/sparse/linalg/_isolve/iterative.py +1051 -0
  1104. scipy/sparse/linalg/_isolve/lgmres.py +230 -0
  1105. scipy/sparse/linalg/_isolve/lsmr.py +486 -0
  1106. scipy/sparse/linalg/_isolve/lsqr.py +589 -0
  1107. scipy/sparse/linalg/_isolve/minres.py +372 -0
  1108. scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
  1109. scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
  1110. scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
  1111. scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
  1112. scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
  1113. scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
  1114. scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
  1115. scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
  1116. scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
  1117. scipy/sparse/linalg/_isolve/utils.py +121 -0
  1118. scipy/sparse/linalg/_matfuncs.py +940 -0
  1119. scipy/sparse/linalg/_norm.py +195 -0
  1120. scipy/sparse/linalg/_onenormest.py +467 -0
  1121. scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.lib +0 -0
  1122. scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.pyd +0 -0
  1123. scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.lib +0 -0
  1124. scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.pyd +0 -0
  1125. scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.lib +0 -0
  1126. scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.pyd +0 -0
  1127. scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.lib +0 -0
  1128. scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.pyd +0 -0
  1129. scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
  1130. scipy/sparse/linalg/_svdp.py +309 -0
  1131. scipy/sparse/linalg/dsolve.py +22 -0
  1132. scipy/sparse/linalg/eigen.py +21 -0
  1133. scipy/sparse/linalg/interface.py +20 -0
  1134. scipy/sparse/linalg/isolve.py +22 -0
  1135. scipy/sparse/linalg/matfuncs.py +18 -0
  1136. scipy/sparse/linalg/tests/__init__.py +0 -0
  1137. scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
  1138. scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
  1139. scipy/sparse/linalg/tests/test_interface.py +561 -0
  1140. scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
  1141. scipy/sparse/linalg/tests/test_norm.py +154 -0
  1142. scipy/sparse/linalg/tests/test_onenormest.py +252 -0
  1143. scipy/sparse/linalg/tests/test_propack.py +165 -0
  1144. scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
  1145. scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
  1146. scipy/sparse/sparsetools.py +17 -0
  1147. scipy/sparse/spfuncs.py +17 -0
  1148. scipy/sparse/sputils.py +17 -0
  1149. scipy/sparse/tests/__init__.py +0 -0
  1150. scipy/sparse/tests/data/csc_py2.npz +0 -0
  1151. scipy/sparse/tests/data/csc_py3.npz +0 -0
  1152. scipy/sparse/tests/test_arithmetic1d.py +341 -0
  1153. scipy/sparse/tests/test_array_api.py +561 -0
  1154. scipy/sparse/tests/test_base.py +5870 -0
  1155. scipy/sparse/tests/test_common1d.py +447 -0
  1156. scipy/sparse/tests/test_construct.py +872 -0
  1157. scipy/sparse/tests/test_coo.py +1119 -0
  1158. scipy/sparse/tests/test_csc.py +98 -0
  1159. scipy/sparse/tests/test_csr.py +214 -0
  1160. scipy/sparse/tests/test_dok.py +209 -0
  1161. scipy/sparse/tests/test_extract.py +51 -0
  1162. scipy/sparse/tests/test_indexing1d.py +603 -0
  1163. scipy/sparse/tests/test_matrix_io.py +109 -0
  1164. scipy/sparse/tests/test_minmax1d.py +128 -0
  1165. scipy/sparse/tests/test_sparsetools.py +344 -0
  1166. scipy/sparse/tests/test_spfuncs.py +97 -0
  1167. scipy/sparse/tests/test_sputils.py +424 -0
  1168. scipy/spatial/__init__.py +129 -0
  1169. scipy/spatial/_ckdtree.cp314-win_arm64.lib +0 -0
  1170. scipy/spatial/_ckdtree.cp314-win_arm64.pyd +0 -0
  1171. scipy/spatial/_distance_pybind.cp314-win_arm64.lib +0 -0
  1172. scipy/spatial/_distance_pybind.cp314-win_arm64.pyd +0 -0
  1173. scipy/spatial/_distance_wrap.cp314-win_arm64.lib +0 -0
  1174. scipy/spatial/_distance_wrap.cp314-win_arm64.pyd +0 -0
  1175. scipy/spatial/_geometric_slerp.py +238 -0
  1176. scipy/spatial/_hausdorff.cp314-win_arm64.lib +0 -0
  1177. scipy/spatial/_hausdorff.cp314-win_arm64.pyd +0 -0
  1178. scipy/spatial/_kdtree.py +920 -0
  1179. scipy/spatial/_plotutils.py +274 -0
  1180. scipy/spatial/_procrustes.py +132 -0
  1181. scipy/spatial/_qhull.cp314-win_arm64.lib +0 -0
  1182. scipy/spatial/_qhull.cp314-win_arm64.pyd +0 -0
  1183. scipy/spatial/_qhull.pyi +213 -0
  1184. scipy/spatial/_spherical_voronoi.py +341 -0
  1185. scipy/spatial/_voronoi.cp314-win_arm64.lib +0 -0
  1186. scipy/spatial/_voronoi.cp314-win_arm64.pyd +0 -0
  1187. scipy/spatial/_voronoi.pyi +4 -0
  1188. scipy/spatial/ckdtree.py +18 -0
  1189. scipy/spatial/distance.py +3147 -0
  1190. scipy/spatial/distance.pyi +210 -0
  1191. scipy/spatial/kdtree.py +25 -0
  1192. scipy/spatial/qhull.py +25 -0
  1193. scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
  1194. scipy/spatial/tests/__init__.py +0 -0
  1195. scipy/spatial/tests/data/cdist-X1.txt +10 -0
  1196. scipy/spatial/tests/data/cdist-X2.txt +20 -0
  1197. scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
  1198. scipy/spatial/tests/data/iris.txt +150 -0
  1199. scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
  1200. scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
  1201. scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
  1202. scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
  1203. scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
  1204. scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
  1205. scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
  1206. scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
  1207. scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
  1208. scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
  1209. scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
  1210. scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
  1211. scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
  1212. scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
  1213. scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
  1214. scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
  1215. scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
  1216. scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
  1217. scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
  1218. scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
  1219. scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
  1220. scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
  1221. scipy/spatial/tests/data/random-bool-data.txt +100 -0
  1222. scipy/spatial/tests/data/random-double-data.txt +100 -0
  1223. scipy/spatial/tests/data/random-int-data.txt +100 -0
  1224. scipy/spatial/tests/data/random-uint-data.txt +100 -0
  1225. scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
  1226. scipy/spatial/tests/test__plotutils.py +91 -0
  1227. scipy/spatial/tests/test__procrustes.py +116 -0
  1228. scipy/spatial/tests/test_distance.py +2389 -0
  1229. scipy/spatial/tests/test_hausdorff.py +199 -0
  1230. scipy/spatial/tests/test_kdtree.py +1536 -0
  1231. scipy/spatial/tests/test_qhull.py +1313 -0
  1232. scipy/spatial/tests/test_slerp.py +417 -0
  1233. scipy/spatial/tests/test_spherical_voronoi.py +358 -0
  1234. scipy/spatial/transform/__init__.py +31 -0
  1235. scipy/spatial/transform/_rigid_transform.cp314-win_arm64.lib +0 -0
  1236. scipy/spatial/transform/_rigid_transform.cp314-win_arm64.pyd +0 -0
  1237. scipy/spatial/transform/_rotation.cp314-win_arm64.lib +0 -0
  1238. scipy/spatial/transform/_rotation.cp314-win_arm64.pyd +0 -0
  1239. scipy/spatial/transform/_rotation_groups.py +140 -0
  1240. scipy/spatial/transform/_rotation_spline.py +460 -0
  1241. scipy/spatial/transform/rotation.py +21 -0
  1242. scipy/spatial/transform/tests/__init__.py +0 -0
  1243. scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
  1244. scipy/spatial/transform/tests/test_rotation.py +2569 -0
  1245. scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
  1246. scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
  1247. scipy/special/__init__.pxd +1 -0
  1248. scipy/special/__init__.py +841 -0
  1249. scipy/special/_add_newdocs.py +9961 -0
  1250. scipy/special/_basic.py +3576 -0
  1251. scipy/special/_comb.cp314-win_arm64.lib +0 -0
  1252. scipy/special/_comb.cp314-win_arm64.pyd +0 -0
  1253. scipy/special/_ellip_harm.py +214 -0
  1254. scipy/special/_ellip_harm_2.cp314-win_arm64.lib +0 -0
  1255. scipy/special/_ellip_harm_2.cp314-win_arm64.pyd +0 -0
  1256. scipy/special/_gufuncs.cp314-win_arm64.lib +0 -0
  1257. scipy/special/_gufuncs.cp314-win_arm64.pyd +0 -0
  1258. scipy/special/_input_validation.py +17 -0
  1259. scipy/special/_lambertw.py +149 -0
  1260. scipy/special/_logsumexp.py +426 -0
  1261. scipy/special/_mptestutils.py +453 -0
  1262. scipy/special/_multiufuncs.py +610 -0
  1263. scipy/special/_orthogonal.py +2592 -0
  1264. scipy/special/_orthogonal.pyi +330 -0
  1265. scipy/special/_precompute/__init__.py +0 -0
  1266. scipy/special/_precompute/cosine_cdf.py +17 -0
  1267. scipy/special/_precompute/expn_asy.py +54 -0
  1268. scipy/special/_precompute/gammainc_asy.py +116 -0
  1269. scipy/special/_precompute/gammainc_data.py +124 -0
  1270. scipy/special/_precompute/hyp2f1_data.py +484 -0
  1271. scipy/special/_precompute/lambertw.py +68 -0
  1272. scipy/special/_precompute/loggamma.py +43 -0
  1273. scipy/special/_precompute/struve_convergence.py +131 -0
  1274. scipy/special/_precompute/utils.py +38 -0
  1275. scipy/special/_precompute/wright_bessel.py +342 -0
  1276. scipy/special/_precompute/wright_bessel_data.py +152 -0
  1277. scipy/special/_precompute/wrightomega.py +41 -0
  1278. scipy/special/_precompute/zetac.py +27 -0
  1279. scipy/special/_sf_error.py +15 -0
  1280. scipy/special/_specfun.cp314-win_arm64.lib +0 -0
  1281. scipy/special/_specfun.cp314-win_arm64.pyd +0 -0
  1282. scipy/special/_special_ufuncs.cp314-win_arm64.lib +0 -0
  1283. scipy/special/_special_ufuncs.cp314-win_arm64.pyd +0 -0
  1284. scipy/special/_spfun_stats.py +106 -0
  1285. scipy/special/_spherical_bessel.py +397 -0
  1286. scipy/special/_support_alternative_backends.py +295 -0
  1287. scipy/special/_test_internal.cp314-win_arm64.lib +0 -0
  1288. scipy/special/_test_internal.cp314-win_arm64.pyd +0 -0
  1289. scipy/special/_test_internal.pyi +9 -0
  1290. scipy/special/_testutils.py +321 -0
  1291. scipy/special/_ufuncs.cp314-win_arm64.lib +0 -0
  1292. scipy/special/_ufuncs.cp314-win_arm64.pyd +0 -0
  1293. scipy/special/_ufuncs.pyi +522 -0
  1294. scipy/special/_ufuncs.pyx +13173 -0
  1295. scipy/special/_ufuncs_cxx.cp314-win_arm64.lib +0 -0
  1296. scipy/special/_ufuncs_cxx.cp314-win_arm64.pyd +0 -0
  1297. scipy/special/_ufuncs_cxx.pxd +142 -0
  1298. scipy/special/_ufuncs_cxx.pyx +427 -0
  1299. scipy/special/_ufuncs_cxx_defs.h +147 -0
  1300. scipy/special/_ufuncs_defs.h +57 -0
  1301. scipy/special/add_newdocs.py +15 -0
  1302. scipy/special/basic.py +87 -0
  1303. scipy/special/cython_special.cp314-win_arm64.lib +0 -0
  1304. scipy/special/cython_special.cp314-win_arm64.pyd +0 -0
  1305. scipy/special/cython_special.pxd +259 -0
  1306. scipy/special/cython_special.pyi +3 -0
  1307. scipy/special/orthogonal.py +45 -0
  1308. scipy/special/sf_error.py +20 -0
  1309. scipy/special/specfun.py +24 -0
  1310. scipy/special/spfun_stats.py +17 -0
  1311. scipy/special/tests/__init__.py +0 -0
  1312. scipy/special/tests/_cython_examples/extending.pyx +12 -0
  1313. scipy/special/tests/_cython_examples/meson.build +34 -0
  1314. scipy/special/tests/data/__init__.py +0 -0
  1315. scipy/special/tests/data/boost.npz +0 -0
  1316. scipy/special/tests/data/gsl.npz +0 -0
  1317. scipy/special/tests/data/local.npz +0 -0
  1318. scipy/special/tests/test_basic.py +4815 -0
  1319. scipy/special/tests/test_bdtr.py +112 -0
  1320. scipy/special/tests/test_boost_ufuncs.py +64 -0
  1321. scipy/special/tests/test_boxcox.py +125 -0
  1322. scipy/special/tests/test_cdflib.py +712 -0
  1323. scipy/special/tests/test_cdft_asymptotic.py +49 -0
  1324. scipy/special/tests/test_cephes_intp_cast.py +29 -0
  1325. scipy/special/tests/test_cosine_distr.py +83 -0
  1326. scipy/special/tests/test_cython_special.py +363 -0
  1327. scipy/special/tests/test_data.py +719 -0
  1328. scipy/special/tests/test_dd.py +42 -0
  1329. scipy/special/tests/test_digamma.py +45 -0
  1330. scipy/special/tests/test_ellip_harm.py +278 -0
  1331. scipy/special/tests/test_erfinv.py +89 -0
  1332. scipy/special/tests/test_exponential_integrals.py +118 -0
  1333. scipy/special/tests/test_extending.py +28 -0
  1334. scipy/special/tests/test_faddeeva.py +85 -0
  1335. scipy/special/tests/test_gamma.py +12 -0
  1336. scipy/special/tests/test_gammainc.py +152 -0
  1337. scipy/special/tests/test_hyp2f1.py +2566 -0
  1338. scipy/special/tests/test_hypergeometric.py +234 -0
  1339. scipy/special/tests/test_iv_ratio.py +249 -0
  1340. scipy/special/tests/test_kolmogorov.py +491 -0
  1341. scipy/special/tests/test_lambertw.py +109 -0
  1342. scipy/special/tests/test_legendre.py +1518 -0
  1343. scipy/special/tests/test_log1mexp.py +85 -0
  1344. scipy/special/tests/test_loggamma.py +70 -0
  1345. scipy/special/tests/test_logit.py +162 -0
  1346. scipy/special/tests/test_logsumexp.py +469 -0
  1347. scipy/special/tests/test_mpmath.py +2293 -0
  1348. scipy/special/tests/test_nan_inputs.py +65 -0
  1349. scipy/special/tests/test_ndtr.py +77 -0
  1350. scipy/special/tests/test_ndtri_exp.py +94 -0
  1351. scipy/special/tests/test_orthogonal.py +821 -0
  1352. scipy/special/tests/test_orthogonal_eval.py +275 -0
  1353. scipy/special/tests/test_owens_t.py +53 -0
  1354. scipy/special/tests/test_pcf.py +24 -0
  1355. scipy/special/tests/test_pdtr.py +48 -0
  1356. scipy/special/tests/test_powm1.py +65 -0
  1357. scipy/special/tests/test_precompute_expn_asy.py +24 -0
  1358. scipy/special/tests/test_precompute_gammainc.py +108 -0
  1359. scipy/special/tests/test_precompute_utils.py +36 -0
  1360. scipy/special/tests/test_round.py +18 -0
  1361. scipy/special/tests/test_sf_error.py +146 -0
  1362. scipy/special/tests/test_sici.py +36 -0
  1363. scipy/special/tests/test_specfun.py +48 -0
  1364. scipy/special/tests/test_spence.py +32 -0
  1365. scipy/special/tests/test_spfun_stats.py +61 -0
  1366. scipy/special/tests/test_sph_harm.py +85 -0
  1367. scipy/special/tests/test_spherical_bessel.py +400 -0
  1368. scipy/special/tests/test_support_alternative_backends.py +248 -0
  1369. scipy/special/tests/test_trig.py +72 -0
  1370. scipy/special/tests/test_ufunc_signatures.py +46 -0
  1371. scipy/special/tests/test_wright_bessel.py +205 -0
  1372. scipy/special/tests/test_wrightomega.py +117 -0
  1373. scipy/special/tests/test_zeta.py +301 -0
  1374. scipy/stats/__init__.py +670 -0
  1375. scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.lib +0 -0
  1376. scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.pyd +0 -0
  1377. scipy/stats/_axis_nan_policy.py +692 -0
  1378. scipy/stats/_biasedurn.cp314-win_arm64.lib +0 -0
  1379. scipy/stats/_biasedurn.cp314-win_arm64.pyd +0 -0
  1380. scipy/stats/_biasedurn.pxd +27 -0
  1381. scipy/stats/_binned_statistic.py +795 -0
  1382. scipy/stats/_binomtest.py +375 -0
  1383. scipy/stats/_bws_test.py +177 -0
  1384. scipy/stats/_censored_data.py +459 -0
  1385. scipy/stats/_common.py +5 -0
  1386. scipy/stats/_constants.py +42 -0
  1387. scipy/stats/_continued_fraction.py +387 -0
  1388. scipy/stats/_continuous_distns.py +12486 -0
  1389. scipy/stats/_correlation.py +210 -0
  1390. scipy/stats/_covariance.py +636 -0
  1391. scipy/stats/_crosstab.py +204 -0
  1392. scipy/stats/_discrete_distns.py +2098 -0
  1393. scipy/stats/_distn_infrastructure.py +4201 -0
  1394. scipy/stats/_distr_params.py +299 -0
  1395. scipy/stats/_distribution_infrastructure.py +5750 -0
  1396. scipy/stats/_entropy.py +428 -0
  1397. scipy/stats/_finite_differences.py +145 -0
  1398. scipy/stats/_fit.py +1351 -0
  1399. scipy/stats/_hypotests.py +2060 -0
  1400. scipy/stats/_kde.py +732 -0
  1401. scipy/stats/_ksstats.py +600 -0
  1402. scipy/stats/_levy_stable/__init__.py +1231 -0
  1403. scipy/stats/_levy_stable/levyst.cp314-win_arm64.lib +0 -0
  1404. scipy/stats/_levy_stable/levyst.cp314-win_arm64.pyd +0 -0
  1405. scipy/stats/_mannwhitneyu.py +492 -0
  1406. scipy/stats/_mgc.py +550 -0
  1407. scipy/stats/_morestats.py +4626 -0
  1408. scipy/stats/_mstats_basic.py +3658 -0
  1409. scipy/stats/_mstats_extras.py +521 -0
  1410. scipy/stats/_multicomp.py +449 -0
  1411. scipy/stats/_multivariate.py +7281 -0
  1412. scipy/stats/_new_distributions.py +452 -0
  1413. scipy/stats/_odds_ratio.py +466 -0
  1414. scipy/stats/_page_trend_test.py +486 -0
  1415. scipy/stats/_probability_distribution.py +1964 -0
  1416. scipy/stats/_qmc.py +2956 -0
  1417. scipy/stats/_qmc_cy.cp314-win_arm64.lib +0 -0
  1418. scipy/stats/_qmc_cy.cp314-win_arm64.pyd +0 -0
  1419. scipy/stats/_qmc_cy.pyi +54 -0
  1420. scipy/stats/_qmvnt.py +454 -0
  1421. scipy/stats/_qmvnt_cy.cp314-win_arm64.lib +0 -0
  1422. scipy/stats/_qmvnt_cy.cp314-win_arm64.pyd +0 -0
  1423. scipy/stats/_quantile.py +335 -0
  1424. scipy/stats/_rcont/__init__.py +4 -0
  1425. scipy/stats/_rcont/rcont.cp314-win_arm64.lib +0 -0
  1426. scipy/stats/_rcont/rcont.cp314-win_arm64.pyd +0 -0
  1427. scipy/stats/_relative_risk.py +263 -0
  1428. scipy/stats/_resampling.py +2352 -0
  1429. scipy/stats/_result_classes.py +40 -0
  1430. scipy/stats/_sampling.py +1314 -0
  1431. scipy/stats/_sensitivity_analysis.py +713 -0
  1432. scipy/stats/_sobol.cp314-win_arm64.lib +0 -0
  1433. scipy/stats/_sobol.cp314-win_arm64.pyd +0 -0
  1434. scipy/stats/_sobol.pyi +54 -0
  1435. scipy/stats/_sobol_direction_numbers.npz +0 -0
  1436. scipy/stats/_stats.cp314-win_arm64.lib +0 -0
  1437. scipy/stats/_stats.cp314-win_arm64.pyd +0 -0
  1438. scipy/stats/_stats.pxd +10 -0
  1439. scipy/stats/_stats_mstats_common.py +322 -0
  1440. scipy/stats/_stats_py.py +11089 -0
  1441. scipy/stats/_stats_pythran.cp314-win_arm64.lib +0 -0
  1442. scipy/stats/_stats_pythran.cp314-win_arm64.pyd +0 -0
  1443. scipy/stats/_survival.py +683 -0
  1444. scipy/stats/_tukeylambda_stats.py +199 -0
  1445. scipy/stats/_unuran/__init__.py +0 -0
  1446. scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.lib +0 -0
  1447. scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.pyd +0 -0
  1448. scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
  1449. scipy/stats/_variation.py +126 -0
  1450. scipy/stats/_warnings_errors.py +38 -0
  1451. scipy/stats/_wilcoxon.py +265 -0
  1452. scipy/stats/biasedurn.py +16 -0
  1453. scipy/stats/contingency.py +521 -0
  1454. scipy/stats/distributions.py +24 -0
  1455. scipy/stats/kde.py +18 -0
  1456. scipy/stats/morestats.py +27 -0
  1457. scipy/stats/mstats.py +140 -0
  1458. scipy/stats/mstats_basic.py +42 -0
  1459. scipy/stats/mstats_extras.py +25 -0
  1460. scipy/stats/mvn.py +17 -0
  1461. scipy/stats/qmc.py +236 -0
  1462. scipy/stats/sampling.py +73 -0
  1463. scipy/stats/stats.py +41 -0
  1464. scipy/stats/tests/__init__.py +0 -0
  1465. scipy/stats/tests/common_tests.py +356 -0
  1466. scipy/stats/tests/data/_mvt.py +171 -0
  1467. scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  1468. scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
  1469. scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
  1470. scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
  1471. scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
  1472. scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  1473. scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  1474. scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  1475. scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  1476. scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
  1477. scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  1478. scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  1479. scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
  1480. scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  1481. scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  1482. scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
  1483. scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  1484. scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
  1485. scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  1486. scipy/stats/tests/test_axis_nan_policy.py +1388 -0
  1487. scipy/stats/tests/test_binned_statistic.py +568 -0
  1488. scipy/stats/tests/test_censored_data.py +152 -0
  1489. scipy/stats/tests/test_contingency.py +294 -0
  1490. scipy/stats/tests/test_continued_fraction.py +173 -0
  1491. scipy/stats/tests/test_continuous.py +2198 -0
  1492. scipy/stats/tests/test_continuous_basic.py +1053 -0
  1493. scipy/stats/tests/test_continuous_fit_censored.py +683 -0
  1494. scipy/stats/tests/test_correlation.py +80 -0
  1495. scipy/stats/tests/test_crosstab.py +115 -0
  1496. scipy/stats/tests/test_discrete_basic.py +580 -0
  1497. scipy/stats/tests/test_discrete_distns.py +700 -0
  1498. scipy/stats/tests/test_distributions.py +10413 -0
  1499. scipy/stats/tests/test_entropy.py +322 -0
  1500. scipy/stats/tests/test_fast_gen_inversion.py +435 -0
  1501. scipy/stats/tests/test_fit.py +1090 -0
  1502. scipy/stats/tests/test_hypotests.py +1991 -0
  1503. scipy/stats/tests/test_kdeoth.py +676 -0
  1504. scipy/stats/tests/test_marray.py +289 -0
  1505. scipy/stats/tests/test_mgc.py +217 -0
  1506. scipy/stats/tests/test_morestats.py +3259 -0
  1507. scipy/stats/tests/test_mstats_basic.py +2071 -0
  1508. scipy/stats/tests/test_mstats_extras.py +172 -0
  1509. scipy/stats/tests/test_multicomp.py +405 -0
  1510. scipy/stats/tests/test_multivariate.py +4381 -0
  1511. scipy/stats/tests/test_odds_ratio.py +148 -0
  1512. scipy/stats/tests/test_qmc.py +1492 -0
  1513. scipy/stats/tests/test_quantile.py +199 -0
  1514. scipy/stats/tests/test_rank.py +345 -0
  1515. scipy/stats/tests/test_relative_risk.py +95 -0
  1516. scipy/stats/tests/test_resampling.py +2000 -0
  1517. scipy/stats/tests/test_sampling.py +1450 -0
  1518. scipy/stats/tests/test_sensitivity_analysis.py +310 -0
  1519. scipy/stats/tests/test_stats.py +9707 -0
  1520. scipy/stats/tests/test_survival.py +466 -0
  1521. scipy/stats/tests/test_tukeylambda_stats.py +85 -0
  1522. scipy/stats/tests/test_variation.py +216 -0
  1523. scipy/version.py +12 -0
  1524. scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
  1525. scipy-1.16.2.dist-info/LICENSE.txt +912 -0
  1526. scipy-1.16.2.dist-info/METADATA +1061 -0
  1527. scipy-1.16.2.dist-info/RECORD +1530 -0
  1528. scipy-1.16.2.dist-info/WHEEL +4 -0
  1529. scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
  1530. scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,2228 @@
1
+ """Implementation of an FFT-based Short-time Fourier Transform. """
2
+
3
+ # Implementation Notes for this file (as of 2025-08)
4
+ # --------------------------------------------------
5
+ # * Since the method `stft` and `istft` have identical names as the legacy
6
+ # functions in the signal module, referencing them as HTML link in the
7
+ # docstrings has to be done by an explicit `~ShortTimeFFT.stft` instead of an
8
+ # ambiguous `stft` (The ``~`` hides the class / module name).
9
+ # * The HTML documentation currently renders each method/property on a separate
10
+ # page without reference to the parent class. Thus, a link to `ShortTimeFFT`
11
+ # was added to the "See Also" section of each method/property. These links
12
+ # can be removed, when SciPy updates ``pydata-sphinx-theme`` to >= 0.13.3
13
+ # (currently 0.9). Consult Issue 18512 and PR 16660 for further details.
14
+
15
+
16
+ # Linter does not allow to import ``Generator`` from ``typing`` module:
17
+ from collections.abc import Generator, Callable
18
+ from functools import partial, cached_property
19
+ from typing import get_args, Literal
20
+
21
+ import numpy as np
22
+
23
+ import scipy.fft as fft_lib
24
+ from scipy.signal._signaltools import detrend
25
+ from scipy.signal.windows import get_window
26
+
27
+ __all__ = ['closest_STFT_dual_window', 'ShortTimeFFT']
28
+
29
+
30
+ #: Allowed values for parameter `padding` of method `ShortTimeFFT.stft()`:
31
+ PAD_TYPE = Literal['zeros', 'edge', 'even', 'odd']
32
+
33
+ #: Allowed values for property `ShortTimeFFT.fft_mode`:
34
+ FFT_MODE_TYPE = Literal['twosided', 'centered', 'onesided', 'onesided2X']
35
+
36
+
37
+ def _calc_dual_canonical_window(win: np.ndarray, hop: int) -> np.ndarray:
38
+ """Calculate canonical dual window for 1d window `win` and a time step
39
+ of `hop` samples.
40
+
41
+ A ``ValueError`` is raised if the inversion fails.
42
+
43
+ This is a separate function not a method, since it is also used in the
44
+ class method ``ShortTimeFFT.from_dual()``.
45
+ """
46
+ if hop > len(win):
47
+ raise ValueError(f"{hop=} is larger than window length of {len(win)}" +
48
+ " => STFT not invertible!")
49
+ if issubclass(win.dtype.type, np.integer):
50
+ raise ValueError("Parameter 'win' cannot be of integer type, but " +
51
+ f"{win.dtype=} => STFT not invertible!")
52
+ # The calculation of `relative_resolution` does not work for ints.
53
+ # Furthermore, `win / DD` casts the integers away, thus an implicit
54
+ # cast is avoided, which can always cause confusion when using 32-Bit
55
+ # floats.
56
+
57
+ w2 = win.real**2 + win.imag**2 # win*win.conj() does not ensure w2 is real
58
+ DD = w2.copy()
59
+ for k_ in range(hop, len(win), hop):
60
+ DD[k_:] += w2[:-k_]
61
+ DD[:-k_] += w2[k_:]
62
+
63
+ # check DD > 0:
64
+ relative_resolution = np.finfo(win.dtype).resolution * max(DD)
65
+ if not np.all(DD >= relative_resolution):
66
+ raise ValueError("Short-time Fourier Transform not invertible!")
67
+
68
+ return win / DD
69
+
70
+
71
+ def closest_STFT_dual_window(win: np.ndarray, hop: int,
72
+ desired_dual: np.ndarray | None = None, *,
73
+ scaled: bool = True) \
74
+ -> tuple[np.ndarray, float | complex]:
75
+ r"""Calculate the STFT dual window of a given window closest to a desired dual
76
+ window.
77
+
78
+ For a given short-time Fourier transform window `win` incremented by `hop`
79
+ samples, the dual window is calculated, which minimizes
80
+ ``abs(dual_win - desired_dual)**2`` when `scaled` is ``False``. For `scaled`
81
+ set to ``True``, ``abs(alpha*dual_win - desired_dual)**2`` is minimized with
82
+ `alpha` being the optimal scaling factor.
83
+ A ``ValueError`` is raised if no valid dual window can be determined.
84
+
85
+
86
+ Parameters
87
+ ----------
88
+ win : np.ndarray
89
+ The window must be a real- or complex-valued 1d array.
90
+ hop : int
91
+ The increment in samples by which the window is shifted in each step.
92
+ desired_dual: np.ndarray | None
93
+ The desired dual window must be a 1d array of the same length as `win`.
94
+ If set to ``None`` (default), then `desired_dual` is assumed to be the
95
+ rectangular window, i.e., ``np.ones_like(win)``.
96
+ scaled : bool
97
+ If set (default), the closest scaled version instead of closest dual window
98
+ is calculated.
99
+
100
+ Returns
101
+ -------
102
+ dual_win : np.ndarray
103
+ A dual window of ``alpha*win`` (with hop interval `hop`), which is closest
104
+ to `desired_dual`. Note that the dual window of `win` is `dual_win/alpha`
105
+ and that the dual window of `dual_win` is `alpha*win`.
106
+ `dual_win` has the same shape as `win` and `desired_win`.
107
+ alpha : float | complex
108
+ Scale factor for `win`. It is always one if `scaled` is set to ``False``.
109
+
110
+ Notes
111
+ -----
112
+ For a given window and `hop` interval, all possible dual windows are expressed
113
+ by the `hop` linear conditions of Eq. :math:numref:`eq_STFT_AllDualWinsCond` in
114
+ the :ref:`tutorial_stft` section of the :ref:`user_guide`. Hence, decreasing
115
+ `hop`, increases the number of degrees of freedom of the set of all possible
116
+ dual windows, improving the ability to better approximate a `desired_dual`.
117
+
118
+ This function can also be used to determine windows which fulfill the
119
+ so-called "Constant OverLap Add" (COLA) condition [1]_. It states that summing
120
+ all touching window values at any given sample position results in the same
121
+ constant :math:`\alpha`. Eq. :math:numref:`eq_STFT_AllDualWinsCond` shows that
122
+ this is equal to having a rectangular dual window, i.e., the dual being
123
+ ``alpha*np.ones(m)``.
124
+
125
+ Some examples of windows that satisfy COLA (taken from [2]_):
126
+
127
+ - Rectangular window at overlap of 0, 1/2, 2/3, 3/4, ...
128
+ - Bartlett window at overlap of 1/2, 3/4, 5/6, ...
129
+ - Hann window at 1/2, 2/3, 3/4, ...
130
+ - Any Blackman family window at 2/3 overlap
131
+ - Any window with ``hop=1``
132
+
133
+ References
134
+ ----------
135
+ .. [1] Julius O. Smith III, "Spectral Audio Signal Processing",
136
+ online book, 2011, https://www.dsprelated.com/freebooks/sasp/
137
+ .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and spectral density
138
+ estimation by the Discrete Fourier transform (DFT), including a
139
+ comprehensive list of window functions and some new at-top windows",
140
+ 2002, http://hdl.handle.net/11858/00-001M-0000-0013-557A-5
141
+
142
+ Examples
143
+ --------
144
+ Let's show that a Bartlett window with 75% overlap fulfills the COLA condition:
145
+
146
+ >>> import matplotlib.pyplot as plt
147
+ >>> import numpy as np
148
+ >>> from scipy.signal import closest_STFT_dual_window, windows
149
+ ...
150
+ >>> m = 24
151
+ >>> win, w_rect = windows.bartlett(m, sym=False), np.ones(m)
152
+ >>> d_win, alpha = closest_STFT_dual_window(win, m//4, w_rect, scaled=True)
153
+ >>> print(f"COLA: {np.allclose(d_win, w_rect*alpha)}, {alpha = :g}")
154
+ COLA: True, alpha = 0.5
155
+
156
+ We can also determine for which hop intervals the COLA condition is fulfilled:
157
+
158
+ >>> hops, deviations, alphas = np.arange(1, 16, dtype=int), [], []
159
+ >>> for h_ in hops:
160
+ ... w_cola, alpha = closest_STFT_dual_window(w_rect, h_, win, scaled=True)
161
+ ... deviations.append(np.linalg.norm(w_cola - win*alpha))
162
+ ... alphas.append(alpha)
163
+ ...
164
+ >>> fg0, (ax0, ax1) = plt.subplots(2, 1, sharex='all', tight_layout=True)
165
+ >>> ax0.set_title(f"COLA Window closest to a {m}-Sample Bartlett Window")
166
+ >>> ax0.set(ylabel=r"$||w_\text{cola}-\alpha w||$", xlim=(0, hops[-1]-.5))
167
+ >>> ax1.set(xlabel="Hop Interval", ylabel=r"Scaling factor $\alpha$",
168
+ ... ylim=(0, 1.25))
169
+ >>> ax0.plot(hops, deviations, 'C0.-')
170
+ >>> ax1.plot(hops, alphas, 'C1.-')
171
+ >>> for ax_ in (ax0, ax1):
172
+ ... ax_.grid()
173
+ >>> plt.show()
174
+
175
+ The lower plot shows the calculated scaling factor :math:`\alpha` for different
176
+ `hops` whereas the upper displays the :math:`L^2`-norm of the difference
177
+ between the scaled Bartlett window and the calculated window. Since for `hops`
178
+ 1 to 4 as well as for 6 and 12 the :math:`L^2`-norm of the difference is
179
+ practically zero, the COLA condition is fulfilled for those.
180
+
181
+ See Also
182
+ --------
183
+ ShortTimeFFT: Short-time Fourier transform which is able to utilize a dual
184
+ window for calculating the inverse.
185
+ ShortTimeFFT.from_win_equals_dual: Create instance where the window and its
186
+ dual are equal.
187
+
188
+ """
189
+ if desired_dual is None: # default is rectangular window
190
+ desired_dual = np.ones_like(win)
191
+ if not (win.ndim == 1 and win.shape == desired_dual.shape):
192
+ raise ValueError("Parameters `win` and `desired_dual` are not 1d arrays of " +
193
+ f"equal length ({win.shape=}, {desired_dual.shape=})!")
194
+ if not all(np.isfinite(win)):
195
+ raise ValueError("Parameter win must have finite entries!")
196
+ if not all(np.isfinite(desired_dual)):
197
+ raise ValueError("Parameter desired_dual must have finite entries!")
198
+ if not (1 <= hop <= len(win) and isinstance(hop, int | np.integer)):
199
+ raise ValueError(f"Parameter {hop=} is not an integer between 1 and " +
200
+ f"{len(win)=}!")
201
+
202
+ w_d = _calc_dual_canonical_window(win, hop)
203
+ wdd = win.conjugate() * desired_dual
204
+ q_d = wdd.copy()
205
+ for k_ in range(hop, len(win), hop):
206
+ q_d[k_:] += wdd[:-k_]
207
+ q_d[:-k_] += wdd[k_:]
208
+ q_d = w_d * q_d
209
+
210
+ if not scaled:
211
+ return w_d + desired_dual - q_d, 1.
212
+
213
+ numerator = q_d.conjugate().T @ w_d
214
+ denominator = q_d.T.real @ q_d.real + q_d.T.imag @ q_d.imag # always >= 0
215
+ if not (abs(numerator) > 0 and denominator > np.finfo(w_d.dtype).resolution):
216
+ raise ValueError(
217
+ "Unable to calculate scaled closest dual window due to numerically " +
218
+ "unstable scaling factor! Try setting parameter `scaled` to False.")
219
+ alpha = numerator / denominator
220
+ return w_d + alpha * (desired_dual - q_d), alpha
221
+
222
+
223
+ # noinspection PyShadowingNames
224
+ class ShortTimeFFT:
225
+ r"""Provide a parametrized discrete Short-time Fourier transform (stft)
226
+ and its inverse (istft).
227
+
228
+ .. currentmodule:: scipy.signal.ShortTimeFFT
229
+
230
+ The `~ShortTimeFFT.stft` calculates sequential FFTs by sliding a
231
+ window (`win`) over an input signal by `hop` increments. It can be used to
232
+ quantify the change of the spectrum over time.
233
+
234
+ The `~ShortTimeFFT.stft` is represented by a complex-valued matrix S[q,p]
235
+ where the p-th column represents an FFT with the window centered at the
236
+ time t[p] = p * `delta_t` = p * `hop` * `T` where `T` is the sampling
237
+ interval of the input signal. The q-th row represents the values at the
238
+ frequency f[q] = q * `delta_f` with `delta_f` = 1 / (`mfft` * `T`) being
239
+ the bin width of the FFT.
240
+
241
+ The inverse STFT `~ShortTimeFFT.istft` is calculated by reversing the steps
242
+ of the STFT: Take the IFFT of the p-th slice of S[q,p] and multiply the
243
+ result with the so-called dual window (see `dual_win`). Shift the result by
244
+ p * `delta_t` and add the result to previous shifted results to reconstruct
245
+ the signal. If only the dual window is known and the STFT is invertible,
246
+ `from_dual` can be used to instantiate this class.
247
+
248
+ By default, the so-called canonical dual window is used. It is the window with
249
+ minimal energy among all possible dual windows. `from_win_equals_dual` and
250
+ `~scipy.signal.closest_STFT_dual_window` provide means for utilizing alterantive
251
+ dual windows. Note that `win` is also always a dual window of `dual_win`.
252
+
253
+ Due to the convention of time t = 0 being at the first sample of the input
254
+ signal, the STFT values typically have negative time slots. Hence,
255
+ negative indexes like `p_min` or `k_min` do not indicate counting
256
+ backwards from an array's end like in standard Python indexing but being
257
+ left of t = 0.
258
+
259
+ More detailed information can be found in the :ref:`tutorial_stft`
260
+ section of the :ref:`user_guide`.
261
+
262
+ Note that all parameters of the initializer, except `scale_to` (which uses
263
+ `scaling`) have identical named attributes.
264
+
265
+ Parameters
266
+ ----------
267
+ win : np.ndarray
268
+ The window must be a real- or complex-valued 1d array.
269
+ hop : int
270
+ The increment in samples, by which the window is shifted in each step.
271
+ fs : float
272
+ Sampling frequency of input signal and window. Its relation to the
273
+ sampling interval `T` is ``T = 1 / fs``.
274
+ fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
275
+ Mode of FFT to be used (default 'onesided').
276
+ See property `fft_mode` for details.
277
+ mfft: int | None
278
+ Length of the FFT used, if a zero padded FFT is desired.
279
+ If ``None`` (default), the length of the window `win` is used.
280
+ dual_win : np.ndarray | None
281
+ The dual window of `win`. If set to ``None``, it is calculated if
282
+ needed.
283
+ scale_to : 'magnitude', 'psd' | None
284
+ If not ``None`` (default) the window function is scaled, so each STFT
285
+ column represents either a 'magnitude' or a power spectral density
286
+ ('psd') spectrum. This parameter sets the property `scaling` to the
287
+ same value. See method `scale_to` for details.
288
+ phase_shift : int | None
289
+ If set, add a linear phase `phase_shift` / `mfft` * `f` to each
290
+ frequency `f`. The default value of 0 ensures that there is no phase shift
291
+ on the zeroth slice (in which t=0 is centered). See property
292
+ `phase_shift` for more details.
293
+
294
+ Notes
295
+ -----
296
+ A typical STFT application is the creation of various types of time-frequency
297
+ plots, often subsumed under the term "spectrogram". Note that this term is also
298
+ used to explecitly refer to the absolute square of a STFT [11]_, as done in
299
+ :meth:`spectrogram`.
300
+
301
+ The STFT can also be used for filtering and filter banks as discussed in [12]_.
302
+
303
+
304
+ References
305
+ ----------
306
+ .. [11] Karlheinz Gröchenig: "Foundations of Time-Frequency Analysis",
307
+ Birkhäuser Boston 2001, `10.1007/978-1-4612-0003-1`
308
+ .. [12] Julius O. Smith III, "Spectral Audio Signal Processing", online book, 2011,
309
+ https://www.dsprelated.com/freebooks/sasp/
310
+
311
+
312
+ Examples
313
+ --------
314
+ The following example shows the magnitude of the STFT of a sine with
315
+ varying frequency :math:`f_i(t)` (marked by a red dashed line in the plot):
316
+
317
+ >>> import numpy as np
318
+ >>> import matplotlib.pyplot as plt
319
+ >>> from scipy.signal import ShortTimeFFT
320
+ >>> from scipy.signal.windows import gaussian
321
+ ...
322
+ >>> T_x, N = 1 / 20, 1000 # 20 Hz sampling rate for 50 s signal
323
+ >>> t_x = np.arange(N) * T_x # time indexes for signal
324
+ >>> f_i = 1 * np.arctan((t_x - t_x[N // 2]) / 2) + 5 # varying frequency
325
+ >>> x = np.sin(2*np.pi*np.cumsum(f_i)*T_x) # the signal
326
+
327
+ The utilized Gaussian window is 50 samples or 2.5 s long. The parameter
328
+ ``mfft=200`` in `ShortTimeFFT` causes the spectrum to be oversampled
329
+ by a factor of 4:
330
+
331
+ >>> g_std = 8 # standard deviation for Gaussian window in samples
332
+ >>> w = gaussian(50, std=g_std, sym=True) # symmetric Gaussian window
333
+ >>> SFT = ShortTimeFFT(w, hop=10, fs=1/T_x, mfft=200, scale_to='magnitude')
334
+ >>> Sx = SFT.stft(x) # perform the STFT
335
+
336
+ In the plot, the time extent of the signal `x` is marked by vertical dashed
337
+ lines. Note that the SFT produces values outside the time range of `x`. The
338
+ shaded areas on the left and the right indicate border effects caused
339
+ by the window slices in that area not fully being inside time range of
340
+ `x`:
341
+
342
+ >>> fig1, ax1 = plt.subplots(figsize=(6., 4.)) # enlarge plot a bit
343
+ >>> t_lo, t_hi = SFT.extent(N)[:2] # time range of plot
344
+ >>> ax1.set_title(rf"STFT ({SFT.m_num*SFT.T:g}$\,s$ Gaussian window, " +
345
+ ... rf"$\sigma_t={g_std*SFT.T}\,$s)")
346
+ >>> ax1.set(xlabel=f"Time $t$ in seconds ({SFT.p_num(N)} slices, " +
347
+ ... rf"$\Delta t = {SFT.delta_t:g}\,$s)",
348
+ ... ylabel=f"Freq. $f$ in Hz ({SFT.f_pts} bins, " +
349
+ ... rf"$\Delta f = {SFT.delta_f:g}\,$Hz)",
350
+ ... xlim=(t_lo, t_hi))
351
+ ...
352
+ >>> im1 = ax1.imshow(abs(Sx), origin='lower', aspect='auto',
353
+ ... extent=SFT.extent(N), cmap='viridis')
354
+ >>> ax1.plot(t_x, f_i, 'r--', alpha=.5, label='$f_i(t)$')
355
+ >>> fig1.colorbar(im1, label="Magnitude $|S_x(t, f)|$")
356
+ ...
357
+ >>> # Shade areas where window slices stick out to the side:
358
+ >>> for t0_, t1_ in [(t_lo, SFT.lower_border_end[0] * SFT.T),
359
+ ... (SFT.upper_border_begin(N)[0] * SFT.T, t_hi)]:
360
+ ... ax1.axvspan(t0_, t1_, color='w', linewidth=0, alpha=.2)
361
+ >>> for t_ in [0, N * SFT.T]: # mark signal borders with vertical line:
362
+ ... ax1.axvline(t_, color='y', linestyle='--', alpha=0.5)
363
+ >>> ax1.legend()
364
+ >>> fig1.tight_layout()
365
+ >>> plt.show()
366
+
367
+ Reconstructing the signal with the `~ShortTimeFFT.istft` is
368
+ straightforward, but note that the length of `x1` should be specified,
369
+ since the STFT length increases in `hop` steps:
370
+
371
+ >>> SFT.invertible # check if invertible
372
+ True
373
+ >>> x1 = SFT.istft(Sx, k1=N)
374
+ >>> np.allclose(x, x1)
375
+ True
376
+
377
+ It is possible to calculate the STFT of signal parts:
378
+
379
+ >>> N2 = SFT.nearest_k_p(N // 2)
380
+ >>> Sx0 = SFT.stft(x[:N2])
381
+ >>> Sx1 = SFT.stft(x[N2:])
382
+
383
+ When assembling sequential STFT parts together, the overlap needs to be
384
+ considered:
385
+
386
+ >>> p0_ub = SFT.upper_border_begin(N2)[1] - SFT.p_min
387
+ >>> p1_le = SFT.lower_border_end[1] - SFT.p_min
388
+ >>> Sx01 = np.hstack((Sx0[:, :p0_ub],
389
+ ... Sx0[:, p0_ub:] + Sx1[:, :p1_le],
390
+ ... Sx1[:, p1_le:]))
391
+ >>> np.allclose(Sx01, Sx) # Compare with SFT of complete signal
392
+ True
393
+
394
+ It is also possible to calculate the `itsft` for signal parts:
395
+
396
+ >>> y_p = SFT.istft(Sx, N//3, N//2)
397
+ >>> np.allclose(y_p, x[N//3:N//2])
398
+ True
399
+
400
+ """
401
+ # immutable attributes (only have getters but no setters):
402
+ _win: np.ndarray # window
403
+ _dual_win: np.ndarray | None = None # canonical dual window
404
+ _hop: int # Step of STFT in number of samples
405
+
406
+ # mutable attributes:
407
+ _fs: float # sampling frequency of input signal and window
408
+ _fft_mode: FFT_MODE_TYPE = 'onesided' # Mode of FFT to use
409
+ _mfft: int # length of FFT used - defaults to len(win)
410
+ _scaling: Literal['magnitude', 'psd', 'unitary'] | None = None # Scaling of _win
411
+ _phase_shift: int | None # amount to shift phase of FFT in samples
412
+
413
+ # attributes for caching calculated values:
414
+ _fac_mag: float | None = None
415
+ _fac_psd: float | None = None
416
+ _lower_border_end: tuple[int, int] | None = None
417
+ # The following tuples store parameter(s) and return value(s) of methods for caching
418
+ # (initialized with invalid parameters; should only be accessed by atomic
419
+ # read/writes to alleviate potential multithreading issues):
420
+ _cache_post_padding: tuple[int, tuple[int, int]] = -1, (0, 0)
421
+ _cache_upper_border_begin: tuple[int, tuple[int, int]] = -1, (0, 0)
422
+ _cache_t: tuple[tuple[int, int | None, int | None, int, float], np.ndarray] = \
423
+ (-1, None, None, 0, 0.), np.ndarray([])
424
+ _cache_f: tuple[tuple[FFT_MODE_TYPE, int, float], np.ndarray] = \
425
+ ('onesided', -1, 1.), np.ndarray([])
426
+
427
+ def __init__(self, win: np.ndarray, hop: int, fs: float, *,
428
+ fft_mode: FFT_MODE_TYPE = 'onesided',
429
+ mfft: int | None = None,
430
+ dual_win: np.ndarray | None = None,
431
+ scale_to: Literal['magnitude', 'psd'] | None = None,
432
+ phase_shift: int | None = 0):
433
+ if not (win.ndim == 1 and win.size > 0):
434
+ raise ValueError(f"Parameter win must be 1d, but {win.shape=}!")
435
+ if not all(np.isfinite(win)):
436
+ raise ValueError("Parameter win must have finite entries!")
437
+ if not (hop >= 1 and isinstance(hop, int | np.integer)):
438
+ raise ValueError(f"Parameter {hop=} is not an integer >= 1!")
439
+
440
+ self._win, self._hop, self.fs = win, hop, fs
441
+ self.win.setflags(write=False)
442
+ self.mfft = len(win) if mfft is None else mfft
443
+
444
+ if dual_win is not None:
445
+ if dual_win.shape != win.shape:
446
+ raise ValueError(f"{dual_win.shape=} must equal {win.shape=}!")
447
+ if not all(np.isfinite(dual_win)):
448
+ raise ValueError("Parameter dual_win must be a finite array!")
449
+ dual_win.setflags(write=False)
450
+ self._dual_win = dual_win # needs to be set before scaling
451
+
452
+ if scale_to is not None: # needs to be set before fft_mode
453
+ self.scale_to(scale_to)
454
+
455
+ self.fft_mode, self.phase_shift = fft_mode, phase_shift
456
+
457
+ @classmethod
458
+ def from_dual(cls, dual_win: np.ndarray, hop: int, fs: float, *,
459
+ fft_mode: FFT_MODE_TYPE = 'onesided',
460
+ mfft: int | None = None,
461
+ scale_to: Literal['magnitude', 'psd'] | None = None,
462
+ phase_shift: int | None = 0):
463
+ r"""Instantiate a `ShortTimeFFT` by only providing a dual window.
464
+
465
+ If an STFT is invertible, it is possible to calculate the window `win`
466
+ from a given dual window `dual_win`. All other parameters have the
467
+ same meaning as in the initializer of `ShortTimeFFT`.
468
+
469
+ As explained in the :ref:`tutorial_stft` section of the
470
+ :ref:`user_guide`, an invertible STFT can be interpreted as series
471
+ expansion of time-shifted and frequency modulated dual windows. E.g.,
472
+ the series coefficient S[q,p] belongs to the term, which shifted
473
+ `dual_win` by p * `delta_t` and multiplied it by
474
+ exp( 2 * j * pi * t * q * `delta_f`).
475
+
476
+
477
+ Examples
478
+ --------
479
+ The following example discusses decomposing a signal into time- and
480
+ frequency-shifted Gaussians. A Gaussian with standard deviation of
481
+ one made up of 51 samples will be used:
482
+
483
+ >>> import numpy as np
484
+ >>> import matplotlib.pyplot as plt
485
+ >>> from scipy.signal import ShortTimeFFT
486
+ >>> from scipy.signal.windows import gaussian
487
+ ...
488
+ >>> T, N = 0.1, 51
489
+ >>> d_win = gaussian(N, std=1/T, sym=True) # symmetric Gaussian window
490
+ >>> t = T * (np.arange(N) - N//2)
491
+ ...
492
+ >>> fg1, ax1 = plt.subplots()
493
+ >>> ax1.set_title(r"Dual Window: Gaussian with $\sigma_t=1$")
494
+ >>> ax1.set(xlabel=f"Time $t$ in seconds ({N} samples, $T={T}$ s)",
495
+ ... xlim=(t[0], t[-1]), ylim=(0, 1.1*np.max(d_win)))
496
+ >>> ax1.plot(t, d_win, 'C0-')
497
+
498
+ The following plot with the overlap of 41, 11 and 2 samples show how
499
+ the `hop` interval affects the shape of the window `win`:
500
+
501
+ >>> fig2, axx = plt.subplots(3, 1, sharex='all')
502
+ ...
503
+ >>> axx[0].set_title(r"Windows for hop$\in\{10, 40, 49\}$")
504
+ >>> for c_, h_ in enumerate([10, 40, 49]):
505
+ ... SFT = ShortTimeFFT.from_dual(d_win, h_, 1/T)
506
+ ... axx[c_].plot(t + h_ * T, SFT.win, 'k--', alpha=.3, label=None)
507
+ ... axx[c_].plot(t - h_ * T, SFT.win, 'k:', alpha=.3, label=None)
508
+ ... axx[c_].plot(t, SFT.win, f'C{c_+1}',
509
+ ... label=r"$\Delta t=%0.1f\,$s" % SFT.delta_t)
510
+ ... axx[c_].set_ylim(0, 1.1*max(SFT.win))
511
+ ... axx[c_].legend(loc='center')
512
+ >>> axx[-1].set(xlabel=f"Time $t$ in seconds ({N} samples, $T={T}$ s)",
513
+ ... xlim=(t[0], t[-1]))
514
+ >>> plt.show()
515
+
516
+ Beside the window `win` centered at t = 0 the previous (t = -`delta_t`)
517
+ and following window (t = `delta_t`) are depicted. It can be seen that
518
+ for small `hop` intervals, the window is compact and smooth, having a
519
+ good time-frequency concentration in the STFT. For the large `hop`
520
+ interval of 4.9 s, the window has small values around t = 0, which are
521
+ not covered by the overlap of the adjacent windows, which could lead to
522
+ numeric inaccuracies. Furthermore, the peaky shape at the beginning and
523
+ the end of the window points to a higher bandwidth, resulting in a
524
+ poorer time-frequency resolution of the STFT.
525
+ Hence, the choice of the `hop` interval will be a compromise between
526
+ a time-frequency resolution and memory requirements demanded by small
527
+ `hop` sizes.
528
+
529
+ See Also
530
+ --------
531
+ from_window: Create instance by wrapping `get_window`.
532
+ ShortTimeFFT: Create instance using standard initializer.
533
+ """
534
+ win = _calc_dual_canonical_window(dual_win, hop)
535
+ return cls(win=win, hop=hop, fs=fs, fft_mode=fft_mode, mfft=mfft,
536
+ dual_win=dual_win, scale_to=scale_to,
537
+ phase_shift=phase_shift)
538
+
539
+ @classmethod
540
+ def from_window(cls, win_param: str | tuple | float,
541
+ fs: float, nperseg: int, noverlap: int, *,
542
+ symmetric_win: bool = False,
543
+ fft_mode: FFT_MODE_TYPE = 'onesided',
544
+ mfft: int | None = None,
545
+ scale_to: Literal['magnitude', 'psd'] | None = None,
546
+ phase_shift: int | None = 0):
547
+ """Instantiate `ShortTimeFFT` by using `get_window`.
548
+
549
+ The method `get_window` is used to create a window of length
550
+ `nperseg`. The parameter names `noverlap`, and `nperseg` are used here,
551
+ since they more inline with other classical STFT libraries.
552
+
553
+ Parameters
554
+ ----------
555
+ win_param: Union[str, tuple, float],
556
+ Parameters passed to `get_window`. For windows with no parameters,
557
+ it may be a string (e.g., ``'hann'``), for parametrized windows a
558
+ tuple, (e.g., ``('gaussian', 2.)``) or a single float specifying
559
+ the shape parameter of a kaiser window (i.e. ``4.`` and
560
+ ``('kaiser', 4.)`` are equal. See `get_window` for more details.
561
+ fs : float
562
+ Sampling frequency of input signal. Its relation to the
563
+ sampling interval `T` is ``T = 1 / fs``.
564
+ nperseg: int
565
+ Window length in samples, which corresponds to the `m_num`.
566
+ noverlap: int
567
+ Window overlap in samples. It relates to the `hop` increment by
568
+ ``hop = npsereg - noverlap``.
569
+ symmetric_win: bool
570
+ If ``True`` then a symmetric window is generated, else a periodic
571
+ window is generated (default). Though symmetric windows seem for
572
+ most applications to be more sensible, the default of a periodic
573
+ windows was chosen to correspond to the default of `get_window`.
574
+ fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
575
+ Mode of FFT to be used (default 'onesided').
576
+ See property `fft_mode` for details.
577
+ mfft: int | None
578
+ Length of the FFT used, if a zero padded FFT is desired.
579
+ If ``None`` (default), the length of the window `win` is used.
580
+ scale_to : 'magnitude', 'psd' | None
581
+ If not ``None`` (default) the window function is scaled, so each
582
+ STFT column represents either a 'magnitude' or a power spectral
583
+ density ('psd') spectrum. This parameter sets the property
584
+ `scaling` to the same value. See method `scale_to` for details.
585
+ phase_shift : int | None
586
+ If set, add a linear phase `phase_shift` / `mfft` * `f` to each
587
+ frequency `f`. The default value 0 ensures that there is no phase
588
+ shift on the zeroth slice (in which t=0 is centered). See property
589
+ `phase_shift` for more details.
590
+
591
+ Examples
592
+ --------
593
+ The following instances ``SFT0`` and ``SFT1`` are equivalent:
594
+
595
+ >>> from scipy.signal import ShortTimeFFT, get_window
596
+ >>> nperseg = 9 # window length
597
+ >>> w = get_window(('gaussian', 2.), nperseg)
598
+ >>> fs = 128 # sampling frequency
599
+ >>> hop = 3 # increment of STFT time slice
600
+ >>> SFT0 = ShortTimeFFT(w, hop, fs=fs)
601
+ >>> SFT1 = ShortTimeFFT.from_window(('gaussian', 2.), fs, nperseg,
602
+ ... noverlap=nperseg-hop)
603
+
604
+ See Also
605
+ --------
606
+ scipy.signal.get_window: Return a window of a given length and type.
607
+ from_dual: Create instance using dual window.
608
+ ShortTimeFFT: Create instance using standard initializer.
609
+ """
610
+ win = get_window(win_param, nperseg, fftbins=not symmetric_win)
611
+ return cls(win, hop=nperseg-noverlap, fs=fs, fft_mode=fft_mode,
612
+ mfft=mfft, scale_to=scale_to, phase_shift=phase_shift)
613
+
614
+ @classmethod
615
+ def from_win_equals_dual(
616
+ cls, desired_win: np.ndarray, hop: int, fs: float, *,
617
+ fft_mode: FFT_MODE_TYPE = 'onesided', mfft: int | None = None,
618
+ scale_to: Literal['magnitude', 'psd', 'unitary'] | None = None,
619
+ phase_shift: int | None = 0):
620
+ r"""Create instance where the window and its dual are equal up to a
621
+ scaling factor.
622
+
623
+ An instance is created were window and dual window are equal as well as being
624
+ closest to the parameter `desired_win` in the least-squares sense, i.e.,
625
+ minimizing ``abs(win-desired_win)**2``. Hence, `win` has the same length as
626
+ `desired_win`. Then a scaling factor is applied accoring to the `scale_to`
627
+ parameter.
628
+
629
+ All other parameters have the identical meaning as in the initializer.
630
+
631
+ To be able to calculate a valid window, `desired_win` needs to have a valid
632
+ dual STFT window for the given `hop` interval.
633
+ If this is not the case, a ``ValueError`` is raised.
634
+
635
+ Parameters
636
+ ----------
637
+ desired_win : np.ndarray
638
+ A real-valued or complex-valued 1d array containing the sample of the
639
+ desired window.
640
+ hop : int
641
+ The increment in samples, by which the window is shifted in each step.
642
+ fs : float
643
+ Sampling frequency of input signal and window. Its relation to the
644
+ sampling interval `T` is ``T = 1 / fs``.
645
+ fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
646
+ Mode of FFT to be used (default 'onesided').
647
+ See property `fft_mode` for details.
648
+ mfft: int | None
649
+ Length of the FFT used, if a zero padded FFT is desired.
650
+ If ``None`` (default), the length of the window `win` is used.
651
+ scale_to : 'magnitude' | 'psd' | 'unitary' | None
652
+ If not ``None`` (default) the window function is scaled, so each STFT
653
+ column represents either a 'magnitude' or a power spectral density ('psd')
654
+ spectrum, Alternatively, the STFT can be scaled to a`unitary` mapping,
655
+ i.e., dividing the window by ``np.sqrt(mfft)`` and multiplying the dual
656
+ window by the same amount.
657
+ phase_shift : int | None
658
+ If set, add a linear phase `phase_shift` / `mfft` * `f` to each
659
+ frequency `f`. The default value of 0 ensures that there is no phase shift
660
+ on the zeroth slice (in which t=0 is centered). See property
661
+ `phase_shift` for more details.
662
+
663
+
664
+ Notes
665
+ -----
666
+ The set of all possible windows with identical dual is defined by the set of
667
+ linear constraints of Eq. :math:numref:`eq_STFT_AllDualWinsCond` in the
668
+ :ref:`tutorial_stft` section of the :ref:`user_guide`. There it is also
669
+ derived that ``ShortTimeFFT.dual_win == ShortTimeFFT.m_pts * ShortTimeFFT.win``
670
+ needs to hold for an STFT to be a unitary mapping.
671
+
672
+ A unitary mapping preserves the value of the scalar product, i.e.,
673
+
674
+ .. math::
675
+
676
+ \langle x, y\rangle = \sum_k x[k]\, \overline{y[k]}
677
+ \stackrel{\stackrel{\text{unitary}}{\downarrow}}{=}
678
+ \sum_{q,p} S_x[q,p]\, \overline{S_y[q,p]}
679
+ = \langle S_x[q,p], S_y[q,p]\rangle\ ,
680
+
681
+ with :math:`S_{x,y}` being the STFT of :math:`x,y`. Hence, the energy
682
+ :math:`E_x=T\sum_k |x[k]|^2` of a signal is also preserved. This is also
683
+ illustrated in the example below.
684
+
685
+ Thie reason of distinguishing between no scaling (i.e., parameter `scale_to` is
686
+ ``None``) and unitary scaling (i.e., ``scale_to = 'unitary'``) is due to the
687
+ utilized FFT function not being unitary (i.e., using the default value
688
+ ``'backward'`` for the `~scipy.fft.fft` parameter `norm`).
689
+
690
+
691
+ See Also
692
+ --------
693
+ closest_STFT_dual_window: Calculate the STFT dual window of a given window
694
+ closest to a desired dual window.
695
+ ShortTimeFFT.spectrogram: Calculate squared STFTs
696
+ ShortTimeFFT: Class this property belongs to.
697
+
698
+ Examples
699
+ --------
700
+ The following example shows that an STFT can be indeed unitary:
701
+
702
+ >>> import matplotlib.pyplot as plt
703
+ >>> import numpy as np
704
+ >>> from scipy.signal import ShortTimeFFT, windows
705
+ ...
706
+ >>> m, hop, std = 36, 8, 5
707
+ >>> desired_win = windows.gaussian(m, std, sym=True)
708
+ >>> SFT = ShortTimeFFT.from_win_equals_dual(desired_win, hop, fs=1/m,
709
+ ... fft_mode='twosided',
710
+ ... scale_to='unitary')
711
+ >>> np.allclose(SFT.dual_win, SFT.win * SFT.m_num) # check if STFT is unitary
712
+ True
713
+ >>> x1, x2 = np.tile([-1, -1, 1, 1], 5), np.tile([1, -1, -1, 1], 5)
714
+ >>> np.sum(x1*x2) # scalar product is zero -> orthogonal signals
715
+ 0
716
+ >>> np.sum(x1**2) # scalar product of x1 with itself
717
+ 20
718
+ >>> Sx11, Sx12 = SFT.spectrogram(x1), SFT.spectrogram(x1, x2)
719
+ >>> np.sum(Sx12) # STFT scalar product is also zero
720
+ -4.163336342344337e-16+0j # may vary
721
+ >>> np.sum(Sx11) # == np.sum(x1**2)
722
+ 19.999999999999996 # may vary
723
+ ...
724
+ ... # Do the plotting:
725
+ >>> fg1, (ax11, ax12) = plt.subplots(1, 2, tight_layout=True, figsize=(8, 4))
726
+ >>> s_fac = np.sqrt(SFT.mfft)
727
+ >>> _ = fg1.suptitle(f"Scaled Unitary Window of {m} Sample Gaussian with " +
728
+ ... rf"{hop=}, $\sigma={std}$, Scale factor: {s_fac}")
729
+ >>> ax11.set(ylabel="Amplitude", xlabel="Samples", xlim=(0, m))
730
+ >>> ax12.set(xlabel="Frequency Bins", ylabel="Magnitude Spectrum",
731
+ ... xlim=(0, 15), ylim=(1e-5, 1.5))
732
+ >>> u_win_str = rf"Unitary $\times{s_fac:g}$"
733
+ >>> for x_, n_ in zip((desired_win, SFT.win*s_fac), ('Desired', u_win_str)):
734
+ ... ax11.plot(x_, '.-', alpha=0.5, label=n_)
735
+ ... X_ = np.fft.rfft(x_) / np.sum(abs(x_))
736
+ ... ax12.semilogy(abs(X_), '.-', alpha=0.5, label=n_)
737
+ >>> for ax_ in (ax11, ax12):
738
+ ... ax_.grid(True)
739
+ ... ax_.legend()
740
+ >>> plt.show()
741
+
742
+ Note that ``fftmode='twosided'`` is used, since we need sum over the complete
743
+ time frequency plane. Due to passing ``scale_to='unitary'`` the window
744
+ ``SFT.win`` is scaled by ``1/np.sqrt(SFT.mfft)``. Hence, ``SFT.win`` needs to
745
+ be scaled by `s_fac` in the plot above.
746
+ """
747
+ if not (desired_win.ndim == 1 and desired_win.size > 0):
748
+ raise ValueError(f"Parameter desired_win is not 1d, but "
749
+ f"{desired_win.shape=}!")
750
+ if issubclass(desired_win.dtype.type, np.integer):
751
+ raise ValueError("Parameter desired_win cannot be of integer type, " +
752
+ f"but {desired_win.dtype=} => cast to float | complex ")
753
+ if not all(np.isfinite(desired_win)):
754
+ raise ValueError("Parameter desired_win must have finite entries!")
755
+ if not (1 <= hop <= len(desired_win) and isinstance(hop, int | np.integer)):
756
+ raise ValueError(f"Parameter {hop=} is not an integer between 1 and " +
757
+ f"{len(desired_win)=}!")
758
+ if scale_to not in ['magnitude', 'psd', 'unitary', None]:
759
+ raise ValueError(f"Parameter {scale_to=} not in " +
760
+ "['magnitude', 'psd', 'unitary', None]!")
761
+
762
+ mfft = len(desired_win) if mfft is None else mfft
763
+ s_fac = np.sqrt(mfft) if scale_to == 'unitary' else 1
764
+
765
+ win = desired_win.copy() # we do not want to modify input parameters
766
+ relative_resolution = np.finfo(win.dtype).resolution * max(win)
767
+ for m in range(hop):
768
+ a = np.linalg.norm(desired_win[m::hop])
769
+ if not (a > relative_resolution):
770
+ raise ValueError("Parameter desired_win does not have valid STFT dual "
771
+ f"window for {hop=}!")
772
+ win[m::hop] /= a
773
+
774
+ SFT = cls(win=win/s_fac, hop=hop, fs=fs, fft_mode=fft_mode, mfft=mfft,
775
+ dual_win=win*s_fac, phase_shift=phase_shift,
776
+ scale_to=None if scale_to=='unitary' else scale_to)
777
+
778
+ if scale_to == 'unitary':
779
+ SFT._scaling = scale_to
780
+ return SFT
781
+
782
+
783
+ @property
784
+ def win(self) -> np.ndarray:
785
+ """Window function as real- or complex-valued 1d array.
786
+
787
+ This attribute is read-only, since `dual_win` depends on it.
788
+ To make this array immutable, its WRITEABLE flag is set to ``FALSE``.
789
+
790
+ See Also
791
+ --------
792
+ dual_win: Dual window.
793
+ m_num: Number of samples in window `win`.
794
+ m_num_mid: Center index of window `win`.
795
+ mfft: Length of input for the FFT used - may be larger than `m_num`.
796
+ hop: ime increment in signal samples for sliding window.
797
+ win: Window function as real- or complex-valued 1d array.
798
+ numpy.ndarray.setflags: Modify array flags.
799
+ ShortTimeFFT: Class this property belongs to.
800
+ """
801
+ return self._win
802
+
803
+ @property
804
+ def hop(self) -> int:
805
+ """Time increment in signal samples for sliding window.
806
+
807
+ This attribute is read only, since `dual_win` depends on it.
808
+
809
+ See Also
810
+ --------
811
+ delta_t: Time increment of STFT (``hop*T``)
812
+ m_num: Number of samples in window `win`.
813
+ m_num_mid: Center index of window `win`.
814
+ mfft: Length of input for the FFT used - may be larger than `m_num`.
815
+ T: Sampling interval of input signal and of the window.
816
+ win: Window function as real- or complex-valued 1d array.
817
+ ShortTimeFFT: Class this property belongs to.
818
+ """
819
+ return self._hop
820
+
821
+ @property
822
+ def T(self) -> float:
823
+ """Sampling interval of input signal and of the window.
824
+
825
+ A ``ValueError`` is raised if it is set to a non-positive value.
826
+
827
+ See Also
828
+ --------
829
+ delta_t: Time increment of STFT (``hop*T``)
830
+ hop: Time increment in signal samples for sliding window.
831
+ fs: Sampling frequency (being ``1/T``)
832
+ t: Times of STFT for an input signal with `n` samples.
833
+ ShortTimeFFT: Class this property belongs to.
834
+ """
835
+ return 1 / self._fs
836
+
837
+ @T.setter
838
+ def T(self, v: float):
839
+ """Sampling interval of input signal and of the window.
840
+
841
+ A ``ValueError`` is raised if it is set to a non-positive value.
842
+ """
843
+ if not (v > 0):
844
+ raise ValueError(f"Sampling interval T={v} must be positive!")
845
+ self._fs = 1 / v
846
+
847
+ @property
848
+ def fs(self) -> float:
849
+ """Sampling frequency of input signal and of the window.
850
+
851
+ The sampling frequency is the inverse of the sampling interval `T`.
852
+ A ``ValueError`` is raised if it is set to a non-positive value.
853
+
854
+ See Also
855
+ --------
856
+ delta_t: Time increment of STFT (``hop*T``)
857
+ hop: Time increment in signal samples for sliding window.
858
+ T: Sampling interval of input signal and of the window (``1/fs``).
859
+ ShortTimeFFT: Class this property belongs to.
860
+ """
861
+ return self._fs
862
+
863
+ @fs.setter
864
+ def fs(self, v: float):
865
+ """Sampling frequency of input signal and of the window.
866
+
867
+ The sampling frequency is the inverse of the sampling interval `T`.
868
+ A ``ValueError`` is raised if it is set to a non-positive value.
869
+ """
870
+ if not (v > 0):
871
+ raise ValueError(f"Sampling frequency fs={v} must be positive!")
872
+ self._fs = v
873
+
874
+ @property
875
+ def fft_mode(self) -> FFT_MODE_TYPE:
876
+ """Mode of utilized FFT ('twosided', 'centered', 'onesided' or
877
+ 'onesided2X').
878
+
879
+ It can have the following values:
880
+
881
+ 'twosided':
882
+ Two-sided FFT, where values for the negative frequencies are in
883
+ upper half of the array. Corresponds to :func:`~scipy.fft.fft()`.
884
+ 'centered':
885
+ Two-sided FFT with the values being ordered along monotonically
886
+ increasing frequencies. Corresponds to applying
887
+ :func:`~scipy.fft.fftshift()` to :func:`~scipy.fft.fft()`.
888
+ 'onesided':
889
+ Calculates only values for non-negative frequency values.
890
+ Corresponds to :func:`~scipy.fft.rfft()`.
891
+ 'onesided2X':
892
+ Like `onesided`, but the non-zero frequencies are doubled if
893
+ `scaling` is set to 'magnitude' or multiplied by ``sqrt(2)`` if
894
+ set to 'psd'. If `scaling` is ``None``, setting `fft_mode` to
895
+ `onesided2X` is not allowed.
896
+ If the FFT length `mfft` is even, the last FFT value is not paired,
897
+ and thus it is not scaled.
898
+
899
+ Note that `onesided` and `onesided2X` do not work for complex-valued signals or
900
+ complex-valued windows. Furthermore, the frequency values can be obtained by
901
+ reading the `f` property, and the number of samples by accessing the `f_pts`
902
+ property.
903
+
904
+ See Also
905
+ --------
906
+ delta_f: Width of the frequency bins of the STFT.
907
+ f: Frequencies values of the STFT.
908
+ f_pts: Width of the frequency bins of the STFT.
909
+ onesided_fft: True if a one-sided FFT is used.
910
+ scaling: Normalization applied to the window function
911
+ ShortTimeFFT: Class this property belongs to.
912
+ """
913
+ return self._fft_mode
914
+
915
+ @fft_mode.setter
916
+ def fft_mode(self, t: FFT_MODE_TYPE):
917
+ """Set mode of FFT.
918
+
919
+ Allowed values are 'twosided', 'centered', 'onesided', 'onesided2X'.
920
+ See the property `fft_mode` for more details.
921
+ """
922
+ if t not in (fft_mode_types := get_args(FFT_MODE_TYPE)):
923
+ raise ValueError(f"fft_mode='{t}' not in {fft_mode_types}!")
924
+
925
+ if t in {'onesided', 'onesided2X'} and np.iscomplexobj(self.win):
926
+ raise ValueError(f"One-sided spectra, i.e., fft_mode='{t}', " +
927
+ "are not allowed for complex-valued windows!")
928
+
929
+ if t == 'onesided2X' and self.scaling is None:
930
+ raise ValueError(f"For scaling is None, fft_mode='{t}' is invalid!"
931
+ "Do scale_to('psd') or scale_to('magnitude')!")
932
+ self._fft_mode = t
933
+
934
+ @property
935
+ def mfft(self) -> int:
936
+ """Length of input for the FFT used - may be larger than window
937
+ length `m_num`.
938
+
939
+ If not set, `mfft` defaults to the window length `m_num`.
940
+
941
+ See Also
942
+ --------
943
+ f_pts: Number of points along the frequency axis.
944
+ f: Frequencies values of the STFT.
945
+ m_num: Number of samples in window `win`.
946
+ ShortTimeFFT: Class this property belongs to.
947
+ """
948
+ return self._mfft
949
+
950
+ @mfft.setter
951
+ def mfft(self, n_: int):
952
+ """Setter for the length of FFT utilized.
953
+
954
+ See the property `mfft` for further details.
955
+ """
956
+ if not (n_ >= self.m_num):
957
+ raise ValueError(f"Attribute mfft={n_} needs to be at least the " +
958
+ f"window length m_num={self.m_num}!")
959
+ self._mfft = n_
960
+
961
+ @property
962
+ def scaling(self) -> Literal['magnitude', 'psd', 'unitary'] | None:
963
+ """Normalization applied to the window function
964
+ ('magnitude', 'psd', 'unitary', or ``None``).
965
+
966
+ If not ``None``, the FFT slices may be either interpreted as a `magnitude` or
967
+ a power spectral density spectrum (`psd`). If set to `unitary`, the STFT may be
968
+ interpreted as a unitary mapping, i.e., preserving the value of the scalar
969
+ product.
970
+
971
+ The window function can be scaled by calling the `scale_to` method,
972
+ or it is set by the initializer parameter ``scale_to``. Note that a
973
+ window cannot to be scaled to be `unitary`. Use `from_win_equals_dual`
974
+ to create a unitary `ShortTimeFFT` instance.
975
+
976
+ See Also
977
+ --------
978
+ fac_magnitude: Scaling factor for to a magnitude spectrum.
979
+ fac_psd: Scaling factor for to a power spectral density spectrum.
980
+ fft_mode: Mode of utilized FFT
981
+ scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
982
+ from_win_equals_dual: Class-method for creating a unitary instance.
983
+ ShortTimeFFT: Class this property belongs to.
984
+ """
985
+ return self._scaling
986
+
987
+ def scale_to(self, scaling: Literal['magnitude', 'psd']):
988
+ """Scale window to obtain 'magnitude' or 'psd' scaling for the STFT.
989
+
990
+ The window of a 'magnitude' spectrum has an integral of one, i.e., unit
991
+ area for non-negative windows. This ensures that absolute the values of
992
+ spectrum does not change if the length of the window changes (given
993
+ the input signal is stationary).
994
+
995
+ To represent the power spectral density ('psd') for varying length
996
+ windows the area of the absolute square of the window needs to be
997
+ unity.
998
+
999
+ The `scaling` property shows the current scaling. The properties
1000
+ `fac_magnitude` and `fac_psd` show the scaling factors required to
1001
+ scale the STFT values to a magnitude or a psd spectrum.
1002
+
1003
+ Note that a window cannot to be scaled to be `unitary`. Use
1004
+ `from_win_equals_dual` to create a unitary `ShortTimeFFT` instance.
1005
+
1006
+ This method is called, if the initializer parameter `scale_to` is set.
1007
+
1008
+ See Also
1009
+ --------
1010
+ fac_magnitude: Scaling factor for to a magnitude spectrum.
1011
+ fac_psd: Scaling factor for to a power spectral density spectrum.
1012
+ fft_mode: Mode of utilized FFT
1013
+ scaling: Normalization applied to the window function.
1014
+ ShortTimeFFT: Class this method belongs to.
1015
+ """
1016
+ if scaling not in (scaling_values := {'magnitude', 'psd'}):
1017
+ raise ValueError(f"{scaling=} not in {scaling_values}!")
1018
+ if self._scaling == scaling: # do nothing
1019
+ return
1020
+
1021
+ s_fac = self.fac_psd if scaling == 'psd' else self.fac_magnitude
1022
+ self._win = self._win * s_fac
1023
+ self.win.setflags(write=False)
1024
+ if self._dual_win is not None:
1025
+ self._dual_win = self._dual_win / s_fac
1026
+ self.dual_win.setflags(write=False)
1027
+ self._fac_mag, self._fac_psd = None, None # reset scaling factors
1028
+ self._scaling = scaling
1029
+
1030
+ @property
1031
+ def phase_shift(self) -> int | None:
1032
+ """If set, add linear phase `phase_shift` / `mfft` * `f` to each FFT
1033
+ slice of frequency `f`.
1034
+
1035
+ Shifting (more precisely `rolling`) an `mfft`-point FFT input by
1036
+ `phase_shift` samples results in a multiplication of the output by
1037
+ ``np.exp(2j*np.pi*q*phase_shift/mfft)`` at the frequency q * `delta_f`.
1038
+
1039
+ The default value 0 ensures that there is no phase shift on the
1040
+ zeroth slice (in which t=0 is centered).
1041
+ No phase shift (``phase_shift is None``) is equivalent to
1042
+ ``phase_shift = -mfft//2``. In this case slices are not shifted
1043
+ before calculating the FFT.
1044
+
1045
+ The absolute value of `phase_shift` is limited to be less than `mfft`.
1046
+
1047
+ See Also
1048
+ --------
1049
+ delta_f: Width of the frequency bins of the STFT.
1050
+ f: Frequencies values of the STFT.
1051
+ mfft: Length of input for the FFT used
1052
+ ShortTimeFFT: Class this property belongs to.
1053
+ """
1054
+ return self._phase_shift
1055
+
1056
+ @phase_shift.setter
1057
+ def phase_shift(self, v: int | None):
1058
+ """The absolute value of the phase shift needs to be less than mfft
1059
+ samples.
1060
+
1061
+ See the `phase_shift` getter method for more details.
1062
+ """
1063
+ if v is None:
1064
+ self._phase_shift = v
1065
+ return
1066
+ if not isinstance(v, int | np.integer):
1067
+ raise ValueError(f"phase_shift={v} has the unit samples. Hence " +
1068
+ "it needs to be an int or it may be None!")
1069
+ if not (-self.mfft < v < self.mfft):
1070
+ raise ValueError("-mfft < phase_shift < mfft does not hold " +
1071
+ f"for mfft={self.mfft}, phase_shift={v}!")
1072
+ self._phase_shift = v
1073
+
1074
+ def _x_slices(self, x: np.ndarray, k_off: int, p0: int, p1: int,
1075
+ padding: PAD_TYPE) -> Generator[np.ndarray, None, None]:
1076
+ """Generate signal slices along last axis of `x`.
1077
+
1078
+ This method is only used by `stft_detrend`. The parameters are
1079
+ described in `~ShortTimeFFT.stft`.
1080
+ """
1081
+ if padding not in (padding_types := get_args(PAD_TYPE)):
1082
+ raise ValueError(f"Parameter {padding=} not in {padding_types}!")
1083
+ pad_kws: dict[str, dict] = { # possible keywords to pass to np.pad:
1084
+ 'zeros': dict(mode='constant', constant_values=(0, 0)),
1085
+ 'edge': dict(mode='edge'),
1086
+ 'even': dict(mode='reflect', reflect_type='even'),
1087
+ 'odd': dict(mode='reflect', reflect_type='odd'),
1088
+ } # typing of pad_kws is needed to make mypy happy
1089
+
1090
+ n, n1 = x.shape[-1], (p1 - p0) * self.hop
1091
+ k0 = p0 * self.hop - self.m_num_mid + k_off # start sample
1092
+ k1 = k0 + n1 + self.m_num # end sample
1093
+
1094
+ i0, i1 = max(k0, 0), min(k1, n) # indexes to shorten x
1095
+ # dimensions for padding x:
1096
+ pad_width = [(0, 0)] * (x.ndim-1) + [(-min(k0, 0), max(k1 - n, 0))]
1097
+
1098
+ x1 = np.pad(x[..., i0:i1], pad_width, **pad_kws[padding])
1099
+ for k_ in range(0, n1, self.hop):
1100
+ yield x1[..., k_:k_ + self.m_num]
1101
+
1102
+ def stft(self, x: np.ndarray, p0: int | None = None,
1103
+ p1: int | None = None, *, k_offset: int = 0,
1104
+ padding: PAD_TYPE = 'zeros', axis: int = -1) \
1105
+ -> np.ndarray:
1106
+ """Perform the short-time Fourier transform.
1107
+
1108
+ A two-dimensional matrix with ``p1-p0`` columns is calculated.
1109
+ The `f_pts` rows represent value at the frequencies `f`. The q-th
1110
+ column of the windowed FFT with the window `win` is centered at t[q].
1111
+ The columns represent the values at the frequencies `f`.
1112
+
1113
+ Parameters
1114
+ ----------
1115
+ x : np.ndarray
1116
+ The input signal as real or complex valued array. For complex values, the
1117
+ property `fft_mode` must be set to 'twosided' or 'centered'.
1118
+ p0 : int | None
1119
+ The first element of the range of slices to calculate. If ``None``
1120
+ then it is set to :attr:`p_min`, which is the smallest possible
1121
+ slice.
1122
+ p1 : int | None
1123
+ The end of the array. If ``None`` then `p_max(n)` is used.
1124
+ k_offset : int
1125
+ Index of first sample (t = 0) in `x`.
1126
+ padding : 'zeros' | 'edge' | 'even' | 'odd'
1127
+ Kind of values which are added, when the sliding window sticks out
1128
+ on either the lower or upper end of the input `x`. Zeros are added
1129
+ if the default 'zeros' is set. For 'edge' either the first or the
1130
+ last value of `x` is used. 'even' pads by reflecting the
1131
+ signal on the first or last sample and 'odd' additionally
1132
+ multiplies it with -1.
1133
+ axis : int
1134
+ The axis of `x` over which to compute the STFT.
1135
+ If not given, the last axis is used.
1136
+
1137
+ Returns
1138
+ -------
1139
+ S : np.ndarray
1140
+ A complex array is returned with the dimension always being larger
1141
+ by one than of `x`. The last axis always represents the time slices
1142
+ of the STFT. `axis` defines the frequency axis (default second to
1143
+ last). E.g., for a one-dimensional `x`, a complex 2d array is
1144
+ returned, with axis 0 representing frequency and axis 1 the time
1145
+ slices.
1146
+
1147
+ See Also
1148
+ --------
1149
+ delta_f: Width of the frequency bins of the STFT.
1150
+ delta_t: Time increment of STFT
1151
+ f: Frequencies values of the STFT.
1152
+ invertible: Check if STFT is invertible.
1153
+ :meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
1154
+ p_range: Determine and validate slice index range.
1155
+ stft_detrend: STFT with detrended segments.
1156
+ t: Times of STFT for an input signal with `n` samples.
1157
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
1158
+ """
1159
+ return self.stft_detrend(x, None, p0, p1, k_offset=k_offset,
1160
+ padding=padding, axis=axis)
1161
+
1162
+ def stft_detrend(self, x: np.ndarray,
1163
+ detr: Callable[[np.ndarray], np.ndarray] | Literal['linear', 'constant'] | None, # noqa: E501
1164
+ p0: int | None = None, p1: int | None = None, *,
1165
+ k_offset: int = 0, padding: PAD_TYPE = 'zeros',
1166
+ axis: int = -1) \
1167
+ -> np.ndarray:
1168
+ """Calculate short-time Fourier transform with a trend being subtracted from
1169
+ each segment beforehand.
1170
+
1171
+ When the parameter `detr` is ``None``, this method's behavior is identical to
1172
+ the `~ShortTimeFFT.stft` method. Note that due to the detrending, the original
1173
+ signal cannot be reconstructed by the `~ShortTimeFFT.istft`.
1174
+
1175
+ Parameters
1176
+ ----------
1177
+ x : np.ndarray
1178
+ The input signal as real or complex valued array. For complex values, the
1179
+ property `fft_mode` must be set to 'twosided' or 'centered'.
1180
+ detr : 'linear' | 'constant' | Callable[[np.ndarray], np.ndarray] | None
1181
+ If 'constant', the mean is subtracted, if set to "linear", the linear
1182
+ trend is removed from each segment. This is achieved by calling
1183
+ `~scipy.signal.detrend`. If `detr` is a function with one parameter, `detr`
1184
+ is applied to each segment.
1185
+ p0 : int | None
1186
+ The first element of the range of slices to calculate. If ``None``
1187
+ then it is set to :attr:`p_min`, which is the smallest possible
1188
+ slice.
1189
+ p1 : int | None
1190
+ The end of the array. If ``None`` then `p_max(n)` is used.
1191
+ k_offset : int
1192
+ Index of first sample (t = 0) in `x`.
1193
+ padding : 'zeros' | 'edge' | 'even' | 'odd'
1194
+ Kind of values which are added, when the sliding window sticks out
1195
+ on either the lower or upper end of the input `x`. Zeros are added
1196
+ if the default 'zeros' is set. For 'edge' either the first or the
1197
+ last value of `x` is used. 'even' pads by reflecting the
1198
+ signal on the first or last sample and 'odd' additionally
1199
+ multiplies it with -1.
1200
+ axis: int
1201
+ The axis of `x` over which to compute the STFT.
1202
+ If not given, the last axis is used.
1203
+
1204
+ Returns
1205
+ -------
1206
+ S : np.ndarray
1207
+ A complex array is returned with the dimension always being larger
1208
+ by one than of `x`. The last axis always represents the time slices
1209
+ of the STFT. `axis` defines the frequency axis (default second to
1210
+ last). E.g., for a one-dimensional `x`, a complex 2d array is
1211
+ returned, with axis 0 representing frequency and axis 1 the time
1212
+ slices.
1213
+
1214
+ See Also
1215
+ --------
1216
+ invertible: Check if STFT is invertible.
1217
+ :meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
1218
+ :meth:`~ShortTimeFFT.stft`: Short-time Fourier transform
1219
+ (without detrending).
1220
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
1221
+ """
1222
+ if self.onesided_fft and np.iscomplexobj(x):
1223
+ raise ValueError(f"Complex-valued `x` not allowed for {self.fft_mode=}'! "
1224
+ "Set property `fft_mode` to 'twosided' or 'centered'.")
1225
+ if isinstance(detr, str):
1226
+ detr = partial(detrend, type=detr)
1227
+ elif not (detr is None or callable(detr)):
1228
+ raise ValueError(f"Parameter {detr=} is not a str, function or " +
1229
+ "None!")
1230
+ n = x.shape[axis]
1231
+ if not (n >= (m2p := self.m_num-self.m_num_mid)):
1232
+ e_str = f'{len(x)=}' if x.ndim == 1 else f'of {axis=} of {x.shape}'
1233
+ raise ValueError(f"{e_str} must be >= ceil(m_num/2) = {m2p}!")
1234
+
1235
+ if x.ndim > 1: # motivated by the NumPy broadcasting mechanisms:
1236
+ x = np.moveaxis(x, axis, -1)
1237
+ # determine slice index range:
1238
+ p0, p1 = self.p_range(n, p0, p1)
1239
+ S_shape_1d = (self.f_pts, p1 - p0)
1240
+ S_shape = x.shape[:-1] + S_shape_1d if x.ndim > 1 else S_shape_1d
1241
+ S = np.zeros(S_shape, dtype=complex)
1242
+ for p_, x_ in enumerate(self._x_slices(x, k_offset, p0, p1, padding)):
1243
+ if detr is not None:
1244
+ x_ = detr(x_)
1245
+ S[..., :, p_] = self._fft_func(x_ * self.win.conj())
1246
+ if x.ndim > 1:
1247
+ return np.moveaxis(S, -2, axis if axis >= 0 else axis-1)
1248
+ return S
1249
+
1250
+ def spectrogram(self, x: np.ndarray, y: np.ndarray | None = None,
1251
+ detr: Callable[[np.ndarray], np.ndarray] | Literal['linear', 'constant'] | None = None, # noqa: E501
1252
+ *,
1253
+ p0: int | None = None, p1: int | None = None,
1254
+ k_offset: int = 0, padding: PAD_TYPE = 'zeros',
1255
+ axis: int = -1) \
1256
+ -> np.ndarray:
1257
+ r"""Calculate spectrogram or cross-spectrogram.
1258
+
1259
+ The spectrogram is the absolute square of the STFT, i.e., it is
1260
+ ``abs(S[q,p])**2`` for given ``S[q,p]`` and thus is always
1261
+ non-negative.
1262
+ For two STFTs ``Sx[q,p], Sy[q,p]``, the cross-spectrogram is defined
1263
+ as ``Sx[q,p] * np.conj(Sy[q,p])`` and is complex-valued.
1264
+ This is a convenience function for calling `~ShortTimeFFT.stft` /
1265
+ `stft_detrend`, hence all parameters are discussed there.
1266
+
1267
+ Parameters
1268
+ ----------
1269
+ x : np.ndarray
1270
+ The input signal as real or complex valued array. For complex values, the
1271
+ property `fft_mode` must be set to 'twosided' or 'centered'.
1272
+ y : np.ndarray
1273
+ The second input signal of the same shape as `x`. If ``None``, it is
1274
+ assumed to be `x`. For complex values, the property `fft_mode` must be
1275
+ set to 'twosided' or 'centered'.
1276
+ detr : 'linear' | 'constant' | Callable[[np.ndarray], np.ndarray] | None
1277
+ If 'constant', the mean is subtracted, if set to "linear", the linear
1278
+ trend is removed from each segment. This is achieved by calling
1279
+ `~scipy.signal.detrend`. If `detr` is a function with one parameter, `detr`
1280
+ is applied to each segment. For ``None`` (default), no trends are removed.
1281
+ p0 : int | None
1282
+ The first element of the range of slices to calculate. If ``None``
1283
+ then it is set to :attr:`p_min`, which is the smallest possible
1284
+ slice.
1285
+ p1 : int | None
1286
+ The end of the array. If ``None`` then `p_max(n)` is used.
1287
+ k_offset : int
1288
+ Index of first sample (t = 0) in `x`.
1289
+ padding : 'zeros' | 'edge' | 'even' | 'odd'
1290
+ Kind of values which are added, when the sliding window sticks out
1291
+ on either the lower or upper end of the input `x`. Zeros are added
1292
+ if the default 'zeros' is set. For 'edge' either the first or the
1293
+ last value of `x` is used. 'even' pads by reflecting the
1294
+ signal on the first or last sample and 'odd' additionally
1295
+ multiplies it with -1.
1296
+ axis : int
1297
+ The axis of `x` over which to compute the STFT.
1298
+ If not given, the last axis is used.
1299
+
1300
+ Returns
1301
+ -------
1302
+ S_xy : np.ndarray
1303
+ A real-valued array with non-negative values is returned, if ``x is y`` or
1304
+ `y` is ``None``. The dimension is always by one larger than of `x`. The
1305
+ last axis always represents the time slices of the spectrogram. `axis`
1306
+ defines the frequency axis (default second to last). E.g., for a
1307
+ one-dimensional `x`, a complex 2d array is returned, with axis 0
1308
+ representing frequency and axis 1 the time slices.
1309
+
1310
+ Notes
1311
+ -----
1312
+ The cross-spectrogram may be interpreted as the time-frequency analogon of the
1313
+ cross-spectral density (consult `csd`). The absolute square `|Sxy|²` of a
1314
+ cross-spectrogram `Sxy` divided by the spectrograms `Sxx` and `Syy` can be
1315
+ interpreted as a coherence spectrogram ``Cxy := abs(Sxy)**2 / (Sxx*Syy)``,
1316
+ which is the time-frequency analogon to `~coherence`.
1317
+
1318
+ If the STFT is parametrized to be a unitary transform, i.e., utilitzing
1319
+ `~from_win_equals_dual`, then the value of the scalar product, hence also the
1320
+ energy, is preserved.
1321
+
1322
+ Examples
1323
+ --------
1324
+ The following example shows the spectrogram of a square wave with varying
1325
+ frequency :math:`f_i(t)` (marked by a green dashed line in the plot) sampled
1326
+ with 20 Hz. The utilized Gaussian window is 50 samples or 2.5 s long. For the
1327
+ `ShortTimeFFT`, the parameter ``mfft=800`` (oversampling factor 16) and the
1328
+ `hop` interval of 2 in was chosen to produce a sufficient number of points.
1329
+
1330
+ The plot's colormap is logarithmically scaled as the power spectral
1331
+ density is in dB. The time extent of the signal `x` is marked by
1332
+ vertical dashed lines, and the shaded areas mark the presence of border
1333
+ effects.
1334
+
1335
+ >>> import matplotlib.pyplot as plt
1336
+ >>> import numpy as np
1337
+ >>> from scipy.signal import square, ShortTimeFFT
1338
+ >>> from scipy.signal.windows import gaussian
1339
+ ...
1340
+ >>> T_x, N = 1 / 20, 1000 # 20 Hz sampling rate for 50 s signal
1341
+ >>> t_x = np.arange(N) * T_x # time indexes for signal
1342
+ >>> f_i = 5e-3*(t_x - t_x[N // 3])**2 + 1 # varying frequency
1343
+ >>> x = square(2*np.pi*np.cumsum(f_i)*T_x) # the signal
1344
+ ...
1345
+ >>> g_std = 12 # standard deviation for Gaussian window in samples
1346
+ >>> win = gaussian(50, std=g_std, sym=True) # symmetric Gaussian wind.
1347
+ >>> SFT = ShortTimeFFT(win, hop=2, fs=1/T_x, mfft=800, scale_to='psd')
1348
+ >>> Sx2 = SFT.spectrogram(x) # calculate absolute square of STFT
1349
+ ...
1350
+ >>> fig1, ax1 = plt.subplots(figsize=(6., 4.)) # enlarge plot a bit
1351
+ >>> t_lo, t_hi = SFT.extent(N)[:2] # time range of plot
1352
+ >>> ax1.set_title(rf"Spectrogram ({SFT.m_num*SFT.T:g}$\,s$ Gaussian " +
1353
+ ... rf"window, $\sigma_t={g_std*SFT.T:g}\,$s)")
1354
+ >>> ax1.set(xlabel=f"Time $t$ in seconds ({SFT.p_num(N)} slices, " +
1355
+ ... rf"$\Delta t = {SFT.delta_t:g}\,$s)",
1356
+ ... ylabel=f"Freq. $f$ in Hz ({SFT.f_pts} bins, " +
1357
+ ... rf"$\Delta f = {SFT.delta_f:g}\,$Hz)",
1358
+ ... xlim=(t_lo, t_hi))
1359
+ >>> Sx_dB = 10 * np.log10(np.fmax(Sx2, 1e-4)) # limit range to -40 dB
1360
+ >>> im1 = ax1.imshow(Sx_dB, origin='lower', aspect='auto',
1361
+ ... extent=SFT.extent(N), cmap='magma')
1362
+ >>> ax1.plot(t_x, f_i, 'g--', alpha=.5, label='$f_i(t)$')
1363
+ >>> fig1.colorbar(im1, label='Power Spectral Density ' +
1364
+ ... r"$20\,\log_{10}|S_x(t, f)|$ in dB")
1365
+ ...
1366
+ >>> # Shade areas where window slices stick out to the side:
1367
+ >>> for t0_, t1_ in [(t_lo, SFT.lower_border_end[0] * SFT.T),
1368
+ ... (SFT.upper_border_begin(N)[0] * SFT.T, t_hi)]:
1369
+ ... ax1.axvspan(t0_, t1_, color='w', linewidth=0, alpha=.3)
1370
+ >>> for t_ in [0, N * SFT.T]: # mark signal borders with vertical line
1371
+ ... ax1.axvline(t_, color='c', linestyle='--', alpha=0.5)
1372
+ >>> ax1.legend()
1373
+ >>> fig1.tight_layout()
1374
+ >>> plt.show()
1375
+
1376
+ The logarithmic scaling reveals the odd harmonics of the square wave,
1377
+ which are reflected at the Nyquist frequency of 10 Hz. This aliasing
1378
+ is also the main source of the noise artifacts in the plot.
1379
+
1380
+ See Also
1381
+ --------
1382
+ :meth:`~ShortTimeFFT.stft`: Perform the short-time Fourier transform.
1383
+ stft_detrend: STFT with a trend subtracted from each segment.
1384
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
1385
+ """
1386
+ Sx = self.stft_detrend(x, detr, p0, p1, k_offset=k_offset,
1387
+ padding=padding, axis=axis)
1388
+ if y is None or y is x: # do spectrogram:
1389
+ return Sx.real**2 + Sx.imag**2
1390
+ # Cross-spectrogram:
1391
+ Sy = self.stft_detrend(y, detr, p0, p1, k_offset=k_offset,
1392
+ padding=padding, axis=axis)
1393
+ return Sx * Sy.conj()
1394
+
1395
+ @property
1396
+ def dual_win(self) -> np.ndarray:
1397
+ """Dual window (canonical dual window by default).
1398
+
1399
+ A STFT can be interpreted as the input signal being expressed as a
1400
+ weighted sum of modulated and time-shifted dual windows. If no dual window is
1401
+ given on instantiation, the canonical dual window, i.e., the window with the
1402
+ minimal energy (i.e., minimal L²-norm) is calculated. Alternative means for
1403
+ determining dual windows are provided by `closest_STFT_dual_window` and the
1404
+ `from_win_equals_dual` class-method. Note that `win` is also always a
1405
+ dual window of `dual_win`.
1406
+
1407
+ `dual_win` has same length as `win`, namely `m_num` samples.
1408
+
1409
+ If the dual window cannot be calculated a ``ValueError`` is raised.
1410
+ This attribute is read only and calculated lazily.
1411
+ To make this array immutable, its WRITEABLE flag is set to ``FALSE``.
1412
+
1413
+ See Also
1414
+ --------
1415
+ m_num: Number of samples in window `win` and `dual_win`.
1416
+ win: Window function as real- or complex-valued 1d array.
1417
+ from_win_equals_dual: Create instance where `win` and `dual_win` are equal.
1418
+ closest_STFT_dual_window: Calculate dual window closest to a desired window.
1419
+ numpy.ndarray.setflags: Modify array flags.
1420
+ ShortTimeFFT: Class this property belongs to.
1421
+ """
1422
+ if self._dual_win is None:
1423
+ self._dual_win = _calc_dual_canonical_window(self.win, self.hop)
1424
+ self.dual_win.setflags(write=False)
1425
+ return self._dual_win
1426
+
1427
+ @property
1428
+ def invertible(self) -> bool:
1429
+ """Check if STFT is invertible.
1430
+
1431
+ This is achieved by trying to calculate the canonical dual window.
1432
+
1433
+ See Also
1434
+ --------
1435
+ :meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
1436
+ m_num: Number of samples in window `win` and `dual_win`.
1437
+ dual_win: Dual window.
1438
+ win: Window for STFT.
1439
+ ShortTimeFFT: Class this property belongs to.
1440
+ """
1441
+ try:
1442
+ return len(self.dual_win) > 0 # call self.dual_win()
1443
+ except ValueError:
1444
+ return False
1445
+
1446
+ def istft(self, S: np.ndarray, k0: int = 0, k1: int | None = None, *,
1447
+ f_axis: int = -2, t_axis: int = -1) \
1448
+ -> np.ndarray:
1449
+ """Inverse short-time Fourier transform.
1450
+
1451
+ It returns an array of dimension ``S.ndim - 1`` which is real
1452
+ if `onesided_fft` is set, else complex. If the STFT is not
1453
+ `invertible`, or the parameters are out of bounds a ``ValueError`` is
1454
+ raised.
1455
+
1456
+ Parameters
1457
+ ----------
1458
+ S
1459
+ A complex valued array where `f_axis` denotes the frequency
1460
+ values and the `t-axis` dimension the temporal values of the
1461
+ STFT values.
1462
+ k0, k1
1463
+ The start and the end index of the reconstructed signal. The
1464
+ default (``k0 = 0``, ``k1 = None``) assumes that the maximum length
1465
+ signal should be reconstructed.
1466
+ f_axis, t_axis
1467
+ The axes in `S` denoting the frequency and the time dimension.
1468
+
1469
+ Notes
1470
+ -----
1471
+ It is required that `S` has `f_pts` entries along the `f_axis`. For
1472
+ the `t_axis` it is assumed that the first entry corresponds to
1473
+ `p_min` * `delta_t` (being <= 0). The length of `t_axis` needs to be
1474
+ compatible with `k1`. I.e., ``S.shape[t_axis] >= self.p_max(k1)`` must
1475
+ hold, if `k1` is not ``None``. Else `k1` is set to `k_max` with::
1476
+
1477
+ q_max = S.shape[t_range] + self.p_min
1478
+ k_max = (q_max - 1) * self.hop + self.m_num - self.m_num_mid
1479
+
1480
+ The :ref:`tutorial_stft` section of the :ref:`user_guide` discussed the
1481
+ slicing behavior by means of an example.
1482
+
1483
+ See Also
1484
+ --------
1485
+ invertible: Check if STFT is invertible.
1486
+ :meth:`~ShortTimeFFT.stft`: Perform Short-time Fourier transform.
1487
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
1488
+ """
1489
+ if f_axis == t_axis:
1490
+ raise ValueError(f"{f_axis=} may not be equal to {t_axis=}!")
1491
+ if S.shape[f_axis] != self.f_pts:
1492
+ raise ValueError(f"{S.shape[f_axis]=} must be equal to " +
1493
+ f"{self.f_pts=} ({S.shape=})!")
1494
+ n_min = self.m_num-self.m_num_mid # minimum signal length
1495
+ if not (S.shape[t_axis] >= (q_num := self.p_num(n_min))):
1496
+ raise ValueError(f"{S.shape[t_axis]=} needs to have at least " +
1497
+ f"{q_num} slices ({S.shape=})!")
1498
+ if t_axis != S.ndim - 1 or f_axis != S.ndim - 2:
1499
+ t_axis = S.ndim + t_axis if t_axis < 0 else t_axis
1500
+ f_axis = S.ndim + f_axis if f_axis < 0 else f_axis
1501
+ S = np.moveaxis(S, (f_axis, t_axis), (-2, -1))
1502
+
1503
+ q_max = S.shape[-1] + self.p_min
1504
+ k_max = (q_max - 1) * self.hop + self.m_num - self.m_num_mid
1505
+
1506
+ k1 = k_max if k1 is None else k1
1507
+ if not (self.k_min <= k0 < k1 <= k_max):
1508
+ raise ValueError(f"({self.k_min=}) <= ({k0=}) < ({k1=}) <= " +
1509
+ f"({k_max=}) is false!")
1510
+ if not (num_pts := k1 - k0) >= n_min:
1511
+ raise ValueError(f"({k1=}) - ({k0=}) = {num_pts} has to be at " +
1512
+ f"least the half the window length {n_min}!")
1513
+
1514
+ q0 = (k0 // self.hop + self.p_min if k0 >= 0 else # p_min always <= 0
1515
+ k0 // self.hop)
1516
+ q1 = min(self.p_max(k1), q_max)
1517
+ k_q0, k_q1 = self.nearest_k_p(k0), self.nearest_k_p(k1, left=False)
1518
+ n_pts = k_q1 - k_q0 + self.m_num - self.m_num_mid
1519
+ x = np.zeros(S.shape[:-2] + (n_pts,),
1520
+ dtype=float if self.onesided_fft else complex)
1521
+ for q_ in range(q0, q1):
1522
+ xs = self._ifft_func(S[..., :, q_ - self.p_min]) * self.dual_win
1523
+ i0 = q_ * self.hop - self.m_num_mid
1524
+ i1 = min(i0 + self.m_num, n_pts+k0)
1525
+ j0, j1 = 0, i1 - i0
1526
+ if i0 < k0: # xs sticks out to the left on x:
1527
+ j0 += k0 - i0
1528
+ i0 = k0
1529
+ x[..., i0-k0:i1-k0] += xs[..., j0:j1]
1530
+ x = x[..., :k1-k0]
1531
+ if x.ndim > 1:
1532
+ x = np.moveaxis(x, -1, f_axis if f_axis < x.ndim else t_axis)
1533
+ return x
1534
+
1535
+ @property
1536
+ def fac_magnitude(self) -> float:
1537
+ """Factor to multiply the STFT values by to scale each frequency slice
1538
+ to a magnitude spectrum.
1539
+
1540
+ It is 1 if attribute ``scaling == 'magnitude'``.
1541
+ The window can be scaled to a magnitude spectrum by using the method
1542
+ `scale_to`.
1543
+
1544
+ See Also
1545
+ --------
1546
+ fac_psd: Scaling factor for to a power spectral density spectrum.
1547
+ scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
1548
+ scaling: Normalization applied to the window function.
1549
+ ShortTimeFFT: Class this property belongs to.
1550
+ """
1551
+ if self.scaling == 'magnitude':
1552
+ return 1
1553
+ if self._fac_mag is None:
1554
+ self._fac_mag = 1 / abs(sum(self.win))
1555
+ return self._fac_mag
1556
+
1557
+ @property
1558
+ def fac_psd(self) -> float:
1559
+ """Factor to multiply the STFT values by to scale each frequency slice
1560
+ to a power spectral density (PSD).
1561
+
1562
+ It is 1 if attribute ``scaling == 'psd'``.
1563
+ The window can be scaled to a psd spectrum by using the method
1564
+ `scale_to`.
1565
+
1566
+ See Also
1567
+ --------
1568
+ fac_magnitude: Scaling factor for to a magnitude spectrum.
1569
+ scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
1570
+ scaling: Normalization applied to the window function.
1571
+ ShortTimeFFT: Class this property belongs to.
1572
+ """
1573
+ if self.scaling == 'psd':
1574
+ return 1
1575
+ if self._fac_psd is None:
1576
+ self._fac_psd = 1 / np.sqrt(
1577
+ sum(self.win.real**2+self.win.imag**2) / self.T)
1578
+ return self._fac_psd
1579
+
1580
+ @property
1581
+ def m_num(self) -> int:
1582
+ """Number of samples in window `win`.
1583
+
1584
+ Note that the FFT can be oversampled by zero-padding. This is achieved
1585
+ by setting the `mfft` property.
1586
+
1587
+ See Also
1588
+ --------
1589
+ m_num_mid: Center index of window `win`.
1590
+ mfft: Length of input for the FFT used - may be larger than `m_num`.
1591
+ hop: Time increment in signal samples for sliding window.
1592
+ win: Window function as real- or complex-valued 1d array.
1593
+ ShortTimeFFT: Class this property belongs to.
1594
+ """
1595
+ return len(self.win)
1596
+
1597
+ @property
1598
+ def m_num_mid(self) -> int:
1599
+ """Center index of window `win`.
1600
+
1601
+ For odd `m_num`, ``(m_num - 1) / 2`` is returned and
1602
+ for even `m_num` (per definition) ``m_num / 2`` is returned.
1603
+
1604
+ See Also
1605
+ --------
1606
+ m_num: Number of samples in window `win`.
1607
+ mfft: Length of input for the FFT used - may be larger than `m_num`.
1608
+ hop: ime increment in signal samples for sliding window.
1609
+ win: Window function as real- or complex-valued 1d array.
1610
+ ShortTimeFFT: Class this property belongs to.
1611
+ """
1612
+ return self.m_num // 2
1613
+
1614
+ @cached_property
1615
+ def _pre_padding(self) -> tuple[int, int]:
1616
+ """Smallest signal index and slice index due to padding.
1617
+
1618
+ Since, per convention, for time t=0, n,q is zero, the returned values
1619
+ are negative or zero.
1620
+ """
1621
+ w2 = self.win.real**2 + self.win.imag**2
1622
+ # move window to the left until the overlap with t >= 0 vanishes:
1623
+ n0 = -self.m_num_mid
1624
+ for p_, n_ in enumerate(range(n0, n0-self.m_num-1, -self.hop)):
1625
+ n_next = n_ - self.hop
1626
+ if n_next + self.m_num <= 0 or all(w2[n_next:] == 0):
1627
+ return n_, -p_
1628
+ # Make the linter happy:
1629
+ raise RuntimeError("This code line should never run! Please file a bug.")
1630
+
1631
+ @property
1632
+ def k_min(self) -> int:
1633
+ """The smallest possible signal index of the STFT.
1634
+
1635
+ `k_min` is the index of the left-most non-zero value of the lowest
1636
+ slice `p_min`. Since the zeroth slice is centered over the zeroth
1637
+ sample of the input signal, `k_min` is never positive.
1638
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1639
+ section of the :ref:`user_guide`.
1640
+
1641
+ See Also
1642
+ --------
1643
+ k_max: First sample index after signal end not touched by a time slice.
1644
+ lower_border_end: Where pre-padding effects end.
1645
+ p_min: The smallest possible slice index.
1646
+ p_max: Index of first non-overlapping upper time slice.
1647
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1648
+ p_range: Determine and validate slice index range.
1649
+ upper_border_begin: Where post-padding effects start.
1650
+ ShortTimeFFT: Class this property belongs to.
1651
+ """
1652
+ return self._pre_padding[0]
1653
+
1654
+ @property
1655
+ def p_min(self) -> int:
1656
+ """The smallest possible slice index.
1657
+
1658
+ `p_min` is the index of the left-most slice, where the window still
1659
+ sticks into the signal, i.e., has non-zero part for t >= 0.
1660
+ `k_min` is the smallest index where the window function of the slice
1661
+ `p_min` is non-zero.
1662
+
1663
+ Since, per convention the zeroth slice is centered at t=0,
1664
+ `p_min` <= 0 always holds.
1665
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1666
+ section of the :ref:`user_guide`.
1667
+
1668
+ See Also
1669
+ --------
1670
+ k_min: The smallest possible signal index.
1671
+ k_max: First sample index after signal end not touched by a time slice.
1672
+ p_max: Index of first non-overlapping upper time slice.
1673
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1674
+ p_range: Determine and validate slice index range.
1675
+ ShortTimeFFT: Class this property belongs to.
1676
+ """
1677
+ return self._pre_padding[1]
1678
+
1679
+ def _post_padding(self, n: int) -> tuple[int, int]:
1680
+ """Largest signal index and slice index due to padding.
1681
+
1682
+ Parameters
1683
+ ----------
1684
+ n : int
1685
+ Number of samples of input signal (must be ≥ half of the window length).
1686
+
1687
+ Notes
1688
+ -----
1689
+ Note that the return values are cached together with the parameter `n` to avoid
1690
+ unnecessary recalculations.
1691
+ """
1692
+ if not (n >= (m2p := self.m_num - self.m_num_mid)):
1693
+ raise ValueError(f"Parameter n must be >= ceil(m_num/2) = {m2p}!")
1694
+ last_arg, last_return_value = self._cache_post_padding
1695
+ if n == last_arg: # use cached value:
1696
+ return last_return_value
1697
+ w2 = self.win.real**2 + self.win.imag**2
1698
+ # move window to the right until the overlap for t < t[n] vanishes:
1699
+ q1 = n // self.hop # last slice index with t[p1] <= t[n]
1700
+ k1 = q1 * self.hop - self.m_num_mid
1701
+ for q_, k_ in enumerate(range(k1, n+self.m_num, self.hop), start=q1):
1702
+ n_next = k_ + self.hop
1703
+ if n_next >= n or all(w2[:n-n_next] == 0):
1704
+ return_value = k_ + self.m_num, q_ + 1
1705
+ self._cache_post_padding = n, return_value
1706
+ return return_value
1707
+ raise RuntimeError("This code line should never run! Please file a bug.")
1708
+ # If this case is reached, it probably means the last slice should be
1709
+ # returned, i.e.: return k1 + self.m_num - self.m_num_mid, q1 + 1
1710
+
1711
+ def k_max(self, n: int) -> int:
1712
+ """First sample index after signal end not touched by a time slice.
1713
+
1714
+ `k_max` - 1 is the largest sample index of the slice `p_max` - 1 for a
1715
+ given input signal of `n` samples.
1716
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1717
+ section of the :ref:`user_guide`.
1718
+
1719
+ Parameters
1720
+ ----------
1721
+ n : int
1722
+ Number of samples of input signal (must be ≥ half of the window length).
1723
+
1724
+ See Also
1725
+ --------
1726
+ k_min: The smallest possible signal index.
1727
+ p_min: The smallest possible slice index.
1728
+ p_max: Index of first non-overlapping upper time slice.
1729
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1730
+ p_range: Determine and validate slice index range.
1731
+ ShortTimeFFT: Class this method belongs to.
1732
+ """
1733
+ return self._post_padding(n)[0]
1734
+
1735
+ def p_max(self, n: int) -> int:
1736
+ """Index of first non-overlapping upper time slice for `n` sample
1737
+ input.
1738
+
1739
+ Note that center point t[p_max] = (p_max(n)-1) * `delta_t` is typically
1740
+ larger than last time index t[n-1] == (`n`-1) * `T`. The upper border
1741
+ of samples indexes covered by the window slices is given by `k_max`.
1742
+ Furthermore, `p_max` does not denote the number of slices `p_num` since
1743
+ `p_min` is typically less than zero.
1744
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1745
+ section of the :ref:`user_guide`.
1746
+
1747
+ See Also
1748
+ --------
1749
+ k_min: The smallest possible signal index.
1750
+ k_max: First sample index after signal end not touched by a time slice.
1751
+ p_min: The smallest possible slice index.
1752
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1753
+ p_range: Determine and validate slice index range.
1754
+ ShortTimeFFT: Class this method belongs to.
1755
+ """
1756
+ return self._post_padding(n)[1]
1757
+
1758
+ def p_num(self, n: int) -> int:
1759
+ """Number of time slices for an input signal with `n` samples.
1760
+
1761
+ It is given by `p_num` = `p_max` - `p_min` with `p_min` typically
1762
+ being negative.
1763
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1764
+ section of the :ref:`user_guide`.
1765
+
1766
+ See Also
1767
+ --------
1768
+ k_min: The smallest possible signal index.
1769
+ k_max: First sample index after signal end not touched by a time slice.
1770
+ lower_border_end: Where pre-padding effects end.
1771
+ p_min: The smallest possible slice index.
1772
+ p_max: Index of first non-overlapping upper time slice.
1773
+ p_range: Determine and validate slice index range.
1774
+ upper_border_begin: Where post-padding effects start.
1775
+ ShortTimeFFT: Class this method belongs to.
1776
+ """
1777
+ return self.p_max(n) - self.p_min
1778
+
1779
+ @property
1780
+ def lower_border_end(self) -> tuple[int, int]:
1781
+ """First signal index and first slice index unaffected by pre-padding.
1782
+
1783
+ Describes the point where the window does not stick out to the left
1784
+ of the signal domain.
1785
+ A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
1786
+ section of the :ref:`user_guide`.
1787
+
1788
+ See Also
1789
+ --------
1790
+ k_min: The smallest possible signal index.
1791
+ k_max: First sample index after signal end not touched by a time slice.
1792
+ lower_border_end: Where pre-padding effects end.
1793
+ p_min: The smallest possible slice index.
1794
+ p_max: Index of first non-overlapping upper time slice.
1795
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1796
+ p_range: Determine and validate slice index range.
1797
+ upper_border_begin: Where post-padding effects start.
1798
+ ShortTimeFFT: Class this property belongs to.
1799
+ """
1800
+ if self._lower_border_end is not None:
1801
+ return self._lower_border_end
1802
+
1803
+ # first non-zero element in self.win:
1804
+ m0 = np.flatnonzero(self.win.real**2 + self.win.imag**2)[0]
1805
+
1806
+ # move window to the right until does not stick out to the left:
1807
+ k0 = -self.m_num_mid + m0
1808
+ for q_, k_ in enumerate(range(k0, self.hop + 1, self.hop)):
1809
+ if k_ + self.hop >= 0: # next entry does not stick out anymore
1810
+ self._lower_border_end = (k_ + self.m_num, q_ + 1)
1811
+ return self._lower_border_end
1812
+ self._lower_border_end = (0, max(self.p_min, 0)) # ends at first slice
1813
+ return self._lower_border_end
1814
+
1815
+ def upper_border_begin(self, n: int) -> tuple[int, int]:
1816
+ """First signal index and first slice index affected by post-padding.
1817
+
1818
+ Describes the point where the window does begin stick out to the right
1819
+ of the signal domain.
1820
+ A detailed example is given :ref:`tutorial_stft_sliding_win` section
1821
+ of the :ref:`user_guide`.
1822
+
1823
+ Parameters
1824
+ ----------
1825
+ n : int
1826
+ Number of samples of input signal (must be ≥ half of the window length).
1827
+
1828
+ Returns
1829
+ -------
1830
+ k_ub : int
1831
+ Lowest signal index, where a touching time slice sticks out past the
1832
+ signal end.
1833
+ p_ub : int
1834
+ Lowest index of time slice of which the end sticks out past the signal end.
1835
+
1836
+ Notes
1837
+ -----
1838
+ Note that the return values are cached together with the parameter `n` to avoid
1839
+ unnecessary recalculations.
1840
+
1841
+ See Also
1842
+ --------
1843
+ k_min: The smallest possible signal index.
1844
+ k_max: First sample index after signal end not touched by a time slice.
1845
+ lower_border_end: Where pre-padding effects end.
1846
+ p_min: The smallest possible slice index.
1847
+ p_max: Index of first non-overlapping upper time slice.
1848
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1849
+ p_range: Determine and validate slice index range.
1850
+ ShortTimeFFT: Class this method belongs to.
1851
+ """
1852
+ if not (n >= (m2p := self.m_num - self.m_num_mid)):
1853
+ raise ValueError(f"Parameter n must be >= ceil(m_num/2) = {m2p}!")
1854
+ last_arg, last_return_value = self._cache_upper_border_begin
1855
+ if n == last_arg: # use cached value:
1856
+ return last_return_value
1857
+ w2 = self.win.real**2 + self.win.imag**2
1858
+ q2 = n // self.hop + 1 # first t[q] >= t[n]
1859
+ q1 = max((n-self.m_num) // self.hop - 1, -1)
1860
+ # move window left until does not stick out to the right:
1861
+ for q_ in range(q2, q1, -1):
1862
+ k_ = q_ * self.hop + (self.m_num - self.m_num_mid)
1863
+ if k_ <= n or all(w2[n-k_:] == 0):
1864
+ return_value = (q_ + 1) * self.hop - self.m_num_mid, q_ + 1
1865
+ self. _cache_upper_border_begin = n, return_value
1866
+ return return_value
1867
+ # make linter happy:
1868
+ raise RuntimeError("This code line should never run! Please file a bug.")
1869
+
1870
+ @property
1871
+ def delta_t(self) -> float:
1872
+ """Time increment of STFT.
1873
+
1874
+ The time increment `delta_t` = `T` * `hop` represents the sample
1875
+ increment `hop` converted to time based on the sampling interval `T`.
1876
+
1877
+ See Also
1878
+ --------
1879
+ delta_f: Width of the frequency bins of the STFT.
1880
+ hop: Hop size in signal samples for sliding window.
1881
+ t: Times of STFT for an input signal with `n` samples.
1882
+ T: Sampling interval of input signal and window `win`.
1883
+ ShortTimeFFT: Class this property belongs to
1884
+ """
1885
+ return self.T * self.hop
1886
+
1887
+ def p_range(self, n: int, p0: int | None = None,
1888
+ p1: int | None = None) -> tuple[int, int]:
1889
+ """Determine and validate slice index range.
1890
+
1891
+ Parameters
1892
+ ----------
1893
+ n : int
1894
+ Number of samples of input signal, assuming t[0] = 0.
1895
+ p0 : int | None
1896
+ First slice index. If 0 then the first slice is centered at t = 0.
1897
+ If ``None`` then `p_min` is used. Note that p0 may be < 0 if
1898
+ slices are left of t = 0.
1899
+ p1 : int | None
1900
+ End of interval (last value is p1-1).
1901
+ If ``None`` then `p_max(n)` is used.
1902
+
1903
+
1904
+ Returns
1905
+ -------
1906
+ p0_ : int
1907
+ The fist slice index
1908
+ p1_ : int
1909
+ End of interval (last value is p1-1).
1910
+
1911
+ Notes
1912
+ -----
1913
+ A ``ValueError`` is raised if ``p_min <= p0 < p1 <= p_max(n)`` does not
1914
+ hold.
1915
+
1916
+ See Also
1917
+ --------
1918
+ k_min: The smallest possible signal index.
1919
+ k_max: First sample index after signal end not touched by a time slice.
1920
+ lower_border_end: Where pre-padding effects end.
1921
+ p_min: The smallest possible slice index.
1922
+ p_max: Index of first non-overlapping upper time slice.
1923
+ p_num: Number of time slices, i.e., `p_max` - `p_min`.
1924
+ upper_border_begin: Where post-padding effects start.
1925
+ ShortTimeFFT: Class this property belongs to.
1926
+ """
1927
+ p_max = self.p_max(n) # shorthand
1928
+ p0_ = self.p_min if p0 is None else p0
1929
+ p1_ = p_max if p1 is None else p1
1930
+ if not (self.p_min <= p0_ < p1_ <= p_max):
1931
+ raise ValueError(f"Invalid Parameter {p0=}, {p1=}, i.e., " +
1932
+ f"{self.p_min=} <= p0 < p1 <= {p_max=} " +
1933
+ f"does not hold for signal length {n=}!")
1934
+ return p0_, p1_
1935
+
1936
+ def t(self, n: int, p0: int | None = None, p1: int | None = None,
1937
+ k_offset: int = 0) -> np.ndarray:
1938
+ """Times of STFT for an input signal with `n` samples.
1939
+
1940
+ Returns a 1d array with times of the `~ShortTimeFFT.stft` values with
1941
+ the same parametrization. Note that the slices are
1942
+ ``delta_t = hop * T`` time units apart.
1943
+
1944
+ Parameters
1945
+ ----------
1946
+ n
1947
+ Number of sample of the input signal.
1948
+ p0
1949
+ The first element of the range of slices to calculate. If ``None``
1950
+ then it is set to :attr:`p_min`, which is the smallest possible
1951
+ slice.
1952
+ p1
1953
+ The end of the array. If ``None`` then `p_max(n)` is used.
1954
+ k_offset
1955
+ Index of first sample (t = 0) in `x`.
1956
+
1957
+ Notes
1958
+ -----
1959
+ Note that the returned array is cached together with the method's call
1960
+ parameters to avoid unnecessary recalculations.
1961
+
1962
+ See Also
1963
+ --------
1964
+ delta_t: Time increment of STFT (``hop*T``)
1965
+ hop: Time increment in signal samples for sliding window.
1966
+ nearest_k_p: Nearest sample index k_p for which t[k_p] == t[p] holds.
1967
+ T: Sampling interval of input signal and of the window (``1/fs``).
1968
+ fs: Sampling frequency (being ``1/T``)
1969
+ ShortTimeFFT: Class this method belongs to.
1970
+ """
1971
+ if not (n > 0 and isinstance(n, int | np.integer)):
1972
+ raise ValueError(f"Parameter {n=} is not a positive integer!")
1973
+ args = n, p0, p1, k_offset, self.T # since `self.T` is mutable, it's needed too
1974
+ last_args, last_return_value = self._cache_t
1975
+ if args == last_args: # use cached value:
1976
+ return last_return_value
1977
+
1978
+ p0, p1 = self.p_range(n, p0, p1)
1979
+ return_value = np.arange(p0, p1) * self.delta_t + k_offset * self.T
1980
+
1981
+ self._cache_t = args, return_value
1982
+ return return_value
1983
+
1984
+ def nearest_k_p(self, k: int, left: bool = True) -> int:
1985
+ """Return nearest sample index k_p for which t[k_p] == t[p] holds.
1986
+
1987
+ The nearest next smaller time sample p (where t[p] is the center
1988
+ position of the window of the p-th slice) is p_k = k // `hop`.
1989
+ If `hop` is a divisor of `k` then `k` is returned.
1990
+ If `left` is set then p_k * `hop` is returned else (p_k+1) * `hop`.
1991
+
1992
+ This method can be used to slice an input signal into chunks for
1993
+ calculating the STFT and iSTFT incrementally.
1994
+
1995
+ See Also
1996
+ --------
1997
+ delta_t: Time increment of STFT (``hop*T``)
1998
+ hop: Time increment in signal samples for sliding window.
1999
+ T: Sampling interval of input signal and of the window (``1/fs``).
2000
+ fs: Sampling frequency (being ``1/T``)
2001
+ t: Times of STFT for an input signal with `n` samples.
2002
+ ShortTimeFFT: Class this method belongs to.
2003
+ """
2004
+ p_q, remainder = divmod(k, self.hop)
2005
+ if remainder == 0:
2006
+ return k
2007
+ return p_q * self.hop if left else (p_q + 1) * self.hop
2008
+
2009
+ @property
2010
+ def delta_f(self) -> float:
2011
+ """Width of the frequency bins of the STFT.
2012
+
2013
+ Return the frequency interval `delta_f` = 1 / (`mfft` * `T`).
2014
+
2015
+ See Also
2016
+ --------
2017
+ delta_t: Time increment of STFT.
2018
+ f_pts: Number of points along the frequency axis.
2019
+ f: Frequencies values of the STFT.
2020
+ mfft: Length of the input for FFT used.
2021
+ T: Sampling interval.
2022
+ t: Times of STFT for an input signal with `n` samples.
2023
+ ShortTimeFFT: Class this property belongs to.
2024
+ """
2025
+ return 1 / (self.mfft * self.T)
2026
+
2027
+ @property
2028
+ def f_pts(self) -> int:
2029
+ """Number of points along the frequency axis.
2030
+
2031
+ See Also
2032
+ --------
2033
+ delta_f: Width of the frequency bins of the STFT.
2034
+ f: Frequencies values of the STFT.
2035
+ mfft: Length of the input for FFT used.
2036
+ ShortTimeFFT: Class this property belongs to.
2037
+ """
2038
+ return self.mfft // 2 + 1 if self.onesided_fft else self.mfft
2039
+
2040
+ @property
2041
+ def onesided_fft(self) -> bool:
2042
+ """Return True if a one-sided FFT is used.
2043
+
2044
+ Returns ``True`` if `fft_mode` is either 'onesided' or 'onesided2X'.
2045
+
2046
+ See Also
2047
+ --------
2048
+ fft_mode: Utilized FFT ('twosided', 'centered', 'onesided' or
2049
+ 'onesided2X')
2050
+ ShortTimeFFT: Class this property belongs to.
2051
+ """
2052
+ return self.fft_mode in {'onesided', 'onesided2X'}
2053
+
2054
+ @property
2055
+ def f(self) -> np.ndarray:
2056
+ """Frequencies values of the STFT.
2057
+
2058
+ A 1d array of length `f_pts` with `delta_f` spaced entries is returned.
2059
+ This array is calculated lazily.
2060
+
2061
+ See Also
2062
+ --------
2063
+ delta_f: Width of the frequency bins of the STFT.
2064
+ f_pts: Number of points along the frequency axis.
2065
+ mfft: Length of the input for FFT used.
2066
+ ShortTimeFFT: Class this property belongs to.
2067
+ """
2068
+ last_state, last_return_value = self._cache_f
2069
+ current_state = self.fft_mode, self.mfft, self.T
2070
+ if current_state == last_state: # use cached value:
2071
+ return last_return_value
2072
+
2073
+ if self.fft_mode in {'onesided', 'onesided2X'}:
2074
+ return_value = fft_lib.rfftfreq(self.mfft, self.T)
2075
+ elif self.fft_mode == 'twosided':
2076
+ return_value = fft_lib.fftfreq(self.mfft, self.T)
2077
+ elif self.fft_mode == 'centered':
2078
+ return_value = fft_lib.fftshift(fft_lib.fftfreq(self.mfft, self.T))
2079
+ else: # This should never happen but makes the Linters happy:
2080
+ fft_modes = get_args(FFT_MODE_TYPE)
2081
+ raise RuntimeError(f"{self.fft_mode=} not in {fft_modes}!")
2082
+ self._cache_f = current_state, return_value
2083
+ return return_value
2084
+
2085
+ def _fft_func(self, x: np.ndarray) -> np.ndarray:
2086
+ """FFT based on the `fft_mode`, `mfft`, `scaling` and `phase_shift`
2087
+ attributes.
2088
+
2089
+ For multidimensional arrays the transformation is carried out on the
2090
+ last axis.
2091
+ """
2092
+ if self.phase_shift is not None:
2093
+ if x.shape[-1] < self.mfft: # zero pad if needed
2094
+ z_shape = list(x.shape)
2095
+ z_shape[-1] = self.mfft - x.shape[-1]
2096
+ x = np.hstack((x, np.zeros(z_shape, dtype=x.dtype)))
2097
+ p_s = (self.phase_shift + self.m_num_mid) % self.m_num
2098
+ x = np.roll(x, -p_s, axis=-1)
2099
+
2100
+ if self.fft_mode == 'twosided':
2101
+ return fft_lib.fft(x, n=self.mfft, axis=-1)
2102
+ if self.fft_mode == 'centered':
2103
+ return fft_lib.fftshift(fft_lib.fft(x, self.mfft, axis=-1), axes=-1)
2104
+ if self.fft_mode == 'onesided':
2105
+ return fft_lib.rfft(x, n=self.mfft, axis=-1)
2106
+ if self.fft_mode == 'onesided2X':
2107
+ X = fft_lib.rfft(x, n=self.mfft, axis=-1)
2108
+ # Either squared magnitude (psd) or magnitude is doubled:
2109
+ fac = np.sqrt(2) if self.scaling == 'psd' else 2
2110
+ # For even input length, the last entry is unpaired:
2111
+ X[..., 1: -1 if self.mfft % 2 == 0 else None] *= fac
2112
+ return X
2113
+ # This should never happen but makes the Linter happy:
2114
+ fft_modes = get_args(FFT_MODE_TYPE)
2115
+ raise RuntimeError(f"{self.fft_mode=} not in {fft_modes}!")
2116
+
2117
+ def _ifft_func(self, X: np.ndarray) -> np.ndarray:
2118
+ """Inverse to `_fft_func`.
2119
+
2120
+ Returned is an array of length `m_num`. If the FFT is `onesided`
2121
+ then a float array is returned else a complex array is returned.
2122
+ For multidimensional arrays the transformation is carried out on the
2123
+ last axis.
2124
+ """
2125
+ if self.fft_mode == 'twosided':
2126
+ x = fft_lib.ifft(X, n=self.mfft, axis=-1)
2127
+ elif self.fft_mode == 'centered':
2128
+ x = fft_lib.ifft(fft_lib.ifftshift(X, axes=-1), n=self.mfft, axis=-1)
2129
+ elif self.fft_mode == 'onesided':
2130
+ x = fft_lib.irfft(X, n=self.mfft, axis=-1)
2131
+ elif self.fft_mode == 'onesided2X':
2132
+ Xc = X.copy() # we do not want to modify function parameters
2133
+ fac = np.sqrt(2) if self.scaling == 'psd' else 2
2134
+ # For even length X the last value is not paired with a negative
2135
+ # value on the two-sided FFT:
2136
+ q1 = -1 if self.mfft % 2 == 0 else None
2137
+ Xc[..., 1:q1] /= fac
2138
+ x = fft_lib.irfft(Xc, n=self.mfft, axis=-1)
2139
+ else: # This should never happen but makes the Linter happy:
2140
+ raise RuntimeError(f"{self.fft_mode=} not in {get_args(FFT_MODE_TYPE)}!")
2141
+
2142
+ if self.phase_shift is None:
2143
+ return x[..., :self.m_num]
2144
+ p_s = (self.phase_shift + self.m_num_mid) % self.m_num
2145
+ return np.roll(x, p_s, axis=-1)[..., :self.m_num]
2146
+
2147
+ def extent(self, n: int, axes_seq: Literal['tf', 'ft'] = 'tf',
2148
+ center_bins: bool = False) -> tuple[float, float, float, float]:
2149
+ """Return minimum and maximum values time-frequency values.
2150
+
2151
+ A tuple with four floats ``(t0, t1, f0, f1)`` for 'tf' and
2152
+ ``(f0, f1, t0, t1)`` for 'ft' is returned describing the corners
2153
+ of the time-frequency domain of the `~ShortTimeFFT.stft`.
2154
+ That tuple can be passed to `matplotlib.pyplot.imshow` as a parameter
2155
+ with the same name.
2156
+
2157
+ Parameters
2158
+ ----------
2159
+ n : int
2160
+ Number of samples in input signal.
2161
+ axes_seq : {'tf', 'ft'}
2162
+ Return time extent first and then frequency extent or vice versa.
2163
+ center_bins: bool
2164
+ If set (default ``False``), the values of the time slots and
2165
+ frequency bins are moved from the side the middle. This is useful,
2166
+ when plotting the `~ShortTimeFFT.stft` values as step functions,
2167
+ i.e., with no interpolation.
2168
+
2169
+ See Also
2170
+ --------
2171
+ :func:`matplotlib.pyplot.imshow`: Display data as an image.
2172
+ :class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
2173
+
2174
+ Examples
2175
+ --------
2176
+ The following two plots illustrate the effect of the parameter `center_bins`:
2177
+ The grid lines represent the three time and the four frequency values of the
2178
+ STFT.
2179
+ The left plot, where ``(t0, t1, f0, f1) = (0, 3, 0, 4)`` is passed as parameter
2180
+ ``extent`` to `~matplotlib.pyplot.imshow`, shows the standard behavior of the
2181
+ time and frequency values being at the lower edge of the corrsponding bin.
2182
+ The right plot, with ``(t0, t1, f0, f1) = (-0.5, 2.5, -0.5, 3.5)``, shows that
2183
+ the bins are centered over the respective values when passing
2184
+ ``center_bins=True``.
2185
+
2186
+ >>> import matplotlib.pyplot as plt
2187
+ >>> import numpy as np
2188
+ >>> from scipy.signal import ShortTimeFFT
2189
+ ...
2190
+ >>> n, m = 12, 6
2191
+ >>> SFT = ShortTimeFFT.from_window('hann', fs=m, nperseg=m, noverlap=0)
2192
+ >>> Sxx = SFT.stft(np.cos(np.arange(n))) # produces a colorful plot
2193
+ ...
2194
+ >>> fig, axx = plt.subplots(1, 2, tight_layout=True, figsize=(6., 4.))
2195
+ >>> for ax_, center_bins in zip(axx, (False, True)):
2196
+ ... ax_.imshow(abs(Sxx), origin='lower', interpolation=None, aspect='equal',
2197
+ ... cmap='viridis', extent=SFT.extent(n, 'tf', center_bins))
2198
+ ... ax_.set_title(f"{center_bins=}")
2199
+ ... ax_.set_xlabel(f"Time ({SFT.p_num(n)} points, Δt={SFT.delta_t})")
2200
+ ... ax_.set_ylabel(f"Frequency ({SFT.f_pts} points, Δf={SFT.delta_f})")
2201
+ ... ax_.set_xticks(SFT.t(n)) # vertical grid line are timestamps
2202
+ ... ax_.set_yticks(SFT.f) # horizontal grid line are frequency values
2203
+ ... ax_.grid(True)
2204
+ >>> plt.show()
2205
+
2206
+ Note that the step-like behavior with the constant colors is caused by passing
2207
+ ``interpolation=None`` to `~matplotlib.pyplot.imshow`.
2208
+ """
2209
+ if axes_seq not in ('tf', 'ft'):
2210
+ raise ValueError(f"Parameter {axes_seq=} not in ['tf', 'ft']!")
2211
+
2212
+ if self.onesided_fft:
2213
+ q0, q1 = 0, self.f_pts
2214
+ elif self.fft_mode == 'centered':
2215
+ q0 = -(self.mfft // 2)
2216
+ q1 = self.mfft // 2 if self.mfft % 2 == 0 else self.mfft // 2 + 1
2217
+ else:
2218
+ raise ValueError(f"Attribute fft_mode={self.fft_mode} must be " +
2219
+ "in ['centered', 'onesided', 'onesided2X']")
2220
+
2221
+ p0, p1 = self.p_min, self.p_max(n) # shorthand
2222
+ if center_bins:
2223
+ t0, t1 = self.delta_t * (p0 - 0.5), self.delta_t * (p1 - 0.5)
2224
+ f0, f1 = self.delta_f * (q0 - 0.5), self.delta_f * (q1 - 0.5)
2225
+ else:
2226
+ t0, t1 = self.delta_t * p0, self.delta_t * p1
2227
+ f0, f1 = self.delta_f * q0, self.delta_f * q1
2228
+ return (t0, t1, f0, f1) if axes_seq == 'tf' else (f0, f1, t0, t1)