scipy 1.16.2__cp314-cp314-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/__config__.py +161 -0
- scipy/__init__.py +150 -0
- scipy/_cyutility.cp314-win_arm64.lib +0 -0
- scipy/_cyutility.cp314-win_arm64.pyd +0 -0
- scipy/_distributor_init.py +18 -0
- scipy/_lib/__init__.py +14 -0
- scipy/_lib/_array_api.py +931 -0
- scipy/_lib/_array_api_compat_vendor.py +9 -0
- scipy/_lib/_array_api_no_0d.py +103 -0
- scipy/_lib/_bunch.py +229 -0
- scipy/_lib/_ccallback.py +251 -0
- scipy/_lib/_ccallback_c.cp314-win_arm64.lib +0 -0
- scipy/_lib/_ccallback_c.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_disjoint_set.py +254 -0
- scipy/_lib/_docscrape.py +761 -0
- scipy/_lib/_elementwise_iterative_method.py +346 -0
- scipy/_lib/_fpumode.cp314-win_arm64.lib +0 -0
- scipy/_lib/_fpumode.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_gcutils.py +105 -0
- scipy/_lib/_pep440.py +487 -0
- scipy/_lib/_sparse.py +41 -0
- scipy/_lib/_test_ccallback.cp314-win_arm64.lib +0 -0
- scipy/_lib/_test_ccallback.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_call.cp314-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_call.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_def.cp314-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_def.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_testutils.py +373 -0
- scipy/_lib/_threadsafety.py +58 -0
- scipy/_lib/_tmpdirs.py +86 -0
- scipy/_lib/_uarray/LICENSE +29 -0
- scipy/_lib/_uarray/__init__.py +116 -0
- scipy/_lib/_uarray/_backend.py +707 -0
- scipy/_lib/_uarray/_uarray.cp314-win_arm64.lib +0 -0
- scipy/_lib/_uarray/_uarray.cp314-win_arm64.pyd +0 -0
- scipy/_lib/_util.py +1283 -0
- scipy/_lib/array_api_compat/__init__.py +22 -0
- scipy/_lib/array_api_compat/_internal.py +59 -0
- scipy/_lib/array_api_compat/common/__init__.py +1 -0
- scipy/_lib/array_api_compat/common/_aliases.py +727 -0
- scipy/_lib/array_api_compat/common/_fft.py +213 -0
- scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
- scipy/_lib/array_api_compat/common/_linalg.py +232 -0
- scipy/_lib/array_api_compat/common/_typing.py +192 -0
- scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
- scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
- scipy/_lib/array_api_compat/cupy/_info.py +336 -0
- scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
- scipy/_lib/array_api_compat/cupy/fft.py +36 -0
- scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
- scipy/_lib/array_api_compat/dask/__init__.py +0 -0
- scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
- scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
- scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
- scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
- scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
- scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
- scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
- scipy/_lib/array_api_compat/numpy/_info.py +366 -0
- scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
- scipy/_lib/array_api_compat/numpy/fft.py +35 -0
- scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
- scipy/_lib/array_api_compat/torch/__init__.py +22 -0
- scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
- scipy/_lib/array_api_compat/torch/_info.py +369 -0
- scipy/_lib/array_api_compat/torch/_typing.py +3 -0
- scipy/_lib/array_api_compat/torch/fft.py +85 -0
- scipy/_lib/array_api_compat/torch/linalg.py +121 -0
- scipy/_lib/array_api_extra/__init__.py +38 -0
- scipy/_lib/array_api_extra/_delegation.py +171 -0
- scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_at.py +463 -0
- scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
- scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
- scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
- scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
- scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
- scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
- scipy/_lib/array_api_extra/testing.py +359 -0
- scipy/_lib/cobyqa/__init__.py +20 -0
- scipy/_lib/cobyqa/framework.py +1240 -0
- scipy/_lib/cobyqa/main.py +1506 -0
- scipy/_lib/cobyqa/models.py +1529 -0
- scipy/_lib/cobyqa/problem.py +1296 -0
- scipy/_lib/cobyqa/settings.py +132 -0
- scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
- scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
- scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
- scipy/_lib/cobyqa/utils/__init__.py +18 -0
- scipy/_lib/cobyqa/utils/exceptions.py +22 -0
- scipy/_lib/cobyqa/utils/math.py +77 -0
- scipy/_lib/cobyqa/utils/versions.py +67 -0
- scipy/_lib/decorator.py +399 -0
- scipy/_lib/deprecation.py +274 -0
- scipy/_lib/doccer.py +366 -0
- scipy/_lib/messagestream.cp314-win_arm64.lib +0 -0
- scipy/_lib/messagestream.cp314-win_arm64.pyd +0 -0
- scipy/_lib/pyprima/__init__.py +212 -0
- scipy/_lib/pyprima/cobyla/__init__.py +0 -0
- scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
- scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
- scipy/_lib/pyprima/cobyla/geometry.py +226 -0
- scipy/_lib/pyprima/cobyla/initialize.py +215 -0
- scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
- scipy/_lib/pyprima/cobyla/update.py +289 -0
- scipy/_lib/pyprima/common/__init__.py +0 -0
- scipy/_lib/pyprima/common/_bounds.py +34 -0
- scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
- scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
- scipy/_lib/pyprima/common/_project.py +173 -0
- scipy/_lib/pyprima/common/checkbreak.py +93 -0
- scipy/_lib/pyprima/common/consts.py +47 -0
- scipy/_lib/pyprima/common/evaluate.py +99 -0
- scipy/_lib/pyprima/common/history.py +38 -0
- scipy/_lib/pyprima/common/infos.py +30 -0
- scipy/_lib/pyprima/common/linalg.py +435 -0
- scipy/_lib/pyprima/common/message.py +290 -0
- scipy/_lib/pyprima/common/powalg.py +131 -0
- scipy/_lib/pyprima/common/preproc.py +277 -0
- scipy/_lib/pyprima/common/present.py +5 -0
- scipy/_lib/pyprima/common/ratio.py +54 -0
- scipy/_lib/pyprima/common/redrho.py +47 -0
- scipy/_lib/pyprima/common/selectx.py +296 -0
- scipy/_lib/tests/__init__.py +0 -0
- scipy/_lib/tests/test__gcutils.py +110 -0
- scipy/_lib/tests/test__pep440.py +67 -0
- scipy/_lib/tests/test__testutils.py +32 -0
- scipy/_lib/tests/test__threadsafety.py +51 -0
- scipy/_lib/tests/test__util.py +641 -0
- scipy/_lib/tests/test_array_api.py +322 -0
- scipy/_lib/tests/test_bunch.py +169 -0
- scipy/_lib/tests/test_ccallback.py +196 -0
- scipy/_lib/tests/test_config.py +45 -0
- scipy/_lib/tests/test_deprecation.py +10 -0
- scipy/_lib/tests/test_doccer.py +143 -0
- scipy/_lib/tests/test_import_cycles.py +18 -0
- scipy/_lib/tests/test_public_api.py +482 -0
- scipy/_lib/tests/test_scipy_version.py +28 -0
- scipy/_lib/tests/test_tmpdirs.py +48 -0
- scipy/_lib/tests/test_warnings.py +137 -0
- scipy/_lib/uarray.py +31 -0
- scipy/cluster/__init__.py +31 -0
- scipy/cluster/_hierarchy.cp314-win_arm64.lib +0 -0
- scipy/cluster/_hierarchy.cp314-win_arm64.pyd +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.lib +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp314-win_arm64.pyd +0 -0
- scipy/cluster/_vq.cp314-win_arm64.lib +0 -0
- scipy/cluster/_vq.cp314-win_arm64.pyd +0 -0
- scipy/cluster/hierarchy.py +4348 -0
- scipy/cluster/tests/__init__.py +0 -0
- scipy/cluster/tests/hierarchy_test_data.py +145 -0
- scipy/cluster/tests/test_disjoint_set.py +202 -0
- scipy/cluster/tests/test_hierarchy.py +1238 -0
- scipy/cluster/tests/test_vq.py +434 -0
- scipy/cluster/vq.py +832 -0
- scipy/conftest.py +683 -0
- scipy/constants/__init__.py +358 -0
- scipy/constants/_codata.py +2266 -0
- scipy/constants/_constants.py +369 -0
- scipy/constants/codata.py +21 -0
- scipy/constants/constants.py +53 -0
- scipy/constants/tests/__init__.py +0 -0
- scipy/constants/tests/test_codata.py +78 -0
- scipy/constants/tests/test_constants.py +83 -0
- scipy/datasets/__init__.py +90 -0
- scipy/datasets/_download_all.py +71 -0
- scipy/datasets/_fetchers.py +225 -0
- scipy/datasets/_registry.py +26 -0
- scipy/datasets/_utils.py +81 -0
- scipy/datasets/tests/__init__.py +0 -0
- scipy/datasets/tests/test_data.py +128 -0
- scipy/differentiate/__init__.py +27 -0
- scipy/differentiate/_differentiate.py +1129 -0
- scipy/differentiate/tests/__init__.py +0 -0
- scipy/differentiate/tests/test_differentiate.py +694 -0
- scipy/fft/__init__.py +114 -0
- scipy/fft/_backend.py +196 -0
- scipy/fft/_basic.py +1650 -0
- scipy/fft/_basic_backend.py +197 -0
- scipy/fft/_debug_backends.py +22 -0
- scipy/fft/_fftlog.py +223 -0
- scipy/fft/_fftlog_backend.py +200 -0
- scipy/fft/_helper.py +348 -0
- scipy/fft/_pocketfft/LICENSE.md +25 -0
- scipy/fft/_pocketfft/__init__.py +9 -0
- scipy/fft/_pocketfft/basic.py +251 -0
- scipy/fft/_pocketfft/helper.py +249 -0
- scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.lib +0 -0
- scipy/fft/_pocketfft/pypocketfft.cp314-win_arm64.pyd +0 -0
- scipy/fft/_pocketfft/realtransforms.py +109 -0
- scipy/fft/_pocketfft/tests/__init__.py +0 -0
- scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
- scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
- scipy/fft/_realtransforms.py +706 -0
- scipy/fft/_realtransforms_backend.py +63 -0
- scipy/fft/tests/__init__.py +0 -0
- scipy/fft/tests/mock_backend.py +96 -0
- scipy/fft/tests/test_backend.py +98 -0
- scipy/fft/tests/test_basic.py +504 -0
- scipy/fft/tests/test_fftlog.py +215 -0
- scipy/fft/tests/test_helper.py +558 -0
- scipy/fft/tests/test_multithreading.py +84 -0
- scipy/fft/tests/test_real_transforms.py +247 -0
- scipy/fftpack/__init__.py +103 -0
- scipy/fftpack/_basic.py +428 -0
- scipy/fftpack/_helper.py +115 -0
- scipy/fftpack/_pseudo_diffs.py +554 -0
- scipy/fftpack/_realtransforms.py +598 -0
- scipy/fftpack/basic.py +20 -0
- scipy/fftpack/convolve.cp314-win_arm64.lib +0 -0
- scipy/fftpack/convolve.cp314-win_arm64.pyd +0 -0
- scipy/fftpack/helper.py +19 -0
- scipy/fftpack/pseudo_diffs.py +22 -0
- scipy/fftpack/realtransforms.py +19 -0
- scipy/fftpack/tests/__init__.py +0 -0
- scipy/fftpack/tests/fftw_double_ref.npz +0 -0
- scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
- scipy/fftpack/tests/fftw_single_ref.npz +0 -0
- scipy/fftpack/tests/test.npz +0 -0
- scipy/fftpack/tests/test_basic.py +877 -0
- scipy/fftpack/tests/test_helper.py +54 -0
- scipy/fftpack/tests/test_import.py +33 -0
- scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
- scipy/fftpack/tests/test_real_transforms.py +836 -0
- scipy/integrate/__init__.py +122 -0
- scipy/integrate/_bvp.py +1160 -0
- scipy/integrate/_cubature.py +729 -0
- scipy/integrate/_dop.cp314-win_arm64.lib +0 -0
- scipy/integrate/_dop.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_ivp/__init__.py +8 -0
- scipy/integrate/_ivp/base.py +290 -0
- scipy/integrate/_ivp/bdf.py +478 -0
- scipy/integrate/_ivp/common.py +451 -0
- scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- scipy/integrate/_ivp/ivp.py +755 -0
- scipy/integrate/_ivp/lsoda.py +224 -0
- scipy/integrate/_ivp/radau.py +572 -0
- scipy/integrate/_ivp/rk.py +601 -0
- scipy/integrate/_ivp/tests/__init__.py +0 -0
- scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
- scipy/integrate/_ivp/tests/test_rk.py +37 -0
- scipy/integrate/_lebedev.py +5450 -0
- scipy/integrate/_lsoda.cp314-win_arm64.lib +0 -0
- scipy/integrate/_lsoda.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_ode.py +1395 -0
- scipy/integrate/_odepack.cp314-win_arm64.lib +0 -0
- scipy/integrate/_odepack.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_odepack_py.py +273 -0
- scipy/integrate/_quad_vec.py +674 -0
- scipy/integrate/_quadpack.cp314-win_arm64.lib +0 -0
- scipy/integrate/_quadpack.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_quadpack_py.py +1283 -0
- scipy/integrate/_quadrature.py +1336 -0
- scipy/integrate/_rules/__init__.py +12 -0
- scipy/integrate/_rules/_base.py +518 -0
- scipy/integrate/_rules/_gauss_kronrod.py +202 -0
- scipy/integrate/_rules/_gauss_legendre.py +62 -0
- scipy/integrate/_rules/_genz_malik.py +210 -0
- scipy/integrate/_tanhsinh.py +1385 -0
- scipy/integrate/_test_multivariate.cp314-win_arm64.lib +0 -0
- scipy/integrate/_test_multivariate.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_test_odeint_banded.cp314-win_arm64.lib +0 -0
- scipy/integrate/_test_odeint_banded.cp314-win_arm64.pyd +0 -0
- scipy/integrate/_vode.cp314-win_arm64.lib +0 -0
- scipy/integrate/_vode.cp314-win_arm64.pyd +0 -0
- scipy/integrate/dop.py +15 -0
- scipy/integrate/lsoda.py +15 -0
- scipy/integrate/odepack.py +17 -0
- scipy/integrate/quadpack.py +23 -0
- scipy/integrate/tests/__init__.py +0 -0
- scipy/integrate/tests/test__quad_vec.py +211 -0
- scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
- scipy/integrate/tests/test_bvp.py +714 -0
- scipy/integrate/tests/test_cubature.py +1375 -0
- scipy/integrate/tests/test_integrate.py +840 -0
- scipy/integrate/tests/test_odeint_jac.py +74 -0
- scipy/integrate/tests/test_quadpack.py +680 -0
- scipy/integrate/tests/test_quadrature.py +730 -0
- scipy/integrate/tests/test_tanhsinh.py +1171 -0
- scipy/integrate/vode.py +15 -0
- scipy/interpolate/__init__.py +228 -0
- scipy/interpolate/_bary_rational.py +715 -0
- scipy/interpolate/_bsplines.py +2469 -0
- scipy/interpolate/_cubic.py +973 -0
- scipy/interpolate/_dfitpack.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_dfitpack.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_dierckx.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_dierckx.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_fitpack.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack2.py +2397 -0
- scipy/interpolate/_fitpack_impl.py +811 -0
- scipy/interpolate/_fitpack_py.py +898 -0
- scipy/interpolate/_fitpack_repro.py +996 -0
- scipy/interpolate/_interpnd.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_interpnd.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_interpolate.py +2266 -0
- scipy/interpolate/_ndbspline.py +415 -0
- scipy/interpolate/_ndgriddata.py +329 -0
- scipy/interpolate/_pade.py +67 -0
- scipy/interpolate/_polyint.py +1025 -0
- scipy/interpolate/_ppoly.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_ppoly.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_rbf.py +290 -0
- scipy/interpolate/_rbfinterp.py +550 -0
- scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_rbfinterp_pythran.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/_rgi.py +764 -0
- scipy/interpolate/_rgi_cython.cp314-win_arm64.lib +0 -0
- scipy/interpolate/_rgi_cython.cp314-win_arm64.pyd +0 -0
- scipy/interpolate/dfitpack.py +24 -0
- scipy/interpolate/fitpack.py +31 -0
- scipy/interpolate/fitpack2.py +29 -0
- scipy/interpolate/interpnd.py +24 -0
- scipy/interpolate/interpolate.py +30 -0
- scipy/interpolate/ndgriddata.py +23 -0
- scipy/interpolate/polyint.py +24 -0
- scipy/interpolate/rbf.py +18 -0
- scipy/interpolate/tests/__init__.py +0 -0
- scipy/interpolate/tests/data/bug-1310.npz +0 -0
- scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
- scipy/interpolate/tests/data/gcvspl.npz +0 -0
- scipy/interpolate/tests/test_bary_rational.py +368 -0
- scipy/interpolate/tests/test_bsplines.py +3754 -0
- scipy/interpolate/tests/test_fitpack.py +519 -0
- scipy/interpolate/tests/test_fitpack2.py +1431 -0
- scipy/interpolate/tests/test_gil.py +64 -0
- scipy/interpolate/tests/test_interpnd.py +452 -0
- scipy/interpolate/tests/test_interpolate.py +2630 -0
- scipy/interpolate/tests/test_ndgriddata.py +308 -0
- scipy/interpolate/tests/test_pade.py +107 -0
- scipy/interpolate/tests/test_polyint.py +972 -0
- scipy/interpolate/tests/test_rbf.py +246 -0
- scipy/interpolate/tests/test_rbfinterp.py +534 -0
- scipy/interpolate/tests/test_rgi.py +1151 -0
- scipy/io/__init__.py +116 -0
- scipy/io/_fast_matrix_market/__init__.py +600 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.lib +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp314-win_arm64.pyd +0 -0
- scipy/io/_fortran.py +354 -0
- scipy/io/_harwell_boeing/__init__.py +7 -0
- scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
- scipy/io/_harwell_boeing/hb.py +571 -0
- scipy/io/_harwell_boeing/tests/__init__.py +0 -0
- scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
- scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
- scipy/io/_idl.py +917 -0
- scipy/io/_mmio.py +968 -0
- scipy/io/_netcdf.py +1104 -0
- scipy/io/_test_fortran.cp314-win_arm64.lib +0 -0
- scipy/io/_test_fortran.cp314-win_arm64.pyd +0 -0
- scipy/io/arff/__init__.py +28 -0
- scipy/io/arff/_arffread.py +873 -0
- scipy/io/arff/arffread.py +19 -0
- scipy/io/arff/tests/__init__.py +0 -0
- scipy/io/arff/tests/data/iris.arff +225 -0
- scipy/io/arff/tests/data/missing.arff +8 -0
- scipy/io/arff/tests/data/nodata.arff +11 -0
- scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
- scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
- scipy/io/arff/tests/data/test1.arff +10 -0
- scipy/io/arff/tests/data/test10.arff +8 -0
- scipy/io/arff/tests/data/test11.arff +11 -0
- scipy/io/arff/tests/data/test2.arff +15 -0
- scipy/io/arff/tests/data/test3.arff +6 -0
- scipy/io/arff/tests/data/test4.arff +11 -0
- scipy/io/arff/tests/data/test5.arff +26 -0
- scipy/io/arff/tests/data/test6.arff +12 -0
- scipy/io/arff/tests/data/test7.arff +15 -0
- scipy/io/arff/tests/data/test8.arff +12 -0
- scipy/io/arff/tests/data/test9.arff +14 -0
- scipy/io/arff/tests/test_arffread.py +421 -0
- scipy/io/harwell_boeing.py +17 -0
- scipy/io/idl.py +17 -0
- scipy/io/matlab/__init__.py +66 -0
- scipy/io/matlab/_byteordercodes.py +75 -0
- scipy/io/matlab/_mio.py +375 -0
- scipy/io/matlab/_mio4.py +632 -0
- scipy/io/matlab/_mio5.py +901 -0
- scipy/io/matlab/_mio5_params.py +281 -0
- scipy/io/matlab/_mio5_utils.cp314-win_arm64.lib +0 -0
- scipy/io/matlab/_mio5_utils.cp314-win_arm64.pyd +0 -0
- scipy/io/matlab/_mio_utils.cp314-win_arm64.lib +0 -0
- scipy/io/matlab/_mio_utils.cp314-win_arm64.pyd +0 -0
- scipy/io/matlab/_miobase.py +435 -0
- scipy/io/matlab/_streams.cp314-win_arm64.lib +0 -0
- scipy/io/matlab/_streams.cp314-win_arm64.pyd +0 -0
- scipy/io/matlab/byteordercodes.py +17 -0
- scipy/io/matlab/mio.py +16 -0
- scipy/io/matlab/mio4.py +17 -0
- scipy/io/matlab/mio5.py +19 -0
- scipy/io/matlab/mio5_params.py +18 -0
- scipy/io/matlab/mio5_utils.py +17 -0
- scipy/io/matlab/mio_utils.py +17 -0
- scipy/io/matlab/miobase.py +16 -0
- scipy/io/matlab/streams.py +16 -0
- scipy/io/matlab/tests/__init__.py +0 -0
- scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
- scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/big_endian.mat +0 -0
- scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
- scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
- scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
- scipy/io/matlab/tests/data/little_endian.mat +0 -0
- scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
- scipy/io/matlab/tests/data/malformed1.mat +0 -0
- scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
- scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
- scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
- scipy/io/matlab/tests/data/parabola.mat +0 -0
- scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
- scipy/io/matlab/tests/data/some_functions.mat +0 -0
- scipy/io/matlab/tests/data/sqr.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
- scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
- scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
- scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/test_byteordercodes.py +29 -0
- scipy/io/matlab/tests/test_mio.py +1399 -0
- scipy/io/matlab/tests/test_mio5_utils.py +179 -0
- scipy/io/matlab/tests/test_mio_funcs.py +51 -0
- scipy/io/matlab/tests/test_mio_utils.py +45 -0
- scipy/io/matlab/tests/test_miobase.py +32 -0
- scipy/io/matlab/tests/test_pathological.py +33 -0
- scipy/io/matlab/tests/test_streams.py +241 -0
- scipy/io/mmio.py +17 -0
- scipy/io/netcdf.py +17 -0
- scipy/io/tests/__init__.py +0 -0
- scipy/io/tests/data/Transparent Busy.ani +0 -0
- scipy/io/tests/data/array_float32_1d.sav +0 -0
- scipy/io/tests/data/array_float32_2d.sav +0 -0
- scipy/io/tests/data/array_float32_3d.sav +0 -0
- scipy/io/tests/data/array_float32_4d.sav +0 -0
- scipy/io/tests/data/array_float32_5d.sav +0 -0
- scipy/io/tests/data/array_float32_6d.sav +0 -0
- scipy/io/tests/data/array_float32_7d.sav +0 -0
- scipy/io/tests/data/array_float32_8d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
- scipy/io/tests/data/example_1.nc +0 -0
- scipy/io/tests/data/example_2.nc +0 -0
- scipy/io/tests/data/example_3_maskedvals.nc +0 -0
- scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
- scipy/io/tests/data/fortran-mixed.dat +0 -0
- scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
- scipy/io/tests/data/invalid_pointer.sav +0 -0
- scipy/io/tests/data/null_pointer.sav +0 -0
- scipy/io/tests/data/scalar_byte.sav +0 -0
- scipy/io/tests/data/scalar_byte_descr.sav +0 -0
- scipy/io/tests/data/scalar_complex32.sav +0 -0
- scipy/io/tests/data/scalar_complex64.sav +0 -0
- scipy/io/tests/data/scalar_float32.sav +0 -0
- scipy/io/tests/data/scalar_float64.sav +0 -0
- scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
- scipy/io/tests/data/scalar_int16.sav +0 -0
- scipy/io/tests/data/scalar_int32.sav +0 -0
- scipy/io/tests/data/scalar_int64.sav +0 -0
- scipy/io/tests/data/scalar_string.sav +0 -0
- scipy/io/tests/data/scalar_uint16.sav +0 -0
- scipy/io/tests/data/scalar_uint32.sav +0 -0
- scipy/io/tests/data/scalar_uint64.sav +0 -0
- scipy/io/tests/data/struct_arrays.sav +0 -0
- scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_inherit.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_pointers.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_scalars.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
- scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
- scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
- scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
- scipy/io/tests/data/various_compressed.sav +0 -0
- scipy/io/tests/test_fortran.py +264 -0
- scipy/io/tests/test_idl.py +483 -0
- scipy/io/tests/test_mmio.py +831 -0
- scipy/io/tests/test_netcdf.py +550 -0
- scipy/io/tests/test_paths.py +93 -0
- scipy/io/tests/test_wavfile.py +501 -0
- scipy/io/wavfile.py +938 -0
- scipy/linalg/__init__.pxd +1 -0
- scipy/linalg/__init__.py +236 -0
- scipy/linalg/_basic.py +2146 -0
- scipy/linalg/_blas_subroutines.h +164 -0
- scipy/linalg/_cythonized_array_utils.cp314-win_arm64.lib +0 -0
- scipy/linalg/_cythonized_array_utils.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_cythonized_array_utils.pxd +40 -0
- scipy/linalg/_cythonized_array_utils.pyi +16 -0
- scipy/linalg/_decomp.py +1645 -0
- scipy/linalg/_decomp_cholesky.py +413 -0
- scipy/linalg/_decomp_cossin.py +236 -0
- scipy/linalg/_decomp_interpolative.cp314-win_arm64.lib +0 -0
- scipy/linalg/_decomp_interpolative.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_ldl.py +356 -0
- scipy/linalg/_decomp_lu.py +401 -0
- scipy/linalg/_decomp_lu_cython.cp314-win_arm64.lib +0 -0
- scipy/linalg/_decomp_lu_cython.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_lu_cython.pyi +6 -0
- scipy/linalg/_decomp_polar.py +113 -0
- scipy/linalg/_decomp_qr.py +494 -0
- scipy/linalg/_decomp_qz.py +452 -0
- scipy/linalg/_decomp_schur.py +336 -0
- scipy/linalg/_decomp_svd.py +545 -0
- scipy/linalg/_decomp_update.cp314-win_arm64.lib +0 -0
- scipy/linalg/_decomp_update.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_expm_frechet.py +417 -0
- scipy/linalg/_fblas.cp314-win_arm64.lib +0 -0
- scipy/linalg/_fblas.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_flapack.cp314-win_arm64.lib +0 -0
- scipy/linalg/_flapack.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_lapack_subroutines.h +1521 -0
- scipy/linalg/_linalg_pythran.cp314-win_arm64.lib +0 -0
- scipy/linalg/_linalg_pythran.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs.py +1050 -0
- scipy/linalg/_matfuncs_expm.cp314-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_expm.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_expm.pyi +6 -0
- scipy/linalg/_matfuncs_inv_ssq.py +886 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_sqrtm.py +107 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_misc.py +191 -0
- scipy/linalg/_procrustes.py +113 -0
- scipy/linalg/_sketches.py +189 -0
- scipy/linalg/_solve_toeplitz.cp314-win_arm64.lib +0 -0
- scipy/linalg/_solve_toeplitz.cp314-win_arm64.pyd +0 -0
- scipy/linalg/_solvers.py +862 -0
- scipy/linalg/_special_matrices.py +1322 -0
- scipy/linalg/_testutils.py +65 -0
- scipy/linalg/basic.py +23 -0
- scipy/linalg/blas.py +495 -0
- scipy/linalg/cython_blas.cp314-win_arm64.lib +0 -0
- scipy/linalg/cython_blas.cp314-win_arm64.pyd +0 -0
- scipy/linalg/cython_blas.pxd +169 -0
- scipy/linalg/cython_blas.pyx +1432 -0
- scipy/linalg/cython_lapack.cp314-win_arm64.lib +0 -0
- scipy/linalg/cython_lapack.cp314-win_arm64.pyd +0 -0
- scipy/linalg/cython_lapack.pxd +1528 -0
- scipy/linalg/cython_lapack.pyx +12045 -0
- scipy/linalg/decomp.py +23 -0
- scipy/linalg/decomp_cholesky.py +21 -0
- scipy/linalg/decomp_lu.py +21 -0
- scipy/linalg/decomp_qr.py +20 -0
- scipy/linalg/decomp_schur.py +21 -0
- scipy/linalg/decomp_svd.py +21 -0
- scipy/linalg/interpolative.py +989 -0
- scipy/linalg/lapack.py +1081 -0
- scipy/linalg/matfuncs.py +23 -0
- scipy/linalg/misc.py +21 -0
- scipy/linalg/special_matrices.py +22 -0
- scipy/linalg/tests/__init__.py +0 -0
- scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
- scipy/linalg/tests/_cython_examples/meson.build +34 -0
- scipy/linalg/tests/data/carex_15_data.npz +0 -0
- scipy/linalg/tests/data/carex_18_data.npz +0 -0
- scipy/linalg/tests/data/carex_19_data.npz +0 -0
- scipy/linalg/tests/data/carex_20_data.npz +0 -0
- scipy/linalg/tests/data/carex_6_data.npz +0 -0
- scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
- scipy/linalg/tests/test_basic.py +2074 -0
- scipy/linalg/tests/test_batch.py +588 -0
- scipy/linalg/tests/test_blas.py +1127 -0
- scipy/linalg/tests/test_cython_blas.py +118 -0
- scipy/linalg/tests/test_cython_lapack.py +22 -0
- scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
- scipy/linalg/tests/test_decomp.py +3189 -0
- scipy/linalg/tests/test_decomp_cholesky.py +268 -0
- scipy/linalg/tests/test_decomp_cossin.py +314 -0
- scipy/linalg/tests/test_decomp_ldl.py +137 -0
- scipy/linalg/tests/test_decomp_lu.py +308 -0
- scipy/linalg/tests/test_decomp_polar.py +110 -0
- scipy/linalg/tests/test_decomp_update.py +1701 -0
- scipy/linalg/tests/test_extending.py +46 -0
- scipy/linalg/tests/test_fblas.py +607 -0
- scipy/linalg/tests/test_interpolative.py +232 -0
- scipy/linalg/tests/test_lapack.py +3620 -0
- scipy/linalg/tests/test_matfuncs.py +1125 -0
- scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
- scipy/linalg/tests/test_procrustes.py +214 -0
- scipy/linalg/tests/test_sketches.py +118 -0
- scipy/linalg/tests/test_solve_toeplitz.py +150 -0
- scipy/linalg/tests/test_solvers.py +844 -0
- scipy/linalg/tests/test_special_matrices.py +636 -0
- scipy/misc/__init__.py +6 -0
- scipy/misc/common.py +6 -0
- scipy/misc/doccer.py +6 -0
- scipy/ndimage/__init__.py +174 -0
- scipy/ndimage/_ctest.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_ctest.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_cytest.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_cytest.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_delegators.py +303 -0
- scipy/ndimage/_filters.py +2422 -0
- scipy/ndimage/_fourier.py +306 -0
- scipy/ndimage/_interpolation.py +1033 -0
- scipy/ndimage/_measurements.py +1689 -0
- scipy/ndimage/_morphology.py +2634 -0
- scipy/ndimage/_nd_image.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_nd_image.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_ndimage_api.py +16 -0
- scipy/ndimage/_ni_docstrings.py +214 -0
- scipy/ndimage/_ni_label.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_ni_label.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_ni_support.py +139 -0
- scipy/ndimage/_rank_filter_1d.cp314-win_arm64.lib +0 -0
- scipy/ndimage/_rank_filter_1d.cp314-win_arm64.pyd +0 -0
- scipy/ndimage/_support_alternative_backends.py +84 -0
- scipy/ndimage/filters.py +27 -0
- scipy/ndimage/fourier.py +21 -0
- scipy/ndimage/interpolation.py +22 -0
- scipy/ndimage/measurements.py +24 -0
- scipy/ndimage/morphology.py +27 -0
- scipy/ndimage/tests/__init__.py +12 -0
- scipy/ndimage/tests/data/label_inputs.txt +21 -0
- scipy/ndimage/tests/data/label_results.txt +294 -0
- scipy/ndimage/tests/data/label_strels.txt +42 -0
- scipy/ndimage/tests/dots.png +0 -0
- scipy/ndimage/tests/test_c_api.py +102 -0
- scipy/ndimage/tests/test_datatypes.py +67 -0
- scipy/ndimage/tests/test_filters.py +3083 -0
- scipy/ndimage/tests/test_fourier.py +187 -0
- scipy/ndimage/tests/test_interpolation.py +1491 -0
- scipy/ndimage/tests/test_measurements.py +1592 -0
- scipy/ndimage/tests/test_morphology.py +2950 -0
- scipy/ndimage/tests/test_ni_support.py +78 -0
- scipy/ndimage/tests/test_splines.py +70 -0
- scipy/odr/__init__.py +131 -0
- scipy/odr/__odrpack.cp314-win_arm64.lib +0 -0
- scipy/odr/__odrpack.cp314-win_arm64.pyd +0 -0
- scipy/odr/_add_newdocs.py +34 -0
- scipy/odr/_models.py +315 -0
- scipy/odr/_odrpack.py +1154 -0
- scipy/odr/models.py +20 -0
- scipy/odr/odrpack.py +21 -0
- scipy/odr/tests/__init__.py +0 -0
- scipy/odr/tests/test_odr.py +607 -0
- scipy/optimize/__init__.pxd +1 -0
- scipy/optimize/__init__.py +460 -0
- scipy/optimize/_basinhopping.py +741 -0
- scipy/optimize/_bglu_dense.cp314-win_arm64.lib +0 -0
- scipy/optimize/_bglu_dense.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_bracket.py +706 -0
- scipy/optimize/_chandrupatla.py +551 -0
- scipy/optimize/_cobyla_py.py +297 -0
- scipy/optimize/_cobyqa_py.py +72 -0
- scipy/optimize/_constraints.py +598 -0
- scipy/optimize/_dcsrch.py +728 -0
- scipy/optimize/_differentiable_functions.py +835 -0
- scipy/optimize/_differentialevolution.py +1970 -0
- scipy/optimize/_direct.cp314-win_arm64.lib +0 -0
- scipy/optimize/_direct.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_direct_py.py +280 -0
- scipy/optimize/_dual_annealing.py +732 -0
- scipy/optimize/_elementwise.py +798 -0
- scipy/optimize/_group_columns.cp314-win_arm64.lib +0 -0
- scipy/optimize/_group_columns.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_hessian_update_strategy.py +479 -0
- scipy/optimize/_highspy/__init__.py +0 -0
- scipy/optimize/_highspy/_core.cp314-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_core.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_options.cp314-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_highs_options.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_wrapper.py +338 -0
- scipy/optimize/_isotonic.py +157 -0
- scipy/optimize/_lbfgsb.cp314-win_arm64.lib +0 -0
- scipy/optimize/_lbfgsb.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_lbfgsb_py.py +634 -0
- scipy/optimize/_linesearch.py +896 -0
- scipy/optimize/_linprog.py +733 -0
- scipy/optimize/_linprog_doc.py +1434 -0
- scipy/optimize/_linprog_highs.py +422 -0
- scipy/optimize/_linprog_ip.py +1141 -0
- scipy/optimize/_linprog_rs.py +572 -0
- scipy/optimize/_linprog_simplex.py +663 -0
- scipy/optimize/_linprog_util.py +1521 -0
- scipy/optimize/_lsap.cp314-win_arm64.lib +0 -0
- scipy/optimize/_lsap.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/__init__.py +5 -0
- scipy/optimize/_lsq/bvls.py +183 -0
- scipy/optimize/_lsq/common.py +731 -0
- scipy/optimize/_lsq/dogbox.py +345 -0
- scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.lib +0 -0
- scipy/optimize/_lsq/givens_elimination.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/least_squares.py +1044 -0
- scipy/optimize/_lsq/lsq_linear.py +361 -0
- scipy/optimize/_lsq/trf.py +587 -0
- scipy/optimize/_lsq/trf_linear.py +249 -0
- scipy/optimize/_milp.py +394 -0
- scipy/optimize/_minimize.py +1199 -0
- scipy/optimize/_minpack.cp314-win_arm64.lib +0 -0
- scipy/optimize/_minpack.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_minpack_py.py +1178 -0
- scipy/optimize/_moduleTNC.cp314-win_arm64.lib +0 -0
- scipy/optimize/_moduleTNC.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_nnls.py +96 -0
- scipy/optimize/_nonlin.py +1634 -0
- scipy/optimize/_numdiff.py +963 -0
- scipy/optimize/_optimize.py +4169 -0
- scipy/optimize/_pava_pybind.cp314-win_arm64.lib +0 -0
- scipy/optimize/_pava_pybind.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_qap.py +760 -0
- scipy/optimize/_remove_redundancy.py +522 -0
- scipy/optimize/_root.py +732 -0
- scipy/optimize/_root_scalar.py +538 -0
- scipy/optimize/_shgo.py +1606 -0
- scipy/optimize/_shgo_lib/__init__.py +0 -0
- scipy/optimize/_shgo_lib/_complex.py +1225 -0
- scipy/optimize/_shgo_lib/_vertex.py +460 -0
- scipy/optimize/_slsqp_py.py +603 -0
- scipy/optimize/_slsqplib.cp314-win_arm64.lib +0 -0
- scipy/optimize/_slsqplib.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_spectral.py +260 -0
- scipy/optimize/_tnc.py +438 -0
- scipy/optimize/_trlib/__init__.py +12 -0
- scipy/optimize/_trlib/_trlib.cp314-win_arm64.lib +0 -0
- scipy/optimize/_trlib/_trlib.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_trustregion.py +318 -0
- scipy/optimize/_trustregion_constr/__init__.py +6 -0
- scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
- scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
- scipy/optimize/_trustregion_constr/projections.py +411 -0
- scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- scipy/optimize/_trustregion_constr/report.py +49 -0
- scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
- scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
- scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
- scipy/optimize/_trustregion_dogleg.py +122 -0
- scipy/optimize/_trustregion_exact.py +437 -0
- scipy/optimize/_trustregion_krylov.py +65 -0
- scipy/optimize/_trustregion_ncg.py +126 -0
- scipy/optimize/_tstutils.py +972 -0
- scipy/optimize/_zeros.cp314-win_arm64.lib +0 -0
- scipy/optimize/_zeros.cp314-win_arm64.pyd +0 -0
- scipy/optimize/_zeros_py.py +1475 -0
- scipy/optimize/cobyla.py +19 -0
- scipy/optimize/cython_optimize/__init__.py +133 -0
- scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.lib +0 -0
- scipy/optimize/cython_optimize/_zeros.cp314-win_arm64.pyd +0 -0
- scipy/optimize/cython_optimize/_zeros.pxd +33 -0
- scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
- scipy/optimize/cython_optimize.pxd +11 -0
- scipy/optimize/elementwise.py +38 -0
- scipy/optimize/lbfgsb.py +23 -0
- scipy/optimize/linesearch.py +18 -0
- scipy/optimize/minpack.py +27 -0
- scipy/optimize/minpack2.py +17 -0
- scipy/optimize/moduleTNC.py +19 -0
- scipy/optimize/nonlin.py +29 -0
- scipy/optimize/optimize.py +40 -0
- scipy/optimize/slsqp.py +22 -0
- scipy/optimize/tests/__init__.py +0 -0
- scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
- scipy/optimize/tests/_cython_examples/meson.build +32 -0
- scipy/optimize/tests/test__basinhopping.py +535 -0
- scipy/optimize/tests/test__differential_evolution.py +1703 -0
- scipy/optimize/tests/test__dual_annealing.py +416 -0
- scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
- scipy/optimize/tests/test__numdiff.py +885 -0
- scipy/optimize/tests/test__remove_redundancy.py +228 -0
- scipy/optimize/tests/test__root.py +124 -0
- scipy/optimize/tests/test__shgo.py +1164 -0
- scipy/optimize/tests/test__spectral.py +226 -0
- scipy/optimize/tests/test_bracket.py +896 -0
- scipy/optimize/tests/test_chandrupatla.py +982 -0
- scipy/optimize/tests/test_cobyla.py +195 -0
- scipy/optimize/tests/test_cobyqa.py +252 -0
- scipy/optimize/tests/test_constraint_conversion.py +286 -0
- scipy/optimize/tests/test_constraints.py +255 -0
- scipy/optimize/tests/test_cython_optimize.py +92 -0
- scipy/optimize/tests/test_differentiable_functions.py +1025 -0
- scipy/optimize/tests/test_direct.py +321 -0
- scipy/optimize/tests/test_extending.py +28 -0
- scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
- scipy/optimize/tests/test_isotonic_regression.py +167 -0
- scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
- scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
- scipy/optimize/tests/test_least_squares.py +986 -0
- scipy/optimize/tests/test_linear_assignment.py +116 -0
- scipy/optimize/tests/test_linesearch.py +328 -0
- scipy/optimize/tests/test_linprog.py +2577 -0
- scipy/optimize/tests/test_lsq_common.py +297 -0
- scipy/optimize/tests/test_lsq_linear.py +287 -0
- scipy/optimize/tests/test_milp.py +459 -0
- scipy/optimize/tests/test_minimize_constrained.py +845 -0
- scipy/optimize/tests/test_minpack.py +1194 -0
- scipy/optimize/tests/test_nnls.py +469 -0
- scipy/optimize/tests/test_nonlin.py +572 -0
- scipy/optimize/tests/test_optimize.py +3344 -0
- scipy/optimize/tests/test_quadratic_assignment.py +455 -0
- scipy/optimize/tests/test_regression.py +40 -0
- scipy/optimize/tests/test_slsqp.py +645 -0
- scipy/optimize/tests/test_tnc.py +345 -0
- scipy/optimize/tests/test_trustregion.py +110 -0
- scipy/optimize/tests/test_trustregion_exact.py +351 -0
- scipy/optimize/tests/test_trustregion_krylov.py +170 -0
- scipy/optimize/tests/test_zeros.py +998 -0
- scipy/optimize/tnc.py +22 -0
- scipy/optimize/zeros.py +26 -0
- scipy/signal/__init__.py +316 -0
- scipy/signal/_arraytools.py +264 -0
- scipy/signal/_czt.py +575 -0
- scipy/signal/_delegators.py +568 -0
- scipy/signal/_filter_design.py +5893 -0
- scipy/signal/_fir_filter_design.py +1458 -0
- scipy/signal/_lti_conversion.py +534 -0
- scipy/signal/_ltisys.py +3546 -0
- scipy/signal/_max_len_seq.py +139 -0
- scipy/signal/_max_len_seq_inner.cp314-win_arm64.lib +0 -0
- scipy/signal/_max_len_seq_inner.cp314-win_arm64.pyd +0 -0
- scipy/signal/_peak_finding.py +1310 -0
- scipy/signal/_peak_finding_utils.cp314-win_arm64.lib +0 -0
- scipy/signal/_peak_finding_utils.cp314-win_arm64.pyd +0 -0
- scipy/signal/_polyutils.py +172 -0
- scipy/signal/_savitzky_golay.py +357 -0
- scipy/signal/_short_time_fft.py +2228 -0
- scipy/signal/_signal_api.py +30 -0
- scipy/signal/_signaltools.py +5309 -0
- scipy/signal/_sigtools.cp314-win_arm64.lib +0 -0
- scipy/signal/_sigtools.cp314-win_arm64.pyd +0 -0
- scipy/signal/_sosfilt.cp314-win_arm64.lib +0 -0
- scipy/signal/_sosfilt.cp314-win_arm64.pyd +0 -0
- scipy/signal/_spectral_py.py +2471 -0
- scipy/signal/_spline.cp314-win_arm64.lib +0 -0
- scipy/signal/_spline.cp314-win_arm64.pyd +0 -0
- scipy/signal/_spline.pyi +34 -0
- scipy/signal/_spline_filters.py +848 -0
- scipy/signal/_support_alternative_backends.py +73 -0
- scipy/signal/_upfirdn.py +219 -0
- scipy/signal/_upfirdn_apply.cp314-win_arm64.lib +0 -0
- scipy/signal/_upfirdn_apply.cp314-win_arm64.pyd +0 -0
- scipy/signal/_waveforms.py +687 -0
- scipy/signal/_wavelets.py +29 -0
- scipy/signal/bsplines.py +21 -0
- scipy/signal/filter_design.py +28 -0
- scipy/signal/fir_filter_design.py +21 -0
- scipy/signal/lti_conversion.py +20 -0
- scipy/signal/ltisys.py +25 -0
- scipy/signal/signaltools.py +27 -0
- scipy/signal/spectral.py +21 -0
- scipy/signal/spline.py +18 -0
- scipy/signal/tests/__init__.py +0 -0
- scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
- scipy/signal/tests/mpsig.py +122 -0
- scipy/signal/tests/test_array_tools.py +111 -0
- scipy/signal/tests/test_bsplines.py +365 -0
- scipy/signal/tests/test_cont2discrete.py +424 -0
- scipy/signal/tests/test_czt.py +221 -0
- scipy/signal/tests/test_dltisys.py +599 -0
- scipy/signal/tests/test_filter_design.py +4744 -0
- scipy/signal/tests/test_fir_filter_design.py +851 -0
- scipy/signal/tests/test_ltisys.py +1225 -0
- scipy/signal/tests/test_max_len_seq.py +71 -0
- scipy/signal/tests/test_peak_finding.py +915 -0
- scipy/signal/tests/test_result_type.py +51 -0
- scipy/signal/tests/test_savitzky_golay.py +363 -0
- scipy/signal/tests/test_short_time_fft.py +1107 -0
- scipy/signal/tests/test_signaltools.py +4735 -0
- scipy/signal/tests/test_spectral.py +2141 -0
- scipy/signal/tests/test_splines.py +427 -0
- scipy/signal/tests/test_upfirdn.py +322 -0
- scipy/signal/tests/test_waveforms.py +400 -0
- scipy/signal/tests/test_wavelets.py +59 -0
- scipy/signal/tests/test_windows.py +987 -0
- scipy/signal/waveforms.py +20 -0
- scipy/signal/wavelets.py +17 -0
- scipy/signal/windows/__init__.py +52 -0
- scipy/signal/windows/_windows.py +2513 -0
- scipy/signal/windows/windows.py +23 -0
- scipy/sparse/__init__.py +350 -0
- scipy/sparse/_base.py +1613 -0
- scipy/sparse/_bsr.py +880 -0
- scipy/sparse/_compressed.py +1328 -0
- scipy/sparse/_construct.py +1454 -0
- scipy/sparse/_coo.py +1581 -0
- scipy/sparse/_csc.py +367 -0
- scipy/sparse/_csparsetools.cp314-win_arm64.lib +0 -0
- scipy/sparse/_csparsetools.cp314-win_arm64.pyd +0 -0
- scipy/sparse/_csr.py +558 -0
- scipy/sparse/_data.py +569 -0
- scipy/sparse/_dia.py +677 -0
- scipy/sparse/_dok.py +669 -0
- scipy/sparse/_extract.py +178 -0
- scipy/sparse/_index.py +444 -0
- scipy/sparse/_lil.py +632 -0
- scipy/sparse/_matrix.py +169 -0
- scipy/sparse/_matrix_io.py +167 -0
- scipy/sparse/_sparsetools.cp314-win_arm64.lib +0 -0
- scipy/sparse/_sparsetools.cp314-win_arm64.pyd +0 -0
- scipy/sparse/_spfuncs.py +76 -0
- scipy/sparse/_sputils.py +632 -0
- scipy/sparse/base.py +24 -0
- scipy/sparse/bsr.py +22 -0
- scipy/sparse/compressed.py +20 -0
- scipy/sparse/construct.py +38 -0
- scipy/sparse/coo.py +23 -0
- scipy/sparse/csc.py +22 -0
- scipy/sparse/csgraph/__init__.py +210 -0
- scipy/sparse/csgraph/_flow.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_flow.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_laplacian.py +563 -0
- scipy/sparse/csgraph/_matching.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_matching.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_reordering.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_reordering.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_shortest_path.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_tools.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_tools.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_traversal.cp314-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_traversal.cp314-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_validation.py +66 -0
- scipy/sparse/csgraph/tests/__init__.py +0 -0
- scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
- scipy/sparse/csgraph/tests/test_conversions.py +61 -0
- scipy/sparse/csgraph/tests/test_flow.py +209 -0
- scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
- scipy/sparse/csgraph/tests/test_matching.py +307 -0
- scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
- scipy/sparse/csgraph/tests/test_reordering.py +70 -0
- scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
- scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
- scipy/sparse/csgraph/tests/test_traversal.py +148 -0
- scipy/sparse/csr.py +22 -0
- scipy/sparse/data.py +18 -0
- scipy/sparse/dia.py +22 -0
- scipy/sparse/dok.py +22 -0
- scipy/sparse/extract.py +23 -0
- scipy/sparse/lil.py +22 -0
- scipy/sparse/linalg/__init__.py +148 -0
- scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
- scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
- scipy/sparse/linalg/_eigen/__init__.py +22 -0
- scipy/sparse/linalg/_eigen/_svds.py +540 -0
- scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
- scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
- scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
- scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
- scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
- scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
- scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
- scipy/sparse/linalg/_expm_multiply.py +816 -0
- scipy/sparse/linalg/_interface.py +920 -0
- scipy/sparse/linalg/_isolve/__init__.py +20 -0
- scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
- scipy/sparse/linalg/_isolve/iterative.py +1051 -0
- scipy/sparse/linalg/_isolve/lgmres.py +230 -0
- scipy/sparse/linalg/_isolve/lsmr.py +486 -0
- scipy/sparse/linalg/_isolve/lsqr.py +589 -0
- scipy/sparse/linalg/_isolve/minres.py +372 -0
- scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
- scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
- scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
- scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
- scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
- scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
- scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
- scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
- scipy/sparse/linalg/_isolve/utils.py +121 -0
- scipy/sparse/linalg/_matfuncs.py +940 -0
- scipy/sparse/linalg/_norm.py +195 -0
- scipy/sparse/linalg/_onenormest.py +467 -0
- scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp314-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
- scipy/sparse/linalg/_svdp.py +309 -0
- scipy/sparse/linalg/dsolve.py +22 -0
- scipy/sparse/linalg/eigen.py +21 -0
- scipy/sparse/linalg/interface.py +20 -0
- scipy/sparse/linalg/isolve.py +22 -0
- scipy/sparse/linalg/matfuncs.py +18 -0
- scipy/sparse/linalg/tests/__init__.py +0 -0
- scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
- scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
- scipy/sparse/linalg/tests/test_interface.py +561 -0
- scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
- scipy/sparse/linalg/tests/test_norm.py +154 -0
- scipy/sparse/linalg/tests/test_onenormest.py +252 -0
- scipy/sparse/linalg/tests/test_propack.py +165 -0
- scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
- scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
- scipy/sparse/sparsetools.py +17 -0
- scipy/sparse/spfuncs.py +17 -0
- scipy/sparse/sputils.py +17 -0
- scipy/sparse/tests/__init__.py +0 -0
- scipy/sparse/tests/data/csc_py2.npz +0 -0
- scipy/sparse/tests/data/csc_py3.npz +0 -0
- scipy/sparse/tests/test_arithmetic1d.py +341 -0
- scipy/sparse/tests/test_array_api.py +561 -0
- scipy/sparse/tests/test_base.py +5870 -0
- scipy/sparse/tests/test_common1d.py +447 -0
- scipy/sparse/tests/test_construct.py +872 -0
- scipy/sparse/tests/test_coo.py +1119 -0
- scipy/sparse/tests/test_csc.py +98 -0
- scipy/sparse/tests/test_csr.py +214 -0
- scipy/sparse/tests/test_dok.py +209 -0
- scipy/sparse/tests/test_extract.py +51 -0
- scipy/sparse/tests/test_indexing1d.py +603 -0
- scipy/sparse/tests/test_matrix_io.py +109 -0
- scipy/sparse/tests/test_minmax1d.py +128 -0
- scipy/sparse/tests/test_sparsetools.py +344 -0
- scipy/sparse/tests/test_spfuncs.py +97 -0
- scipy/sparse/tests/test_sputils.py +424 -0
- scipy/spatial/__init__.py +129 -0
- scipy/spatial/_ckdtree.cp314-win_arm64.lib +0 -0
- scipy/spatial/_ckdtree.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_distance_pybind.cp314-win_arm64.lib +0 -0
- scipy/spatial/_distance_pybind.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_distance_wrap.cp314-win_arm64.lib +0 -0
- scipy/spatial/_distance_wrap.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_geometric_slerp.py +238 -0
- scipy/spatial/_hausdorff.cp314-win_arm64.lib +0 -0
- scipy/spatial/_hausdorff.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_kdtree.py +920 -0
- scipy/spatial/_plotutils.py +274 -0
- scipy/spatial/_procrustes.py +132 -0
- scipy/spatial/_qhull.cp314-win_arm64.lib +0 -0
- scipy/spatial/_qhull.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_qhull.pyi +213 -0
- scipy/spatial/_spherical_voronoi.py +341 -0
- scipy/spatial/_voronoi.cp314-win_arm64.lib +0 -0
- scipy/spatial/_voronoi.cp314-win_arm64.pyd +0 -0
- scipy/spatial/_voronoi.pyi +4 -0
- scipy/spatial/ckdtree.py +18 -0
- scipy/spatial/distance.py +3147 -0
- scipy/spatial/distance.pyi +210 -0
- scipy/spatial/kdtree.py +25 -0
- scipy/spatial/qhull.py +25 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/__init__.py +0 -0
- scipy/spatial/tests/data/cdist-X1.txt +10 -0
- scipy/spatial/tests/data/cdist-X2.txt +20 -0
- scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
- scipy/spatial/tests/data/iris.txt +150 -0
- scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
- scipy/spatial/tests/data/random-bool-data.txt +100 -0
- scipy/spatial/tests/data/random-double-data.txt +100 -0
- scipy/spatial/tests/data/random-int-data.txt +100 -0
- scipy/spatial/tests/data/random-uint-data.txt +100 -0
- scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
- scipy/spatial/tests/test__plotutils.py +91 -0
- scipy/spatial/tests/test__procrustes.py +116 -0
- scipy/spatial/tests/test_distance.py +2389 -0
- scipy/spatial/tests/test_hausdorff.py +199 -0
- scipy/spatial/tests/test_kdtree.py +1536 -0
- scipy/spatial/tests/test_qhull.py +1313 -0
- scipy/spatial/tests/test_slerp.py +417 -0
- scipy/spatial/tests/test_spherical_voronoi.py +358 -0
- scipy/spatial/transform/__init__.py +31 -0
- scipy/spatial/transform/_rigid_transform.cp314-win_arm64.lib +0 -0
- scipy/spatial/transform/_rigid_transform.cp314-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation.cp314-win_arm64.lib +0 -0
- scipy/spatial/transform/_rotation.cp314-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation_groups.py +140 -0
- scipy/spatial/transform/_rotation_spline.py +460 -0
- scipy/spatial/transform/rotation.py +21 -0
- scipy/spatial/transform/tests/__init__.py +0 -0
- scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
- scipy/spatial/transform/tests/test_rotation.py +2569 -0
- scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
- scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
- scipy/special/__init__.pxd +1 -0
- scipy/special/__init__.py +841 -0
- scipy/special/_add_newdocs.py +9961 -0
- scipy/special/_basic.py +3576 -0
- scipy/special/_comb.cp314-win_arm64.lib +0 -0
- scipy/special/_comb.cp314-win_arm64.pyd +0 -0
- scipy/special/_ellip_harm.py +214 -0
- scipy/special/_ellip_harm_2.cp314-win_arm64.lib +0 -0
- scipy/special/_ellip_harm_2.cp314-win_arm64.pyd +0 -0
- scipy/special/_gufuncs.cp314-win_arm64.lib +0 -0
- scipy/special/_gufuncs.cp314-win_arm64.pyd +0 -0
- scipy/special/_input_validation.py +17 -0
- scipy/special/_lambertw.py +149 -0
- scipy/special/_logsumexp.py +426 -0
- scipy/special/_mptestutils.py +453 -0
- scipy/special/_multiufuncs.py +610 -0
- scipy/special/_orthogonal.py +2592 -0
- scipy/special/_orthogonal.pyi +330 -0
- scipy/special/_precompute/__init__.py +0 -0
- scipy/special/_precompute/cosine_cdf.py +17 -0
- scipy/special/_precompute/expn_asy.py +54 -0
- scipy/special/_precompute/gammainc_asy.py +116 -0
- scipy/special/_precompute/gammainc_data.py +124 -0
- scipy/special/_precompute/hyp2f1_data.py +484 -0
- scipy/special/_precompute/lambertw.py +68 -0
- scipy/special/_precompute/loggamma.py +43 -0
- scipy/special/_precompute/struve_convergence.py +131 -0
- scipy/special/_precompute/utils.py +38 -0
- scipy/special/_precompute/wright_bessel.py +342 -0
- scipy/special/_precompute/wright_bessel_data.py +152 -0
- scipy/special/_precompute/wrightomega.py +41 -0
- scipy/special/_precompute/zetac.py +27 -0
- scipy/special/_sf_error.py +15 -0
- scipy/special/_specfun.cp314-win_arm64.lib +0 -0
- scipy/special/_specfun.cp314-win_arm64.pyd +0 -0
- scipy/special/_special_ufuncs.cp314-win_arm64.lib +0 -0
- scipy/special/_special_ufuncs.cp314-win_arm64.pyd +0 -0
- scipy/special/_spfun_stats.py +106 -0
- scipy/special/_spherical_bessel.py +397 -0
- scipy/special/_support_alternative_backends.py +295 -0
- scipy/special/_test_internal.cp314-win_arm64.lib +0 -0
- scipy/special/_test_internal.cp314-win_arm64.pyd +0 -0
- scipy/special/_test_internal.pyi +9 -0
- scipy/special/_testutils.py +321 -0
- scipy/special/_ufuncs.cp314-win_arm64.lib +0 -0
- scipy/special/_ufuncs.cp314-win_arm64.pyd +0 -0
- scipy/special/_ufuncs.pyi +522 -0
- scipy/special/_ufuncs.pyx +13173 -0
- scipy/special/_ufuncs_cxx.cp314-win_arm64.lib +0 -0
- scipy/special/_ufuncs_cxx.cp314-win_arm64.pyd +0 -0
- scipy/special/_ufuncs_cxx.pxd +142 -0
- scipy/special/_ufuncs_cxx.pyx +427 -0
- scipy/special/_ufuncs_cxx_defs.h +147 -0
- scipy/special/_ufuncs_defs.h +57 -0
- scipy/special/add_newdocs.py +15 -0
- scipy/special/basic.py +87 -0
- scipy/special/cython_special.cp314-win_arm64.lib +0 -0
- scipy/special/cython_special.cp314-win_arm64.pyd +0 -0
- scipy/special/cython_special.pxd +259 -0
- scipy/special/cython_special.pyi +3 -0
- scipy/special/orthogonal.py +45 -0
- scipy/special/sf_error.py +20 -0
- scipy/special/specfun.py +24 -0
- scipy/special/spfun_stats.py +17 -0
- scipy/special/tests/__init__.py +0 -0
- scipy/special/tests/_cython_examples/extending.pyx +12 -0
- scipy/special/tests/_cython_examples/meson.build +34 -0
- scipy/special/tests/data/__init__.py +0 -0
- scipy/special/tests/data/boost.npz +0 -0
- scipy/special/tests/data/gsl.npz +0 -0
- scipy/special/tests/data/local.npz +0 -0
- scipy/special/tests/test_basic.py +4815 -0
- scipy/special/tests/test_bdtr.py +112 -0
- scipy/special/tests/test_boost_ufuncs.py +64 -0
- scipy/special/tests/test_boxcox.py +125 -0
- scipy/special/tests/test_cdflib.py +712 -0
- scipy/special/tests/test_cdft_asymptotic.py +49 -0
- scipy/special/tests/test_cephes_intp_cast.py +29 -0
- scipy/special/tests/test_cosine_distr.py +83 -0
- scipy/special/tests/test_cython_special.py +363 -0
- scipy/special/tests/test_data.py +719 -0
- scipy/special/tests/test_dd.py +42 -0
- scipy/special/tests/test_digamma.py +45 -0
- scipy/special/tests/test_ellip_harm.py +278 -0
- scipy/special/tests/test_erfinv.py +89 -0
- scipy/special/tests/test_exponential_integrals.py +118 -0
- scipy/special/tests/test_extending.py +28 -0
- scipy/special/tests/test_faddeeva.py +85 -0
- scipy/special/tests/test_gamma.py +12 -0
- scipy/special/tests/test_gammainc.py +152 -0
- scipy/special/tests/test_hyp2f1.py +2566 -0
- scipy/special/tests/test_hypergeometric.py +234 -0
- scipy/special/tests/test_iv_ratio.py +249 -0
- scipy/special/tests/test_kolmogorov.py +491 -0
- scipy/special/tests/test_lambertw.py +109 -0
- scipy/special/tests/test_legendre.py +1518 -0
- scipy/special/tests/test_log1mexp.py +85 -0
- scipy/special/tests/test_loggamma.py +70 -0
- scipy/special/tests/test_logit.py +162 -0
- scipy/special/tests/test_logsumexp.py +469 -0
- scipy/special/tests/test_mpmath.py +2293 -0
- scipy/special/tests/test_nan_inputs.py +65 -0
- scipy/special/tests/test_ndtr.py +77 -0
- scipy/special/tests/test_ndtri_exp.py +94 -0
- scipy/special/tests/test_orthogonal.py +821 -0
- scipy/special/tests/test_orthogonal_eval.py +275 -0
- scipy/special/tests/test_owens_t.py +53 -0
- scipy/special/tests/test_pcf.py +24 -0
- scipy/special/tests/test_pdtr.py +48 -0
- scipy/special/tests/test_powm1.py +65 -0
- scipy/special/tests/test_precompute_expn_asy.py +24 -0
- scipy/special/tests/test_precompute_gammainc.py +108 -0
- scipy/special/tests/test_precompute_utils.py +36 -0
- scipy/special/tests/test_round.py +18 -0
- scipy/special/tests/test_sf_error.py +146 -0
- scipy/special/tests/test_sici.py +36 -0
- scipy/special/tests/test_specfun.py +48 -0
- scipy/special/tests/test_spence.py +32 -0
- scipy/special/tests/test_spfun_stats.py +61 -0
- scipy/special/tests/test_sph_harm.py +85 -0
- scipy/special/tests/test_spherical_bessel.py +400 -0
- scipy/special/tests/test_support_alternative_backends.py +248 -0
- scipy/special/tests/test_trig.py +72 -0
- scipy/special/tests/test_ufunc_signatures.py +46 -0
- scipy/special/tests/test_wright_bessel.py +205 -0
- scipy/special/tests/test_wrightomega.py +117 -0
- scipy/special/tests/test_zeta.py +301 -0
- scipy/stats/__init__.py +670 -0
- scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.lib +0 -0
- scipy/stats/_ansari_swilk_statistics.cp314-win_arm64.pyd +0 -0
- scipy/stats/_axis_nan_policy.py +692 -0
- scipy/stats/_biasedurn.cp314-win_arm64.lib +0 -0
- scipy/stats/_biasedurn.cp314-win_arm64.pyd +0 -0
- scipy/stats/_biasedurn.pxd +27 -0
- scipy/stats/_binned_statistic.py +795 -0
- scipy/stats/_binomtest.py +375 -0
- scipy/stats/_bws_test.py +177 -0
- scipy/stats/_censored_data.py +459 -0
- scipy/stats/_common.py +5 -0
- scipy/stats/_constants.py +42 -0
- scipy/stats/_continued_fraction.py +387 -0
- scipy/stats/_continuous_distns.py +12486 -0
- scipy/stats/_correlation.py +210 -0
- scipy/stats/_covariance.py +636 -0
- scipy/stats/_crosstab.py +204 -0
- scipy/stats/_discrete_distns.py +2098 -0
- scipy/stats/_distn_infrastructure.py +4201 -0
- scipy/stats/_distr_params.py +299 -0
- scipy/stats/_distribution_infrastructure.py +5750 -0
- scipy/stats/_entropy.py +428 -0
- scipy/stats/_finite_differences.py +145 -0
- scipy/stats/_fit.py +1351 -0
- scipy/stats/_hypotests.py +2060 -0
- scipy/stats/_kde.py +732 -0
- scipy/stats/_ksstats.py +600 -0
- scipy/stats/_levy_stable/__init__.py +1231 -0
- scipy/stats/_levy_stable/levyst.cp314-win_arm64.lib +0 -0
- scipy/stats/_levy_stable/levyst.cp314-win_arm64.pyd +0 -0
- scipy/stats/_mannwhitneyu.py +492 -0
- scipy/stats/_mgc.py +550 -0
- scipy/stats/_morestats.py +4626 -0
- scipy/stats/_mstats_basic.py +3658 -0
- scipy/stats/_mstats_extras.py +521 -0
- scipy/stats/_multicomp.py +449 -0
- scipy/stats/_multivariate.py +7281 -0
- scipy/stats/_new_distributions.py +452 -0
- scipy/stats/_odds_ratio.py +466 -0
- scipy/stats/_page_trend_test.py +486 -0
- scipy/stats/_probability_distribution.py +1964 -0
- scipy/stats/_qmc.py +2956 -0
- scipy/stats/_qmc_cy.cp314-win_arm64.lib +0 -0
- scipy/stats/_qmc_cy.cp314-win_arm64.pyd +0 -0
- scipy/stats/_qmc_cy.pyi +54 -0
- scipy/stats/_qmvnt.py +454 -0
- scipy/stats/_qmvnt_cy.cp314-win_arm64.lib +0 -0
- scipy/stats/_qmvnt_cy.cp314-win_arm64.pyd +0 -0
- scipy/stats/_quantile.py +335 -0
- scipy/stats/_rcont/__init__.py +4 -0
- scipy/stats/_rcont/rcont.cp314-win_arm64.lib +0 -0
- scipy/stats/_rcont/rcont.cp314-win_arm64.pyd +0 -0
- scipy/stats/_relative_risk.py +263 -0
- scipy/stats/_resampling.py +2352 -0
- scipy/stats/_result_classes.py +40 -0
- scipy/stats/_sampling.py +1314 -0
- scipy/stats/_sensitivity_analysis.py +713 -0
- scipy/stats/_sobol.cp314-win_arm64.lib +0 -0
- scipy/stats/_sobol.cp314-win_arm64.pyd +0 -0
- scipy/stats/_sobol.pyi +54 -0
- scipy/stats/_sobol_direction_numbers.npz +0 -0
- scipy/stats/_stats.cp314-win_arm64.lib +0 -0
- scipy/stats/_stats.cp314-win_arm64.pyd +0 -0
- scipy/stats/_stats.pxd +10 -0
- scipy/stats/_stats_mstats_common.py +322 -0
- scipy/stats/_stats_py.py +11089 -0
- scipy/stats/_stats_pythran.cp314-win_arm64.lib +0 -0
- scipy/stats/_stats_pythran.cp314-win_arm64.pyd +0 -0
- scipy/stats/_survival.py +683 -0
- scipy/stats/_tukeylambda_stats.py +199 -0
- scipy/stats/_unuran/__init__.py +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.lib +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp314-win_arm64.pyd +0 -0
- scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
- scipy/stats/_variation.py +126 -0
- scipy/stats/_warnings_errors.py +38 -0
- scipy/stats/_wilcoxon.py +265 -0
- scipy/stats/biasedurn.py +16 -0
- scipy/stats/contingency.py +521 -0
- scipy/stats/distributions.py +24 -0
- scipy/stats/kde.py +18 -0
- scipy/stats/morestats.py +27 -0
- scipy/stats/mstats.py +140 -0
- scipy/stats/mstats_basic.py +42 -0
- scipy/stats/mstats_extras.py +25 -0
- scipy/stats/mvn.py +17 -0
- scipy/stats/qmc.py +236 -0
- scipy/stats/sampling.py +73 -0
- scipy/stats/stats.py +41 -0
- scipy/stats/tests/__init__.py +0 -0
- scipy/stats/tests/common_tests.py +356 -0
- scipy/stats/tests/data/_mvt.py +171 -0
- scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
- scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
- scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
- scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
- scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
- scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
- scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
- scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
- scipy/stats/tests/test_axis_nan_policy.py +1388 -0
- scipy/stats/tests/test_binned_statistic.py +568 -0
- scipy/stats/tests/test_censored_data.py +152 -0
- scipy/stats/tests/test_contingency.py +294 -0
- scipy/stats/tests/test_continued_fraction.py +173 -0
- scipy/stats/tests/test_continuous.py +2198 -0
- scipy/stats/tests/test_continuous_basic.py +1053 -0
- scipy/stats/tests/test_continuous_fit_censored.py +683 -0
- scipy/stats/tests/test_correlation.py +80 -0
- scipy/stats/tests/test_crosstab.py +115 -0
- scipy/stats/tests/test_discrete_basic.py +580 -0
- scipy/stats/tests/test_discrete_distns.py +700 -0
- scipy/stats/tests/test_distributions.py +10413 -0
- scipy/stats/tests/test_entropy.py +322 -0
- scipy/stats/tests/test_fast_gen_inversion.py +435 -0
- scipy/stats/tests/test_fit.py +1090 -0
- scipy/stats/tests/test_hypotests.py +1991 -0
- scipy/stats/tests/test_kdeoth.py +676 -0
- scipy/stats/tests/test_marray.py +289 -0
- scipy/stats/tests/test_mgc.py +217 -0
- scipy/stats/tests/test_morestats.py +3259 -0
- scipy/stats/tests/test_mstats_basic.py +2071 -0
- scipy/stats/tests/test_mstats_extras.py +172 -0
- scipy/stats/tests/test_multicomp.py +405 -0
- scipy/stats/tests/test_multivariate.py +4381 -0
- scipy/stats/tests/test_odds_ratio.py +148 -0
- scipy/stats/tests/test_qmc.py +1492 -0
- scipy/stats/tests/test_quantile.py +199 -0
- scipy/stats/tests/test_rank.py +345 -0
- scipy/stats/tests/test_relative_risk.py +95 -0
- scipy/stats/tests/test_resampling.py +2000 -0
- scipy/stats/tests/test_sampling.py +1450 -0
- scipy/stats/tests/test_sensitivity_analysis.py +310 -0
- scipy/stats/tests/test_stats.py +9707 -0
- scipy/stats/tests/test_survival.py +466 -0
- scipy/stats/tests/test_tukeylambda_stats.py +85 -0
- scipy/stats/tests/test_variation.py +216 -0
- scipy/version.py +12 -0
- scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
- scipy-1.16.2.dist-info/LICENSE.txt +912 -0
- scipy-1.16.2.dist-info/METADATA +1061 -0
- scipy-1.16.2.dist-info/RECORD +1530 -0
- scipy-1.16.2.dist-info/WHEEL +4 -0
- scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,2471 @@
|
|
1
|
+
"""Tools for spectral analysis.
|
2
|
+
"""
|
3
|
+
import numpy as np
|
4
|
+
import numpy.typing as npt
|
5
|
+
from scipy import fft as sp_fft
|
6
|
+
from . import _signaltools
|
7
|
+
from ._short_time_fft import ShortTimeFFT, FFT_MODE_TYPE
|
8
|
+
from .windows import get_window
|
9
|
+
from ._arraytools import const_ext, even_ext, odd_ext, zero_ext
|
10
|
+
import warnings
|
11
|
+
from typing import cast, Literal
|
12
|
+
|
13
|
+
|
14
|
+
__all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence',
|
15
|
+
'spectrogram', 'stft', 'istft', 'check_COLA', 'check_NOLA']
|
16
|
+
|
17
|
+
|
18
|
+
def lombscargle(
|
19
|
+
x: npt.ArrayLike,
|
20
|
+
y: npt.ArrayLike,
|
21
|
+
freqs: npt.ArrayLike,
|
22
|
+
precenter: bool = False,
|
23
|
+
normalize: bool | Literal["power", "normalize", "amplitude"] = False,
|
24
|
+
*,
|
25
|
+
weights: npt.NDArray | None = None,
|
26
|
+
floating_mean: bool = False,
|
27
|
+
) -> npt.NDArray:
|
28
|
+
"""
|
29
|
+
Compute the generalized Lomb-Scargle periodogram.
|
30
|
+
|
31
|
+
The Lomb-Scargle periodogram was developed by Lomb [1]_ and further
|
32
|
+
extended by Scargle [2]_ to find, and test the significance of weak
|
33
|
+
periodic signals with uneven temporal sampling. The algorithm used
|
34
|
+
here is based on a weighted least-squares fit of the form
|
35
|
+
``y(ω) = a*cos(ω*x) + b*sin(ω*x) + c``, where the fit is calculated for
|
36
|
+
each frequency independently. This algorithm was developed by Zechmeister
|
37
|
+
and Kürster which improves the Lomb-Scargle periodogram by enabling
|
38
|
+
the weighting of individual samples and calculating an unknown y offset
|
39
|
+
(also called a "floating-mean" model) [3]_. For more details, and practical
|
40
|
+
considerations, see the excellent reference on the Lomb-Scargle periodogram [4]_.
|
41
|
+
|
42
|
+
When *normalize* is False (or "power") (default) the computed periodogram
|
43
|
+
is unnormalized, it takes the value ``(A**2) * N/4`` for a harmonic
|
44
|
+
signal with amplitude A for sufficiently large N. Where N is the length of x or y.
|
45
|
+
|
46
|
+
When *normalize* is True (or "normalize") the computed periodogram is normalized
|
47
|
+
by the residuals of the data around a constant reference model (at zero).
|
48
|
+
|
49
|
+
When *normalize* is "amplitude" the computed periodogram is the complex
|
50
|
+
representation of the amplitude and phase.
|
51
|
+
|
52
|
+
Input arrays should be 1-D of a real floating data type, which are converted into
|
53
|
+
float64 arrays before processing.
|
54
|
+
|
55
|
+
Parameters
|
56
|
+
----------
|
57
|
+
x : array_like
|
58
|
+
Sample times.
|
59
|
+
y : array_like
|
60
|
+
Measurement values. Values are assumed to have a baseline of ``y = 0``. If
|
61
|
+
there is a possibility of a y offset, it is recommended to set `floating_mean`
|
62
|
+
to True.
|
63
|
+
freqs : array_like
|
64
|
+
Angular frequencies (e.g., having unit rad/s=2π/s for `x` having unit s) for
|
65
|
+
output periodogram. Frequencies are normally >= 0, as any peak at ``-freq`` will
|
66
|
+
also exist at ``+freq``.
|
67
|
+
precenter : bool, optional
|
68
|
+
Pre-center measurement values by subtracting the mean, if True. This is
|
69
|
+
a legacy parameter and unnecessary if `floating_mean` is True.
|
70
|
+
normalize : bool | str, optional
|
71
|
+
Compute normalized or complex (amplitude + phase) periodogram.
|
72
|
+
Valid options are: ``False``/``"power"``, ``True``/``"normalize"``, or
|
73
|
+
``"amplitude"``.
|
74
|
+
weights : array_like, optional
|
75
|
+
Weights for each sample. Weights must be nonnegative.
|
76
|
+
floating_mean : bool, optional
|
77
|
+
Determines a y offset for each frequency independently, if True.
|
78
|
+
Else the y offset is assumed to be `0`.
|
79
|
+
|
80
|
+
Returns
|
81
|
+
-------
|
82
|
+
pgram : array_like
|
83
|
+
Lomb-Scargle periodogram.
|
84
|
+
|
85
|
+
Raises
|
86
|
+
------
|
87
|
+
ValueError
|
88
|
+
If any of the input arrays x, y, freqs, or weights are not 1D, or if any are
|
89
|
+
zero length. Or, if the input arrays x, y, and weights do not have the same
|
90
|
+
shape as each other.
|
91
|
+
ValueError
|
92
|
+
If any weight is < 0, or the sum of the weights is <= 0.
|
93
|
+
ValueError
|
94
|
+
If the normalize parameter is not one of the allowed options.
|
95
|
+
|
96
|
+
See Also
|
97
|
+
--------
|
98
|
+
periodogram: Power spectral density using a periodogram
|
99
|
+
welch: Power spectral density by Welch's method
|
100
|
+
csd: Cross spectral density by Welch's method
|
101
|
+
|
102
|
+
Notes
|
103
|
+
-----
|
104
|
+
The algorithm used will not automatically account for any unknown y offset, unless
|
105
|
+
floating_mean is True. Therefore, for most use cases, if there is a possibility of
|
106
|
+
a y offset, it is recommended to set floating_mean to True. If precenter is True,
|
107
|
+
it performs the operation ``y -= y.mean()``. However, precenter is a legacy
|
108
|
+
parameter, and unnecessary when floating_mean is True. Furthermore, the mean
|
109
|
+
removed by precenter does not account for sample weights, nor will it correct for
|
110
|
+
any bias due to consistently missing observations at peaks and/or troughs. When the
|
111
|
+
normalize parameter is "amplitude", for any frequency in freqs that is below
|
112
|
+
``(2*pi)/(x.max() - x.min())``, the predicted amplitude will tend towards infinity.
|
113
|
+
The concept of a "Nyquist frequency" limit (see Nyquist-Shannon sampling theorem)
|
114
|
+
is not generally applicable to unevenly sampled data. Therefore, with unevenly
|
115
|
+
sampled data, valid frequencies in freqs can often be much higher than expected.
|
116
|
+
|
117
|
+
References
|
118
|
+
----------
|
119
|
+
.. [1] N.R. Lomb "Least-squares frequency analysis of unequally spaced
|
120
|
+
data", Astrophysics and Space Science, vol 39, pp. 447-462, 1976
|
121
|
+
:doi:`10.1007/bf00648343`
|
122
|
+
|
123
|
+
.. [2] J.D. Scargle "Studies in astronomical time series analysis. II -
|
124
|
+
Statistical aspects of spectral analysis of unevenly spaced data",
|
125
|
+
The Astrophysical Journal, vol 263, pp. 835-853, 1982
|
126
|
+
:doi:`10.1086/160554`
|
127
|
+
|
128
|
+
.. [3] M. Zechmeister and M. Kürster, "The generalised Lomb-Scargle periodogram.
|
129
|
+
A new formalism for the floating-mean and Keplerian periodograms,"
|
130
|
+
Astronomy and Astrophysics, vol. 496, pp. 577-584, 2009
|
131
|
+
:doi:`10.1051/0004-6361:200811296`
|
132
|
+
|
133
|
+
.. [4] J.T. VanderPlas, "Understanding the Lomb-Scargle Periodogram,"
|
134
|
+
The Astrophysical Journal Supplement Series, vol. 236, no. 1, p. 16,
|
135
|
+
May 2018
|
136
|
+
:doi:`10.3847/1538-4365/aab766`
|
137
|
+
|
138
|
+
|
139
|
+
Examples
|
140
|
+
--------
|
141
|
+
>>> import numpy as np
|
142
|
+
>>> rng = np.random.default_rng()
|
143
|
+
|
144
|
+
First define some input parameters for the signal:
|
145
|
+
|
146
|
+
>>> A = 2. # amplitude
|
147
|
+
>>> c = 2. # offset
|
148
|
+
>>> w0 = 1. # rad/sec
|
149
|
+
>>> nin = 150
|
150
|
+
>>> nout = 1002
|
151
|
+
|
152
|
+
Randomly generate sample times:
|
153
|
+
|
154
|
+
>>> x = rng.uniform(0, 10*np.pi, nin)
|
155
|
+
|
156
|
+
Plot a sine wave for the selected times:
|
157
|
+
|
158
|
+
>>> y = A * np.cos(w0*x) + c
|
159
|
+
|
160
|
+
Define the array of frequencies for which to compute the periodogram:
|
161
|
+
|
162
|
+
>>> w = np.linspace(0.25, 10, nout)
|
163
|
+
|
164
|
+
Calculate Lomb-Scargle periodogram for each of the normalize options:
|
165
|
+
|
166
|
+
>>> from scipy.signal import lombscargle
|
167
|
+
>>> pgram_power = lombscargle(x, y, w, normalize=False)
|
168
|
+
>>> pgram_norm = lombscargle(x, y, w, normalize=True)
|
169
|
+
>>> pgram_amp = lombscargle(x, y, w, normalize='amplitude')
|
170
|
+
...
|
171
|
+
>>> pgram_power_f = lombscargle(x, y, w, normalize=False, floating_mean=True)
|
172
|
+
>>> pgram_norm_f = lombscargle(x, y, w, normalize=True, floating_mean=True)
|
173
|
+
>>> pgram_amp_f = lombscargle(x, y, w, normalize='amplitude', floating_mean=True)
|
174
|
+
|
175
|
+
Now make a plot of the input data:
|
176
|
+
|
177
|
+
>>> import matplotlib.pyplot as plt
|
178
|
+
>>> fig, (ax_t, ax_p, ax_n, ax_a) = plt.subplots(4, 1, figsize=(5, 6))
|
179
|
+
>>> ax_t.plot(x, y, 'b+')
|
180
|
+
>>> ax_t.set_xlabel('Time [s]')
|
181
|
+
>>> ax_t.set_ylabel('Amplitude')
|
182
|
+
|
183
|
+
Then plot the periodogram for each of the normalize options, as well as with and
|
184
|
+
without floating_mean=True:
|
185
|
+
|
186
|
+
>>> ax_p.plot(w, pgram_power, label='default')
|
187
|
+
>>> ax_p.plot(w, pgram_power_f, label='floating_mean=True')
|
188
|
+
>>> ax_p.set_xlabel('Angular frequency [rad/s]')
|
189
|
+
>>> ax_p.set_ylabel('Power')
|
190
|
+
>>> ax_p.legend(prop={'size': 7})
|
191
|
+
...
|
192
|
+
>>> ax_n.plot(w, pgram_norm, label='default')
|
193
|
+
>>> ax_n.plot(w, pgram_norm_f, label='floating_mean=True')
|
194
|
+
>>> ax_n.set_xlabel('Angular frequency [rad/s]')
|
195
|
+
>>> ax_n.set_ylabel('Normalized')
|
196
|
+
>>> ax_n.legend(prop={'size': 7})
|
197
|
+
...
|
198
|
+
>>> ax_a.plot(w, np.abs(pgram_amp), label='default')
|
199
|
+
>>> ax_a.plot(w, np.abs(pgram_amp_f), label='floating_mean=True')
|
200
|
+
>>> ax_a.set_xlabel('Angular frequency [rad/s]')
|
201
|
+
>>> ax_a.set_ylabel('Amplitude')
|
202
|
+
>>> ax_a.legend(prop={'size': 7})
|
203
|
+
...
|
204
|
+
>>> plt.tight_layout()
|
205
|
+
>>> plt.show()
|
206
|
+
|
207
|
+
"""
|
208
|
+
|
209
|
+
# if no weights are provided, assume all data points are equally important
|
210
|
+
if weights is None:
|
211
|
+
weights = np.ones_like(y, dtype=np.float64)
|
212
|
+
else:
|
213
|
+
# if provided, make sure weights is an array and cast to float64
|
214
|
+
weights = np.asarray(weights, dtype=np.float64)
|
215
|
+
|
216
|
+
# make sure other inputs are arrays and cast to float64
|
217
|
+
# done before validation, in case they were not arrays
|
218
|
+
x = np.asarray(x, dtype=np.float64)
|
219
|
+
y = np.asarray(y, dtype=np.float64)
|
220
|
+
freqs = np.asarray(freqs, dtype=np.float64)
|
221
|
+
|
222
|
+
# validate input shapes
|
223
|
+
if not (x.ndim == 1 and x.size > 0 and x.shape == y.shape == weights.shape):
|
224
|
+
raise ValueError("Parameters x, y, weights must be 1-D arrays of "
|
225
|
+
"equal non-zero length!")
|
226
|
+
if not (freqs.ndim == 1 and freqs.size > 0):
|
227
|
+
raise ValueError("Parameter freqs must be a 1-D array of non-zero length!")
|
228
|
+
|
229
|
+
# validate weights
|
230
|
+
if not (np.all(weights >= 0) and np.sum(weights) > 0):
|
231
|
+
raise ValueError("Parameter weights must have only non-negative entries "
|
232
|
+
"which sum to a positive value!")
|
233
|
+
|
234
|
+
# validate normalize parameter
|
235
|
+
if isinstance(normalize, bool):
|
236
|
+
# if bool, convert to str literal
|
237
|
+
normalize = "normalize" if normalize else "power"
|
238
|
+
|
239
|
+
if normalize not in ["power", "normalize", "amplitude"]:
|
240
|
+
raise ValueError(
|
241
|
+
"Normalize must be: False (or 'power'), True (or 'normalize'), "
|
242
|
+
"or 'amplitude'."
|
243
|
+
)
|
244
|
+
|
245
|
+
# weight vector must sum to 1
|
246
|
+
weights = weights * (1.0 / weights.sum())
|
247
|
+
|
248
|
+
# if requested, perform precenter
|
249
|
+
if precenter:
|
250
|
+
y = y - y.mean()
|
251
|
+
|
252
|
+
# transform arrays
|
253
|
+
# row vector
|
254
|
+
freqs = freqs.reshape(1, -1)
|
255
|
+
# column vectors
|
256
|
+
x = x.reshape(-1, 1)
|
257
|
+
y = y.reshape(-1, 1)
|
258
|
+
weights = weights.reshape(-1, 1)
|
259
|
+
|
260
|
+
# store frequent intermediates
|
261
|
+
weights_y = weights * y
|
262
|
+
freqst = freqs * x
|
263
|
+
coswt = np.cos(freqst)
|
264
|
+
sinwt = np.sin(freqst)
|
265
|
+
|
266
|
+
Y = np.dot(weights.T, y) # Eq. 7
|
267
|
+
CC = np.dot(weights.T, coswt * coswt) # Eq. 13
|
268
|
+
SS = 1.0 - CC # trig identity: S^2 = 1 - C^2 Eq.14
|
269
|
+
CS = np.dot(weights.T, coswt * sinwt) # Eq. 15
|
270
|
+
|
271
|
+
if floating_mean:
|
272
|
+
C = np.dot(weights.T, coswt) # Eq. 8
|
273
|
+
S = np.dot(weights.T, sinwt) # Eq. 9
|
274
|
+
CC -= C * C # Eq. 13
|
275
|
+
SS -= S * S # Eq. 14
|
276
|
+
CS -= C * S # Eq. 15
|
277
|
+
|
278
|
+
# calculate tau (phase offset to eliminate CS variable)
|
279
|
+
tau = 0.5 * np.arctan2(2.0 * CS, CC - SS) # Eq. 19
|
280
|
+
freqst_tau = freqst - tau
|
281
|
+
|
282
|
+
# coswt and sinwt are now offset by tau, which eliminates CS
|
283
|
+
coswt_tau = np.cos(freqst_tau)
|
284
|
+
sinwt_tau = np.sin(freqst_tau)
|
285
|
+
|
286
|
+
YC = np.dot(weights_y.T, coswt_tau) # Eq. 11
|
287
|
+
YS = np.dot(weights_y.T, sinwt_tau) # Eq. 12
|
288
|
+
CC = np.dot(weights.T, coswt_tau * coswt_tau) # Eq. 13, CC range is [0.5, 1.0]
|
289
|
+
SS = 1.0 - CC # trig identity: S^2 = 1 - C^2 Eq. 14, SS range is [0.0, 0.5]
|
290
|
+
|
291
|
+
if floating_mean:
|
292
|
+
C = np.dot(weights.T, coswt_tau) # Eq. 8
|
293
|
+
S = np.dot(weights.T, sinwt_tau) # Eq. 9
|
294
|
+
YC -= Y * C # Eq. 11
|
295
|
+
YS -= Y * S # Eq. 12
|
296
|
+
CC -= C * C # Eq. 13, CC range is now [0.0, 1.0]
|
297
|
+
SS -= S * S # Eq. 14, SS range is now [0.0, 0.5]
|
298
|
+
|
299
|
+
# to prevent division by zero errors with a and b, as well as correcting for
|
300
|
+
# numerical precision errors that lead to CC or SS being approximately -0.0,
|
301
|
+
# make sure CC and SS are both > 0
|
302
|
+
epsneg = np.finfo(dtype=y.dtype).epsneg
|
303
|
+
CC[CC < epsneg] = epsneg
|
304
|
+
SS[SS < epsneg] = epsneg
|
305
|
+
|
306
|
+
# calculate a and b
|
307
|
+
# where: y(w) = a*cos(w) + b*sin(w) + c
|
308
|
+
a = YC / CC # Eq. A.4 and 6, eliminating CS
|
309
|
+
b = YS / SS # Eq. A.4 and 6, eliminating CS
|
310
|
+
# c = Y - a * C - b * S
|
311
|
+
|
312
|
+
# store final value as power in A^2 (i.e., (y units)^2)
|
313
|
+
pgram = 2.0 * (a * YC + b * YS)
|
314
|
+
|
315
|
+
# squeeze back to a vector
|
316
|
+
pgram = np.squeeze(pgram)
|
317
|
+
|
318
|
+
if normalize == "power": # (default)
|
319
|
+
# return the legacy power units ((A**2) * N/4)
|
320
|
+
|
321
|
+
pgram *= float(x.shape[0]) / 4.0
|
322
|
+
|
323
|
+
elif normalize == "normalize":
|
324
|
+
# return the normalized power (power at current frequency wrt the entire signal)
|
325
|
+
# range will be [0, 1]
|
326
|
+
|
327
|
+
YY = np.dot(weights_y.T, y) # Eq. 10
|
328
|
+
if floating_mean:
|
329
|
+
YY -= Y * Y # Eq. 10
|
330
|
+
|
331
|
+
pgram *= 0.5 / np.squeeze(YY) # Eq. 20
|
332
|
+
|
333
|
+
else: # normalize == "amplitude":
|
334
|
+
# return the complex representation of the best-fit amplitude and phase
|
335
|
+
|
336
|
+
# squeeze back to vectors
|
337
|
+
a = np.squeeze(a)
|
338
|
+
b = np.squeeze(b)
|
339
|
+
tau = np.squeeze(tau)
|
340
|
+
|
341
|
+
# calculate the complex representation, and correct for tau rotation
|
342
|
+
pgram = (a + 1j * b) * np.exp(1j * tau)
|
343
|
+
|
344
|
+
return pgram
|
345
|
+
|
346
|
+
|
347
|
+
def periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant',
|
348
|
+
return_onesided=True, scaling='density', axis=-1):
|
349
|
+
"""
|
350
|
+
Estimate power spectral density using a periodogram.
|
351
|
+
|
352
|
+
Parameters
|
353
|
+
----------
|
354
|
+
x : array_like
|
355
|
+
Time series of measurement values
|
356
|
+
fs : float, optional
|
357
|
+
Sampling frequency of the `x` time series. Defaults to 1.0.
|
358
|
+
window : str or tuple or array_like, optional
|
359
|
+
Desired window to use. If `window` is a string or tuple, it is
|
360
|
+
passed to `get_window` to generate the window values, which are
|
361
|
+
DFT-even by default. See `get_window` for a list of windows and
|
362
|
+
required parameters. If `window` is array_like it will be used
|
363
|
+
directly as the window and its length must be equal to the length
|
364
|
+
of the axis over which the periodogram is computed. Defaults
|
365
|
+
to 'boxcar'.
|
366
|
+
nfft : int, optional
|
367
|
+
Length of the FFT used. If `None` the length of `x` will be
|
368
|
+
used.
|
369
|
+
detrend : str or function or `False`, optional
|
370
|
+
Specifies how to detrend each segment. If `detrend` is a
|
371
|
+
string, it is passed as the `type` argument to the `detrend`
|
372
|
+
function. If it is a function, it takes a segment and returns a
|
373
|
+
detrended segment. If `detrend` is `False`, no detrending is
|
374
|
+
done. Defaults to 'constant'.
|
375
|
+
return_onesided : bool, optional
|
376
|
+
If `True`, return a one-sided spectrum for real data. If
|
377
|
+
`False` return a two-sided spectrum. Defaults to `True`, but for
|
378
|
+
complex data, a two-sided spectrum is always returned.
|
379
|
+
scaling : { 'density', 'spectrum' }, optional
|
380
|
+
Selects between computing the power spectral density ('density')
|
381
|
+
where `Pxx` has units of V²/Hz and computing the squared magnitude
|
382
|
+
spectrum ('spectrum') where `Pxx` has units of V², if `x`
|
383
|
+
is measured in V and `fs` is measured in Hz. Defaults to
|
384
|
+
'density'
|
385
|
+
axis : int, optional
|
386
|
+
Axis along which the periodogram is computed; the default is
|
387
|
+
over the last axis (i.e. ``axis=-1``).
|
388
|
+
|
389
|
+
Returns
|
390
|
+
-------
|
391
|
+
f : ndarray
|
392
|
+
Array of sample frequencies.
|
393
|
+
Pxx : ndarray
|
394
|
+
Power spectral density or power spectrum of `x`.
|
395
|
+
|
396
|
+
See Also
|
397
|
+
--------
|
398
|
+
welch: Estimate power spectral density using Welch's method
|
399
|
+
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
|
400
|
+
|
401
|
+
Notes
|
402
|
+
-----
|
403
|
+
The ratio of the squared magnitude (``scaling='spectrum'``) divided by the spectral
|
404
|
+
power density (``scaling='density'``) is the constant factor of
|
405
|
+
``sum(abs(window)**2)*fs / abs(sum(window))**2``.
|
406
|
+
If `return_onesided` is ``True``, the values of the negative frequencies are added
|
407
|
+
to values of the corresponding positive ones.
|
408
|
+
|
409
|
+
Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
|
410
|
+
for a discussion of the scalings of the power spectral density and
|
411
|
+
the magnitude (squared) spectrum.
|
412
|
+
|
413
|
+
.. versionadded:: 0.12.0
|
414
|
+
|
415
|
+
Examples
|
416
|
+
--------
|
417
|
+
>>> import numpy as np
|
418
|
+
>>> from scipy import signal
|
419
|
+
>>> import matplotlib.pyplot as plt
|
420
|
+
>>> rng = np.random.default_rng()
|
421
|
+
|
422
|
+
Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
|
423
|
+
0.001 V**2/Hz of white noise sampled at 10 kHz.
|
424
|
+
|
425
|
+
>>> fs = 10e3
|
426
|
+
>>> N = 1e5
|
427
|
+
>>> amp = 2*np.sqrt(2)
|
428
|
+
>>> freq = 1234.0
|
429
|
+
>>> noise_power = 0.001 * fs / 2
|
430
|
+
>>> time = np.arange(N) / fs
|
431
|
+
>>> x = amp*np.sin(2*np.pi*freq*time)
|
432
|
+
>>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)
|
433
|
+
|
434
|
+
Compute and plot the power spectral density.
|
435
|
+
|
436
|
+
>>> f, Pxx_den = signal.periodogram(x, fs)
|
437
|
+
>>> plt.semilogy(f, Pxx_den)
|
438
|
+
>>> plt.ylim([1e-7, 1e2])
|
439
|
+
>>> plt.xlabel('frequency [Hz]')
|
440
|
+
>>> plt.ylabel('PSD [V**2/Hz]')
|
441
|
+
>>> plt.show()
|
442
|
+
|
443
|
+
If we average the last half of the spectral density, to exclude the
|
444
|
+
peak, we can recover the noise power on the signal.
|
445
|
+
|
446
|
+
>>> np.mean(Pxx_den[25000:])
|
447
|
+
0.000985320699252543
|
448
|
+
|
449
|
+
Now compute and plot the power spectrum.
|
450
|
+
|
451
|
+
>>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
|
452
|
+
>>> plt.figure()
|
453
|
+
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
|
454
|
+
>>> plt.ylim([1e-4, 1e1])
|
455
|
+
>>> plt.xlabel('frequency [Hz]')
|
456
|
+
>>> plt.ylabel('Linear spectrum [V RMS]')
|
457
|
+
>>> plt.show()
|
458
|
+
|
459
|
+
The peak height in the power spectrum is an estimate of the RMS
|
460
|
+
amplitude.
|
461
|
+
|
462
|
+
>>> np.sqrt(Pxx_spec.max())
|
463
|
+
2.0077340678640727
|
464
|
+
|
465
|
+
"""
|
466
|
+
x = np.asarray(x)
|
467
|
+
|
468
|
+
if x.size == 0:
|
469
|
+
return np.empty(x.shape), np.empty(x.shape)
|
470
|
+
|
471
|
+
if window is None:
|
472
|
+
window = 'boxcar'
|
473
|
+
|
474
|
+
if nfft is None:
|
475
|
+
nperseg = x.shape[axis]
|
476
|
+
elif nfft == x.shape[axis]:
|
477
|
+
nperseg = nfft
|
478
|
+
elif nfft > x.shape[axis]:
|
479
|
+
nperseg = x.shape[axis]
|
480
|
+
elif nfft < x.shape[axis]:
|
481
|
+
s = [np.s_[:]]*len(x.shape)
|
482
|
+
s[axis] = np.s_[:nfft]
|
483
|
+
x = x[tuple(s)]
|
484
|
+
nperseg = nfft
|
485
|
+
nfft = None
|
486
|
+
|
487
|
+
if hasattr(window, 'size'):
|
488
|
+
if window.size != nperseg:
|
489
|
+
raise ValueError('the size of the window must be the same size '
|
490
|
+
'of the input on the specified axis')
|
491
|
+
|
492
|
+
return welch(x, fs=fs, window=window, nperseg=nperseg, noverlap=0,
|
493
|
+
nfft=nfft, detrend=detrend, return_onesided=return_onesided,
|
494
|
+
scaling=scaling, axis=axis)
|
495
|
+
|
496
|
+
|
497
|
+
def welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
|
498
|
+
detrend='constant', return_onesided=True, scaling='density',
|
499
|
+
axis=-1, average='mean'):
|
500
|
+
r"""
|
501
|
+
Estimate power spectral density using Welch's method.
|
502
|
+
|
503
|
+
Welch's method [1]_ computes an estimate of the power spectral
|
504
|
+
density by dividing the data into overlapping segments, computing a
|
505
|
+
modified periodogram for each segment and averaging the
|
506
|
+
periodograms.
|
507
|
+
|
508
|
+
Parameters
|
509
|
+
----------
|
510
|
+
x : array_like
|
511
|
+
Time series of measurement values
|
512
|
+
fs : float, optional
|
513
|
+
Sampling frequency of the `x` time series. Defaults to 1.0.
|
514
|
+
window : str or tuple or array_like, optional
|
515
|
+
Desired window to use. If `window` is a string or tuple, it is
|
516
|
+
passed to `get_window` to generate the window values, which are
|
517
|
+
DFT-even by default. See `get_window` for a list of windows and
|
518
|
+
required parameters. If `window` is array_like it will be used
|
519
|
+
directly as the window and its length must be nperseg. Defaults
|
520
|
+
to a Hann window.
|
521
|
+
nperseg : int, optional
|
522
|
+
Length of each segment. Defaults to None, but if window is str or
|
523
|
+
tuple, is set to 256, and if window is array_like, is set to the
|
524
|
+
length of the window.
|
525
|
+
noverlap : int, optional
|
526
|
+
Number of points to overlap between segments. If `None`,
|
527
|
+
``noverlap = nperseg // 2``. Defaults to `None`.
|
528
|
+
nfft : int, optional
|
529
|
+
Length of the FFT used, if a zero padded FFT is desired. If
|
530
|
+
`None`, the FFT length is `nperseg`. Defaults to `None`.
|
531
|
+
detrend : str or function or `False`, optional
|
532
|
+
Specifies how to detrend each segment. If `detrend` is a
|
533
|
+
string, it is passed as the `type` argument to the `detrend`
|
534
|
+
function. If it is a function, it takes a segment and returns a
|
535
|
+
detrended segment. If `detrend` is `False`, no detrending is
|
536
|
+
done. Defaults to 'constant'.
|
537
|
+
return_onesided : bool, optional
|
538
|
+
If `True`, return a one-sided spectrum for real data. If
|
539
|
+
`False` return a two-sided spectrum. Defaults to `True`, but for
|
540
|
+
complex data, a two-sided spectrum is always returned.
|
541
|
+
scaling : { 'density', 'spectrum' }, optional
|
542
|
+
Selects between computing the power spectral density ('density')
|
543
|
+
where `Pxx` has units of V**2/Hz and computing the squared magnitude
|
544
|
+
spectrum ('spectrum') where `Pxx` has units of V**2, if `x`
|
545
|
+
is measured in V and `fs` is measured in Hz. Defaults to
|
546
|
+
'density'
|
547
|
+
axis : int, optional
|
548
|
+
Axis along which the periodogram is computed; the default is
|
549
|
+
over the last axis (i.e. ``axis=-1``).
|
550
|
+
average : { 'mean', 'median' }, optional
|
551
|
+
Method to use when averaging periodograms. Defaults to 'mean'.
|
552
|
+
|
553
|
+
.. versionadded:: 1.2.0
|
554
|
+
|
555
|
+
Returns
|
556
|
+
-------
|
557
|
+
f : ndarray
|
558
|
+
Array of sample frequencies.
|
559
|
+
Pxx : ndarray
|
560
|
+
Power spectral density or power spectrum of x.
|
561
|
+
|
562
|
+
See Also
|
563
|
+
--------
|
564
|
+
csd: Cross power spectral density using Welch's method
|
565
|
+
periodogram: Simple, optionally modified periodogram
|
566
|
+
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
|
567
|
+
|
568
|
+
Notes
|
569
|
+
-----
|
570
|
+
An appropriate amount of overlap will depend on the choice of window
|
571
|
+
and on your requirements. For the default Hann window an overlap of
|
572
|
+
50% is a reasonable trade-off between accurately estimating the
|
573
|
+
signal power, while not over counting any of the data. Narrower
|
574
|
+
windows may require a larger overlap. If `noverlap` is 0, this
|
575
|
+
method is equivalent to Bartlett's method [2]_.
|
576
|
+
|
577
|
+
The ratio of the squared magnitude (``scaling='spectrum'``) divided by the spectral
|
578
|
+
power density (``scaling='density'``) is the constant factor of
|
579
|
+
``sum(abs(window)**2)*fs / abs(sum(window))**2``.
|
580
|
+
If `return_onesided` is ``True``, the values of the negative frequencies are added
|
581
|
+
to values of the corresponding positive ones.
|
582
|
+
|
583
|
+
Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
|
584
|
+
for a discussion of the scalings of the power spectral density and
|
585
|
+
the (squared) magnitude spectrum.
|
586
|
+
|
587
|
+
.. versionadded:: 0.12.0
|
588
|
+
|
589
|
+
References
|
590
|
+
----------
|
591
|
+
.. [1] P. Welch, "The use of the fast Fourier transform for the
|
592
|
+
estimation of power spectra: A method based on time averaging
|
593
|
+
over short, modified periodograms", IEEE Trans. Audio
|
594
|
+
Electroacoust. vol. 15, pp. 70-73, 1967.
|
595
|
+
.. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
|
596
|
+
Biometrika, vol. 37, pp. 1-16, 1950.
|
597
|
+
|
598
|
+
Examples
|
599
|
+
--------
|
600
|
+
>>> import numpy as np
|
601
|
+
>>> from scipy import signal
|
602
|
+
>>> import matplotlib.pyplot as plt
|
603
|
+
>>> rng = np.random.default_rng()
|
604
|
+
|
605
|
+
Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
|
606
|
+
0.001 V**2/Hz of white noise sampled at 10 kHz.
|
607
|
+
|
608
|
+
>>> fs = 10e3
|
609
|
+
>>> N = 1e5
|
610
|
+
>>> amp = 2*np.sqrt(2)
|
611
|
+
>>> freq = 1234.0
|
612
|
+
>>> noise_power = 0.001 * fs / 2
|
613
|
+
>>> time = np.arange(N) / fs
|
614
|
+
>>> x = amp*np.sin(2*np.pi*freq*time)
|
615
|
+
>>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)
|
616
|
+
|
617
|
+
Compute and plot the power spectral density.
|
618
|
+
|
619
|
+
>>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
|
620
|
+
>>> plt.semilogy(f, Pxx_den)
|
621
|
+
>>> plt.ylim([0.5e-3, 1])
|
622
|
+
>>> plt.xlabel('frequency [Hz]')
|
623
|
+
>>> plt.ylabel('PSD [V**2/Hz]')
|
624
|
+
>>> plt.show()
|
625
|
+
|
626
|
+
If we average the last half of the spectral density, to exclude the
|
627
|
+
peak, we can recover the noise power on the signal.
|
628
|
+
|
629
|
+
>>> np.mean(Pxx_den[256:])
|
630
|
+
0.0009924865443739191
|
631
|
+
|
632
|
+
Now compute and plot the power spectrum.
|
633
|
+
|
634
|
+
>>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum')
|
635
|
+
>>> plt.figure()
|
636
|
+
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
|
637
|
+
>>> plt.xlabel('frequency [Hz]')
|
638
|
+
>>> plt.ylabel('Linear spectrum [V RMS]')
|
639
|
+
>>> plt.show()
|
640
|
+
|
641
|
+
The peak height in the power spectrum is an estimate of the RMS
|
642
|
+
amplitude.
|
643
|
+
|
644
|
+
>>> np.sqrt(Pxx_spec.max())
|
645
|
+
2.0077340678640727
|
646
|
+
|
647
|
+
If we now introduce a discontinuity in the signal, by increasing the
|
648
|
+
amplitude of a small portion of the signal by 50, we can see the
|
649
|
+
corruption of the mean average power spectral density, but using a
|
650
|
+
median average better estimates the normal behaviour.
|
651
|
+
|
652
|
+
>>> x[int(N//2):int(N//2)+10] *= 50.
|
653
|
+
>>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
|
654
|
+
>>> f_med, Pxx_den_med = signal.welch(x, fs, nperseg=1024, average='median')
|
655
|
+
>>> plt.semilogy(f, Pxx_den, label='mean')
|
656
|
+
>>> plt.semilogy(f_med, Pxx_den_med, label='median')
|
657
|
+
>>> plt.ylim([0.5e-3, 1])
|
658
|
+
>>> plt.xlabel('frequency [Hz]')
|
659
|
+
>>> plt.ylabel('PSD [V**2/Hz]')
|
660
|
+
>>> plt.legend()
|
661
|
+
>>> plt.show()
|
662
|
+
|
663
|
+
"""
|
664
|
+
freqs, Pxx = csd(x, x, fs=fs, window=window, nperseg=nperseg,
|
665
|
+
noverlap=noverlap, nfft=nfft, detrend=detrend,
|
666
|
+
return_onesided=return_onesided, scaling=scaling,
|
667
|
+
axis=axis, average=average)
|
668
|
+
|
669
|
+
return freqs, Pxx.real
|
670
|
+
|
671
|
+
|
672
|
+
def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
|
673
|
+
detrend='constant', return_onesided=True, scaling='density',
|
674
|
+
axis=-1, average='mean'):
|
675
|
+
r"""
|
676
|
+
Estimate the cross power spectral density, Pxy, using Welch's method.
|
677
|
+
|
678
|
+
Parameters
|
679
|
+
----------
|
680
|
+
x : array_like
|
681
|
+
Time series of measurement values
|
682
|
+
y : array_like
|
683
|
+
Time series of measurement values
|
684
|
+
fs : float, optional
|
685
|
+
Sampling frequency of the `x` and `y` time series. Defaults
|
686
|
+
to 1.0.
|
687
|
+
window : str or tuple or array_like, optional
|
688
|
+
Desired window to use. If `window` is a string or tuple, it is
|
689
|
+
passed to `get_window` to generate the window values, which are
|
690
|
+
DFT-even by default. See `get_window` for a list of windows and
|
691
|
+
required parameters. If `window` is array_like it will be used
|
692
|
+
directly as the window and its length must be nperseg. Defaults
|
693
|
+
to a Hann window.
|
694
|
+
nperseg : int, optional
|
695
|
+
Length of each segment. Defaults to None, but if window is str or
|
696
|
+
tuple, is set to 256, and if window is array_like, is set to the
|
697
|
+
length of the window.
|
698
|
+
noverlap: int, optional
|
699
|
+
Number of points to overlap between segments. If `None`,
|
700
|
+
``noverlap = nperseg // 2``. Defaults to `None` and may
|
701
|
+
not be greater than `nperseg`.
|
702
|
+
nfft : int, optional
|
703
|
+
Length of the FFT used, if a zero padded FFT is desired. If
|
704
|
+
`None`, the FFT length is `nperseg`. Defaults to `None`.
|
705
|
+
detrend : str or function or `False`, optional
|
706
|
+
Specifies how to detrend each segment. If `detrend` is a
|
707
|
+
string, it is passed as the `type` argument to the `detrend`
|
708
|
+
function. If it is a function, it takes a segment and returns a
|
709
|
+
detrended segment. If `detrend` is `False`, no detrending is
|
710
|
+
done. Defaults to 'constant'.
|
711
|
+
return_onesided : bool, optional
|
712
|
+
If `True`, return a one-sided spectrum for real data. If
|
713
|
+
`False` return a two-sided spectrum. Defaults to `True`, but for
|
714
|
+
complex data, a two-sided spectrum is always returned.
|
715
|
+
scaling : { 'density', 'spectrum' }, optional
|
716
|
+
Selects between computing the cross spectral density ('density')
|
717
|
+
where `Pxy` has units of V**2/Hz and computing the cross spectrum
|
718
|
+
('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
|
719
|
+
measured in V and `fs` is measured in Hz. Defaults to 'density'
|
720
|
+
axis : int, optional
|
721
|
+
Axis along which the CSD is computed for both inputs; the
|
722
|
+
default is over the last axis (i.e. ``axis=-1``).
|
723
|
+
average : { 'mean', 'median' }, optional
|
724
|
+
Method to use when averaging periodograms. If the spectrum is
|
725
|
+
complex, the average is computed separately for the real and
|
726
|
+
imaginary parts. Defaults to 'mean'.
|
727
|
+
|
728
|
+
.. versionadded:: 1.2.0
|
729
|
+
|
730
|
+
Returns
|
731
|
+
-------
|
732
|
+
f : ndarray
|
733
|
+
Array of sample frequencies.
|
734
|
+
Pxy : ndarray
|
735
|
+
Cross spectral density or cross power spectrum of x,y.
|
736
|
+
|
737
|
+
See Also
|
738
|
+
--------
|
739
|
+
periodogram: Simple, optionally modified periodogram
|
740
|
+
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
|
741
|
+
welch: Power spectral density by Welch's method. [Equivalent to
|
742
|
+
csd(x,x)]
|
743
|
+
coherence: Magnitude squared coherence by Welch's method.
|
744
|
+
|
745
|
+
Notes
|
746
|
+
-----
|
747
|
+
By convention, Pxy is computed with the conjugate FFT of X
|
748
|
+
multiplied by the FFT of Y.
|
749
|
+
|
750
|
+
If the input series differ in length, the shorter series will be
|
751
|
+
zero-padded to match.
|
752
|
+
|
753
|
+
An appropriate amount of overlap will depend on the choice of window
|
754
|
+
and on your requirements. For the default Hann window an overlap of
|
755
|
+
50% is a reasonable trade-off between accurately estimating the
|
756
|
+
signal power, while not over counting any of the data. Narrower
|
757
|
+
windows may require a larger overlap.
|
758
|
+
|
759
|
+
The ratio of the cross spectrum (``scaling='spectrum'``) divided by the cross
|
760
|
+
spectral density (``scaling='density'``) is the constant factor of
|
761
|
+
``sum(abs(window)**2)*fs / abs(sum(window))**2``.
|
762
|
+
If `return_onesided` is ``True``, the values of the negative frequencies are added
|
763
|
+
to values of the corresponding positive ones.
|
764
|
+
|
765
|
+
Consult the :ref:`tutorial_SpectralAnalysis` section of the :ref:`user_guide`
|
766
|
+
for a discussion of the scalings of a spectral density and an (amplitude) spectrum.
|
767
|
+
|
768
|
+
Welch's method may be interpreted as taking the average over the time slices of a
|
769
|
+
(cross-) spectrogram. Internally, this function utilizes the `ShortTimeFFT` to
|
770
|
+
determine the required (cross-) spectrogram. An example below illustrates that it
|
771
|
+
is straightforward to calculate `Pxy` directly with the `ShortTimeFFT`. However,
|
772
|
+
there are some notable differences in the behavior of the `ShortTimeFFT`:
|
773
|
+
|
774
|
+
* There is no direct `ShortTimeFFT` equivalent for the `csd` parameter
|
775
|
+
combination ``return_onesided=True, scaling='density'``, since
|
776
|
+
``fft_mode='onesided2X'`` requires ``'psd'`` scaling. The is due to `csd`
|
777
|
+
returning the doubled squared magnitude in this case, which does not have a
|
778
|
+
sensible interpretation.
|
779
|
+
* `ShortTimeFFT` uses `float64` / `complex128` internally, which is due to the
|
780
|
+
behavior of the utilized `~scipy.fft` module. Thus, those are the dtypes being
|
781
|
+
returned. The `csd` function casts the return values to `float32` / `complex64`
|
782
|
+
if the input is `float32` / `complex64` as well.
|
783
|
+
* The `csd` function calculates ``np.conj(Sx[q,p]) * Sy[q,p]``, whereas
|
784
|
+
`~ShortTimeFFT.spectrogram` calculates ``Sx[q,p] * np.conj(Sy[q,p])`` where
|
785
|
+
``Sx[q,p]``, ``Sy[q,p]`` are the STFTs of `x` and `y`. Also, the window
|
786
|
+
positioning is different.
|
787
|
+
|
788
|
+
.. versionadded:: 0.16.0
|
789
|
+
|
790
|
+
References
|
791
|
+
----------
|
792
|
+
.. [1] P. Welch, "The use of the fast Fourier transform for the
|
793
|
+
estimation of power spectra: A method based on time averaging
|
794
|
+
over short, modified periodograms", IEEE Trans. Audio
|
795
|
+
Electroacoust. vol. 15, pp. 70-73, 1967.
|
796
|
+
.. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of
|
797
|
+
Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975
|
798
|
+
|
799
|
+
Examples
|
800
|
+
--------
|
801
|
+
The following example plots the cross power spectral density of two signals with
|
802
|
+
some common features:
|
803
|
+
|
804
|
+
>>> import numpy as np
|
805
|
+
>>> from scipy import signal
|
806
|
+
>>> import matplotlib.pyplot as plt
|
807
|
+
>>> rng = np.random.default_rng()
|
808
|
+
...
|
809
|
+
... # Generate two test signals with some common features:
|
810
|
+
>>> N, fs = 100_000, 10e3 # number of samples and sampling frequency
|
811
|
+
>>> amp, freq = 20, 1234.0 # amplitude and frequency of utilized sine signal
|
812
|
+
>>> noise_power = 0.001 * fs / 2
|
813
|
+
>>> time = np.arange(N) / fs
|
814
|
+
>>> b, a = signal.butter(2, 0.25, 'low')
|
815
|
+
>>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
|
816
|
+
>>> y = signal.lfilter(b, a, x)
|
817
|
+
>>> x += amp*np.sin(2*np.pi*freq*time)
|
818
|
+
>>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)
|
819
|
+
...
|
820
|
+
... # Compute and plot the magnitude of the cross spectral density:
|
821
|
+
>>> nperseg, noverlap, win = 1024, 512, 'hann'
|
822
|
+
>>> f, Pxy = signal.csd(x, y, fs, win, nperseg, noverlap)
|
823
|
+
>>> fig0, ax0 = plt.subplots(tight_layout=True)
|
824
|
+
>>> ax0.set_title(f"CSD ({win.title()}-window, {nperseg=}, {noverlap=})")
|
825
|
+
>>> ax0.set(xlabel="Frequency $f$ in kHz", ylabel="CSD Magnitude in V²/Hz")
|
826
|
+
>>> ax0.semilogy(f/1e3, np.abs(Pxy))
|
827
|
+
>>> ax0.grid()
|
828
|
+
>>> plt.show()
|
829
|
+
|
830
|
+
The cross spectral density is calculated by taking the average over the time slices
|
831
|
+
of a spectrogram:
|
832
|
+
|
833
|
+
>>> SFT = signal.ShortTimeFFT.from_window('hann', fs, nperseg, noverlap,
|
834
|
+
... scale_to='psd', fft_mode='onesided2X',
|
835
|
+
... phase_shift=None)
|
836
|
+
>>> Sxy1 = SFT.spectrogram(y, x, detr='constant', k_offset=nperseg//2,
|
837
|
+
... p0=0, p1=(N-noverlap) // SFT.hop)
|
838
|
+
>>> Pxy1 = Sxy1.mean(axis=-1)
|
839
|
+
>>> np.allclose(Pxy, Pxy1) # same result as with csd()
|
840
|
+
True
|
841
|
+
|
842
|
+
As discussed in the Notes section, the results of using an approach analogous to
|
843
|
+
the code snippet above and the `csd` function may deviate due to implementation
|
844
|
+
details.
|
845
|
+
|
846
|
+
Note that the code snippet above can be easily adapted to determine other
|
847
|
+
statistical properties than the mean value.
|
848
|
+
"""
|
849
|
+
# The following lines are resembling the behavior of the originally utilized
|
850
|
+
# `_spectral_helper()` function:
|
851
|
+
same_data, axis = y is x, int(axis)
|
852
|
+
x = np.asarray(x)
|
853
|
+
|
854
|
+
if not same_data:
|
855
|
+
y = np.asarray(y)
|
856
|
+
# Check if we can broadcast the outer axes together
|
857
|
+
x_outer, y_outer = list(x.shape), list(y.shape)
|
858
|
+
x_outer.pop(axis)
|
859
|
+
y_outer.pop(axis)
|
860
|
+
try:
|
861
|
+
outer_shape = np.broadcast_shapes(x_outer, y_outer)
|
862
|
+
except ValueError as e:
|
863
|
+
raise ValueError('x and y cannot be broadcast together.') from e
|
864
|
+
if x.size == 0 or y.size == 0:
|
865
|
+
out_shape = outer_shape + (min([x.shape[axis], y.shape[axis]]),)
|
866
|
+
empty_out = np.moveaxis(np.empty(out_shape), -1, axis)
|
867
|
+
return empty_out, empty_out
|
868
|
+
out_dtype = np.result_type(x, y, np.complex64)
|
869
|
+
else: # x is y:
|
870
|
+
if x.size == 0:
|
871
|
+
return np.empty(x.shape), np.empty(x.shape)
|
872
|
+
out_dtype = np.result_type(x, np.complex64)
|
873
|
+
|
874
|
+
n = x.shape[axis] if same_data else max(x.shape[axis], y.shape[axis])
|
875
|
+
if isinstance(window, str) or isinstance(window, tuple):
|
876
|
+
nperseg = int(nperseg) if nperseg is not None else 256
|
877
|
+
if nperseg < 1:
|
878
|
+
raise ValueError(f"Parameter {nperseg=} is not a positive integer!")
|
879
|
+
elif n < nperseg:
|
880
|
+
warnings.warn(f"{nperseg=} is greater than signal length max(len(x), " +
|
881
|
+
f"len(y)) = {n}, using nperseg = {n}", stacklevel=3)
|
882
|
+
nperseg = n
|
883
|
+
win = get_window(window, nperseg)
|
884
|
+
else:
|
885
|
+
win = np.asarray(window)
|
886
|
+
if nperseg is None:
|
887
|
+
nperseg = len(win)
|
888
|
+
if nperseg != len(win):
|
889
|
+
raise ValueError(f"{nperseg=} does not equal {len(win)=}")
|
890
|
+
|
891
|
+
nfft = int(nfft) if nfft is not None else nperseg
|
892
|
+
if nfft < nperseg:
|
893
|
+
raise ValueError(f"{nfft=} must be greater than or equal to {nperseg=}!")
|
894
|
+
noverlap = int(noverlap) if noverlap is not None else nperseg // 2
|
895
|
+
if noverlap >= nperseg:
|
896
|
+
raise ValueError(f"{noverlap=} must be less than {nperseg=}!")
|
897
|
+
if np.iscomplexobj(x) and return_onesided:
|
898
|
+
return_onesided = False
|
899
|
+
|
900
|
+
if x.shape[axis] < y.shape[axis]: # zero-pad x to shape of y:
|
901
|
+
z_shape = list(y.shape)
|
902
|
+
z_shape[axis] = y.shape[axis] - x.shape[axis]
|
903
|
+
x = np.concatenate((x, np.zeros(z_shape)), axis=axis)
|
904
|
+
elif y.shape[axis] < x.shape[axis]: # zero-pad y to shape of x:
|
905
|
+
z_shape = list(x.shape)
|
906
|
+
z_shape[axis] = x.shape[axis] - y.shape[axis]
|
907
|
+
y = np.concatenate((y, np.zeros(z_shape)), axis=axis)
|
908
|
+
|
909
|
+
# using cast() to make mypy happy:
|
910
|
+
fft_mode = cast(FFT_MODE_TYPE, 'onesided' if return_onesided else 'twosided')
|
911
|
+
if scaling not in (scales := {'spectrum': 'magnitude', 'density': 'psd'}):
|
912
|
+
raise ValueError(f"Parameter {scaling=} not in {scales}!")
|
913
|
+
|
914
|
+
SFT = ShortTimeFFT(win, nperseg - noverlap, fs, fft_mode=fft_mode, mfft=nfft,
|
915
|
+
scale_to=scales[scaling], phase_shift=None)
|
916
|
+
# csd() calculates X.conj()*Y instead of X*Y.conj():
|
917
|
+
Pxy = SFT.spectrogram(y, x, detr=None if detrend is False else detrend,
|
918
|
+
p0=0, p1=(n - noverlap) // SFT.hop, k_offset=nperseg // 2,
|
919
|
+
axis=axis)
|
920
|
+
|
921
|
+
# Note:
|
922
|
+
# 'onesided2X' scaling of ShortTimeFFT conflicts with the
|
923
|
+
# scaling='spectrum' parameter, since it doubles the squared magnitude,
|
924
|
+
# which in the view of the ShortTimeFFT implementation does not make sense.
|
925
|
+
# Hence, the doubling of the square is implemented here:
|
926
|
+
if return_onesided:
|
927
|
+
f_axis = Pxy.ndim - 1 + axis if axis < 0 else axis
|
928
|
+
Pxy = np.moveaxis(Pxy, f_axis, -1)
|
929
|
+
Pxy[..., 1:-1 if SFT.mfft % 2 == 0 else None] *= 2
|
930
|
+
Pxy = np.moveaxis(Pxy, -1, f_axis)
|
931
|
+
|
932
|
+
# Average over windows.
|
933
|
+
if Pxy.shape[-1] > 1:
|
934
|
+
if average == 'median':
|
935
|
+
# np.median must be passed real arrays for the desired result
|
936
|
+
bias = _median_bias(Pxy.shape[-1])
|
937
|
+
if np.iscomplexobj(Pxy):
|
938
|
+
Pxy = (np.median(np.real(Pxy), axis=-1) +
|
939
|
+
np.median(np.imag(Pxy), axis=-1) * 1j)
|
940
|
+
else:
|
941
|
+
Pxy = np.median(Pxy, axis=-1)
|
942
|
+
Pxy /= bias
|
943
|
+
elif average == 'mean':
|
944
|
+
Pxy = Pxy.mean(axis=-1)
|
945
|
+
else:
|
946
|
+
raise ValueError(f"Parameter {average=} must be 'median' or 'mean'!")
|
947
|
+
else:
|
948
|
+
Pxy = np.reshape(Pxy, Pxy.shape[:-1])
|
949
|
+
|
950
|
+
# cast output type;
|
951
|
+
Pxy = Pxy.astype(out_dtype)
|
952
|
+
if same_data:
|
953
|
+
Pxy = Pxy.real
|
954
|
+
return SFT.f, Pxy
|
955
|
+
|
956
|
+
|
957
|
+
def spectrogram(x, fs=1.0, window=('tukey', .25), nperseg=None, noverlap=None,
|
958
|
+
nfft=None, detrend='constant', return_onesided=True,
|
959
|
+
scaling='density', axis=-1, mode='psd'):
|
960
|
+
"""Compute a spectrogram with consecutive Fourier transforms (legacy function).
|
961
|
+
|
962
|
+
Spectrograms can be used as a way of visualizing the change of a
|
963
|
+
nonstationary signal's frequency content over time.
|
964
|
+
|
965
|
+
.. legacy:: function
|
966
|
+
|
967
|
+
:class:`ShortTimeFFT` is a newer STFT / ISTFT implementation with more
|
968
|
+
features also including a :meth:`~ShortTimeFFT.spectrogram` method.
|
969
|
+
A :ref:`comparison <tutorial_stft_legacy_stft>` between the
|
970
|
+
implementations can be found in the :ref:`tutorial_stft` section of
|
971
|
+
the :ref:`user_guide`.
|
972
|
+
|
973
|
+
Parameters
|
974
|
+
----------
|
975
|
+
x : array_like
|
976
|
+
Time series of measurement values
|
977
|
+
fs : float, optional
|
978
|
+
Sampling frequency of the `x` time series. Defaults to 1.0.
|
979
|
+
window : str or tuple or array_like, optional
|
980
|
+
Desired window to use. If `window` is a string or tuple, it is
|
981
|
+
passed to `get_window` to generate the window values, which are
|
982
|
+
DFT-even by default. See `get_window` for a list of windows and
|
983
|
+
required parameters. If `window` is array_like it will be used
|
984
|
+
directly as the window and its length must be nperseg.
|
985
|
+
Defaults to a Tukey window with shape parameter of 0.25.
|
986
|
+
nperseg : int, optional
|
987
|
+
Length of each segment. Defaults to None, but if window is str or
|
988
|
+
tuple, is set to 256, and if window is array_like, is set to the
|
989
|
+
length of the window.
|
990
|
+
noverlap : int, optional
|
991
|
+
Number of points to overlap between segments. If `None`,
|
992
|
+
``noverlap = nperseg // 8``. Defaults to `None`.
|
993
|
+
nfft : int, optional
|
994
|
+
Length of the FFT used, if a zero padded FFT is desired. If
|
995
|
+
`None`, the FFT length is `nperseg`. Defaults to `None`.
|
996
|
+
detrend : str or function or `False`, optional
|
997
|
+
Specifies how to detrend each segment. If `detrend` is a
|
998
|
+
string, it is passed as the `type` argument to the `detrend`
|
999
|
+
function. If it is a function, it takes a segment and returns a
|
1000
|
+
detrended segment. If `detrend` is `False`, no detrending is
|
1001
|
+
done. Defaults to 'constant'.
|
1002
|
+
return_onesided : bool, optional
|
1003
|
+
If `True`, return a one-sided spectrum for real data. If
|
1004
|
+
`False` return a two-sided spectrum. Defaults to `True`, but for
|
1005
|
+
complex data, a two-sided spectrum is always returned.
|
1006
|
+
scaling : { 'density', 'spectrum' }, optional
|
1007
|
+
Selects between computing the power spectral density ('density')
|
1008
|
+
where `Sxx` has units of V**2/Hz and computing the power
|
1009
|
+
spectrum ('spectrum') where `Sxx` has units of V**2, if `x`
|
1010
|
+
is measured in V and `fs` is measured in Hz. Defaults to
|
1011
|
+
'density'.
|
1012
|
+
axis : int, optional
|
1013
|
+
Axis along which the spectrogram is computed; the default is over
|
1014
|
+
the last axis (i.e. ``axis=-1``).
|
1015
|
+
mode : str, optional
|
1016
|
+
Defines what kind of return values are expected. Options are
|
1017
|
+
['psd', 'complex', 'magnitude', 'angle', 'phase']. 'complex' is
|
1018
|
+
equivalent to the output of `stft` with no padding or boundary
|
1019
|
+
extension. 'magnitude' returns the absolute magnitude of the
|
1020
|
+
STFT. 'angle' and 'phase' return the complex angle of the STFT,
|
1021
|
+
with and without unwrapping, respectively.
|
1022
|
+
|
1023
|
+
Returns
|
1024
|
+
-------
|
1025
|
+
f : ndarray
|
1026
|
+
Array of sample frequencies.
|
1027
|
+
t : ndarray
|
1028
|
+
Array of segment times.
|
1029
|
+
Sxx : ndarray
|
1030
|
+
Spectrogram of x. By default, the last axis of Sxx corresponds
|
1031
|
+
to the segment times.
|
1032
|
+
|
1033
|
+
See Also
|
1034
|
+
--------
|
1035
|
+
periodogram: Simple, optionally modified periodogram
|
1036
|
+
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
|
1037
|
+
welch: Power spectral density by Welch's method.
|
1038
|
+
csd: Cross spectral density by Welch's method.
|
1039
|
+
ShortTimeFFT: Newer STFT/ISTFT implementation providing more features,
|
1040
|
+
which also includes a :meth:`~ShortTimeFFT.spectrogram`
|
1041
|
+
method.
|
1042
|
+
|
1043
|
+
Notes
|
1044
|
+
-----
|
1045
|
+
An appropriate amount of overlap will depend on the choice of window
|
1046
|
+
and on your requirements. In contrast to welch's method, where the
|
1047
|
+
entire data stream is averaged over, one may wish to use a smaller
|
1048
|
+
overlap (or perhaps none at all) when computing a spectrogram, to
|
1049
|
+
maintain some statistical independence between individual segments.
|
1050
|
+
It is for this reason that the default window is a Tukey window with
|
1051
|
+
1/8th of a window's length overlap at each end.
|
1052
|
+
|
1053
|
+
|
1054
|
+
.. versionadded:: 0.16.0
|
1055
|
+
|
1056
|
+
References
|
1057
|
+
----------
|
1058
|
+
.. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
|
1059
|
+
"Discrete-Time Signal Processing", Prentice Hall, 1999.
|
1060
|
+
|
1061
|
+
Examples
|
1062
|
+
--------
|
1063
|
+
>>> import numpy as np
|
1064
|
+
>>> from scipy import signal
|
1065
|
+
>>> from scipy.fft import fftshift
|
1066
|
+
>>> import matplotlib.pyplot as plt
|
1067
|
+
>>> rng = np.random.default_rng()
|
1068
|
+
|
1069
|
+
Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
|
1070
|
+
modulated around 3kHz, corrupted by white noise of exponentially
|
1071
|
+
decreasing magnitude sampled at 10 kHz.
|
1072
|
+
|
1073
|
+
>>> fs = 10e3
|
1074
|
+
>>> N = 1e5
|
1075
|
+
>>> amp = 2 * np.sqrt(2)
|
1076
|
+
>>> noise_power = 0.01 * fs / 2
|
1077
|
+
>>> time = np.arange(N) / float(fs)
|
1078
|
+
>>> mod = 500*np.cos(2*np.pi*0.25*time)
|
1079
|
+
>>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
|
1080
|
+
>>> noise = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
|
1081
|
+
>>> noise *= np.exp(-time/5)
|
1082
|
+
>>> x = carrier + noise
|
1083
|
+
|
1084
|
+
Compute and plot the spectrogram.
|
1085
|
+
|
1086
|
+
>>> f, t, Sxx = signal.spectrogram(x, fs)
|
1087
|
+
>>> plt.pcolormesh(t, f, Sxx, shading='gouraud')
|
1088
|
+
>>> plt.ylabel('Frequency [Hz]')
|
1089
|
+
>>> plt.xlabel('Time [sec]')
|
1090
|
+
>>> plt.show()
|
1091
|
+
|
1092
|
+
Note, if using output that is not one sided, then use the following:
|
1093
|
+
|
1094
|
+
>>> f, t, Sxx = signal.spectrogram(x, fs, return_onesided=False)
|
1095
|
+
>>> plt.pcolormesh(t, fftshift(f), fftshift(Sxx, axes=0), shading='gouraud')
|
1096
|
+
>>> plt.ylabel('Frequency [Hz]')
|
1097
|
+
>>> plt.xlabel('Time [sec]')
|
1098
|
+
>>> plt.show()
|
1099
|
+
|
1100
|
+
"""
|
1101
|
+
modelist = ['psd', 'complex', 'magnitude', 'angle', 'phase']
|
1102
|
+
if mode not in modelist:
|
1103
|
+
raise ValueError(f'unknown value for mode {mode}, must be one of {modelist}')
|
1104
|
+
|
1105
|
+
# need to set default for nperseg before setting default for noverlap below
|
1106
|
+
window, nperseg = _triage_segments(window, nperseg,
|
1107
|
+
input_length=x.shape[axis])
|
1108
|
+
|
1109
|
+
# Less overlap than welch, so samples are more statistically independent
|
1110
|
+
if noverlap is None:
|
1111
|
+
noverlap = nperseg // 8
|
1112
|
+
|
1113
|
+
if mode == 'psd':
|
1114
|
+
freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg,
|
1115
|
+
noverlap, nfft, detrend,
|
1116
|
+
return_onesided, scaling, axis,
|
1117
|
+
mode='psd')
|
1118
|
+
|
1119
|
+
else:
|
1120
|
+
freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg,
|
1121
|
+
noverlap, nfft, detrend,
|
1122
|
+
return_onesided, scaling, axis,
|
1123
|
+
mode='stft')
|
1124
|
+
|
1125
|
+
if mode == 'magnitude':
|
1126
|
+
Sxx = np.abs(Sxx)
|
1127
|
+
elif mode in ['angle', 'phase']:
|
1128
|
+
Sxx = np.angle(Sxx)
|
1129
|
+
if mode == 'phase':
|
1130
|
+
# Sxx has one additional dimension for time strides
|
1131
|
+
if axis < 0:
|
1132
|
+
axis -= 1
|
1133
|
+
Sxx = np.unwrap(Sxx, axis=axis)
|
1134
|
+
|
1135
|
+
# mode =='complex' is same as `stft`, doesn't need modification
|
1136
|
+
|
1137
|
+
return freqs, time, Sxx
|
1138
|
+
|
1139
|
+
|
1140
|
+
def check_COLA(window, nperseg, noverlap, tol=1e-10):
|
1141
|
+
r"""Check whether the Constant OverLap Add (COLA) constraint is met
|
1142
|
+
(legacy function).
|
1143
|
+
|
1144
|
+
.. legacy:: function
|
1145
|
+
|
1146
|
+
The COLA constraint is equivalent of having a constant dual window, i.e.,
|
1147
|
+
``all(ShortTimeFFT.dual_win == ShortTimeFFT.dual_win[0])``. Hence,
|
1148
|
+
`closest_STFT_dual_window` generalizes this function, as the following
|
1149
|
+
example shows:
|
1150
|
+
|
1151
|
+
>>> import numpy as np
|
1152
|
+
>>> from scipy.signal import check_COLA, closest_STFT_dual_window, windows
|
1153
|
+
...
|
1154
|
+
>>> w, w_rect, hop = windows.hann(12, sym=False), np.ones(12), 6
|
1155
|
+
>>> dual_win, alpha = closest_STFT_dual_window(w, hop, w_rect, scaled=True)
|
1156
|
+
>>> np.allclose(dual_win/alpha, w_rect, atol=1e-10, rtol=0)
|
1157
|
+
True
|
1158
|
+
>>> check_COLA(w, len(w), len(w) - hop) # equivalent legacy function call
|
1159
|
+
True
|
1160
|
+
|
1161
|
+
|
1162
|
+
Parameters
|
1163
|
+
----------
|
1164
|
+
window : str or tuple or array_like
|
1165
|
+
Desired window to use. If `window` is a string or tuple, it is
|
1166
|
+
passed to `get_window` to generate the window values, which are
|
1167
|
+
DFT-even by default. See `get_window` for a list of windows and
|
1168
|
+
required parameters. If `window` is array_like it will be used
|
1169
|
+
directly as the window and its length must be nperseg.
|
1170
|
+
nperseg : int
|
1171
|
+
Length of each segment.
|
1172
|
+
noverlap : int
|
1173
|
+
Number of points to overlap between segments.
|
1174
|
+
tol : float, optional
|
1175
|
+
The allowed variance of a bin's weighted sum from the median bin
|
1176
|
+
sum.
|
1177
|
+
|
1178
|
+
Returns
|
1179
|
+
-------
|
1180
|
+
verdict : bool
|
1181
|
+
`True` if chosen combination satisfies COLA within `tol`,
|
1182
|
+
`False` otherwise
|
1183
|
+
|
1184
|
+
See Also
|
1185
|
+
--------
|
1186
|
+
closest_STFT_dual_window: Allows determining the closest window meeting the
|
1187
|
+
COLA constraint for a given window
|
1188
|
+
check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
|
1189
|
+
ShortTimeFFT: Provide short-time Fourier transform and its inverse
|
1190
|
+
stft: Short-time Fourier transform (legacy)
|
1191
|
+
istft: Inverse Short-time Fourier transform (legacy)
|
1192
|
+
|
1193
|
+
Notes
|
1194
|
+
-----
|
1195
|
+
In order to invert a short-time Fourier transfrom (STFT) with the so-called
|
1196
|
+
"overlap-add method", the signal windowing must obey the constraint of
|
1197
|
+
"Constant OverLap Add" (COLA). This ensures that every point in the input
|
1198
|
+
data is equally weighted, thereby avoiding aliasing and allowing full
|
1199
|
+
reconstruction. Note that the algorithms implemented in `ShortTimeFFT.istft`
|
1200
|
+
and in `istft` (legacy) only require that the weaker "nonzero overlap-add"
|
1201
|
+
condition (as in `check_NOLA`) is met.
|
1202
|
+
|
1203
|
+
Some examples of windows that satisfy COLA:
|
1204
|
+
- Rectangular window at overlap of 0, 1/2, 2/3, 3/4, ...
|
1205
|
+
- Bartlett window at overlap of 1/2, 3/4, 5/6, ...
|
1206
|
+
- Hann window at 1/2, 2/3, 3/4, ...
|
1207
|
+
- Any Blackman family window at 2/3 overlap
|
1208
|
+
- Any window with ``noverlap = nperseg-1``
|
1209
|
+
|
1210
|
+
A very comprehensive list of other windows may be found in [2]_,
|
1211
|
+
wherein the COLA condition is satisfied when the "Amplitude
|
1212
|
+
Flatness" is unity.
|
1213
|
+
|
1214
|
+
.. versionadded:: 0.19.0
|
1215
|
+
|
1216
|
+
References
|
1217
|
+
----------
|
1218
|
+
.. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K
|
1219
|
+
Publishing, 2011,ISBN 978-0-9745607-3-1.
|
1220
|
+
.. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and
|
1221
|
+
spectral density estimation by the Discrete Fourier transform
|
1222
|
+
(DFT), including a comprehensive list of window functions and
|
1223
|
+
some new at-top windows", 2002,
|
1224
|
+
http://hdl.handle.net/11858/00-001M-0000-0013-557A-5
|
1225
|
+
|
1226
|
+
Examples
|
1227
|
+
--------
|
1228
|
+
>>> from scipy import signal
|
1229
|
+
|
1230
|
+
Confirm COLA condition for rectangular window of 75% (3/4) overlap:
|
1231
|
+
|
1232
|
+
>>> signal.check_COLA(signal.windows.boxcar(100), 100, 75)
|
1233
|
+
True
|
1234
|
+
|
1235
|
+
COLA is not true for 25% (1/4) overlap, though:
|
1236
|
+
|
1237
|
+
>>> signal.check_COLA(signal.windows.boxcar(100), 100, 25)
|
1238
|
+
False
|
1239
|
+
|
1240
|
+
"Symmetrical" Hann window (for filter design) is not COLA:
|
1241
|
+
|
1242
|
+
>>> signal.check_COLA(signal.windows.hann(120, sym=True), 120, 60)
|
1243
|
+
False
|
1244
|
+
|
1245
|
+
"Periodic" or "DFT-even" Hann window (for FFT analysis) is COLA for
|
1246
|
+
overlap of 1/2, 2/3, 3/4, etc.:
|
1247
|
+
|
1248
|
+
>>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 60)
|
1249
|
+
True
|
1250
|
+
|
1251
|
+
>>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 80)
|
1252
|
+
True
|
1253
|
+
|
1254
|
+
>>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 90)
|
1255
|
+
True
|
1256
|
+
|
1257
|
+
"""
|
1258
|
+
nperseg = int(nperseg)
|
1259
|
+
|
1260
|
+
if nperseg < 1:
|
1261
|
+
raise ValueError('nperseg must be a positive integer')
|
1262
|
+
|
1263
|
+
if noverlap >= nperseg:
|
1264
|
+
raise ValueError('noverlap must be less than nperseg.')
|
1265
|
+
noverlap = int(noverlap)
|
1266
|
+
|
1267
|
+
if isinstance(window, str) or type(window) is tuple:
|
1268
|
+
win = get_window(window, nperseg)
|
1269
|
+
else:
|
1270
|
+
win = np.asarray(window)
|
1271
|
+
if len(win.shape) != 1:
|
1272
|
+
raise ValueError('window must be 1-D')
|
1273
|
+
if win.shape[0] != nperseg:
|
1274
|
+
raise ValueError('window must have length of nperseg')
|
1275
|
+
|
1276
|
+
step = nperseg - noverlap
|
1277
|
+
binsums = sum(win[ii*step:(ii+1)*step] for ii in range(nperseg//step))
|
1278
|
+
|
1279
|
+
if nperseg % step != 0:
|
1280
|
+
binsums[:nperseg % step] += win[-(nperseg % step):]
|
1281
|
+
|
1282
|
+
deviation = binsums - np.median(binsums)
|
1283
|
+
return np.max(np.abs(deviation)) < tol
|
1284
|
+
|
1285
|
+
|
1286
|
+
def check_NOLA(window, nperseg, noverlap, tol=1e-10):
|
1287
|
+
r"""Check whether the Nonzero Overlap Add (NOLA) constraint is met.
|
1288
|
+
|
1289
|
+
Parameters
|
1290
|
+
----------
|
1291
|
+
window : str or tuple or array_like
|
1292
|
+
Desired window to use. If `window` is a string or tuple, it is
|
1293
|
+
passed to `get_window` to generate the window values, which are
|
1294
|
+
DFT-even by default. See `get_window` for a list of windows and
|
1295
|
+
required parameters. If `window` is array_like it will be used
|
1296
|
+
directly as the window and its length must be nperseg.
|
1297
|
+
nperseg : int
|
1298
|
+
Length of each segment.
|
1299
|
+
noverlap : int
|
1300
|
+
Number of points to overlap between segments.
|
1301
|
+
tol : float, optional
|
1302
|
+
The allowed variance of a bin's weighted sum from the median bin
|
1303
|
+
sum.
|
1304
|
+
|
1305
|
+
Returns
|
1306
|
+
-------
|
1307
|
+
verdict : bool
|
1308
|
+
`True` if chosen combination satisfies the NOLA constraint within
|
1309
|
+
`tol`, `False` otherwise
|
1310
|
+
|
1311
|
+
See Also
|
1312
|
+
--------
|
1313
|
+
check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met
|
1314
|
+
stft: Short Time Fourier Transform
|
1315
|
+
istft: Inverse Short Time Fourier Transform
|
1316
|
+
|
1317
|
+
Notes
|
1318
|
+
-----
|
1319
|
+
In order to enable inversion of an STFT via the inverse STFT in
|
1320
|
+
`istft`, the signal windowing must obey the constraint of "nonzero
|
1321
|
+
overlap add" (NOLA):
|
1322
|
+
|
1323
|
+
.. math:: \sum_{t}w^{2}[n-tH] \ne 0
|
1324
|
+
|
1325
|
+
for all :math:`n`, where :math:`w` is the window function, :math:`t` is the
|
1326
|
+
frame index, and :math:`H` is the hop size (:math:`H` = `nperseg` -
|
1327
|
+
`noverlap`).
|
1328
|
+
|
1329
|
+
This ensures that the normalization factors in the denominator of the
|
1330
|
+
overlap-add inversion equation are not zero. Only very pathological windows
|
1331
|
+
will fail the NOLA constraint.
|
1332
|
+
|
1333
|
+
.. versionadded:: 1.2.0
|
1334
|
+
|
1335
|
+
References
|
1336
|
+
----------
|
1337
|
+
.. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K
|
1338
|
+
Publishing, 2011,ISBN 978-0-9745607-3-1.
|
1339
|
+
.. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and
|
1340
|
+
spectral density estimation by the Discrete Fourier transform
|
1341
|
+
(DFT), including a comprehensive list of window functions and
|
1342
|
+
some new at-top windows", 2002,
|
1343
|
+
http://hdl.handle.net/11858/00-001M-0000-0013-557A-5
|
1344
|
+
|
1345
|
+
Examples
|
1346
|
+
--------
|
1347
|
+
>>> import numpy as np
|
1348
|
+
>>> from scipy import signal
|
1349
|
+
|
1350
|
+
Confirm NOLA condition for rectangular window of 75% (3/4) overlap:
|
1351
|
+
|
1352
|
+
>>> signal.check_NOLA(signal.windows.boxcar(100), 100, 75)
|
1353
|
+
True
|
1354
|
+
|
1355
|
+
NOLA is also true for 25% (1/4) overlap:
|
1356
|
+
|
1357
|
+
>>> signal.check_NOLA(signal.windows.boxcar(100), 100, 25)
|
1358
|
+
True
|
1359
|
+
|
1360
|
+
"Symmetrical" Hann window (for filter design) is also NOLA:
|
1361
|
+
|
1362
|
+
>>> signal.check_NOLA(signal.windows.hann(120, sym=True), 120, 60)
|
1363
|
+
True
|
1364
|
+
|
1365
|
+
As long as there is overlap, it takes quite a pathological window to fail
|
1366
|
+
NOLA:
|
1367
|
+
|
1368
|
+
>>> w = np.ones(64, dtype="float")
|
1369
|
+
>>> w[::2] = 0
|
1370
|
+
>>> signal.check_NOLA(w, 64, 32)
|
1371
|
+
False
|
1372
|
+
|
1373
|
+
If there is not enough overlap, a window with zeros at the ends will not
|
1374
|
+
work:
|
1375
|
+
|
1376
|
+
>>> signal.check_NOLA(signal.windows.hann(64), 64, 0)
|
1377
|
+
False
|
1378
|
+
>>> signal.check_NOLA(signal.windows.hann(64), 64, 1)
|
1379
|
+
False
|
1380
|
+
>>> signal.check_NOLA(signal.windows.hann(64), 64, 2)
|
1381
|
+
True
|
1382
|
+
|
1383
|
+
"""
|
1384
|
+
nperseg = int(nperseg)
|
1385
|
+
|
1386
|
+
if nperseg < 1:
|
1387
|
+
raise ValueError('nperseg must be a positive integer')
|
1388
|
+
|
1389
|
+
if noverlap >= nperseg:
|
1390
|
+
raise ValueError('noverlap must be less than nperseg')
|
1391
|
+
if noverlap < 0:
|
1392
|
+
raise ValueError('noverlap must be a nonnegative integer')
|
1393
|
+
noverlap = int(noverlap)
|
1394
|
+
|
1395
|
+
if isinstance(window, str) or type(window) is tuple:
|
1396
|
+
win = get_window(window, nperseg)
|
1397
|
+
else:
|
1398
|
+
win = np.asarray(window)
|
1399
|
+
if len(win.shape) != 1:
|
1400
|
+
raise ValueError('window must be 1-D')
|
1401
|
+
if win.shape[0] != nperseg:
|
1402
|
+
raise ValueError('window must have length of nperseg')
|
1403
|
+
|
1404
|
+
step = nperseg - noverlap
|
1405
|
+
binsums = sum(win[ii*step:(ii+1)*step]**2 for ii in range(nperseg//step))
|
1406
|
+
|
1407
|
+
if nperseg % step != 0:
|
1408
|
+
binsums[:nperseg % step] += win[-(nperseg % step):]**2
|
1409
|
+
|
1410
|
+
return np.min(binsums) > tol
|
1411
|
+
|
1412
|
+
|
1413
|
+
def stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None,
|
1414
|
+
detrend=False, return_onesided=True, boundary='zeros', padded=True,
|
1415
|
+
axis=-1, scaling='spectrum'):
|
1416
|
+
r"""Compute the Short Time Fourier Transform (legacy function).
|
1417
|
+
|
1418
|
+
STFTs can be used as a way of quantifying the change of a
|
1419
|
+
nonstationary signal's frequency and phase content over time.
|
1420
|
+
|
1421
|
+
.. legacy:: function
|
1422
|
+
|
1423
|
+
`ShortTimeFFT` is a newer STFT / ISTFT implementation with more
|
1424
|
+
features. A :ref:`comparison <tutorial_stft_legacy_stft>` between the
|
1425
|
+
implementations can be found in the :ref:`tutorial_stft` section of the
|
1426
|
+
:ref:`user_guide`.
|
1427
|
+
|
1428
|
+
Parameters
|
1429
|
+
----------
|
1430
|
+
x : array_like
|
1431
|
+
Time series of measurement values
|
1432
|
+
fs : float, optional
|
1433
|
+
Sampling frequency of the `x` time series. Defaults to 1.0.
|
1434
|
+
window : str or tuple or array_like, optional
|
1435
|
+
Desired window to use. If `window` is a string or tuple, it is
|
1436
|
+
passed to `get_window` to generate the window values, which are
|
1437
|
+
DFT-even by default. See `get_window` for a list of windows and
|
1438
|
+
required parameters. If `window` is array_like it will be used
|
1439
|
+
directly as the window and its length must be nperseg. Defaults
|
1440
|
+
to a Hann window.
|
1441
|
+
nperseg : int, optional
|
1442
|
+
Length of each segment. Defaults to 256.
|
1443
|
+
noverlap : int, optional
|
1444
|
+
Number of points to overlap between segments. If `None`,
|
1445
|
+
``noverlap = nperseg // 2``. Defaults to `None`. When
|
1446
|
+
specified, the COLA constraint must be met (see Notes below).
|
1447
|
+
nfft : int, optional
|
1448
|
+
Length of the FFT used, if a zero padded FFT is desired. If
|
1449
|
+
`None`, the FFT length is `nperseg`. Defaults to `None`.
|
1450
|
+
detrend : str or function or `False`, optional
|
1451
|
+
Specifies how to detrend each segment. If `detrend` is a
|
1452
|
+
string, it is passed as the `type` argument to the `detrend`
|
1453
|
+
function. If it is a function, it takes a segment and returns a
|
1454
|
+
detrended segment. If `detrend` is `False`, no detrending is
|
1455
|
+
done. Defaults to `False`.
|
1456
|
+
return_onesided : bool, optional
|
1457
|
+
If `True`, return a one-sided spectrum for real data. If
|
1458
|
+
`False` return a two-sided spectrum. Defaults to `True`, but for
|
1459
|
+
complex data, a two-sided spectrum is always returned.
|
1460
|
+
boundary : str or None, optional
|
1461
|
+
Specifies whether the input signal is extended at both ends, and
|
1462
|
+
how to generate the new values, in order to center the first
|
1463
|
+
windowed segment on the first input point. This has the benefit
|
1464
|
+
of enabling reconstruction of the first input point when the
|
1465
|
+
employed window function starts at zero. Valid options are
|
1466
|
+
``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
|
1467
|
+
'zeros', for zero padding extension. I.e. ``[1, 2, 3, 4]`` is
|
1468
|
+
extended to ``[0, 1, 2, 3, 4, 0]`` for ``nperseg=3``.
|
1469
|
+
padded : bool, optional
|
1470
|
+
Specifies whether the input signal is zero-padded at the end to
|
1471
|
+
make the signal fit exactly into an integer number of window
|
1472
|
+
segments, so that all of the signal is included in the output.
|
1473
|
+
Defaults to `True`. Padding occurs after boundary extension, if
|
1474
|
+
`boundary` is not `None`, and `padded` is `True`, as is the
|
1475
|
+
default.
|
1476
|
+
axis : int, optional
|
1477
|
+
Axis along which the STFT is computed; the default is over the
|
1478
|
+
last axis (i.e. ``axis=-1``).
|
1479
|
+
scaling: {'spectrum', 'psd'}
|
1480
|
+
The default 'spectrum' scaling allows each frequency line of `Zxx` to
|
1481
|
+
be interpreted as a magnitude spectrum. The 'psd' option scales each
|
1482
|
+
line to a power spectral density - it allows to calculate the signal's
|
1483
|
+
energy by numerically integrating over ``abs(Zxx)**2``.
|
1484
|
+
|
1485
|
+
.. versionadded:: 1.9.0
|
1486
|
+
|
1487
|
+
Returns
|
1488
|
+
-------
|
1489
|
+
f : ndarray
|
1490
|
+
Array of sample frequencies.
|
1491
|
+
t : ndarray
|
1492
|
+
Array of segment times.
|
1493
|
+
Zxx : ndarray
|
1494
|
+
STFT of `x`. By default, the last axis of `Zxx` corresponds
|
1495
|
+
to the segment times.
|
1496
|
+
|
1497
|
+
See Also
|
1498
|
+
--------
|
1499
|
+
istft: Inverse Short Time Fourier Transform
|
1500
|
+
ShortTimeFFT: Newer STFT/ISTFT implementation providing more features.
|
1501
|
+
check_COLA: Check whether the Constant OverLap Add (COLA) constraint
|
1502
|
+
is met
|
1503
|
+
check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
|
1504
|
+
welch: Power spectral density by Welch's method.
|
1505
|
+
spectrogram: Spectrogram by Welch's method.
|
1506
|
+
csd: Cross spectral density by Welch's method.
|
1507
|
+
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
|
1508
|
+
|
1509
|
+
Notes
|
1510
|
+
-----
|
1511
|
+
In order to enable inversion of an STFT via the inverse STFT in
|
1512
|
+
`istft`, the signal windowing must obey the constraint of "Nonzero
|
1513
|
+
OverLap Add" (NOLA), and the input signal must have complete
|
1514
|
+
windowing coverage (i.e. ``(x.shape[axis] - nperseg) %
|
1515
|
+
(nperseg-noverlap) == 0``). The `padded` argument may be used to
|
1516
|
+
accomplish this.
|
1517
|
+
|
1518
|
+
Given a time-domain signal :math:`x[n]`, a window :math:`w[n]`, and a hop
|
1519
|
+
size :math:`H` = `nperseg - noverlap`, the windowed frame at time index
|
1520
|
+
:math:`t` is given by
|
1521
|
+
|
1522
|
+
.. math:: x_{t}[n]=x[n]w[n-tH]
|
1523
|
+
|
1524
|
+
The overlap-add (OLA) reconstruction equation is given by
|
1525
|
+
|
1526
|
+
.. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}
|
1527
|
+
|
1528
|
+
The NOLA constraint ensures that every normalization term that appears
|
1529
|
+
in the denominator of the OLA reconstruction equation is nonzero. Whether a
|
1530
|
+
choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can
|
1531
|
+
be tested with `check_NOLA`.
|
1532
|
+
|
1533
|
+
|
1534
|
+
.. versionadded:: 0.19.0
|
1535
|
+
|
1536
|
+
References
|
1537
|
+
----------
|
1538
|
+
.. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
|
1539
|
+
"Discrete-Time Signal Processing", Prentice Hall, 1999.
|
1540
|
+
.. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
|
1541
|
+
Modified Short-Time Fourier Transform", IEEE 1984,
|
1542
|
+
10.1109/TASSP.1984.1164317
|
1543
|
+
|
1544
|
+
Examples
|
1545
|
+
--------
|
1546
|
+
>>> import numpy as np
|
1547
|
+
>>> from scipy import signal
|
1548
|
+
>>> import matplotlib.pyplot as plt
|
1549
|
+
>>> rng = np.random.default_rng()
|
1550
|
+
|
1551
|
+
Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
|
1552
|
+
modulated around 3kHz, corrupted by white noise of exponentially
|
1553
|
+
decreasing magnitude sampled at 10 kHz.
|
1554
|
+
|
1555
|
+
>>> fs = 10e3
|
1556
|
+
>>> N = 1e5
|
1557
|
+
>>> amp = 2 * np.sqrt(2)
|
1558
|
+
>>> noise_power = 0.01 * fs / 2
|
1559
|
+
>>> time = np.arange(N) / float(fs)
|
1560
|
+
>>> mod = 500*np.cos(2*np.pi*0.25*time)
|
1561
|
+
>>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
|
1562
|
+
>>> noise = rng.normal(scale=np.sqrt(noise_power),
|
1563
|
+
... size=time.shape)
|
1564
|
+
>>> noise *= np.exp(-time/5)
|
1565
|
+
>>> x = carrier + noise
|
1566
|
+
|
1567
|
+
Compute and plot the STFT's magnitude.
|
1568
|
+
|
1569
|
+
>>> f, t, Zxx = signal.stft(x, fs, nperseg=1000)
|
1570
|
+
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
|
1571
|
+
>>> plt.title('STFT Magnitude')
|
1572
|
+
>>> plt.ylabel('Frequency [Hz]')
|
1573
|
+
>>> plt.xlabel('Time [sec]')
|
1574
|
+
>>> plt.show()
|
1575
|
+
|
1576
|
+
Compare the energy of the signal `x` with the energy of its STFT:
|
1577
|
+
|
1578
|
+
>>> E_x = sum(x**2) / fs # Energy of x
|
1579
|
+
>>> # Calculate a two-sided STFT with PSD scaling:
|
1580
|
+
>>> f, t, Zxx = signal.stft(x, fs, nperseg=1000, return_onesided=False,
|
1581
|
+
... scaling='psd')
|
1582
|
+
>>> # Integrate numerically over abs(Zxx)**2:
|
1583
|
+
>>> df, dt = f[1] - f[0], t[1] - t[0]
|
1584
|
+
>>> E_Zxx = sum(np.sum(Zxx.real**2 + Zxx.imag**2, axis=0) * df) * dt
|
1585
|
+
>>> # The energy is the same, but the numerical errors are quite large:
|
1586
|
+
>>> np.isclose(E_x, E_Zxx, rtol=1e-2)
|
1587
|
+
True
|
1588
|
+
|
1589
|
+
"""
|
1590
|
+
if scaling == 'psd':
|
1591
|
+
scaling = 'density'
|
1592
|
+
elif scaling != 'spectrum':
|
1593
|
+
raise ValueError(f"Parameter {scaling=} not in ['spectrum', 'psd']!")
|
1594
|
+
|
1595
|
+
freqs, time, Zxx = _spectral_helper(x, x, fs, window, nperseg, noverlap,
|
1596
|
+
nfft, detrend, return_onesided,
|
1597
|
+
scaling=scaling, axis=axis,
|
1598
|
+
mode='stft', boundary=boundary,
|
1599
|
+
padded=padded)
|
1600
|
+
|
1601
|
+
return freqs, time, Zxx
|
1602
|
+
|
1603
|
+
|
1604
|
+
def istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
|
1605
|
+
input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2,
|
1606
|
+
scaling='spectrum'):
|
1607
|
+
r"""Perform the inverse Short Time Fourier transform (legacy function).
|
1608
|
+
|
1609
|
+
.. legacy:: function
|
1610
|
+
|
1611
|
+
`ShortTimeFFT` is a newer STFT / ISTFT implementation with more
|
1612
|
+
features. A :ref:`comparison <tutorial_stft_legacy_stft>` between the
|
1613
|
+
implementations can be found in the :ref:`tutorial_stft` section of the
|
1614
|
+
:ref:`user_guide`.
|
1615
|
+
|
1616
|
+
Parameters
|
1617
|
+
----------
|
1618
|
+
Zxx : array_like
|
1619
|
+
STFT of the signal to be reconstructed. If a purely real array
|
1620
|
+
is passed, it will be cast to a complex data type.
|
1621
|
+
fs : float, optional
|
1622
|
+
Sampling frequency of the time series. Defaults to 1.0.
|
1623
|
+
window : str or tuple or array_like, optional
|
1624
|
+
Desired window to use. If `window` is a string or tuple, it is
|
1625
|
+
passed to `get_window` to generate the window values, which are
|
1626
|
+
DFT-even by default. See `get_window` for a list of windows and
|
1627
|
+
required parameters. If `window` is array_like it will be used
|
1628
|
+
directly as the window and its length must be nperseg. Defaults
|
1629
|
+
to a Hann window. Must match the window used to generate the
|
1630
|
+
STFT for faithful inversion.
|
1631
|
+
nperseg : int, optional
|
1632
|
+
Number of data points corresponding to each STFT segment. This
|
1633
|
+
parameter must be specified if the number of data points per
|
1634
|
+
segment is odd, or if the STFT was padded via ``nfft >
|
1635
|
+
nperseg``. If `None`, the value depends on the shape of
|
1636
|
+
`Zxx` and `input_onesided`. If `input_onesided` is `True`,
|
1637
|
+
``nperseg=2*(Zxx.shape[freq_axis] - 1)``. Otherwise,
|
1638
|
+
``nperseg=Zxx.shape[freq_axis]``. Defaults to `None`.
|
1639
|
+
noverlap : int, optional
|
1640
|
+
Number of points to overlap between segments. If `None`, half
|
1641
|
+
of the segment length. Defaults to `None`. When specified, the
|
1642
|
+
COLA constraint must be met (see Notes below), and should match
|
1643
|
+
the parameter used to generate the STFT. Defaults to `None`.
|
1644
|
+
nfft : int, optional
|
1645
|
+
Number of FFT points corresponding to each STFT segment. This
|
1646
|
+
parameter must be specified if the STFT was padded via ``nfft >
|
1647
|
+
nperseg``. If `None`, the default values are the same as for
|
1648
|
+
`nperseg`, detailed above, with one exception: if
|
1649
|
+
`input_onesided` is True and
|
1650
|
+
``nperseg==2*Zxx.shape[freq_axis] - 1``, `nfft` also takes on
|
1651
|
+
that value. This case allows the proper inversion of an
|
1652
|
+
odd-length unpadded STFT using ``nfft=None``. Defaults to
|
1653
|
+
`None`.
|
1654
|
+
input_onesided : bool, optional
|
1655
|
+
If `True`, interpret the input array as one-sided FFTs, such
|
1656
|
+
as is returned by `stft` with ``return_onesided=True`` and
|
1657
|
+
`numpy.fft.rfft`. If `False`, interpret the input as a a
|
1658
|
+
two-sided FFT. Defaults to `True`.
|
1659
|
+
boundary : bool, optional
|
1660
|
+
Specifies whether the input signal was extended at its
|
1661
|
+
boundaries by supplying a non-`None` ``boundary`` argument to
|
1662
|
+
`stft`. Defaults to `True`.
|
1663
|
+
time_axis : int, optional
|
1664
|
+
Where the time segments of the STFT is located; the default is
|
1665
|
+
the last axis (i.e. ``axis=-1``).
|
1666
|
+
freq_axis : int, optional
|
1667
|
+
Where the frequency axis of the STFT is located; the default is
|
1668
|
+
the penultimate axis (i.e. ``axis=-2``).
|
1669
|
+
scaling: {'spectrum', 'psd'}
|
1670
|
+
The default 'spectrum' scaling allows each frequency line of `Zxx` to
|
1671
|
+
be interpreted as a magnitude spectrum. The 'psd' option scales each
|
1672
|
+
line to a power spectral density - it allows to calculate the signal's
|
1673
|
+
energy by numerically integrating over ``abs(Zxx)**2``.
|
1674
|
+
|
1675
|
+
Returns
|
1676
|
+
-------
|
1677
|
+
t : ndarray
|
1678
|
+
Array of output data times.
|
1679
|
+
x : ndarray
|
1680
|
+
iSTFT of `Zxx`.
|
1681
|
+
|
1682
|
+
See Also
|
1683
|
+
--------
|
1684
|
+
stft: Short Time Fourier Transform
|
1685
|
+
ShortTimeFFT: Newer STFT/ISTFT implementation providing more features.
|
1686
|
+
check_COLA: Check whether the Constant OverLap Add (COLA) constraint
|
1687
|
+
is met
|
1688
|
+
check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
|
1689
|
+
|
1690
|
+
Notes
|
1691
|
+
-----
|
1692
|
+
In order to enable inversion of an STFT via the inverse STFT with
|
1693
|
+
`istft`, the signal windowing must obey the constraint of "nonzero
|
1694
|
+
overlap add" (NOLA):
|
1695
|
+
|
1696
|
+
.. math:: \sum_{t}w^{2}[n-tH] \ne 0
|
1697
|
+
|
1698
|
+
This ensures that the normalization factors that appear in the denominator
|
1699
|
+
of the overlap-add reconstruction equation
|
1700
|
+
|
1701
|
+
.. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}
|
1702
|
+
|
1703
|
+
are not zero. The NOLA constraint can be checked with the `check_NOLA`
|
1704
|
+
function.
|
1705
|
+
|
1706
|
+
An STFT which has been modified (via masking or otherwise) is not
|
1707
|
+
guaranteed to correspond to a exactly realizible signal. This
|
1708
|
+
function implements the iSTFT via the least-squares estimation
|
1709
|
+
algorithm detailed in [2]_, which produces a signal that minimizes
|
1710
|
+
the mean squared error between the STFT of the returned signal and
|
1711
|
+
the modified STFT.
|
1712
|
+
|
1713
|
+
|
1714
|
+
.. versionadded:: 0.19.0
|
1715
|
+
|
1716
|
+
References
|
1717
|
+
----------
|
1718
|
+
.. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
|
1719
|
+
"Discrete-Time Signal Processing", Prentice Hall, 1999.
|
1720
|
+
.. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
|
1721
|
+
Modified Short-Time Fourier Transform", IEEE 1984,
|
1722
|
+
10.1109/TASSP.1984.1164317
|
1723
|
+
|
1724
|
+
Examples
|
1725
|
+
--------
|
1726
|
+
>>> import numpy as np
|
1727
|
+
>>> from scipy import signal
|
1728
|
+
>>> import matplotlib.pyplot as plt
|
1729
|
+
>>> rng = np.random.default_rng()
|
1730
|
+
|
1731
|
+
Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by
|
1732
|
+
0.001 V**2/Hz of white noise sampled at 1024 Hz.
|
1733
|
+
|
1734
|
+
>>> fs = 1024
|
1735
|
+
>>> N = 10*fs
|
1736
|
+
>>> nperseg = 512
|
1737
|
+
>>> amp = 2 * np.sqrt(2)
|
1738
|
+
>>> noise_power = 0.001 * fs / 2
|
1739
|
+
>>> time = np.arange(N) / float(fs)
|
1740
|
+
>>> carrier = amp * np.sin(2*np.pi*50*time)
|
1741
|
+
>>> noise = rng.normal(scale=np.sqrt(noise_power),
|
1742
|
+
... size=time.shape)
|
1743
|
+
>>> x = carrier + noise
|
1744
|
+
|
1745
|
+
Compute the STFT, and plot its magnitude
|
1746
|
+
|
1747
|
+
>>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg)
|
1748
|
+
>>> plt.figure()
|
1749
|
+
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
|
1750
|
+
>>> plt.ylim([f[1], f[-1]])
|
1751
|
+
>>> plt.title('STFT Magnitude')
|
1752
|
+
>>> plt.ylabel('Frequency [Hz]')
|
1753
|
+
>>> plt.xlabel('Time [sec]')
|
1754
|
+
>>> plt.yscale('log')
|
1755
|
+
>>> plt.show()
|
1756
|
+
|
1757
|
+
Zero the components that are 10% or less of the carrier magnitude,
|
1758
|
+
then convert back to a time series via inverse STFT
|
1759
|
+
|
1760
|
+
>>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0)
|
1761
|
+
>>> _, xrec = signal.istft(Zxx, fs)
|
1762
|
+
|
1763
|
+
Compare the cleaned signal with the original and true carrier signals.
|
1764
|
+
|
1765
|
+
>>> plt.figure()
|
1766
|
+
>>> plt.plot(time, x, time, xrec, time, carrier)
|
1767
|
+
>>> plt.xlim([2, 2.1])
|
1768
|
+
>>> plt.xlabel('Time [sec]')
|
1769
|
+
>>> plt.ylabel('Signal')
|
1770
|
+
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
|
1771
|
+
>>> plt.show()
|
1772
|
+
|
1773
|
+
Note that the cleaned signal does not start as abruptly as the original,
|
1774
|
+
since some of the coefficients of the transient were also removed:
|
1775
|
+
|
1776
|
+
>>> plt.figure()
|
1777
|
+
>>> plt.plot(time, x, time, xrec, time, carrier)
|
1778
|
+
>>> plt.xlim([0, 0.1])
|
1779
|
+
>>> plt.xlabel('Time [sec]')
|
1780
|
+
>>> plt.ylabel('Signal')
|
1781
|
+
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
|
1782
|
+
>>> plt.show()
|
1783
|
+
|
1784
|
+
"""
|
1785
|
+
# Make sure input is an ndarray of appropriate complex dtype
|
1786
|
+
Zxx = np.asarray(Zxx) + 0j
|
1787
|
+
freq_axis = int(freq_axis)
|
1788
|
+
time_axis = int(time_axis)
|
1789
|
+
|
1790
|
+
if Zxx.ndim < 2:
|
1791
|
+
raise ValueError('Input stft must be at least 2d!')
|
1792
|
+
|
1793
|
+
if freq_axis == time_axis:
|
1794
|
+
raise ValueError('Must specify differing time and frequency axes!')
|
1795
|
+
|
1796
|
+
nseg = Zxx.shape[time_axis]
|
1797
|
+
|
1798
|
+
if input_onesided:
|
1799
|
+
# Assume even segment length
|
1800
|
+
n_default = 2*(Zxx.shape[freq_axis] - 1)
|
1801
|
+
else:
|
1802
|
+
n_default = Zxx.shape[freq_axis]
|
1803
|
+
|
1804
|
+
# Check windowing parameters
|
1805
|
+
if nperseg is None:
|
1806
|
+
nperseg = n_default
|
1807
|
+
else:
|
1808
|
+
nperseg = int(nperseg)
|
1809
|
+
if nperseg < 1:
|
1810
|
+
raise ValueError('nperseg must be a positive integer')
|
1811
|
+
|
1812
|
+
if nfft is None:
|
1813
|
+
if (input_onesided) and (nperseg == n_default + 1):
|
1814
|
+
# Odd nperseg, no FFT padding
|
1815
|
+
nfft = nperseg
|
1816
|
+
else:
|
1817
|
+
nfft = n_default
|
1818
|
+
elif nfft < nperseg:
|
1819
|
+
raise ValueError('nfft must be greater than or equal to nperseg.')
|
1820
|
+
else:
|
1821
|
+
nfft = int(nfft)
|
1822
|
+
|
1823
|
+
if noverlap is None:
|
1824
|
+
noverlap = nperseg//2
|
1825
|
+
else:
|
1826
|
+
noverlap = int(noverlap)
|
1827
|
+
if noverlap >= nperseg:
|
1828
|
+
raise ValueError('noverlap must be less than nperseg.')
|
1829
|
+
nstep = nperseg - noverlap
|
1830
|
+
|
1831
|
+
# Rearrange axes if necessary
|
1832
|
+
if time_axis != Zxx.ndim-1 or freq_axis != Zxx.ndim-2:
|
1833
|
+
# Turn negative indices to positive for the call to transpose
|
1834
|
+
if freq_axis < 0:
|
1835
|
+
freq_axis = Zxx.ndim + freq_axis
|
1836
|
+
if time_axis < 0:
|
1837
|
+
time_axis = Zxx.ndim + time_axis
|
1838
|
+
zouter = list(range(Zxx.ndim))
|
1839
|
+
for ax in sorted([time_axis, freq_axis], reverse=True):
|
1840
|
+
zouter.pop(ax)
|
1841
|
+
Zxx = np.transpose(Zxx, zouter+[freq_axis, time_axis])
|
1842
|
+
|
1843
|
+
# Get window as array
|
1844
|
+
if isinstance(window, str) or type(window) is tuple:
|
1845
|
+
win = get_window(window, nperseg)
|
1846
|
+
else:
|
1847
|
+
win = np.asarray(window)
|
1848
|
+
if len(win.shape) != 1:
|
1849
|
+
raise ValueError('window must be 1-D')
|
1850
|
+
if win.shape[0] != nperseg:
|
1851
|
+
raise ValueError(f'window must have length of {nperseg}')
|
1852
|
+
|
1853
|
+
ifunc = sp_fft.irfft if input_onesided else sp_fft.ifft
|
1854
|
+
xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg, :]
|
1855
|
+
|
1856
|
+
# Initialize output and normalization arrays
|
1857
|
+
outputlength = nperseg + (nseg-1)*nstep
|
1858
|
+
x = np.zeros(list(Zxx.shape[:-2])+[outputlength], dtype=xsubs.dtype)
|
1859
|
+
norm = np.zeros(outputlength, dtype=xsubs.dtype)
|
1860
|
+
|
1861
|
+
if np.result_type(win, xsubs) != xsubs.dtype:
|
1862
|
+
win = win.astype(xsubs.dtype)
|
1863
|
+
|
1864
|
+
if scaling == 'spectrum':
|
1865
|
+
xsubs *= win.sum()
|
1866
|
+
elif scaling == 'psd':
|
1867
|
+
xsubs *= np.sqrt(fs * sum(win**2))
|
1868
|
+
else:
|
1869
|
+
raise ValueError(f"Parameter {scaling=} not in ['spectrum', 'psd']!")
|
1870
|
+
|
1871
|
+
# Construct the output from the ifft segments
|
1872
|
+
# This loop could perhaps be vectorized/strided somehow...
|
1873
|
+
for ii in range(nseg):
|
1874
|
+
# Window the ifft
|
1875
|
+
x[..., ii*nstep:ii*nstep+nperseg] += xsubs[..., ii] * win
|
1876
|
+
norm[..., ii*nstep:ii*nstep+nperseg] += win**2
|
1877
|
+
|
1878
|
+
# Remove extension points
|
1879
|
+
if boundary:
|
1880
|
+
x = x[..., nperseg//2:-(nperseg//2)]
|
1881
|
+
norm = norm[..., nperseg//2:-(nperseg//2)]
|
1882
|
+
|
1883
|
+
# Divide out normalization where non-tiny
|
1884
|
+
if np.sum(norm > 1e-10) != len(norm):
|
1885
|
+
warnings.warn(
|
1886
|
+
"NOLA condition failed, STFT may not be invertible."
|
1887
|
+
+ (" Possibly due to missing boundary" if not boundary else ""),
|
1888
|
+
stacklevel=2
|
1889
|
+
)
|
1890
|
+
x /= np.where(norm > 1e-10, norm, 1.0)
|
1891
|
+
|
1892
|
+
if input_onesided:
|
1893
|
+
x = x.real
|
1894
|
+
|
1895
|
+
# Put axes back
|
1896
|
+
if x.ndim > 1:
|
1897
|
+
if time_axis != Zxx.ndim-1:
|
1898
|
+
if freq_axis < time_axis:
|
1899
|
+
time_axis -= 1
|
1900
|
+
x = np.moveaxis(x, -1, time_axis)
|
1901
|
+
|
1902
|
+
time = np.arange(x.shape[0])/float(fs)
|
1903
|
+
return time, x
|
1904
|
+
|
1905
|
+
|
1906
|
+
def coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None,
|
1907
|
+
nfft=None, detrend='constant', axis=-1):
|
1908
|
+
r"""
|
1909
|
+
Estimate the magnitude squared coherence estimate, Cxy, of
|
1910
|
+
discrete-time signals X and Y using Welch's method.
|
1911
|
+
|
1912
|
+
``Cxy = abs(Pxy)**2/(Pxx*Pyy)``, where `Pxx` and `Pyy` are power
|
1913
|
+
spectral density estimates of X and Y, and `Pxy` is the cross
|
1914
|
+
spectral density estimate of X and Y.
|
1915
|
+
|
1916
|
+
Parameters
|
1917
|
+
----------
|
1918
|
+
x : array_like
|
1919
|
+
Time series of measurement values
|
1920
|
+
y : array_like
|
1921
|
+
Time series of measurement values
|
1922
|
+
fs : float, optional
|
1923
|
+
Sampling frequency of the `x` and `y` time series. Defaults
|
1924
|
+
to 1.0.
|
1925
|
+
window : str or tuple or array_like, optional
|
1926
|
+
Desired window to use. If `window` is a string or tuple, it is
|
1927
|
+
passed to `get_window` to generate the window values, which are
|
1928
|
+
DFT-even by default. See `get_window` for a list of windows and
|
1929
|
+
required parameters. If `window` is array_like it will be used
|
1930
|
+
directly as the window and its length must be nperseg. Defaults
|
1931
|
+
to a Hann window.
|
1932
|
+
nperseg : int, optional
|
1933
|
+
Length of each segment. Defaults to None, but if window is str or
|
1934
|
+
tuple, is set to 256, and if window is array_like, is set to the
|
1935
|
+
length of the window.
|
1936
|
+
noverlap: int, optional
|
1937
|
+
Number of points to overlap between segments. If `None`,
|
1938
|
+
``noverlap = nperseg // 2``. Defaults to `None`.
|
1939
|
+
nfft : int, optional
|
1940
|
+
Length of the FFT used, if a zero padded FFT is desired. If
|
1941
|
+
`None`, the FFT length is `nperseg`. Defaults to `None`.
|
1942
|
+
detrend : str or function or `False`, optional
|
1943
|
+
Specifies how to detrend each segment. If `detrend` is a
|
1944
|
+
string, it is passed as the `type` argument to the `detrend`
|
1945
|
+
function. If it is a function, it takes a segment and returns a
|
1946
|
+
detrended segment. If `detrend` is `False`, no detrending is
|
1947
|
+
done. Defaults to 'constant'.
|
1948
|
+
axis : int, optional
|
1949
|
+
Axis along which the coherence is computed for both inputs; the
|
1950
|
+
default is over the last axis (i.e. ``axis=-1``).
|
1951
|
+
|
1952
|
+
Returns
|
1953
|
+
-------
|
1954
|
+
f : ndarray
|
1955
|
+
Array of sample frequencies.
|
1956
|
+
Cxy : ndarray
|
1957
|
+
Magnitude squared coherence of x and y.
|
1958
|
+
|
1959
|
+
See Also
|
1960
|
+
--------
|
1961
|
+
periodogram: Simple, optionally modified periodogram
|
1962
|
+
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
|
1963
|
+
welch: Power spectral density by Welch's method.
|
1964
|
+
csd: Cross spectral density by Welch's method.
|
1965
|
+
|
1966
|
+
Notes
|
1967
|
+
-----
|
1968
|
+
An appropriate amount of overlap will depend on the choice of window
|
1969
|
+
and on your requirements. For the default Hann window an overlap of
|
1970
|
+
50% is a reasonable trade-off between accurately estimating the
|
1971
|
+
signal power, while not over counting any of the data. Narrower
|
1972
|
+
windows may require a larger overlap.
|
1973
|
+
|
1974
|
+
.. versionadded:: 0.16.0
|
1975
|
+
|
1976
|
+
References
|
1977
|
+
----------
|
1978
|
+
.. [1] P. Welch, "The use of the fast Fourier transform for the
|
1979
|
+
estimation of power spectra: A method based on time averaging
|
1980
|
+
over short, modified periodograms", IEEE Trans. Audio
|
1981
|
+
Electroacoust. vol. 15, pp. 70-73, 1967.
|
1982
|
+
.. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of
|
1983
|
+
Signals" Prentice Hall, 2005
|
1984
|
+
|
1985
|
+
Examples
|
1986
|
+
--------
|
1987
|
+
>>> import numpy as np
|
1988
|
+
>>> from scipy import signal
|
1989
|
+
>>> import matplotlib.pyplot as plt
|
1990
|
+
>>> rng = np.random.default_rng()
|
1991
|
+
|
1992
|
+
Generate two test signals with some common features.
|
1993
|
+
|
1994
|
+
>>> fs = 10e3
|
1995
|
+
>>> N = 1e5
|
1996
|
+
>>> amp = 20
|
1997
|
+
>>> freq = 1234.0
|
1998
|
+
>>> noise_power = 0.001 * fs / 2
|
1999
|
+
>>> time = np.arange(N) / fs
|
2000
|
+
>>> b, a = signal.butter(2, 0.25, 'low')
|
2001
|
+
>>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
|
2002
|
+
>>> y = signal.lfilter(b, a, x)
|
2003
|
+
>>> x += amp*np.sin(2*np.pi*freq*time)
|
2004
|
+
>>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)
|
2005
|
+
|
2006
|
+
Compute and plot the coherence.
|
2007
|
+
|
2008
|
+
>>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024)
|
2009
|
+
>>> plt.semilogy(f, Cxy)
|
2010
|
+
>>> plt.xlabel('frequency [Hz]')
|
2011
|
+
>>> plt.ylabel('Coherence')
|
2012
|
+
>>> plt.show()
|
2013
|
+
|
2014
|
+
"""
|
2015
|
+
freqs, Pxx = welch(x, fs=fs, window=window, nperseg=nperseg,
|
2016
|
+
noverlap=noverlap, nfft=nfft, detrend=detrend,
|
2017
|
+
axis=axis)
|
2018
|
+
_, Pyy = welch(y, fs=fs, window=window, nperseg=nperseg, noverlap=noverlap,
|
2019
|
+
nfft=nfft, detrend=detrend, axis=axis)
|
2020
|
+
_, Pxy = csd(x, y, fs=fs, window=window, nperseg=nperseg,
|
2021
|
+
noverlap=noverlap, nfft=nfft, detrend=detrend, axis=axis)
|
2022
|
+
|
2023
|
+
Cxy = np.abs(Pxy)**2 / Pxx / Pyy
|
2024
|
+
|
2025
|
+
return freqs, Cxy
|
2026
|
+
|
2027
|
+
|
2028
|
+
def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None,
|
2029
|
+
nfft=None, detrend='constant', return_onesided=True,
|
2030
|
+
scaling='density', axis=-1, mode='psd', boundary=None,
|
2031
|
+
padded=False):
|
2032
|
+
"""Calculate various forms of windowed FFTs for PSD, CSD, etc.
|
2033
|
+
|
2034
|
+
.. legacy:: function
|
2035
|
+
|
2036
|
+
This function is soley used by the legacy functions `spectrogram` and `stft`
|
2037
|
+
(which are also in this same source file `scipy/signal/_spectral_py.py`).
|
2038
|
+
|
2039
|
+
This is a helper function that implements the commonality between
|
2040
|
+
the stft, psd, csd, and spectrogram functions. It is not designed to
|
2041
|
+
be called externally. The windows are not averaged over; the result
|
2042
|
+
from each window is returned.
|
2043
|
+
|
2044
|
+
Parameters
|
2045
|
+
----------
|
2046
|
+
x : array_like
|
2047
|
+
Array or sequence containing the data to be analyzed.
|
2048
|
+
y : array_like
|
2049
|
+
Array or sequence containing the data to be analyzed. If this is
|
2050
|
+
the same object in memory as `x` (i.e. ``_spectral_helper(x,
|
2051
|
+
x, ...)``), the extra computations are spared.
|
2052
|
+
fs : float, optional
|
2053
|
+
Sampling frequency of the time series. Defaults to 1.0.
|
2054
|
+
window : str or tuple or array_like, optional
|
2055
|
+
Desired window to use. If `window` is a string or tuple, it is
|
2056
|
+
passed to `get_window` to generate the window values, which are
|
2057
|
+
DFT-even by default. See `get_window` for a list of windows and
|
2058
|
+
required parameters. If `window` is array_like it will be used
|
2059
|
+
directly as the window and its length must be nperseg. Defaults
|
2060
|
+
to a Hann window.
|
2061
|
+
nperseg : int, optional
|
2062
|
+
Length of each segment. Defaults to None, but if window is str or
|
2063
|
+
tuple, is set to 256, and if window is array_like, is set to the
|
2064
|
+
length of the window.
|
2065
|
+
noverlap : int, optional
|
2066
|
+
Number of points to overlap between segments. If `None`,
|
2067
|
+
``noverlap = nperseg // 2``. Defaults to `None`.
|
2068
|
+
nfft : int, optional
|
2069
|
+
Length of the FFT used, if a zero padded FFT is desired. If
|
2070
|
+
`None`, the FFT length is `nperseg`. Defaults to `None`.
|
2071
|
+
detrend : str or function or `False`, optional
|
2072
|
+
Specifies how to detrend each segment. If `detrend` is a
|
2073
|
+
string, it is passed as the `type` argument to the `detrend`
|
2074
|
+
function. If it is a function, it takes a segment and returns a
|
2075
|
+
detrended segment. If `detrend` is `False`, no detrending is
|
2076
|
+
done. Defaults to 'constant'.
|
2077
|
+
return_onesided : bool, optional
|
2078
|
+
If `True`, return a one-sided spectrum for real data. If
|
2079
|
+
`False` return a two-sided spectrum. Defaults to `True`, but for
|
2080
|
+
complex data, a two-sided spectrum is always returned.
|
2081
|
+
scaling : { 'density', 'spectrum' }, optional
|
2082
|
+
Selects between computing the cross spectral density ('density')
|
2083
|
+
where `Pxy` has units of V²/Hz and computing the cross
|
2084
|
+
spectrum ('spectrum') where `Pxy` has units of V², if `x`
|
2085
|
+
and `y` are measured in V and `fs` is measured in Hz.
|
2086
|
+
Defaults to 'density'
|
2087
|
+
axis : int, optional
|
2088
|
+
Axis along which the FFTs are computed; the default is over the
|
2089
|
+
last axis (i.e. ``axis=-1``).
|
2090
|
+
mode: str {'psd', 'stft'}, optional
|
2091
|
+
Defines what kind of return values are expected. Defaults to
|
2092
|
+
'psd'.
|
2093
|
+
boundary : str or None, optional
|
2094
|
+
Specifies whether the input signal is extended at both ends, and
|
2095
|
+
how to generate the new values, in order to center the first
|
2096
|
+
windowed segment on the first input point. This has the benefit
|
2097
|
+
of enabling reconstruction of the first input point when the
|
2098
|
+
employed window function starts at zero. Valid options are
|
2099
|
+
``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
|
2100
|
+
`None`.
|
2101
|
+
padded : bool, optional
|
2102
|
+
Specifies whether the input signal is zero-padded at the end to
|
2103
|
+
make the signal fit exactly into an integer number of window
|
2104
|
+
segments, so that all of the signal is included in the output.
|
2105
|
+
Defaults to `False`. Padding occurs after boundary extension, if
|
2106
|
+
`boundary` is not `None`, and `padded` is `True`.
|
2107
|
+
|
2108
|
+
Returns
|
2109
|
+
-------
|
2110
|
+
freqs : ndarray
|
2111
|
+
Array of sample frequencies.
|
2112
|
+
t : ndarray
|
2113
|
+
Array of times corresponding to each data segment
|
2114
|
+
result : ndarray
|
2115
|
+
Array of output data, contents dependent on *mode* kwarg.
|
2116
|
+
|
2117
|
+
Notes
|
2118
|
+
-----
|
2119
|
+
Adapted from matplotlib.mlab
|
2120
|
+
|
2121
|
+
.. versionadded:: 0.16.0
|
2122
|
+
"""
|
2123
|
+
if mode not in ['psd', 'stft']:
|
2124
|
+
raise ValueError(f"Unknown value for mode {mode}, must be one of: "
|
2125
|
+
"{'psd', 'stft'}")
|
2126
|
+
|
2127
|
+
boundary_funcs = {'even': even_ext,
|
2128
|
+
'odd': odd_ext,
|
2129
|
+
'constant': const_ext,
|
2130
|
+
'zeros': zero_ext,
|
2131
|
+
None: None}
|
2132
|
+
|
2133
|
+
if boundary not in boundary_funcs:
|
2134
|
+
raise ValueError(f"Unknown boundary option '{boundary}', "
|
2135
|
+
f"must be one of: {list(boundary_funcs.keys())}")
|
2136
|
+
|
2137
|
+
# If x and y are the same object we can save ourselves some computation.
|
2138
|
+
same_data = y is x
|
2139
|
+
|
2140
|
+
if not same_data and mode != 'psd':
|
2141
|
+
raise ValueError("x and y must be equal if mode is 'stft'")
|
2142
|
+
|
2143
|
+
axis = int(axis)
|
2144
|
+
|
2145
|
+
# Ensure we have np.arrays, get outdtype
|
2146
|
+
x = np.asarray(x)
|
2147
|
+
if not same_data:
|
2148
|
+
y = np.asarray(y)
|
2149
|
+
outdtype = np.result_type(x, y, np.complex64)
|
2150
|
+
else:
|
2151
|
+
outdtype = np.result_type(x, np.complex64)
|
2152
|
+
|
2153
|
+
if not same_data:
|
2154
|
+
# Check if we can broadcast the outer axes together
|
2155
|
+
xouter = list(x.shape)
|
2156
|
+
youter = list(y.shape)
|
2157
|
+
xouter.pop(axis)
|
2158
|
+
youter.pop(axis)
|
2159
|
+
try:
|
2160
|
+
outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape
|
2161
|
+
except ValueError as e:
|
2162
|
+
raise ValueError('x and y cannot be broadcast together.') from e
|
2163
|
+
|
2164
|
+
if same_data:
|
2165
|
+
if x.size == 0:
|
2166
|
+
return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
|
2167
|
+
else:
|
2168
|
+
if x.size == 0 or y.size == 0:
|
2169
|
+
outshape = outershape + (min([x.shape[axis], y.shape[axis]]),)
|
2170
|
+
emptyout = np.moveaxis(np.empty(outshape), -1, axis)
|
2171
|
+
return emptyout, emptyout, emptyout
|
2172
|
+
|
2173
|
+
if x.ndim > 1:
|
2174
|
+
if axis != -1:
|
2175
|
+
x = np.moveaxis(x, axis, -1)
|
2176
|
+
if not same_data and y.ndim > 1:
|
2177
|
+
y = np.moveaxis(y, axis, -1)
|
2178
|
+
|
2179
|
+
# Check if x and y are the same length, zero-pad if necessary
|
2180
|
+
if not same_data:
|
2181
|
+
if x.shape[-1] != y.shape[-1]:
|
2182
|
+
if x.shape[-1] < y.shape[-1]:
|
2183
|
+
pad_shape = list(x.shape)
|
2184
|
+
pad_shape[-1] = y.shape[-1] - x.shape[-1]
|
2185
|
+
x = np.concatenate((x, np.zeros(pad_shape)), -1)
|
2186
|
+
else:
|
2187
|
+
pad_shape = list(y.shape)
|
2188
|
+
pad_shape[-1] = x.shape[-1] - y.shape[-1]
|
2189
|
+
y = np.concatenate((y, np.zeros(pad_shape)), -1)
|
2190
|
+
|
2191
|
+
if nperseg is not None: # if specified by user
|
2192
|
+
nperseg = int(nperseg)
|
2193
|
+
if nperseg < 1:
|
2194
|
+
raise ValueError('nperseg must be a positive integer')
|
2195
|
+
|
2196
|
+
# parse window; if array like, then set nperseg = win.shape
|
2197
|
+
win, nperseg = _triage_segments(window, nperseg, input_length=x.shape[-1])
|
2198
|
+
|
2199
|
+
if nfft is None:
|
2200
|
+
nfft = nperseg
|
2201
|
+
elif nfft < nperseg:
|
2202
|
+
raise ValueError('nfft must be greater than or equal to nperseg.')
|
2203
|
+
else:
|
2204
|
+
nfft = int(nfft)
|
2205
|
+
|
2206
|
+
if noverlap is None:
|
2207
|
+
noverlap = nperseg//2
|
2208
|
+
else:
|
2209
|
+
noverlap = int(noverlap)
|
2210
|
+
if noverlap >= nperseg:
|
2211
|
+
raise ValueError('noverlap must be less than nperseg.')
|
2212
|
+
nstep = nperseg - noverlap
|
2213
|
+
|
2214
|
+
# Padding occurs after boundary extension, so that the extended signal ends
|
2215
|
+
# in zeros, instead of introducing an impulse at the end.
|
2216
|
+
# I.e. if x = [..., 3, 2]
|
2217
|
+
# extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0]
|
2218
|
+
# pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3]
|
2219
|
+
|
2220
|
+
if boundary is not None:
|
2221
|
+
ext_func = boundary_funcs[boundary]
|
2222
|
+
x = ext_func(x, nperseg//2, axis=-1)
|
2223
|
+
if not same_data:
|
2224
|
+
y = ext_func(y, nperseg//2, axis=-1)
|
2225
|
+
|
2226
|
+
if padded:
|
2227
|
+
# Pad to integer number of windowed segments
|
2228
|
+
# I.e. make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
|
2229
|
+
nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg
|
2230
|
+
zeros_shape = list(x.shape[:-1]) + [nadd]
|
2231
|
+
x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1)
|
2232
|
+
if not same_data:
|
2233
|
+
zeros_shape = list(y.shape[:-1]) + [nadd]
|
2234
|
+
y = np.concatenate((y, np.zeros(zeros_shape)), axis=-1)
|
2235
|
+
|
2236
|
+
# Handle detrending and window functions
|
2237
|
+
if not detrend:
|
2238
|
+
def detrend_func(d):
|
2239
|
+
return d
|
2240
|
+
elif not hasattr(detrend, '__call__'):
|
2241
|
+
def detrend_func(d):
|
2242
|
+
return _signaltools.detrend(d, type=detrend, axis=-1)
|
2243
|
+
elif axis != -1:
|
2244
|
+
# Wrap this function so that it receives a shape that it could
|
2245
|
+
# reasonably expect to receive.
|
2246
|
+
def detrend_func(d):
|
2247
|
+
d = np.moveaxis(d, -1, axis)
|
2248
|
+
d = detrend(d)
|
2249
|
+
return np.moveaxis(d, axis, -1)
|
2250
|
+
else:
|
2251
|
+
detrend_func = detrend
|
2252
|
+
|
2253
|
+
if np.result_type(win, np.complex64) != outdtype:
|
2254
|
+
win = win.astype(outdtype)
|
2255
|
+
|
2256
|
+
if scaling == 'density':
|
2257
|
+
scale = 1.0 / (fs * (win*win).sum())
|
2258
|
+
elif scaling == 'spectrum':
|
2259
|
+
scale = 1.0 / win.sum()**2
|
2260
|
+
else:
|
2261
|
+
raise ValueError(f'Unknown scaling: {scaling!r}')
|
2262
|
+
|
2263
|
+
if mode == 'stft':
|
2264
|
+
scale = np.sqrt(scale)
|
2265
|
+
|
2266
|
+
if return_onesided:
|
2267
|
+
if np.iscomplexobj(x):
|
2268
|
+
sides = 'twosided'
|
2269
|
+
warnings.warn('Input data is complex, switching to return_onesided=False',
|
2270
|
+
stacklevel=3)
|
2271
|
+
else:
|
2272
|
+
sides = 'onesided'
|
2273
|
+
if not same_data:
|
2274
|
+
if np.iscomplexobj(y):
|
2275
|
+
sides = 'twosided'
|
2276
|
+
warnings.warn('Input data is complex, switching to '
|
2277
|
+
'return_onesided=False',
|
2278
|
+
stacklevel=3)
|
2279
|
+
else:
|
2280
|
+
sides = 'twosided'
|
2281
|
+
|
2282
|
+
if sides == 'twosided':
|
2283
|
+
freqs = sp_fft.fftfreq(nfft, 1/fs)
|
2284
|
+
elif sides == 'onesided':
|
2285
|
+
freqs = sp_fft.rfftfreq(nfft, 1/fs)
|
2286
|
+
|
2287
|
+
# Perform the windowed FFTs
|
2288
|
+
result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides)
|
2289
|
+
|
2290
|
+
if not same_data:
|
2291
|
+
# All the same operations on the y data
|
2292
|
+
result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft,
|
2293
|
+
sides)
|
2294
|
+
result = np.conjugate(result) * result_y
|
2295
|
+
elif mode == 'psd':
|
2296
|
+
result = np.conjugate(result) * result
|
2297
|
+
|
2298
|
+
result *= scale
|
2299
|
+
if sides == 'onesided' and mode == 'psd':
|
2300
|
+
if nfft % 2:
|
2301
|
+
result[..., 1:] *= 2
|
2302
|
+
else:
|
2303
|
+
# Last point is unpaired Nyquist freq point, don't double
|
2304
|
+
result[..., 1:-1] *= 2
|
2305
|
+
|
2306
|
+
time = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1,
|
2307
|
+
nperseg - noverlap)/float(fs)
|
2308
|
+
if boundary is not None:
|
2309
|
+
time -= (nperseg/2) / fs
|
2310
|
+
|
2311
|
+
result = result.astype(outdtype)
|
2312
|
+
|
2313
|
+
# All imaginary parts are zero anyways
|
2314
|
+
if same_data and mode != 'stft':
|
2315
|
+
result = result.real
|
2316
|
+
|
2317
|
+
# Output is going to have new last axis for time/window index, so a
|
2318
|
+
# negative axis index shifts down one
|
2319
|
+
if axis < 0:
|
2320
|
+
axis -= 1
|
2321
|
+
|
2322
|
+
# Roll frequency axis back to axis where the data came from
|
2323
|
+
result = np.moveaxis(result, -1, axis)
|
2324
|
+
|
2325
|
+
return freqs, time, result
|
2326
|
+
|
2327
|
+
|
2328
|
+
def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides):
|
2329
|
+
"""
|
2330
|
+
Calculate windowed FFT, for internal use by
|
2331
|
+
`scipy.signal._spectral_helper`.
|
2332
|
+
|
2333
|
+
.. legacy:: function
|
2334
|
+
|
2335
|
+
This function is solely used by the legacy `_spectral_helper` function,
|
2336
|
+
which is located also in this file.
|
2337
|
+
|
2338
|
+
This is a helper function that does the main FFT calculation for
|
2339
|
+
`_spectral helper`. All input validation is performed there, and the
|
2340
|
+
data axis is assumed to be the last axis of x. It is not designed to
|
2341
|
+
be called externally. The windows are not averaged over; the result
|
2342
|
+
from each window is returned.
|
2343
|
+
|
2344
|
+
Returns
|
2345
|
+
-------
|
2346
|
+
result : ndarray
|
2347
|
+
Array of FFT data
|
2348
|
+
|
2349
|
+
Notes
|
2350
|
+
-----
|
2351
|
+
Adapted from matplotlib.mlab
|
2352
|
+
|
2353
|
+
.. versionadded:: 0.16.0
|
2354
|
+
"""
|
2355
|
+
# Created sliding window view of array
|
2356
|
+
if nperseg == 1 and noverlap == 0:
|
2357
|
+
result = x[..., np.newaxis]
|
2358
|
+
else:
|
2359
|
+
step = nperseg - noverlap
|
2360
|
+
result = np.lib.stride_tricks.sliding_window_view(
|
2361
|
+
x, window_shape=nperseg, axis=-1, writeable=True
|
2362
|
+
)
|
2363
|
+
result = result[..., 0::step, :]
|
2364
|
+
|
2365
|
+
# Detrend each data segment individually
|
2366
|
+
result = detrend_func(result)
|
2367
|
+
|
2368
|
+
# Apply window by multiplication
|
2369
|
+
result = win * result
|
2370
|
+
|
2371
|
+
# Perform the fft. Acts on last axis by default. Zero-pads automatically
|
2372
|
+
if sides == 'twosided':
|
2373
|
+
func = sp_fft.fft
|
2374
|
+
else:
|
2375
|
+
result = result.real
|
2376
|
+
func = sp_fft.rfft
|
2377
|
+
result = func(result, n=nfft)
|
2378
|
+
|
2379
|
+
return result
|
2380
|
+
|
2381
|
+
|
2382
|
+
def _triage_segments(window, nperseg, input_length):
|
2383
|
+
"""
|
2384
|
+
Parses window and nperseg arguments for spectrogram and _spectral_helper.
|
2385
|
+
This is a helper function, not meant to be called externally.
|
2386
|
+
|
2387
|
+
.. legacy:: function
|
2388
|
+
|
2389
|
+
This function is soley used by the legacy functions `spectrogram` and
|
2390
|
+
`_spectral_helper` (which are also in this file).
|
2391
|
+
|
2392
|
+
Parameters
|
2393
|
+
----------
|
2394
|
+
window : string, tuple, or ndarray
|
2395
|
+
If window is specified by a string or tuple and nperseg is not
|
2396
|
+
specified, nperseg is set to the default of 256 and returns a window of
|
2397
|
+
that length.
|
2398
|
+
If instead the window is array_like and nperseg is not specified, then
|
2399
|
+
nperseg is set to the length of the window. A ValueError is raised if
|
2400
|
+
the user supplies both an array_like window and a value for nperseg but
|
2401
|
+
nperseg does not equal the length of the window.
|
2402
|
+
|
2403
|
+
nperseg : int
|
2404
|
+
Length of each segment
|
2405
|
+
|
2406
|
+
input_length: int
|
2407
|
+
Length of input signal, i.e. x.shape[-1]. Used to test for errors.
|
2408
|
+
|
2409
|
+
Returns
|
2410
|
+
-------
|
2411
|
+
win : ndarray
|
2412
|
+
window. If function was called with string or tuple than this will hold
|
2413
|
+
the actual array used as a window.
|
2414
|
+
|
2415
|
+
nperseg : int
|
2416
|
+
Length of each segment. If window is str or tuple, nperseg is set to
|
2417
|
+
256. If window is array_like, nperseg is set to the length of the
|
2418
|
+
window.
|
2419
|
+
"""
|
2420
|
+
# parse window; if array like, then set nperseg = win.shape
|
2421
|
+
if isinstance(window, str) or isinstance(window, tuple):
|
2422
|
+
# if nperseg not specified
|
2423
|
+
if nperseg is None:
|
2424
|
+
nperseg = 256 # then change to default
|
2425
|
+
if nperseg > input_length:
|
2426
|
+
warnings.warn(f'nperseg = {nperseg:d} is greater than input length '
|
2427
|
+
f' = {input_length:d}, using nperseg = {input_length:d}',
|
2428
|
+
stacklevel=3)
|
2429
|
+
nperseg = input_length
|
2430
|
+
win = get_window(window, nperseg)
|
2431
|
+
else:
|
2432
|
+
win = np.asarray(window)
|
2433
|
+
if len(win.shape) != 1:
|
2434
|
+
raise ValueError('window must be 1-D')
|
2435
|
+
if input_length < win.shape[-1]:
|
2436
|
+
raise ValueError('window is longer than input signal')
|
2437
|
+
if nperseg is None:
|
2438
|
+
nperseg = win.shape[0]
|
2439
|
+
elif nperseg is not None:
|
2440
|
+
if nperseg != win.shape[0]:
|
2441
|
+
raise ValueError("value specified for nperseg is different"
|
2442
|
+
" from length of window")
|
2443
|
+
return win, nperseg
|
2444
|
+
|
2445
|
+
|
2446
|
+
def _median_bias(n):
|
2447
|
+
"""
|
2448
|
+
Returns the bias of the median of a set of periodograms relative to
|
2449
|
+
the mean.
|
2450
|
+
|
2451
|
+
See Appendix B from [1]_ for details.
|
2452
|
+
|
2453
|
+
Parameters
|
2454
|
+
----------
|
2455
|
+
n : int
|
2456
|
+
Numbers of periodograms being averaged.
|
2457
|
+
|
2458
|
+
Returns
|
2459
|
+
-------
|
2460
|
+
bias : float
|
2461
|
+
Calculated bias.
|
2462
|
+
|
2463
|
+
References
|
2464
|
+
----------
|
2465
|
+
.. [1] B. Allen, W.G. Anderson, P.R. Brady, D.A. Brown, J.D.E. Creighton.
|
2466
|
+
"FINDCHIRP: an algorithm for detection of gravitational waves from
|
2467
|
+
inspiraling compact binaries", Physical Review D 85, 2012,
|
2468
|
+
:arxiv:`gr-qc/0509116`
|
2469
|
+
"""
|
2470
|
+
ii_2 = 2 * np.arange(1., (n-1) // 2 + 1)
|
2471
|
+
return 1 + np.sum(1. / (ii_2 + 1) - 1. / ii_2)
|