passagemath-modules 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +807 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-7f678fcf.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_modules.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,1324 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.graphs
|
|
3
|
+
"""
|
|
4
|
+
Onsager Algebra
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2017-07): Initial version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
#*****************************************************************************
|
|
12
|
+
# Copyright (C) 2017 Travis Scrimshaw <tcscrims at gmail.com>
|
|
13
|
+
#
|
|
14
|
+
# This program is free software: you can redistribute it and/or modify
|
|
15
|
+
# it under the terms of the GNU General Public License as published by
|
|
16
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
17
|
+
# (at your option) any later version.
|
|
18
|
+
# http://www.gnu.org/licenses/
|
|
19
|
+
#*****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.misc.cachefunc import cached_method
|
|
22
|
+
from sage.categories.algebras import Algebras
|
|
23
|
+
from sage.categories.lie_algebras import LieAlgebras
|
|
24
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
25
|
+
from sage.structure.indexed_generators import IndexedGenerators
|
|
26
|
+
from sage.sets.family import Family
|
|
27
|
+
from sage.algebras.lie_algebras.lie_algebra_element import LieAlgebraElement
|
|
28
|
+
from sage.algebras.lie_algebras.lie_algebra import LieAlgebraWithGenerators, InfinitelyGeneratedLieAlgebra
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class OnsagerAlgebra(LieAlgebraWithGenerators, IndexedGenerators):
|
|
32
|
+
r"""
|
|
33
|
+
The Onsager (Lie) algebra.
|
|
34
|
+
|
|
35
|
+
The Onsager (Lie) algebra `\mathcal{O}` is a Lie algebra with
|
|
36
|
+
generators `A_0, A_1` that satisfy
|
|
37
|
+
|
|
38
|
+
.. MATH::
|
|
39
|
+
|
|
40
|
+
[A_0, [A_0, [A_0, A_1]]] = -4 [A_0, A_1],
|
|
41
|
+
\qquad
|
|
42
|
+
[A_1, [A_1, [A_1, A_0]]] = -4 [A_1, A_0].
|
|
43
|
+
|
|
44
|
+
.. NOTE::
|
|
45
|
+
|
|
46
|
+
We are using a rescaled version of the usual defining generators.
|
|
47
|
+
|
|
48
|
+
There exist a basis `\{A_m, G_n \mid m \in \ZZ, n \in \ZZ_{>0}\}`
|
|
49
|
+
for `\mathcal{O}` with structure coefficients
|
|
50
|
+
|
|
51
|
+
.. MATH::
|
|
52
|
+
|
|
53
|
+
[A_m, A_{m'}] = G_{m-m'},
|
|
54
|
+
\qquad
|
|
55
|
+
[G_n, G_{n'}] = 0,
|
|
56
|
+
\qquad
|
|
57
|
+
[G_n, A_m] = 2A_{m-n} - 2A_{m+n},
|
|
58
|
+
|
|
59
|
+
where `m > m'`.
|
|
60
|
+
|
|
61
|
+
The Onsager algebra is isomorphic to the subalgebra of the affine
|
|
62
|
+
Lie algebra `\widehat{\mathfrak{sl}}_2 = \mathfrak{sl}_2 \otimes
|
|
63
|
+
\CC[t,t^{-1}] \oplus \CC K \oplus \CC d` that is invariant under
|
|
64
|
+
the Chevalley involution. In particular, we have
|
|
65
|
+
|
|
66
|
+
.. MATH::
|
|
67
|
+
|
|
68
|
+
A_i \mapsto f \otimes t^i - e \otimes t^{-i},
|
|
69
|
+
\qquad
|
|
70
|
+
G_i \mapsto h \otimes t^{-i} - h \otimes t^i.
|
|
71
|
+
|
|
72
|
+
where `e,f,h` are the Chevalley generators of `\mathfrak{sl}_2`.
|
|
73
|
+
|
|
74
|
+
EXAMPLES:
|
|
75
|
+
|
|
76
|
+
We construct the Onsager algebra and do some basic computations::
|
|
77
|
+
|
|
78
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
79
|
+
sage: O.inject_variables()
|
|
80
|
+
Defining A0, A1
|
|
81
|
+
|
|
82
|
+
We verify the defining relations::
|
|
83
|
+
|
|
84
|
+
sage: O([A0, [A0, [A0, A1]]]) == -4 * O([A0, A1])
|
|
85
|
+
True
|
|
86
|
+
sage: O([A1, [A1, [A1, A0]]]) == -4 * O([A1, A0])
|
|
87
|
+
True
|
|
88
|
+
|
|
89
|
+
We check the embedding into `\widehat{\mathfrak{sl}}_2`::
|
|
90
|
+
|
|
91
|
+
sage: L = LieAlgebra(QQ, cartan_type=['A',1,1])
|
|
92
|
+
sage: B = L.basis()
|
|
93
|
+
sage: al = RootSystem(['A',1]).root_lattice().simple_root(1)
|
|
94
|
+
sage: ac = al.associated_coroot()
|
|
95
|
+
sage: def emb_A(i): return B[-al,i] - B[al,-i]
|
|
96
|
+
sage: def emb_G(i): return B[ac,i] - B[ac,-i]
|
|
97
|
+
sage: a0 = emb_A(0)
|
|
98
|
+
sage: a1 = emb_A(1)
|
|
99
|
+
sage: L([a0, [a0, [a0, a1]]]) == -4 * L([a0, a1])
|
|
100
|
+
True
|
|
101
|
+
sage: L([a1, [a1, [a1, a0]]]) == -4 * L([a1, a0])
|
|
102
|
+
True
|
|
103
|
+
|
|
104
|
+
sage: all(emb_G(n).bracket(emb_A(m)) == 2*emb_A(m-n) - 2*emb_A(m+n)
|
|
105
|
+
....: for m in range(-10, 10) for n in range(1,10))
|
|
106
|
+
True
|
|
107
|
+
sage: all(emb_A(m).bracket(emb_A(mp)) == emb_G(m-mp)
|
|
108
|
+
....: for m in range(-10,10) for mp in range(m-10, m))
|
|
109
|
+
True
|
|
110
|
+
|
|
111
|
+
REFERENCES:
|
|
112
|
+
|
|
113
|
+
- [Onsager1944]_
|
|
114
|
+
- [DG1982]_
|
|
115
|
+
"""
|
|
116
|
+
def __init__(self, R):
|
|
117
|
+
"""
|
|
118
|
+
Initialize ``self``.
|
|
119
|
+
|
|
120
|
+
EXAMPLES::
|
|
121
|
+
|
|
122
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
123
|
+
sage: TestSuite(O).run()
|
|
124
|
+
"""
|
|
125
|
+
cat = LieAlgebras(R).WithBasis()
|
|
126
|
+
from sage.sets.finite_enumerated_set import FiniteEnumeratedSet
|
|
127
|
+
IndexedGenerators.__init__(self, FiniteEnumeratedSet([0,1]))
|
|
128
|
+
LieAlgebraWithGenerators.__init__(self, R, index_set=self._indices,
|
|
129
|
+
names=('A0', 'A1'), category=cat)
|
|
130
|
+
|
|
131
|
+
def _repr_(self):
|
|
132
|
+
"""
|
|
133
|
+
Return a string representation of ``self``.
|
|
134
|
+
|
|
135
|
+
EXAMPLES::
|
|
136
|
+
|
|
137
|
+
sage: lie_algebras.OnsagerAlgebra(QQ)
|
|
138
|
+
Onsager algebra over Rational Field
|
|
139
|
+
"""
|
|
140
|
+
return "Onsager algebra over {}".format(self.base_ring())
|
|
141
|
+
|
|
142
|
+
def _latex_(self):
|
|
143
|
+
r"""
|
|
144
|
+
Return a string representation of ``self``.
|
|
145
|
+
|
|
146
|
+
EXAMPLES::
|
|
147
|
+
|
|
148
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
149
|
+
sage: latex(O)
|
|
150
|
+
\mathcal{O}_{\Bold{Q}}
|
|
151
|
+
"""
|
|
152
|
+
from sage.misc.latex import latex
|
|
153
|
+
return "\\mathcal{{O}}_{{{}}}".format(latex(self.base_ring()))
|
|
154
|
+
|
|
155
|
+
def _repr_generator(self, m):
|
|
156
|
+
"""
|
|
157
|
+
Return a string representation of the generator indexed by ``m``.
|
|
158
|
+
|
|
159
|
+
EXAMPLES::
|
|
160
|
+
|
|
161
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
162
|
+
sage: O._repr_generator((0,-2))
|
|
163
|
+
'A[-2]'
|
|
164
|
+
sage: O._repr_generator((1,4))
|
|
165
|
+
'G[4]'
|
|
166
|
+
"""
|
|
167
|
+
if m[0] == 0:
|
|
168
|
+
return 'A[{}]'.format(m[1])
|
|
169
|
+
return 'G[{}]'.format(m[1])
|
|
170
|
+
|
|
171
|
+
def _latex_generator(self, m):
|
|
172
|
+
r"""
|
|
173
|
+
Return a LaTeX representation of the generator indexed by ``m``.
|
|
174
|
+
|
|
175
|
+
EXAMPLES::
|
|
176
|
+
|
|
177
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
178
|
+
sage: O._latex_generator((0,-2))
|
|
179
|
+
'A_{-2}'
|
|
180
|
+
sage: O._latex_generator((1,4))
|
|
181
|
+
'G_{4}'
|
|
182
|
+
"""
|
|
183
|
+
if m[0] == 0:
|
|
184
|
+
return 'A_{{{}}}'.format(m[1])
|
|
185
|
+
return 'G_{{{}}}'.format(m[1])
|
|
186
|
+
|
|
187
|
+
# For compatibility with CombinatorialFreeModuleElement
|
|
188
|
+
_repr_term = _repr_generator
|
|
189
|
+
_latex_term = _latex_generator
|
|
190
|
+
|
|
191
|
+
@cached_method
|
|
192
|
+
def basis(self):
|
|
193
|
+
r"""
|
|
194
|
+
Return the basis of ``self``.
|
|
195
|
+
|
|
196
|
+
EXAMPLES::
|
|
197
|
+
|
|
198
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
199
|
+
sage: O.basis()
|
|
200
|
+
Lazy family (Onsager monomial(i))_{i in
|
|
201
|
+
Disjoint union of Family (Integer Ring, Positive integers)}
|
|
202
|
+
"""
|
|
203
|
+
from sage.rings.integer_ring import ZZ
|
|
204
|
+
from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets
|
|
205
|
+
from sage.sets.positive_integers import PositiveIntegers
|
|
206
|
+
I = DisjointUnionEnumeratedSets([ZZ, PositiveIntegers()],
|
|
207
|
+
keepkey=True, facade=True)
|
|
208
|
+
return Family(I, self.monomial, name='Onsager monomial')
|
|
209
|
+
|
|
210
|
+
@cached_method
|
|
211
|
+
def lie_algebra_generators(self):
|
|
212
|
+
r"""
|
|
213
|
+
Return the generators of ``self`` as a Lie algebra.
|
|
214
|
+
|
|
215
|
+
EXAMPLES::
|
|
216
|
+
|
|
217
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
218
|
+
sage: O.lie_algebra_generators()
|
|
219
|
+
Finite family {'A0': A[0], 'A1': A[1]}
|
|
220
|
+
"""
|
|
221
|
+
d = {"A0": self.basis()[0,0], "A1": self.basis()[0,1]}
|
|
222
|
+
return Family(self._names, d.__getitem__)
|
|
223
|
+
|
|
224
|
+
def bracket_on_basis(self, x, y):
|
|
225
|
+
r"""
|
|
226
|
+
Return the bracket of basis elements indexed by ``x`` and ``y``
|
|
227
|
+
where ``x < y``.
|
|
228
|
+
|
|
229
|
+
EXAMPLES::
|
|
230
|
+
|
|
231
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
232
|
+
sage: O.bracket_on_basis((1,3), (1,9)) # [G, G]
|
|
233
|
+
0
|
|
234
|
+
sage: O.bracket_on_basis((0,8), (1,13)) # [A, G]
|
|
235
|
+
-2*A[-5] + 2*A[21]
|
|
236
|
+
sage: O.bracket_on_basis((0,-9), (0, 7)) # [A, A]
|
|
237
|
+
-G[16]
|
|
238
|
+
"""
|
|
239
|
+
if x[0] == 1:
|
|
240
|
+
# From < property, we have y[0] == 1
|
|
241
|
+
# Therefore, we have [G_n, G_{n'}] = 0
|
|
242
|
+
return self.zero()
|
|
243
|
+
R = self.base_ring()
|
|
244
|
+
if y[0] == 1: # [A_m, G_n] = -(2A_{m-n} - 2A_{m+n})
|
|
245
|
+
d = {(0, x[1]-y[1]): R(-2), (0, x[1]+y[1]): R(2)}
|
|
246
|
+
return self.element_class(self, d)
|
|
247
|
+
# [A_m, A_{m'}] = -G_{m' - m}, where m < m'
|
|
248
|
+
return self.element_class(self, {(1, y[1]-x[1]): -R.one()})
|
|
249
|
+
|
|
250
|
+
def _an_element_(self):
|
|
251
|
+
"""
|
|
252
|
+
Return an element of ``self``.
|
|
253
|
+
|
|
254
|
+
EXAMPLES::
|
|
255
|
+
|
|
256
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
257
|
+
sage: O.an_element()
|
|
258
|
+
-2*A[-3] + A[2] + 3*G[2]
|
|
259
|
+
"""
|
|
260
|
+
B = self.basis()
|
|
261
|
+
return B[0,2] - 2*B[0,-3] + 3*B[1,2]
|
|
262
|
+
|
|
263
|
+
def some_elements(self):
|
|
264
|
+
"""
|
|
265
|
+
Return some elements of ``self``.
|
|
266
|
+
|
|
267
|
+
EXAMPLES::
|
|
268
|
+
|
|
269
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
270
|
+
sage: O.some_elements()
|
|
271
|
+
[A[0], A[2], A[-1], G[4], -2*A[-3] + A[2] + 3*G[2]]
|
|
272
|
+
"""
|
|
273
|
+
B = self.basis()
|
|
274
|
+
return [B[0,0], B[0,2], B[0,-1], B[1,4], self.an_element()]
|
|
275
|
+
|
|
276
|
+
def quantum_group(self, q=None, c=None):
|
|
277
|
+
r"""
|
|
278
|
+
Return the quantum group of ``self``.
|
|
279
|
+
|
|
280
|
+
The corresponding quantum group is the
|
|
281
|
+
:class:`~sage.algebras.lie_algebras.onsager.QuantumOnsagerAlgebra`.
|
|
282
|
+
The parameter `c` must be such that `c(1) = 1`
|
|
283
|
+
|
|
284
|
+
INPUT:
|
|
285
|
+
|
|
286
|
+
- ``q`` -- (optional) the quantum parameter; the default
|
|
287
|
+
is `q \in R(q)`, where `R` is the base ring of ``self``
|
|
288
|
+
- ``c`` -- (optional) the parameter `c`; the default is ``q``
|
|
289
|
+
|
|
290
|
+
EXAMPLES::
|
|
291
|
+
|
|
292
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
293
|
+
sage: Q = O.quantum_group()
|
|
294
|
+
sage: Q
|
|
295
|
+
q-Onsager algebra with c=q over Fraction Field of
|
|
296
|
+
Univariate Polynomial Ring in q over Rational Field
|
|
297
|
+
"""
|
|
298
|
+
if q is None:
|
|
299
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
300
|
+
q = PolynomialRing(self.base_ring(), 'q').fraction_field().gen()
|
|
301
|
+
if c is None:
|
|
302
|
+
c = q
|
|
303
|
+
else:
|
|
304
|
+
c = q.parent()(c)
|
|
305
|
+
return QuantumOnsagerAlgebra(self, q, c)
|
|
306
|
+
|
|
307
|
+
def alternating_central_extension(self):
|
|
308
|
+
r"""
|
|
309
|
+
Return the alternating central extension of ``self``.
|
|
310
|
+
|
|
311
|
+
EXAMPLES::
|
|
312
|
+
|
|
313
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
314
|
+
sage: ACE = O.alternating_central_extension()
|
|
315
|
+
sage: ACE
|
|
316
|
+
Alternating central extension of the Onsager algebra over Rational Field
|
|
317
|
+
"""
|
|
318
|
+
return OnsagerAlgebraACE(self.base_ring())
|
|
319
|
+
|
|
320
|
+
Element = LieAlgebraElement
|
|
321
|
+
|
|
322
|
+
#####################################################################
|
|
323
|
+
# q-Onsager algebra (the quantum group)
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
class QuantumOnsagerAlgebra(CombinatorialFreeModule):
|
|
327
|
+
r"""
|
|
328
|
+
The quantum Onsager algebra.
|
|
329
|
+
|
|
330
|
+
The *quantum Onsager algebra*, or `q`-Onsager algebra, is a
|
|
331
|
+
quantum group analog of the Onsager algebra. It is the left
|
|
332
|
+
(or right) coideal subalgebra of the quantum group
|
|
333
|
+
`U_q(\widehat{\mathfrak{sl}}_2)` and is the simplest example
|
|
334
|
+
of a quantum symmetric pair coideal subalgebra of affine type.
|
|
335
|
+
|
|
336
|
+
The `q`-Onsager algebra depends on a parameter `c` such that
|
|
337
|
+
`c(1) = 1`. The `q`-Onsager algebra with parameter `c` is denoted
|
|
338
|
+
`U_q(\mathcal{O}_R)_c`, where `R` is the base ring of the
|
|
339
|
+
defining Onsager algebra.
|
|
340
|
+
|
|
341
|
+
EXAMPLES:
|
|
342
|
+
|
|
343
|
+
We create the `q`-Onsager algebra and its generators::
|
|
344
|
+
|
|
345
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
346
|
+
sage: Q = O.quantum_group()
|
|
347
|
+
sage: G = Q.algebra_generators()
|
|
348
|
+
|
|
349
|
+
The generators are given as pairs, where `G[0,n]` is the generator
|
|
350
|
+
`B_{n\delta+\alpha_1}` and `G[1,n]` is the generator `B_{n\delta}`.
|
|
351
|
+
We use the convention that
|
|
352
|
+
`n\delta + \alpha_1 \equiv (-n-1)\delta + \alpha_0`. ::
|
|
353
|
+
|
|
354
|
+
sage: G[0,5]
|
|
355
|
+
B[5d+a1]
|
|
356
|
+
sage: G[0,-5]
|
|
357
|
+
B[4d+a0]
|
|
358
|
+
sage: G[1,5]
|
|
359
|
+
B[5d]
|
|
360
|
+
sage: (G[0,5] + G[0,-3]) * (G[1,2] - G[0,3])
|
|
361
|
+
B[2d+a0]*B[2d] - B[2d+a0]*B[3d+a1]
|
|
362
|
+
+ ((-q^4+1)/q^2)*B[1d]*B[6d+a1]
|
|
363
|
+
+ ((q^4-1)/q^2)*B[1d]*B[4d+a1] + B[2d]*B[5d+a1]
|
|
364
|
+
- B[5d+a1]*B[3d+a1] + ((q^2+1)/q^2)*B[7d+a1]
|
|
365
|
+
+ ((q^6+q^4-q^2-1)/q^2)*B[5d+a1] + (-q^4-q^2)*B[3d+a1]
|
|
366
|
+
sage: (G[0,5] + G[0,-3] + G[1,4]) * (G[0,2] - G[1,3])
|
|
367
|
+
-B[2d+a0]*B[3d] + B[2d+a0]*B[2d+a1]
|
|
368
|
+
+ ((q^4-1)/q^4)*B[1d]*B[7d+a1]
|
|
369
|
+
+ ((q^8-2*q^4+1)/q^4)*B[1d]*B[5d+a1]
|
|
370
|
+
+ (-q^4+1)*B[1d]*B[3d+a1] + ((q^4-1)/q^2)*B[2d]*B[6d+a1]
|
|
371
|
+
+ ((-q^4+1)/q^2)*B[2d]*B[4d+a1] - B[3d]*B[4d]
|
|
372
|
+
- B[3d]*B[5d+a1] + B[4d]*B[2d+a1] + B[5d+a1]*B[2d+a1]
|
|
373
|
+
+ ((-q^2-1)/q^4)*B[8d+a1] + ((-q^6-q^4+q^2+1)/q^4)*B[6d+a1]
|
|
374
|
+
+ (-q^6-q^4+q^2+1)*B[4d+a1] + (q^6+q^4)*B[2d+a1]
|
|
375
|
+
|
|
376
|
+
We check the `q`-Dolan-Grady relations::
|
|
377
|
+
|
|
378
|
+
sage: def q_dolan_grady(a, b, q):
|
|
379
|
+
....: x = q*a*b - ~q*b*a
|
|
380
|
+
....: y = ~q*a*x - q*x*a
|
|
381
|
+
....: return a*y - y*a
|
|
382
|
+
sage: A0, A1 = G[0,-1], G[0,0]
|
|
383
|
+
sage: q = Q.q()
|
|
384
|
+
sage: q_dolan_grady(A1, A0, q) == (q^4 + 2*q^2 + 1) * (A0*A1 - A1*A0)
|
|
385
|
+
True
|
|
386
|
+
sage: q_dolan_grady(A0, A1, q) == (q^4 + 2*q^2 + 1) * (A1*A0 - A0*A1)
|
|
387
|
+
True
|
|
388
|
+
|
|
389
|
+
REFERENCES:
|
|
390
|
+
|
|
391
|
+
- [BK2017]_
|
|
392
|
+
"""
|
|
393
|
+
def __init__(self, g, q, c):
|
|
394
|
+
"""
|
|
395
|
+
Initialize ``self``.
|
|
396
|
+
|
|
397
|
+
TESTS::
|
|
398
|
+
|
|
399
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
400
|
+
sage: Q = O.quantum_group()
|
|
401
|
+
sage: TestSuite(Q).run() # long time
|
|
402
|
+
"""
|
|
403
|
+
self._g = g
|
|
404
|
+
self._q = q
|
|
405
|
+
self._c = c
|
|
406
|
+
self._q_two = q + ~q
|
|
407
|
+
R = self._q_two.parent()
|
|
408
|
+
from sage.monoids.indexed_free_monoid import IndexedFreeAbelianMonoid
|
|
409
|
+
monomials = IndexedFreeAbelianMonoid(g.basis().keys(),
|
|
410
|
+
prefix='B', bracket=False,
|
|
411
|
+
sorting_key=self._monoid_key)
|
|
412
|
+
CombinatorialFreeModule.__init__(self, R, monomials,
|
|
413
|
+
prefix='', bracket=False, latex_bracket=False,
|
|
414
|
+
sorting_key=self._monomial_key,
|
|
415
|
+
category=Algebras(R).WithBasis().Filtered())
|
|
416
|
+
|
|
417
|
+
def _basis_key(self, k):
|
|
418
|
+
r"""
|
|
419
|
+
Key for ordering the basis elements of ``self._g``.
|
|
420
|
+
|
|
421
|
+
We choose a key in order to obtain the ordering from [BK2017]_
|
|
422
|
+
in the quantum group.
|
|
423
|
+
|
|
424
|
+
EXAMPLES::
|
|
425
|
+
|
|
426
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
427
|
+
sage: Q = O.quantum_group()
|
|
428
|
+
sage: Q._basis_key((0,2))
|
|
429
|
+
(1, -2)
|
|
430
|
+
sage: Q._basis_key((0,-2))
|
|
431
|
+
(-1, 2)
|
|
432
|
+
sage: Q._basis_key((1,2))
|
|
433
|
+
(0, 2)
|
|
434
|
+
"""
|
|
435
|
+
if k[0] == 0: # B_{m\delta + \alpha_1}
|
|
436
|
+
if k[1] < 0:
|
|
437
|
+
return (-1, -k[1])
|
|
438
|
+
else:
|
|
439
|
+
return (1, -k[1])
|
|
440
|
+
# B_{n\delta}
|
|
441
|
+
return (0, k[1])
|
|
442
|
+
|
|
443
|
+
def _monoid_key(self, x):
|
|
444
|
+
r"""
|
|
445
|
+
Key function for the underlying monoid of ``self``.
|
|
446
|
+
|
|
447
|
+
EXAMPLES::
|
|
448
|
+
|
|
449
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
450
|
+
sage: Q = O.quantum_group()
|
|
451
|
+
sage: G = Q.algebra_generators()
|
|
452
|
+
sage: I = Q._indices.gens()
|
|
453
|
+
sage: I[0,1] * I[1,3] * I[1,2] * I[0,-4]^3 # indirect doctest
|
|
454
|
+
B(0, -4)^3*B(1, 2)*B(1, 3)*B(0, 1)
|
|
455
|
+
"""
|
|
456
|
+
return self._basis_key(x[0])
|
|
457
|
+
|
|
458
|
+
def _monomial_key(self, x):
|
|
459
|
+
r"""
|
|
460
|
+
Compute the key for ``x`` so that the comparison is done by
|
|
461
|
+
reverse degree lexicographic order.
|
|
462
|
+
|
|
463
|
+
EXAMPLES::
|
|
464
|
+
|
|
465
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
466
|
+
sage: Q = O.quantum_group()
|
|
467
|
+
sage: G = Q.algebra_generators()
|
|
468
|
+
sage: G[0,0] * G[1,1] * G[0,-2] # indirect doctest
|
|
469
|
+
(q^2-1)*B[a0]^2*B[1d] + q^2*B[1d+a0]*B[1d]*B[a1]
|
|
470
|
+
+ ((q^6-2*q^2-1)/q^2)*B[a0]*B[1d+a0] + (-q^4-q^2)*B[a0]*B[a1]
|
|
471
|
+
+ (q^4+q^2)*B[1d+a0]*B[1d+a1] + (q^4+q^2)*B[2d+a0]*B[a1]
|
|
472
|
+
+ q^2*B[1d]*B[2d] + (-q^4+1)*B[1d] + (q^4+q^2)*B[3d]
|
|
473
|
+
"""
|
|
474
|
+
return (-len(x), [self._basis_key(l) for l in x.to_word_list()])
|
|
475
|
+
|
|
476
|
+
def _repr_(self):
|
|
477
|
+
r"""
|
|
478
|
+
Return a string representation of ``self``.
|
|
479
|
+
|
|
480
|
+
EXAMPLES::
|
|
481
|
+
|
|
482
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
483
|
+
sage: O.quantum_group()
|
|
484
|
+
q-Onsager algebra with c=q over Fraction Field of
|
|
485
|
+
Univariate Polynomial Ring in q over Rational Field
|
|
486
|
+
"""
|
|
487
|
+
return "{}-Onsager algebra with c={} over {}".format(self._q, self._c,
|
|
488
|
+
self.base_ring())
|
|
489
|
+
|
|
490
|
+
def _latex_(self):
|
|
491
|
+
r"""
|
|
492
|
+
Return a latex representation of ``self``.
|
|
493
|
+
|
|
494
|
+
EXAMPLES::
|
|
495
|
+
|
|
496
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
497
|
+
sage: Q = O.quantum_group(q=-1)
|
|
498
|
+
sage: latex(Q)
|
|
499
|
+
U_{-1}(\mathcal{O}_{\Bold{Q}})_{-1}
|
|
500
|
+
"""
|
|
501
|
+
from sage.misc.latex import latex
|
|
502
|
+
return "U_{{{}}}(\\mathcal{{O}}_{{{}}})_{{{}}}".format(latex(self._q),
|
|
503
|
+
latex(self._g.base_ring()), latex(self._c))
|
|
504
|
+
|
|
505
|
+
def _repr_term(self, m):
|
|
506
|
+
r"""
|
|
507
|
+
Return a string representation of the term indexed by ``m``.
|
|
508
|
+
|
|
509
|
+
EXAMPLES::
|
|
510
|
+
|
|
511
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
512
|
+
sage: Q = O.quantum_group()
|
|
513
|
+
sage: I = Q._indices.gens()
|
|
514
|
+
sage: Q._repr_term(I[0,3])
|
|
515
|
+
'B[3d+a1]'
|
|
516
|
+
sage: Q._repr_term(I[0,-3])
|
|
517
|
+
'B[2d+a0]'
|
|
518
|
+
sage: Q._repr_term(I[1,3])
|
|
519
|
+
'B[3d]'
|
|
520
|
+
sage: Q._repr_term(I[0,-1]^2 * I[1,3]^13 * I[0,3])
|
|
521
|
+
'B[a0]^2*B[3d]^13*B[3d+a1]'
|
|
522
|
+
"""
|
|
523
|
+
def to_str(x):
|
|
524
|
+
k,e = x
|
|
525
|
+
if k[0] == 0:
|
|
526
|
+
if k[1] == -1:
|
|
527
|
+
ret = 'B[a0]'
|
|
528
|
+
elif k[1] == 0:
|
|
529
|
+
ret = 'B[a1]'
|
|
530
|
+
elif k[1] < -1:
|
|
531
|
+
ret = 'B[{}d+a0]'.format(-k[1]-1)
|
|
532
|
+
elif k[1] > 0:
|
|
533
|
+
ret = 'B[{}d+a1]'.format(k[1])
|
|
534
|
+
else:
|
|
535
|
+
ret = 'B[{}d]'.format(k[1])
|
|
536
|
+
if e > 1:
|
|
537
|
+
ret = ret + '^{}'.format(e)
|
|
538
|
+
return ret
|
|
539
|
+
return '*'.join(to_str(x) for x in m._sorted_items())
|
|
540
|
+
|
|
541
|
+
def _latex_term(self, m):
|
|
542
|
+
r"""
|
|
543
|
+
Return a latex representation of the term indexed by ``m``.
|
|
544
|
+
|
|
545
|
+
EXAMPLES::
|
|
546
|
+
|
|
547
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
548
|
+
sage: Q = O.quantum_group()
|
|
549
|
+
sage: I = Q._indices.gens()
|
|
550
|
+
sage: Q._latex_term(I[0,3])
|
|
551
|
+
'B_{3\\delta+\\alpha_1}'
|
|
552
|
+
sage: Q._latex_term(I[0,-3])
|
|
553
|
+
'B_{2\\delta+\\alpha_0}'
|
|
554
|
+
sage: Q._latex_term(I[1,3])
|
|
555
|
+
'B_{3\\delta}'
|
|
556
|
+
sage: Q._latex_term(I[0,-1]^2 * I[1,3]^13 * I[0,3])
|
|
557
|
+
'B_{\\alpha_0}^{2} B_{3\\delta}^{13} B_{3\\delta+\\alpha_1}'
|
|
558
|
+
"""
|
|
559
|
+
def to_str(x):
|
|
560
|
+
k,e = x
|
|
561
|
+
if k[0] == 0:
|
|
562
|
+
if k[1] == -1:
|
|
563
|
+
ret = 'B_{\\alpha_0}'
|
|
564
|
+
elif k[1] == 0:
|
|
565
|
+
ret = 'B_{\\alpha_1}'
|
|
566
|
+
elif k[1] < -1:
|
|
567
|
+
ret = 'B_{{{}\\delta+\\alpha_0}}'.format(-k[1]-1)
|
|
568
|
+
elif k[1] > 0:
|
|
569
|
+
ret = 'B_{{{}\\delta+\\alpha_1}}'.format(k[1])
|
|
570
|
+
else:
|
|
571
|
+
ret = 'B_{{{}\\delta}}'.format(k[1])
|
|
572
|
+
if e > 1:
|
|
573
|
+
ret = ret + '^{{{}}}'.format(e)
|
|
574
|
+
return ret
|
|
575
|
+
return ' '.join(to_str(x) for x in m._sorted_items())
|
|
576
|
+
|
|
577
|
+
def lie_algebra(self):
|
|
578
|
+
r"""
|
|
579
|
+
Return the underlying Lie algebra of ``self``.
|
|
580
|
+
|
|
581
|
+
EXAMPLES::
|
|
582
|
+
|
|
583
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
584
|
+
sage: Q = O.quantum_group()
|
|
585
|
+
sage: Q.lie_algebra()
|
|
586
|
+
Onsager algebra over Rational Field
|
|
587
|
+
sage: Q.lie_algebra() is O
|
|
588
|
+
True
|
|
589
|
+
"""
|
|
590
|
+
return self._g
|
|
591
|
+
|
|
592
|
+
def algebra_generators(self):
|
|
593
|
+
r"""
|
|
594
|
+
Return the algebra generators of ``self``.
|
|
595
|
+
|
|
596
|
+
EXAMPLES::
|
|
597
|
+
|
|
598
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
599
|
+
sage: Q = O.quantum_group()
|
|
600
|
+
sage: Q.algebra_generators()
|
|
601
|
+
Lazy family (generator map(i))_{i in Disjoint union of
|
|
602
|
+
Family (Integer Ring, Positive integers)}
|
|
603
|
+
"""
|
|
604
|
+
G = self._indices.gens()
|
|
605
|
+
return Family(self._indices._indices, lambda x: self.monomial(G[x]),
|
|
606
|
+
name="generator map")
|
|
607
|
+
|
|
608
|
+
gens = algebra_generators
|
|
609
|
+
|
|
610
|
+
def q(self):
|
|
611
|
+
"""
|
|
612
|
+
Return the parameter `q` of ``self``.
|
|
613
|
+
|
|
614
|
+
EXAMPLES::
|
|
615
|
+
|
|
616
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
617
|
+
sage: Q = O.quantum_group()
|
|
618
|
+
sage: Q.q()
|
|
619
|
+
q
|
|
620
|
+
"""
|
|
621
|
+
return self._q
|
|
622
|
+
|
|
623
|
+
def c(self):
|
|
624
|
+
"""
|
|
625
|
+
Return the parameter `c` of ``self``.
|
|
626
|
+
|
|
627
|
+
EXAMPLES::
|
|
628
|
+
|
|
629
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
630
|
+
sage: Q = O.quantum_group(c=-3)
|
|
631
|
+
sage: Q.c()
|
|
632
|
+
-3
|
|
633
|
+
"""
|
|
634
|
+
return self._c
|
|
635
|
+
|
|
636
|
+
@cached_method
|
|
637
|
+
def one_basis(self):
|
|
638
|
+
"""
|
|
639
|
+
Return the basis element indexing `1`.
|
|
640
|
+
|
|
641
|
+
EXAMPLES::
|
|
642
|
+
|
|
643
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
644
|
+
sage: Q = O.quantum_group()
|
|
645
|
+
sage: ob = Q.one_basis(); ob
|
|
646
|
+
1
|
|
647
|
+
sage: ob.parent()
|
|
648
|
+
Free abelian monoid indexed by
|
|
649
|
+
Disjoint union of Family (Integer Ring, Positive integers)
|
|
650
|
+
"""
|
|
651
|
+
return self._indices.one()
|
|
652
|
+
|
|
653
|
+
def _an_element_(self):
|
|
654
|
+
"""
|
|
655
|
+
Return an element of ``self``.
|
|
656
|
+
|
|
657
|
+
EXAMPLES::
|
|
658
|
+
|
|
659
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
660
|
+
sage: Q = O.quantum_group()
|
|
661
|
+
sage: Q.an_element()
|
|
662
|
+
-2*B[2d+a0] + q*B[2d] + B[2d+a1]
|
|
663
|
+
"""
|
|
664
|
+
G = self.algebra_generators()
|
|
665
|
+
return G[0,2] - 2*G[0,-3] + self.base_ring().an_element()*G[1,2]
|
|
666
|
+
|
|
667
|
+
def some_elements(self):
|
|
668
|
+
"""
|
|
669
|
+
Return some elements of ``self``.
|
|
670
|
+
|
|
671
|
+
EXAMPLES::
|
|
672
|
+
|
|
673
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
674
|
+
sage: Q = O.quantum_group()
|
|
675
|
+
sage: Q.some_elements()
|
|
676
|
+
[B[a1], B[3d+a1], B[a0], B[1d], B[4d]]
|
|
677
|
+
"""
|
|
678
|
+
G = self.algebra_generators()
|
|
679
|
+
return [G[0,0], G[0,3], G[0,-1], G[1,1], G[1,4]]
|
|
680
|
+
|
|
681
|
+
def degree_on_basis(self, m):
|
|
682
|
+
r"""
|
|
683
|
+
Return the degree of the basis element indexed by ``m``.
|
|
684
|
+
|
|
685
|
+
EXAMPLES::
|
|
686
|
+
|
|
687
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
688
|
+
sage: Q = O.quantum_group()
|
|
689
|
+
sage: G = Q.algebra_generators()
|
|
690
|
+
sage: B0 = G[0,0]
|
|
691
|
+
sage: B1 = G[0,-1]
|
|
692
|
+
sage: Q.degree_on_basis(B0.leading_support())
|
|
693
|
+
1
|
|
694
|
+
sage: Q.degree_on_basis((B1^10 * B0^10).leading_support())
|
|
695
|
+
20
|
|
696
|
+
sage: ((B0 * B1)^3).maximal_degree()
|
|
697
|
+
6
|
|
698
|
+
"""
|
|
699
|
+
return m.length()
|
|
700
|
+
|
|
701
|
+
@cached_method
|
|
702
|
+
def product_on_basis(self, lhs, rhs):
|
|
703
|
+
r"""
|
|
704
|
+
Return the product of the two basis elements ``lhs`` and ``rhs``.
|
|
705
|
+
|
|
706
|
+
EXAMPLES::
|
|
707
|
+
|
|
708
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
709
|
+
sage: Q = O.quantum_group()
|
|
710
|
+
sage: I = Q._indices.gens()
|
|
711
|
+
sage: Q.product_on_basis(I[1,21]^2, I[1,31]^3)
|
|
712
|
+
B[21d]^2*B[31d]^3
|
|
713
|
+
sage: Q.product_on_basis(I[1,31]^3, I[1,21]^2)
|
|
714
|
+
B[21d]^2*B[31d]^3
|
|
715
|
+
sage: Q.product_on_basis(I[0,8], I[0,6])
|
|
716
|
+
B[8d+a1]*B[6d+a1]
|
|
717
|
+
sage: Q.product_on_basis(I[0,-8], I[0,6])
|
|
718
|
+
B[7d+a0]*B[6d+a1]
|
|
719
|
+
sage: Q.product_on_basis(I[0,-6], I[0,-8])
|
|
720
|
+
B[5d+a0]*B[7d+a0]
|
|
721
|
+
sage: Q.product_on_basis(I[0,-6], I[1,2])
|
|
722
|
+
B[5d+a0]*B[2d]
|
|
723
|
+
sage: Q.product_on_basis(I[1,6], I[0,2])
|
|
724
|
+
B[6d]*B[2d+a1]
|
|
725
|
+
|
|
726
|
+
sage: Q.product_on_basis(I[0,1], I[0,2])
|
|
727
|
+
1/q^2*B[2d+a1]*B[1d+a1] - B[1d]
|
|
728
|
+
sage: Q.product_on_basis(I[0,-3], I[0,-1])
|
|
729
|
+
1/q^2*B[a0]*B[2d+a0] + ((-q^2+1)/q^2)*B[1d+a0]^2 - B[2d]
|
|
730
|
+
sage: Q.product_on_basis(I[0,2], I[0,-1])
|
|
731
|
+
q^2*B[a0]*B[2d+a1] + ((q^4-1)/q^2)*B[1d+a1]*B[a1]
|
|
732
|
+
+ (-q^2+1)*B[1d] + q^2*B[3d]
|
|
733
|
+
sage: Q.product_on_basis(I[0,2], I[1,1])
|
|
734
|
+
B[1d]*B[2d+a1] + (q^2+1)*B[3d+a1] + (-q^2-1)*B[1d+a1]
|
|
735
|
+
sage: Q.product_on_basis(I[0,1], I[1,2])
|
|
736
|
+
((-q^4+1)/q^2)*B[1d]*B[2d+a1] + ((q^4-1)/q^2)*B[1d]*B[a1]
|
|
737
|
+
+ B[2d]*B[1d+a1] + (-q^4-q^2)*B[a0]
|
|
738
|
+
+ ((q^2+1)/q^2)*B[3d+a1] + ((q^6+q^4-q^2-1)/q^2)*B[1d+a1]
|
|
739
|
+
sage: Q.product_on_basis(I[1,2], I[0,-1])
|
|
740
|
+
B[a0]*B[2d] + ((-q^4+1)/q^2)*B[1d+a0]*B[1d]
|
|
741
|
+
+ ((q^4-1)/q^2)*B[1d]*B[a1] + ((q^2+1)/q^2)*B[2d+a0]
|
|
742
|
+
+ ((-q^2-1)/q^2)*B[1d+a1]
|
|
743
|
+
sage: Q.product_on_basis(I[1,2], I[0,-4])
|
|
744
|
+
((q^4-1)/q^2)*B[2d+a0]*B[1d] + B[3d+a0]*B[2d]
|
|
745
|
+
+ ((-q^4+1)/q^2)*B[4d+a0]*B[1d] + (-q^4-q^2)*B[1d+a0]
|
|
746
|
+
+ ((q^6+q^4-q^2-1)/q^2)*B[3d+a0] + ((q^2+1)/q^2)*B[5d+a0]
|
|
747
|
+
|
|
748
|
+
TESTS::
|
|
749
|
+
|
|
750
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
751
|
+
sage: Q = O.quantum_group()
|
|
752
|
+
sage: G = Q.gens()
|
|
753
|
+
sage: G[0,2]*(G[0,1]*G[0,3]) - (G[0,2]*G[0,1])*G[0,3]
|
|
754
|
+
0
|
|
755
|
+
sage: G[0,-2]*(G[0,-1]*G[0,-3]) - (G[0,-2]*G[0,-1])*G[0,-3]
|
|
756
|
+
0
|
|
757
|
+
sage: G[0,1]*(G[0,3]*G[0,-2]) - (G[0,1]*G[0,3])*G[0,-2]
|
|
758
|
+
0
|
|
759
|
+
sage: G[0,2]*(G[0,1]*G[1,3]) - (G[0,2]*G[0,1])*G[1,3]
|
|
760
|
+
0
|
|
761
|
+
sage: G[0,-2]*(G[0,1]*G[1,3]) - (G[0,-2]*G[0,1])*G[1,3]
|
|
762
|
+
0
|
|
763
|
+
sage: G[0,-2]*(G[1,1]*G[1,3]) - (G[0,-2]*G[1,1])*G[1,3]
|
|
764
|
+
0
|
|
765
|
+
"""
|
|
766
|
+
# Some trivial base cases
|
|
767
|
+
if lhs == self.one_basis():
|
|
768
|
+
return self.monomial(rhs)
|
|
769
|
+
if rhs == self.one_basis():
|
|
770
|
+
return self.monomial(lhs)
|
|
771
|
+
|
|
772
|
+
I = self._indices
|
|
773
|
+
B = I.gens()
|
|
774
|
+
q = self._q
|
|
775
|
+
kl = lhs.trailing_support()
|
|
776
|
+
kr = rhs.leading_support()
|
|
777
|
+
if self._basis_key(kl) <= self._basis_key(kr):
|
|
778
|
+
return self.monomial(lhs * rhs)
|
|
779
|
+
|
|
780
|
+
# Create the commutator
|
|
781
|
+
# We have xy - yx = [x, y] -> xy = yx + LOT for x > y
|
|
782
|
+
if kl[0] == 1 and kr[0] == 1:
|
|
783
|
+
# [B[rd], B[md]] == 0
|
|
784
|
+
return self.monomial(lhs * B[kr]) * self.monomial(rhs // B[kr])
|
|
785
|
+
|
|
786
|
+
if kl[0] == 0 and kr[0] == 0:
|
|
787
|
+
def a(m, p):
|
|
788
|
+
if p <= (m - 1) // 2:
|
|
789
|
+
return q**(-2*(p-1)) * (1 + q**-2)
|
|
790
|
+
# Assume m is even and p == m/2
|
|
791
|
+
assert p == m // 2 and m % 2 == 0
|
|
792
|
+
return q**(-m+2)
|
|
793
|
+
if kl[1] * kr[1] > 0 or (kl[1] == 0 and kr[1] > 0):
|
|
794
|
+
# Same sign
|
|
795
|
+
# [B[rd+a1], B[(r+m)d+a1]]
|
|
796
|
+
m = kr[1] - kl[1]
|
|
797
|
+
assert m > 0
|
|
798
|
+
terms = q**-2 * self.monomial(B[kr] * B[kl])
|
|
799
|
+
terms -= self.monomial(B[1,m])
|
|
800
|
+
temp = (-sum(q**(-2*(p-1)) * self.monomial(B[1,m-2*p])
|
|
801
|
+
for p in range(1, (m - 1) // 2 + 1))
|
|
802
|
+
+ sum(a(m,p) * self.monomial(B[0,kr[1]-p]) * self.monomial(B[0,p+kl[1]])
|
|
803
|
+
for p in range(1, m // 2 + 1)))
|
|
804
|
+
terms += (q**-2 - 1) * temp
|
|
805
|
+
else:
|
|
806
|
+
r = -kr[1] - 1
|
|
807
|
+
# s = kl[1]
|
|
808
|
+
if r <= kl[1]:
|
|
809
|
+
# [B[rd+a0], B[sd+a1]] r <= s
|
|
810
|
+
terms = -self.monomial(B[kr] * B[kl])
|
|
811
|
+
terms -= self.monomial(B[1,r+kl[1]+1])
|
|
812
|
+
terms -= (q**2-1) * sum(q**(2*k) * self.monomial(B[1,r+kl[1]-1-2*k])
|
|
813
|
+
for k in range(r))
|
|
814
|
+
terms -= (q**2-q**-2) * sum(q**(2*(r-1-k)) * self.monomial(B[0,-(k+1)]) * self.monomial(B[0,-r+kl[1]+k])
|
|
815
|
+
for k in range(r))
|
|
816
|
+
m = -r + kl[1] + 1
|
|
817
|
+
temp = (-sum(q**(-2*(p-1)) * self.monomial(B[1,m-2*p])
|
|
818
|
+
for p in range(1, (m - 1) // 2 + 1))
|
|
819
|
+
+ sum(a(m,p) * self.monomial(B[0,m-p-1]) * self.monomial(B[0,p-1])
|
|
820
|
+
for p in range(1, m // 2 + 1)))
|
|
821
|
+
terms += (q**-2 - 1) * q**(2*r) * temp
|
|
822
|
+
else:
|
|
823
|
+
# [B[rd+a0], B[sd+a1]] r > s
|
|
824
|
+
terms = -self.monomial(B[kr] * B[kl])
|
|
825
|
+
terms -= self.monomial(B[1,r+kl[1]+1])
|
|
826
|
+
terms -= (q**2-1) * sum(q**(2*k) * self.monomial(B[1,r+kl[1]-1-2*k])
|
|
827
|
+
for k in range(kl[1]))
|
|
828
|
+
terms -= (q**2-q**-2) * sum(q**(2*(kl[1]-1-k)) * self.monomial(B[0,-(r-kl[1]+k+1)]) * self.monomial(B[0,k])
|
|
829
|
+
for k in range(kl[1]))
|
|
830
|
+
m = r - kl[1] + 1
|
|
831
|
+
temp = (-sum(q**(-2*(p-1)) * self.monomial(B[1,m-2*p])
|
|
832
|
+
for p in range(1, (m - 1) // 2 + 1))
|
|
833
|
+
+ sum(a(m,p) * self.monomial(B[0,-p]) * self.monomial(B[0,p-m])
|
|
834
|
+
for p in range(1, m // 2 + 1)))
|
|
835
|
+
terms += (q**-2 - 1) * q**(2*kl[1]) * temp
|
|
836
|
+
terms = -q**2 * terms
|
|
837
|
+
elif kl[0] == 1 and kr[0] == 0:
|
|
838
|
+
terms = self.monomial(B[kr] * B[kl])
|
|
839
|
+
# We have kr[1] < 0
|
|
840
|
+
assert kr[1] < 0
|
|
841
|
+
p = -kr[1] - 1
|
|
842
|
+
if p < kl[1]:
|
|
843
|
+
# [B[md], B[pd+a0]] with p < m
|
|
844
|
+
# m = kl[1]
|
|
845
|
+
terms += self._c * self._q_two * (
|
|
846
|
+
q**(-2*(kl[1]-1)) * self.monomial(B[0,-(kl[1]+p+1)])
|
|
847
|
+
+ (q**2 - q**-2) * sum(q**(-2*(kl[1]-2*p+2*h))
|
|
848
|
+
* self.monomial(B[0,-(kl[1]-p+2*h+1)])
|
|
849
|
+
for h in range(p))
|
|
850
|
+
- q**(-2*(kl[1]-2*p-1)) * self.monomial(B[0,kl[1]-p-1])
|
|
851
|
+
)
|
|
852
|
+
terms -= (q**2 - q**-2) * sum(
|
|
853
|
+
q**(-2*(ell-1)) * self.monomial(B[0,-(ell+p+1)] * B[1,kl[1]-ell])
|
|
854
|
+
+ (q**2 - q**-2) * sum(q**(-2*(ell-2*h)) * self.monomial(B[0,-(ell+p-2*h+1)] * B[1,kl[1]-ell])
|
|
855
|
+
for h in range(1, ell))
|
|
856
|
+
- q**(2*(ell-1)) * self.monomial(B[0,-(p-ell+1)] * B[1,kl[1]-ell])
|
|
857
|
+
for ell in range(1, p+1))
|
|
858
|
+
terms -= (q**2 - q**-2) * sum(
|
|
859
|
+
q**(-2*(ell-1)) * self.monomial(B[0,-(ell+p+1)] * B[1,kl[1]-ell])
|
|
860
|
+
+ (q**2 - q**-2) * sum(q**(-2*(ell-2*h)) * self.monomial(B[0,-(ell+p-2*h+1)] * B[1,kl[1]-ell])
|
|
861
|
+
for h in range(1, p+1))
|
|
862
|
+
for ell in range(p+1, kl[1]))
|
|
863
|
+
terms += (q**2 - q**-2) * sum(
|
|
864
|
+
q**(-2*(ell-2*p-1)) * self.monomial(B[1,kl[1]-ell] * B[0,ell-p-1])
|
|
865
|
+
for ell in range(p+1, kl[1]))
|
|
866
|
+
else:
|
|
867
|
+
# [B[md], B[pd+a0]] with p >= m
|
|
868
|
+
# m = kl[1]
|
|
869
|
+
terms += self._c * self._q_two * (
|
|
870
|
+
q**(-2*(kl[1]-1)) * self.monomial(B[0,-(p+kl[1]+1)])
|
|
871
|
+
+ (q**2 - q**-2) * sum(q**(2*(kl[1]-2-2*h))
|
|
872
|
+
* self.monomial(B[0,-(p-kl[1]+2+2*h+1)])
|
|
873
|
+
for h in range(kl[1]-1))
|
|
874
|
+
- q**(2*(kl[1]-1)) * self.monomial(B[0,-(p-kl[1]+1)])
|
|
875
|
+
)
|
|
876
|
+
terms -= (q**2 - q**-2) * sum(
|
|
877
|
+
q**(-2*(ell-1)) * self.monomial(B[0,-(p+ell+1)] * B[1,kl[1]-ell])
|
|
878
|
+
+ (q**2 - q**-2) * sum(q**(-2*(ell-2*h)) * self.monomial(B[0,-(p+ell-2*h+1)] * B[1,kl[1]-ell])
|
|
879
|
+
for h in range(1, ell))
|
|
880
|
+
- q**(2*(ell-1)) * self.monomial(B[0,-(p-ell+1)] * B[1,kl[1]-ell])
|
|
881
|
+
for ell in range(1, kl[1]))
|
|
882
|
+
else: # kl[0] == 0 and kr[0] == 1:
|
|
883
|
+
terms = self.monomial(B[kr] * B[kl])
|
|
884
|
+
if kl[1] < kr[1]:
|
|
885
|
+
# [B[pd+a1], B[md]] with p < m
|
|
886
|
+
# p = kl[1], m = kr[1]
|
|
887
|
+
terms += self._c * self._q_two * (
|
|
888
|
+
q**(-2*(kr[1]-1)) * self.monomial(B[0,kr[1]+kl[1]])
|
|
889
|
+
+ (q**2 - q**-2) * sum(q**(-2*(kr[1]-2*kl[1]+2*h))
|
|
890
|
+
* self.monomial(B[0,kr[1]-kl[1]+2*h])
|
|
891
|
+
for h in range(kl[1]))
|
|
892
|
+
- q**(-2*(kr[1]-2*kl[1]-1)) * self.monomial(B[0,kl[1]-kr[1]])
|
|
893
|
+
)
|
|
894
|
+
terms -= (q**2 - q**-2) * sum(
|
|
895
|
+
q**(-2*(ell-1)) * self.monomial(B[1,kr[1]-ell] * B[0,ell+kl[1]])
|
|
896
|
+
+ (q**2 - q**-2) * sum(q**(-2*(ell-2*h)) * self.monomial(B[1,kr[1]-ell] * B[0,ell+kl[1]-2*h])
|
|
897
|
+
for h in range(1, ell))
|
|
898
|
+
- q**(2*(ell-1)) * self.monomial(B[1,kr[1]-ell] * B[0,kl[1]-ell])
|
|
899
|
+
for ell in range(1, kl[1]+1))
|
|
900
|
+
terms -= (q**2 - q**-2) * sum(
|
|
901
|
+
q**(-2*(ell-1)) * self.monomial(B[1,kr[1]-ell] * B[0,ell+kl[1]])
|
|
902
|
+
+ (q**2 - q**-2) * sum(q**(-2*(ell-2*h)) * self.monomial(B[1,kr[1]-ell] * B[0,ell+kl[1]-2*h])
|
|
903
|
+
for h in range(1, kl[1]+1))
|
|
904
|
+
for ell in range(kl[1]+1, kr[1]))
|
|
905
|
+
terms += (q**2 - q**-2) * sum(
|
|
906
|
+
q**(-2*(ell-2*kl[1]-1)) * self.monomial(B[0,kl[1]-ell] * B[1,kr[1]-ell])
|
|
907
|
+
for ell in range(kl[1]+1, kr[1]))
|
|
908
|
+
else:
|
|
909
|
+
# [B[pd+a1], B[md]] with p >= m
|
|
910
|
+
# p = kl[1], m = kr[1]
|
|
911
|
+
terms += self._c * self._q_two * (
|
|
912
|
+
q**(-2*(kr[1]-1)) * self.monomial(B[0,kl[1]+kr[1]])
|
|
913
|
+
+ (q**2 - q**-2) * sum(q**(2*(kr[1]-2-2*h))
|
|
914
|
+
* self.monomial(B[0,kl[1]-kr[1]+2+2*h])
|
|
915
|
+
for h in range(kr[1]-1))
|
|
916
|
+
- q**(2*(kr[1]-1)) * self.monomial(B[0,kl[1]-kr[1]])
|
|
917
|
+
)
|
|
918
|
+
terms -= (q**2 - q**-2) * sum(
|
|
919
|
+
q**(-2*(ell-1)) * self.monomial(B[1,kr[1]-ell] * B[0,kl[1]+ell])
|
|
920
|
+
+ (q**2 - q**-2) * sum(q**(-2*(ell-2*h)) * self.monomial(B[1,kr[1]-ell] * B[0,kl[1]+ell-2*h])
|
|
921
|
+
for h in range(1, ell))
|
|
922
|
+
- q**(2*(ell-1)) * self.monomial(B[1,kr[1]-ell] * B[0,kl[1]-ell])
|
|
923
|
+
for ell in range(1, kr[1]))
|
|
924
|
+
|
|
925
|
+
return self.monomial(lhs // B[kl]) * terms * self.monomial(rhs // B[kr])
|
|
926
|
+
|
|
927
|
+
#####################################################################
|
|
928
|
+
# ACE of the Onsager algebra
|
|
929
|
+
|
|
930
|
+
|
|
931
|
+
class OnsagerAlgebraACE(InfinitelyGeneratedLieAlgebra, IndexedGenerators):
|
|
932
|
+
r"""
|
|
933
|
+
The alternating central extension of the Onsager algebra.
|
|
934
|
+
|
|
935
|
+
The *alternating central extension* of the :class:`Onsager algebra
|
|
936
|
+
<sage.algebras.lie_algebras.onsager.OnsagerAlgebra>` is the Lie algebra
|
|
937
|
+
with basis elements `\{\mathcal{A}_k, \mathcal{B}_k\}_{k \in \ZZ}`
|
|
938
|
+
that satisfy the relations
|
|
939
|
+
|
|
940
|
+
.. MATH::
|
|
941
|
+
|
|
942
|
+
\begin{aligned}
|
|
943
|
+
[\mathcal{A}_k, \mathcal{A}_m] & = \mathcal{B}_{k-m} - \mathcal{B}_{m-k},
|
|
944
|
+
\\ [\mathcal{A}_k, \mathcal{B}_m] & = \mathcal{A}_{k+m} - \mathcal{A}_{k-m},
|
|
945
|
+
\\ [\mathcal{B}_k, \mathcal{B}_m] & = 0.
|
|
946
|
+
\end{aligned}
|
|
947
|
+
|
|
948
|
+
This has a natural injection from the Onsager algebra by the map `\iota`
|
|
949
|
+
defined by
|
|
950
|
+
|
|
951
|
+
.. MATH::
|
|
952
|
+
|
|
953
|
+
\iota(A_k) = \mathcal{A}_k,
|
|
954
|
+
\qquad\qquad
|
|
955
|
+
\iota(B_k) = \mathcal{B}_k - \mathcal{B}_{-k}.
|
|
956
|
+
|
|
957
|
+
Note that the map `\iota` differs slightly from Lemma 4.18 in [Ter2021b]_
|
|
958
|
+
due to our choice of basis of the Onsager algebra.
|
|
959
|
+
|
|
960
|
+
.. WARNING::
|
|
961
|
+
|
|
962
|
+
We have added an extra basis vector `\mathcal{B}_0`, which would
|
|
963
|
+
be `0` in the definition given in [Ter2021b]_.
|
|
964
|
+
|
|
965
|
+
EXAMPLES:
|
|
966
|
+
|
|
967
|
+
We begin by constructing the ACE and doing some sample computations::
|
|
968
|
+
|
|
969
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
970
|
+
sage: ACE = O.alternating_central_extension()
|
|
971
|
+
sage: ACE
|
|
972
|
+
Alternating central extension of the Onsager algebra over Rational Field
|
|
973
|
+
|
|
974
|
+
sage: B = ACE.basis()
|
|
975
|
+
sage: A1, A2, Am2 = B[0,1], B[0,2], B[0,-2]
|
|
976
|
+
sage: B1, B2, Bm2 = B[1,1], B[1,2], B[1,-2]
|
|
977
|
+
sage: A1.bracket(Am2)
|
|
978
|
+
-B[-3] + B[3]
|
|
979
|
+
sage: A1.bracket(A2)
|
|
980
|
+
B[-1] - B[1]
|
|
981
|
+
sage: A1.bracket(B2)
|
|
982
|
+
-A[-1] + A[3]
|
|
983
|
+
sage: A1.bracket(Bm2)
|
|
984
|
+
A[-1] - A[3]
|
|
985
|
+
sage: B2.bracket(B1)
|
|
986
|
+
0
|
|
987
|
+
sage: Bm2.bracket(B2)
|
|
988
|
+
0
|
|
989
|
+
sage: (A2 + Am2).bracket(B1 + A2 + B2 + Bm2)
|
|
990
|
+
-A[-3] + A[-1] - A[1] + A[3] + B[-4] - B[4]
|
|
991
|
+
|
|
992
|
+
The natural inclusion map `\iota` is implemented as a coercion map::
|
|
993
|
+
|
|
994
|
+
sage: iota = ACE.coerce_map_from(O)
|
|
995
|
+
sage: b = O.basis()
|
|
996
|
+
sage: am1, a2, b4 = b[0,-1], b[0,2], b[1,4]
|
|
997
|
+
sage: iota(am1.bracket(a2)) == iota(am1).bracket(iota(a2))
|
|
998
|
+
True
|
|
999
|
+
sage: iota(am1.bracket(b4)) == iota(am1).bracket(iota(b4))
|
|
1000
|
+
True
|
|
1001
|
+
sage: iota(b4.bracket(a2)) == iota(b4).bracket(iota(a2))
|
|
1002
|
+
True
|
|
1003
|
+
|
|
1004
|
+
sage: am1 + B2
|
|
1005
|
+
A[-1] + B[2]
|
|
1006
|
+
sage: am1.bracket(B2)
|
|
1007
|
+
-A[-3] + A[1]
|
|
1008
|
+
sage: Bm2.bracket(a2)
|
|
1009
|
+
-A[0] + A[4]
|
|
1010
|
+
|
|
1011
|
+
We have the projection map `\rho` from Lemma 4.19 in [Ter2021b]_:
|
|
1012
|
+
|
|
1013
|
+
.. MATH::
|
|
1014
|
+
|
|
1015
|
+
\rho(\mathcal{A}_k) = A_k,
|
|
1016
|
+
\qquad\qquad
|
|
1017
|
+
\rho(\mathcal{B}_k) = \mathrm{sgn}(k) B_{|k|}.
|
|
1018
|
+
|
|
1019
|
+
The kernel of `\rho` is the center `\mathcal{Z}`, which has a basis
|
|
1020
|
+
`\{B_k + B_{-k}\}_{k \in \ZZ}`::
|
|
1021
|
+
|
|
1022
|
+
sage: rho = ACE.projection()
|
|
1023
|
+
sage: rho(A1)
|
|
1024
|
+
A[1]
|
|
1025
|
+
sage: rho(Am2)
|
|
1026
|
+
A[-2]
|
|
1027
|
+
sage: rho(B1)
|
|
1028
|
+
1/2*G[1]
|
|
1029
|
+
sage: rho(Bm2)
|
|
1030
|
+
-1/2*G[2]
|
|
1031
|
+
sage: all(rho(B[1,k] + B[1,-k]) == 0 for k in range(-6,6))
|
|
1032
|
+
True
|
|
1033
|
+
sage: all(B[0,m].bracket(B[1,k] + B[1,-k]) == 0
|
|
1034
|
+
....: for k in range(-4,4) for m in range(-4,4))
|
|
1035
|
+
True
|
|
1036
|
+
"""
|
|
1037
|
+
def __init__(self, R):
|
|
1038
|
+
r"""
|
|
1039
|
+
Initialize ``self``.
|
|
1040
|
+
|
|
1041
|
+
EXAMPLES::
|
|
1042
|
+
|
|
1043
|
+
sage: ACE = lie_algebras.AlternatingCentralExtensionOnsagerAlgebra(QQ)
|
|
1044
|
+
sage: TestSuite(ACE).run()
|
|
1045
|
+
|
|
1046
|
+
sage: B = ACE.basis()
|
|
1047
|
+
sage: A1, A2, Am2 = B[0,1], B[0,2], B[0,-2]
|
|
1048
|
+
sage: B1, B2, Bm2 = B[1,1], B[1,2], B[1,-2]
|
|
1049
|
+
sage: TestSuite(ACE).run(elements=[A1,A2,Am2,B1,B2,Bm2,ACE.an_element()])
|
|
1050
|
+
"""
|
|
1051
|
+
cat = LieAlgebras(R).WithBasis()
|
|
1052
|
+
from sage.rings.integer_ring import ZZ
|
|
1053
|
+
from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets
|
|
1054
|
+
I = DisjointUnionEnumeratedSets([ZZ, ZZ], keepkey=True, facade=True)
|
|
1055
|
+
IndexedGenerators.__init__(self, I)
|
|
1056
|
+
InfinitelyGeneratedLieAlgebra.__init__(self, R, index_set=I, category=cat)
|
|
1057
|
+
|
|
1058
|
+
def _repr_(self):
|
|
1059
|
+
"""
|
|
1060
|
+
Return a string representation of ``self``.
|
|
1061
|
+
|
|
1062
|
+
EXAMPLES::
|
|
1063
|
+
|
|
1064
|
+
sage: lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1065
|
+
Alternating central extension of the Onsager algebra over Rational Field
|
|
1066
|
+
"""
|
|
1067
|
+
return "Alternating central extension of the Onsager algebra over {}".format(self.base_ring())
|
|
1068
|
+
|
|
1069
|
+
def _latex_(self):
|
|
1070
|
+
r"""
|
|
1071
|
+
Return a string representation of ``self``.
|
|
1072
|
+
|
|
1073
|
+
EXAMPLES::
|
|
1074
|
+
|
|
1075
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1076
|
+
sage: latex(O)
|
|
1077
|
+
\mathcal{O}_{\Bold{Q}}
|
|
1078
|
+
"""
|
|
1079
|
+
from sage.misc.latex import latex
|
|
1080
|
+
return "\\mathcal{{O}}_{{{}}}".format(latex(self.base_ring()))
|
|
1081
|
+
|
|
1082
|
+
def _repr_generator(self, m):
|
|
1083
|
+
"""
|
|
1084
|
+
Return a string representation of the generator indexed by ``m``.
|
|
1085
|
+
|
|
1086
|
+
EXAMPLES::
|
|
1087
|
+
|
|
1088
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1089
|
+
sage: O._repr_generator((0,-2))
|
|
1090
|
+
'A[-2]'
|
|
1091
|
+
sage: O._repr_generator((1,4))
|
|
1092
|
+
'B[4]'
|
|
1093
|
+
"""
|
|
1094
|
+
if m[0] == 0:
|
|
1095
|
+
return 'A[{}]'.format(m[1])
|
|
1096
|
+
return 'B[{}]'.format(m[1])
|
|
1097
|
+
|
|
1098
|
+
def _latex_generator(self, m):
|
|
1099
|
+
r"""
|
|
1100
|
+
Return a LaTeX representation of the generator indexed by ``m``.
|
|
1101
|
+
|
|
1102
|
+
EXAMPLES::
|
|
1103
|
+
|
|
1104
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1105
|
+
sage: O._latex_generator((0,-2))
|
|
1106
|
+
'\\mathcal{A}_{-2}'
|
|
1107
|
+
sage: O._latex_generator((1,4))
|
|
1108
|
+
'\\mathcal{B}_{4}'
|
|
1109
|
+
"""
|
|
1110
|
+
if m[0] == 0:
|
|
1111
|
+
return '\\mathcal{{A}}_{{{}}}'.format(m[1])
|
|
1112
|
+
return '\\mathcal{{B}}_{{{}}}'.format(m[1])
|
|
1113
|
+
|
|
1114
|
+
# For compatibility with CombinatorialFreeModuleElement
|
|
1115
|
+
_repr_term = _repr_generator
|
|
1116
|
+
_latex_term = _latex_generator
|
|
1117
|
+
|
|
1118
|
+
@cached_method
|
|
1119
|
+
def basis(self):
|
|
1120
|
+
r"""
|
|
1121
|
+
Return the basis of ``self``.
|
|
1122
|
+
|
|
1123
|
+
EXAMPLES::
|
|
1124
|
+
|
|
1125
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1126
|
+
sage: O.basis()
|
|
1127
|
+
Lazy family (Onsager ACE monomial(i))_{i in
|
|
1128
|
+
Disjoint union of Family (Integer Ring, Integer Ring)}
|
|
1129
|
+
"""
|
|
1130
|
+
return Family(self._indices, self.monomial, name='Onsager ACE monomial')
|
|
1131
|
+
|
|
1132
|
+
@cached_method
|
|
1133
|
+
def lie_algebra_generators(self):
|
|
1134
|
+
r"""
|
|
1135
|
+
Return the generators of ``self`` as a Lie algebra.
|
|
1136
|
+
|
|
1137
|
+
EXAMPLES::
|
|
1138
|
+
|
|
1139
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1140
|
+
sage: O.lie_algebra_generators()
|
|
1141
|
+
Lazy family (Onsager ACE monomial(i))_{i in
|
|
1142
|
+
Disjoint union of Family (Integer Ring, Integer Ring)}
|
|
1143
|
+
"""
|
|
1144
|
+
return self.basis()
|
|
1145
|
+
|
|
1146
|
+
def _an_element_(self):
|
|
1147
|
+
r"""
|
|
1148
|
+
Return an element of ``self``.
|
|
1149
|
+
|
|
1150
|
+
EXAMPLES::
|
|
1151
|
+
|
|
1152
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1153
|
+
sage: O.an_element()
|
|
1154
|
+
-2*A[-3] + A[2] + B[-1] + 3*B[2]
|
|
1155
|
+
"""
|
|
1156
|
+
B = self.basis()
|
|
1157
|
+
return B[0,2] - 2*B[0,-3] + 3*B[1,2] + B[1,-1]
|
|
1158
|
+
|
|
1159
|
+
def some_elements(self):
|
|
1160
|
+
r"""
|
|
1161
|
+
Return some elements of ``self``.
|
|
1162
|
+
|
|
1163
|
+
EXAMPLES::
|
|
1164
|
+
|
|
1165
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1166
|
+
sage: O.some_elements()
|
|
1167
|
+
[A[0], A[2], A[-1], B[4], B[-3], -2*A[-3] + A[2] + B[-1] + 3*B[2]]
|
|
1168
|
+
"""
|
|
1169
|
+
B = self.basis()
|
|
1170
|
+
return [B[0,0], B[0,2], B[0,-1], B[1,4], B[1,-3], self.an_element()]
|
|
1171
|
+
|
|
1172
|
+
def bracket_on_basis(self, x, y):
|
|
1173
|
+
r"""
|
|
1174
|
+
Return the bracket of basis elements indexed by ``x`` and ``y``
|
|
1175
|
+
where ``x < y``.
|
|
1176
|
+
|
|
1177
|
+
EXAMPLES::
|
|
1178
|
+
|
|
1179
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ).alternating_central_extension()
|
|
1180
|
+
sage: O.bracket_on_basis((1,3), (1,9)) # [B, B]
|
|
1181
|
+
0
|
|
1182
|
+
sage: O.bracket_on_basis((0,8), (1,13)) # [A, B]
|
|
1183
|
+
-A[-5] + A[21]
|
|
1184
|
+
sage: O.bracket_on_basis((0,-9), (0, 7)) # [A, A]
|
|
1185
|
+
B[-16] - B[16]
|
|
1186
|
+
"""
|
|
1187
|
+
if x[0] == 1:
|
|
1188
|
+
# From < property, we have y[0] == 1
|
|
1189
|
+
# Therefore, we have [B_k, B_m] = 0
|
|
1190
|
+
return self.zero()
|
|
1191
|
+
R = self.base_ring()
|
|
1192
|
+
one = R.one()
|
|
1193
|
+
if y[0] == 1: # [A_k, B_m] = A_{k+m} - A_{k-m}
|
|
1194
|
+
if y[1] == 0: # special case for m = 0, as A_k - A_k = 0
|
|
1195
|
+
return self.zero()
|
|
1196
|
+
d = {(0, x[1]-y[1]): -one, (0, y[1]+x[1]): one}
|
|
1197
|
+
else:
|
|
1198
|
+
# [A_k, A_m] = B_{k-m} - B_{m-k}
|
|
1199
|
+
d = {(1, x[1]-y[1]): one, (1, y[1]-x[1]): -one}
|
|
1200
|
+
return self.element_class(self, d)
|
|
1201
|
+
|
|
1202
|
+
def _coerce_map_from_(self, R):
|
|
1203
|
+
r"""
|
|
1204
|
+
Return if there is a coercion map from ``R``.
|
|
1205
|
+
|
|
1206
|
+
EXAMPLES::
|
|
1207
|
+
|
|
1208
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
1209
|
+
sage: ACE = O.alternating_central_extension()
|
|
1210
|
+
sage: ACE.has_coerce_map_from(O) # indirect doctest
|
|
1211
|
+
True
|
|
1212
|
+
"""
|
|
1213
|
+
if isinstance(R, OnsagerAlgebra):
|
|
1214
|
+
if R.base_ring().has_coerce_map_from(self.base_ring()):
|
|
1215
|
+
return R.module_morphism(self._from_onsager_on_basis, codomain=self)
|
|
1216
|
+
return super()._coerce_map_from_(R)
|
|
1217
|
+
|
|
1218
|
+
def _from_onsager_on_basis(self, x):
|
|
1219
|
+
r"""
|
|
1220
|
+
Map the basis element indexed by ``x`` from the corresponding
|
|
1221
|
+
Onsager algebra to ``self``.
|
|
1222
|
+
|
|
1223
|
+
EXAMPLES::
|
|
1224
|
+
|
|
1225
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
1226
|
+
sage: ACE = O.alternating_central_extension()
|
|
1227
|
+
sage: ACE._from_onsager_on_basis((0, 2))
|
|
1228
|
+
A[2]
|
|
1229
|
+
sage: ACE._from_onsager_on_basis((1, 4))
|
|
1230
|
+
-B[-4] + B[4]
|
|
1231
|
+
|
|
1232
|
+
sage: phi = ACE.coerce_map_from(O)
|
|
1233
|
+
sage: a1 = O.basis()[0,1]
|
|
1234
|
+
sage: a3 = O.basis()[0,3]
|
|
1235
|
+
sage: b2 = O.basis()[1,2]
|
|
1236
|
+
sage: phi(a3)
|
|
1237
|
+
A[3]
|
|
1238
|
+
sage: phi(b2)
|
|
1239
|
+
-B[-2] + B[2]
|
|
1240
|
+
sage: b2.bracket(a3)
|
|
1241
|
+
2*A[1] - 2*A[5]
|
|
1242
|
+
sage: phi(b2).bracket(phi(a3))
|
|
1243
|
+
2*A[1] - 2*A[5]
|
|
1244
|
+
sage: phi(b2.bracket(a3))
|
|
1245
|
+
2*A[1] - 2*A[5]
|
|
1246
|
+
|
|
1247
|
+
sage: a1.bracket(a3)
|
|
1248
|
+
-G[2]
|
|
1249
|
+
sage: phi(a1).bracket(phi(a3))
|
|
1250
|
+
B[-2] - B[2]
|
|
1251
|
+
sage: phi(a1.bracket(a3))
|
|
1252
|
+
B[-2] - B[2]
|
|
1253
|
+
"""
|
|
1254
|
+
one = self.base_ring().one()
|
|
1255
|
+
if x[0] == 0:
|
|
1256
|
+
return self._from_dict({x: one}, remove_zeros=False)
|
|
1257
|
+
return self._from_dict({(1, x[1]): one, (1, -x[1]): -one}, remove_zeros=False)
|
|
1258
|
+
|
|
1259
|
+
def projection(self):
|
|
1260
|
+
r"""
|
|
1261
|
+
Return the projection map `\rho` from Lemma 4.19 in [Ter2021b]_
|
|
1262
|
+
to the Onsager algebra.
|
|
1263
|
+
|
|
1264
|
+
EXAMPLES::
|
|
1265
|
+
|
|
1266
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
1267
|
+
sage: ACE = O.alternating_central_extension()
|
|
1268
|
+
sage: rho = ACE.projection()
|
|
1269
|
+
sage: B = ACE.basis()
|
|
1270
|
+
sage: A1, A2, Am2 = B[0,1], B[0,2], B[0,-2]
|
|
1271
|
+
sage: B1, B2, Bm2 = B[1,1], B[1,2], B[1,-2]
|
|
1272
|
+
|
|
1273
|
+
sage: rho(A1)
|
|
1274
|
+
A[1]
|
|
1275
|
+
sage: rho(Am2)
|
|
1276
|
+
A[-2]
|
|
1277
|
+
sage: rho(B1)
|
|
1278
|
+
1/2*G[1]
|
|
1279
|
+
sage: rho(B2)
|
|
1280
|
+
1/2*G[2]
|
|
1281
|
+
sage: rho(Bm2)
|
|
1282
|
+
-1/2*G[2]
|
|
1283
|
+
|
|
1284
|
+
sage: rho(A1.bracket(A2))
|
|
1285
|
+
-G[1]
|
|
1286
|
+
sage: rho(A1).bracket(rho(A2))
|
|
1287
|
+
-G[1]
|
|
1288
|
+
sage: rho(B1.bracket(Am2))
|
|
1289
|
+
A[-3] - A[-1]
|
|
1290
|
+
sage: rho(B1).bracket(rho(Am2))
|
|
1291
|
+
A[-3] - A[-1]
|
|
1292
|
+
"""
|
|
1293
|
+
O = OnsagerAlgebra(self.base_ring())
|
|
1294
|
+
return self.module_morphism(self._projection_on_basis, codomain=O)
|
|
1295
|
+
|
|
1296
|
+
def _projection_on_basis(self, x):
|
|
1297
|
+
r"""
|
|
1298
|
+
Compute the projection map `\rho` on the basis element ``x``.
|
|
1299
|
+
|
|
1300
|
+
EXAMPLES::
|
|
1301
|
+
|
|
1302
|
+
sage: O = lie_algebras.OnsagerAlgebra(QQ)
|
|
1303
|
+
sage: ACE = O.alternating_central_extension()
|
|
1304
|
+
sage: ACE._projection_on_basis((0,2))
|
|
1305
|
+
A[2]
|
|
1306
|
+
sage: ACE._projection_on_basis((1,4))
|
|
1307
|
+
1/2*G[4]
|
|
1308
|
+
sage: ACE._projection_on_basis((1,-4))
|
|
1309
|
+
-1/2*G[4]
|
|
1310
|
+
"""
|
|
1311
|
+
R = self.base_ring()
|
|
1312
|
+
O = OnsagerAlgebra(R)
|
|
1313
|
+
if x[0] == 0: # A_k
|
|
1314
|
+
return O._from_dict({x: R.one()}, remove_zeros=False)
|
|
1315
|
+
# Otherwise B_k
|
|
1316
|
+
c = R.one() / 2
|
|
1317
|
+
if x[1] < 0:
|
|
1318
|
+
return O._from_dict({(1, -x[1]): -c}, remove_zeros=False)
|
|
1319
|
+
elif x[1] == 0:
|
|
1320
|
+
return O.zero()
|
|
1321
|
+
else:
|
|
1322
|
+
return O._from_dict({x: c}, remove_zeros=False)
|
|
1323
|
+
|
|
1324
|
+
Element = LieAlgebraElement
|