passagemath-modules 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +807 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-7f678fcf.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_modules.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,1965 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.graphs
|
|
3
|
+
r"""
|
|
4
|
+
Nonsymmetric Macdonald polynomials
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Anne Schilling and Nicolas M. Thiéry (2013): initial version
|
|
9
|
+
|
|
10
|
+
ACKNOWLEDGEMENTS:
|
|
11
|
+
|
|
12
|
+
The initial version of this code (together with :class:`.root_lattice_realization_algebras.Algebras`
|
|
13
|
+
and :class:`.hecke_algebra_representation.HeckeAlgebraRepresentation`) was written by
|
|
14
|
+
Anne Schilling and Nicolas M. Thiery during the ICERM Semester Program on "Automorphic Forms,
|
|
15
|
+
Combinatorial Representation Theory and Multiple Dirichlet Series" (January 28, 2013 - May 3, 2013)
|
|
16
|
+
with the help of Dan Bump, Ben Brubaker, Bogdan Ion, Dan Orr, Arun Ram, Siddhartha Sahi, and Mark Shimozono.
|
|
17
|
+
Special thanks go to Bogdan Ion and Mark Shimozono for their patient explanations and hand computations
|
|
18
|
+
to check the code.
|
|
19
|
+
"""
|
|
20
|
+
# ****************************************************************************
|
|
21
|
+
# Copyright (C) 2013 Nicolas M. Thiery <nthiery at users.sf.net>
|
|
22
|
+
# Anne Schilling <anne at math.ucdavis.edu>
|
|
23
|
+
#
|
|
24
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
25
|
+
# https://www.gnu.org/licenses/
|
|
26
|
+
# ****************************************************************************
|
|
27
|
+
from sage.misc.cachefunc import cached_method
|
|
28
|
+
from sage.misc.lazy_attribute import lazy_attribute
|
|
29
|
+
from sage.rings.integer_ring import ZZ
|
|
30
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
31
|
+
from sage.combinat.root_system.hecke_algebra_representation import CherednikOperatorsEigenvectors
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
|
|
35
|
+
r"""
|
|
36
|
+
Nonsymmetric Macdonald polynomials.
|
|
37
|
+
|
|
38
|
+
INPUT:
|
|
39
|
+
|
|
40
|
+
- ``KL`` -- an affine Cartan type or the group algebra of a
|
|
41
|
+
realization of the affine weight lattice
|
|
42
|
+
- ``q``, ``q1``, ``q2`` -- parameters in the base ring of the group algebra
|
|
43
|
+
(default: ``q``, ``q1``, ``q2``)
|
|
44
|
+
- ``normalized`` -- boolean (default: ``True``); whether to normalize the
|
|
45
|
+
result to have leading coefficient 1
|
|
46
|
+
|
|
47
|
+
This implementation covers all reduced affine root systems.
|
|
48
|
+
The polynomials are constructed recursively by the application
|
|
49
|
+
of intertwining operators.
|
|
50
|
+
|
|
51
|
+
.. TODO::
|
|
52
|
+
|
|
53
|
+
- Non-reduced case (Koornwinder polynomials).
|
|
54
|
+
- Non-equal parameters for the affine Hecke algebra.
|
|
55
|
+
- Choice of convention (dominant/anti-dominant, ...).
|
|
56
|
+
- More uniform implementation of the `T_0^\vee` operator.
|
|
57
|
+
- Optimizations, in particular in the calculation of the
|
|
58
|
+
eigenvalues for the recursion.
|
|
59
|
+
|
|
60
|
+
EXAMPLES:
|
|
61
|
+
|
|
62
|
+
We construct the family of nonsymmetric Macdonald polynomials in
|
|
63
|
+
three variables in type `A`::
|
|
64
|
+
|
|
65
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["A",2,1])
|
|
66
|
+
|
|
67
|
+
They are constructed as elements of the group algebra of the
|
|
68
|
+
classical weight lattice `L_0` (or one of its realizations, such as
|
|
69
|
+
the ambient space, which is used here) and indexed by elements of `L_0`::
|
|
70
|
+
|
|
71
|
+
sage: L0 = E.keys(); L0
|
|
72
|
+
Ambient space of the Root system of type ['A', 2]
|
|
73
|
+
|
|
74
|
+
Here is the nonsymmetric Macdonald polynomial with leading term
|
|
75
|
+
`[2,0,1]`::
|
|
76
|
+
|
|
77
|
+
sage: E[L0([2,0,1])] # needs sage.libs.gap
|
|
78
|
+
-((q*q1+q*q2)/(-q*q1-q2))*B[(1, 1, 1)]
|
|
79
|
+
- ((q1+q2)/(-q*q1-q2))*B[(2, 1, 0)] + B[(2, 0, 1)]
|
|
80
|
+
|
|
81
|
+
It can be seen as a polynomial (or in general a Laurent
|
|
82
|
+
polynomial) by interpreting each term as an exponent vector. The
|
|
83
|
+
parameter `q` is the exponential of the null (co)root, whereas
|
|
84
|
+
`q_1` and `q_2` are the two eigenvalues of each generator
|
|
85
|
+
`T_i` of the affine Hecke algebra (see the background section for
|
|
86
|
+
details).
|
|
87
|
+
|
|
88
|
+
By setting `q_1=t`, `q_2=-1` and using the
|
|
89
|
+
:meth:`.root_lattice_realization_algebras.Algebras.ElementMethods.expand`
|
|
90
|
+
method, we recover the nonsymmetric Macdonald polynomial as
|
|
91
|
+
computed by [HHL06]_'s combinatorial formula::
|
|
92
|
+
|
|
93
|
+
sage: K = QQ['q,t'].fraction_field()
|
|
94
|
+
sage: q,t = K.gens()
|
|
95
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["A",2,1], q=q, q1=t, q2=-1)
|
|
96
|
+
sage: vars = K['x0,x1,x2'].gens()
|
|
97
|
+
sage: E[L0([2,0,1])].expand(vars) # needs sage.libs.gap
|
|
98
|
+
(t - 1)/(q*t - 1)*x0^2*x1 + x0^2*x2 + (q*t - q)/(q*t - 1)*x0*x1*x2
|
|
99
|
+
|
|
100
|
+
sage: from sage.combinat.sf.ns_macdonald import E # needs sage.combinat
|
|
101
|
+
sage: E([2,0,1]) # needs sage.combinat sage.groups
|
|
102
|
+
(t - 1)/(q*t - 1)*x0^2*x1 + x0^2*x2 + (q*t - q)/(q*t - 1)*x0*x1*x2
|
|
103
|
+
|
|
104
|
+
Here is a type `G_2^{(1)}` nonsymmetric Macdonald polynomial::
|
|
105
|
+
|
|
106
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["G",2,1])
|
|
107
|
+
sage: L0 = E.keys()
|
|
108
|
+
sage: omega = L0.fundamental_weights()
|
|
109
|
+
sage: E[omega[2] - omega[1]]
|
|
110
|
+
-((q*q1^3*q2+q*q1^2*q2^2)/(q*q1^4-q2^4))*B[(0, 0, 0)] + B[(1, -1, 0)]
|
|
111
|
+
- ((q1*q2^3+q2^4)/(q*q1^4-q2^4))*B[(1, 0, -1)]
|
|
112
|
+
|
|
113
|
+
Many more examples are given after the background section.
|
|
114
|
+
|
|
115
|
+
.. SEEALSO::
|
|
116
|
+
|
|
117
|
+
- :func:`sage.combinat.sf.ns_macdonald.E`
|
|
118
|
+
- :meth:`SymmetricFunctions.macdonald`
|
|
119
|
+
|
|
120
|
+
.. RUBRIC:: Background
|
|
121
|
+
|
|
122
|
+
.. RUBRIC:: The polynomial module
|
|
123
|
+
|
|
124
|
+
The nonsymmetric Macdonald polynomials are a distinguished basis of the "polynomial" module
|
|
125
|
+
of the affine Hecke algebra. Given::
|
|
126
|
+
|
|
127
|
+
- a ground ring `K`, which contains the input parameters `q, q_1, q_2`
|
|
128
|
+
- an affine root system, specified by a Cartan type `C`
|
|
129
|
+
- a realization `L` of the weight lattice of type `C`
|
|
130
|
+
|
|
131
|
+
the polynomial module is the group algebra `K[L_0]` of the classical
|
|
132
|
+
weight lattice `L_0` with coefficients in `K`. It is isomorphic to the
|
|
133
|
+
Laurent polynomial ring over `K` generated by the formal exponentials
|
|
134
|
+
of any basis of `L_0`.
|
|
135
|
+
|
|
136
|
+
In our running example `L` is the ambient space of type `C_2^{(1)}`::
|
|
137
|
+
|
|
138
|
+
sage: K = QQ['q,q1,q2'].fraction_field()
|
|
139
|
+
sage: q, q1, q2 = K.gens()
|
|
140
|
+
sage: C = CartanType(["C",2,1])
|
|
141
|
+
sage: L = RootSystem(C).ambient_space(); L
|
|
142
|
+
Ambient space of the Root system of type ['C', 2, 1]
|
|
143
|
+
|
|
144
|
+
sage: L.simple_roots()
|
|
145
|
+
Finite family {0: -2*e[0] + e['delta'], 1: e[0] - e[1], 2: 2*e[1]}
|
|
146
|
+
sage: omega = L.fundamental_weights(); omega
|
|
147
|
+
Finite family {0: e['deltacheck'],
|
|
148
|
+
1: e[0] + e['deltacheck'],
|
|
149
|
+
2: e[0] + e[1] + e['deltacheck']}
|
|
150
|
+
|
|
151
|
+
sage: L0 = L.classical(); L0
|
|
152
|
+
Ambient space of the Root system of type ['C', 2]
|
|
153
|
+
sage: KL0 = L0.algebra(K); KL0
|
|
154
|
+
Algebra of the Ambient space of the Root system of type ['C', 2]
|
|
155
|
+
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
|
|
156
|
+
|
|
157
|
+
.. RUBRIC:: Affine Hecke algebra
|
|
158
|
+
|
|
159
|
+
The affine Hecke algebra is generated by elements `T_i` for ``i`` in the
|
|
160
|
+
set of affine Dynkin nodes. They satisfy the same braid relations
|
|
161
|
+
as the simple reflections `s_i` of the affine Weyl group.
|
|
162
|
+
The `T_i` satisfy the quadratic relation
|
|
163
|
+
|
|
164
|
+
.. MATH::
|
|
165
|
+
|
|
166
|
+
(T_i-q_1)\circ(T_i-q_2) = 0,
|
|
167
|
+
|
|
168
|
+
where `q_1` and `q_2` are the input parameters. Some of the
|
|
169
|
+
representation theory requires that `q_1` and `q_2` satisfy
|
|
170
|
+
additional relations; typically one uses the specializations
|
|
171
|
+
`q_1=u` and `q_2=-1/u` or `q_1=t` and `q_2=-1`). This can be
|
|
172
|
+
achieved by constructing an appropriate field and passing `q_1`
|
|
173
|
+
and `q_2` appropriately; see the examples. In principle, the
|
|
174
|
+
parameter(s) could further depend on ``i``; this is not yet
|
|
175
|
+
implemented but the code has been designed in such a way that this
|
|
176
|
+
feature is easy to add.
|
|
177
|
+
|
|
178
|
+
.. RUBRIC:: Demazure-Lusztig operators
|
|
179
|
+
|
|
180
|
+
The ``i``-th Demazure-Lusztig operator is an operator on `K[L]`
|
|
181
|
+
which interpolates between the reflection `s_i` and the Demazure operator `\pi_i`
|
|
182
|
+
(see :meth:`.root_lattice_realization.RootLatticeRealization.Algebras.ParentMethods.demazure_lusztig_operators`).::
|
|
183
|
+
|
|
184
|
+
sage: KL = L.algebra(K); KL
|
|
185
|
+
Algebra of the Ambient space of the Root system of type ['C', 2, 1]
|
|
186
|
+
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
|
|
187
|
+
sage: T = KL.demazure_lusztig_operators(q1, q2)
|
|
188
|
+
sage: x = KL.monomial(omega[1]); x
|
|
189
|
+
B[e[0] + e['deltacheck']]
|
|
190
|
+
sage: T[2](x)
|
|
191
|
+
q1*B[e[0] + e['deltacheck']]
|
|
192
|
+
sage: T[1](x)
|
|
193
|
+
(q1+q2)*B[e[0] + e['deltacheck']] + q1*B[e[1] + e['deltacheck']]
|
|
194
|
+
sage: T[0](x)
|
|
195
|
+
q1*B[e[0] + e['deltacheck']]
|
|
196
|
+
|
|
197
|
+
The affine Hecke algebra acts on `K[L]` by letting the generators `T_i` act by
|
|
198
|
+
the Demazure-Lusztig operators. The class
|
|
199
|
+
:class:`sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation`
|
|
200
|
+
implements some simple generic features for representations of affine Hecke algebras
|
|
201
|
+
defined by the action of their `T`-generators.::
|
|
202
|
+
|
|
203
|
+
sage: T
|
|
204
|
+
A representation of the (q1, q2)-Hecke algebra of type ['C', 2, 1] on
|
|
205
|
+
Algebra of the Ambient space of the Root system of type ['C', 2, 1] over
|
|
206
|
+
Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
|
|
207
|
+
sage: type(T)
|
|
208
|
+
<class 'sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation'>
|
|
209
|
+
sage: T._test_relations() # long time (1.3s)
|
|
210
|
+
|
|
211
|
+
Here we construct the operator `q_1 T_2^{-1}\circ T_1^{-1}T_0`
|
|
212
|
+
from a signed reduced word::
|
|
213
|
+
|
|
214
|
+
sage: T.Tw([0,1,2],[1,-1,-1], q1^2)
|
|
215
|
+
Generic endomorphism of Algebra of the Ambient space of the Root system of type ['C', 2, 1]
|
|
216
|
+
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
|
|
217
|
+
|
|
218
|
+
(note the reversal of the word). Inverses are computed using the
|
|
219
|
+
quadratic relation.
|
|
220
|
+
|
|
221
|
+
.. RUBRIC:: Cherednik operators
|
|
222
|
+
|
|
223
|
+
The affine Hecke algebra contains elements `Y_\lambda` indexed by
|
|
224
|
+
the coroot lattice. Their action on `K[L]` is implemented in Sage::
|
|
225
|
+
|
|
226
|
+
sage: Y = T.Y(); Y
|
|
227
|
+
Lazy family (...)_{i in Coroot lattice of the Root system of type ['C', 2, 1]}
|
|
228
|
+
sage: alphacheck = Y.keys().simple_roots()
|
|
229
|
+
sage: Y1 = Y[alphacheck[1]]
|
|
230
|
+
sage: Y1(x)
|
|
231
|
+
((q1^2+2*q1*q2+q2^2)/(-q1*q2))*B[e[0] + e['deltacheck']]
|
|
232
|
+
- ((q1^2+2*q1*q2+q2^2)/(-q2^2))*B[-e[1] + e['deltacheck']]
|
|
233
|
+
- ((q1^2+q1*q2)/(-q2^2))*B[2*e[0] - e[1] - e['delta'] + e['deltacheck']]
|
|
234
|
+
+ ((q1^3+q1^2*q2)/(-q2^3))*B[e[0] - e['delta'] + e['deltacheck']]
|
|
235
|
+
+ ((q1^3+q1^2*q2)/(-q2^3))*B[e[0] - 2*e[1] - e['delta'] + e['deltacheck']]
|
|
236
|
+
+ ((q1+q2)/(-q2))*B[e[1] + e['deltacheck']]
|
|
237
|
+
+ ((q1^3+2*q1^2*q2+q1*q2^2)/(-q2^3))*B[-e[1] - e['delta'] + e['deltacheck']]
|
|
238
|
+
+ ((q1^3+q1^2*q2)/(-q2^3))*B[2*e[0] - e[1] - 2*e['delta'] + e['deltacheck']]
|
|
239
|
+
+ ((q1^3+2*q1^2*q2+q1*q2^2)/(-q2^3))*B[-e[0] - e['delta'] + e['deltacheck']]
|
|
240
|
+
+ ((q1^3+2*q1^2*q2+q1*q2^2)/(-q2^3))*B[e[0] - 2*e['delta'] + e['deltacheck']]
|
|
241
|
+
+ ((q1^3+q1^2*q2)/(-q2^3))*B[3*e[0] - 3*e['delta'] + e['deltacheck']]
|
|
242
|
+
+ ((q1^3+q1^2*q2)/(-q2^3))*B[-e[0] - 2*e[1] - e['delta'] + e['deltacheck']]
|
|
243
|
+
+ ((q1^3+q1^2*q2)/(-q2^3))*B[e[0] - 2*e[1] - 2*e['delta'] + e['deltacheck']]
|
|
244
|
+
+ (q1^3/(-q2^3))*B[3*e[0] - 2*e[1] - 3*e['delta'] + e['deltacheck']]
|
|
245
|
+
|
|
246
|
+
The Cherednik operators span a Laurent polynomial ring inside the
|
|
247
|
+
affine Hecke algebra; namely `\lambda\mapsto Y_\lambda` is a group
|
|
248
|
+
isomorphism from the classical root lattice (viewed additively) to
|
|
249
|
+
the affine Hecke algebra (viewed multiplicatively). In practice,
|
|
250
|
+
`Y_\lambda` is constructed by computing combinatorially its signed
|
|
251
|
+
reduced word (and an overall scalar factor) using the periodic
|
|
252
|
+
orientation of the alcove model in the coweight lattice (see
|
|
253
|
+
:meth:`.hecke_algebra_representation.HeckeAlgebraRepresentation.Y_lambdacheck`)::
|
|
254
|
+
|
|
255
|
+
sage: Lcheck = L.root_system.coweight_lattice()
|
|
256
|
+
sage: w = Lcheck.reduced_word_of_translation(Lcheck(alphacheck[1])); w
|
|
257
|
+
[0, 2, 1, 0, 2, 1]
|
|
258
|
+
sage: Lcheck.signs_of_alcovewalk(w)
|
|
259
|
+
[1, -1, 1, -1, 1, 1]
|
|
260
|
+
|
|
261
|
+
.. RUBRIC:: Level zero representation of the affine Hecke algebra
|
|
262
|
+
|
|
263
|
+
The action of the affine Hecke algebra on `K[L]` induces
|
|
264
|
+
an action on `K[L_0]`: the action of `T_i` on `X^\lambda` for `\lambda` a
|
|
265
|
+
classical weight in `L_0` is obtained by embedding the weight at
|
|
266
|
+
level zero in the affine weight lattice (see
|
|
267
|
+
:meth:`.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods.embed_at_level`)
|
|
268
|
+
applying the Demazure-Lusztig operator there, and projecting from `K[L]\to K[L_0]`
|
|
269
|
+
mapping the exponential of `\delta` to `q` (see
|
|
270
|
+
:meth:`.root_lattice_realization_algebras.Algebras.ParentMethods.q_project`). This is implemented in
|
|
271
|
+
:meth:`.root_lattice_realization_algebras.Algebras.ParentMethods.demazure_lusztig_operators_on_classical`::
|
|
272
|
+
|
|
273
|
+
sage: T = KL.demazure_lusztig_operators_on_classical(q, q1,q2)
|
|
274
|
+
sage: omega = L0.fundamental_weights()
|
|
275
|
+
sage: x = KL0.monomial(omega[1])
|
|
276
|
+
sage: T[0](x)
|
|
277
|
+
-q*q2*B[(-1, 0)]
|
|
278
|
+
|
|
279
|
+
For classical nodes these are the usual Demazure-Lusztig operators::
|
|
280
|
+
|
|
281
|
+
sage: T[1](x)
|
|
282
|
+
(q1+q2)*B[(1, 0)] + q1*B[(0, 1)]
|
|
283
|
+
|
|
284
|
+
.. RUBRIC:: Nonsymmetric Macdonald polynomials
|
|
285
|
+
|
|
286
|
+
We can now finally define the nonsymmetric Macdonald polynomials.
|
|
287
|
+
Because the Cherednik operators commute (and there is no radical),
|
|
288
|
+
they can be simultaneously diagonalized; namely, `K[L_0]` admits a
|
|
289
|
+
`K`-basis of joint eigenvectors for the `Y_\lambda`. For `\mu \in
|
|
290
|
+
L_0`, the nonsymmetric Macdonald polynomial `E_\mu` is the unique
|
|
291
|
+
eigenvector of the family of Cherednik operators `Y_\lambda`
|
|
292
|
+
having `\mu` as leading term::
|
|
293
|
+
|
|
294
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, q1, q2); E
|
|
295
|
+
The family of the Macdonald polynomials of type ['C', 2, 1]
|
|
296
|
+
with parameters q, q1, q2
|
|
297
|
+
|
|
298
|
+
Or for short::
|
|
299
|
+
|
|
300
|
+
sage: E = NonSymmetricMacdonaldPolynomials(C)
|
|
301
|
+
|
|
302
|
+
.. RUBRIC:: Recursive construction of the nonsymmetric Macdonald polynomials
|
|
303
|
+
|
|
304
|
+
The generators `T_i` of the affine Hecke algebra almost skew
|
|
305
|
+
commute with the Cherednik operators. More precisely, one
|
|
306
|
+
can deform them into the so-called intertwining operators:
|
|
307
|
+
|
|
308
|
+
.. MATH:: \tau_i = T_i - (q_1+q_2) \frac{Y_i^{a-1}}{1-Y_i^a}\,.
|
|
309
|
+
|
|
310
|
+
(where `a=1` except for `i=0` in type `BC` where `a=a_0=2`) which
|
|
311
|
+
satisfy the following skew commutation relations:
|
|
312
|
+
|
|
313
|
+
.. MATH:: \tau_i Y_\lambda = \tau_i Y_{s_i\lambda} \,.
|
|
314
|
+
|
|
315
|
+
If `s_i \mu \ne \mu`, applying `\tau_i` on an eigenvector `E_\mu`
|
|
316
|
+
produces a new eigenvector (essentially `E_{s_i\mu}`) with a
|
|
317
|
+
distinct eigenvalue. It follows that the eigenvectors indexed by
|
|
318
|
+
an affine Weyl orbit of weights, may be recursively computed from
|
|
319
|
+
a single weight in the orbit.
|
|
320
|
+
|
|
321
|
+
In the case at hand, there is a little complication: namely, the
|
|
322
|
+
simple reflections `s_i` acting at level 0 do not act transitively
|
|
323
|
+
on classical weights; in fact the orbits for the classical Weyl
|
|
324
|
+
group and for the affine Weyl group are the same. Thus, one can
|
|
325
|
+
construct the nonsymmetric Macdonald polynomials for all weights
|
|
326
|
+
from those for the classical dominant weights, but one is lacking
|
|
327
|
+
a creation operator to construct the nonsymmetric Macdonald
|
|
328
|
+
polynomials for dominant weights.
|
|
329
|
+
|
|
330
|
+
.. RUBRIC:: Twisted Demazure-Lusztig operators
|
|
331
|
+
|
|
332
|
+
To compensate for this, one needs to consider another affinization
|
|
333
|
+
of the action of the classical Demazure-Lusztig operators
|
|
334
|
+
`T_1,\dots,T_n`, which gives rise to the double affine Hecke algebra.
|
|
335
|
+
Following Cherednik, one adds another operator `T_0^\vee` implemented in:
|
|
336
|
+
:meth:`.root_lattice_realization_algebras.Algebras.ParentMethods.T0_check_on_basis`.
|
|
337
|
+
See also:
|
|
338
|
+
:meth:`.root_lattice_realization_algebras.Algebras.ParentMethods.twisted_demazure_lusztig_operators`.
|
|
339
|
+
|
|
340
|
+
Depending on the type (untwisted or not), this is a representation
|
|
341
|
+
of the affine Hecke algebra for another affinization of the
|
|
342
|
+
classical Cartan type. The corresponding action of the affine Weyl
|
|
343
|
+
group -- which is used to compute the recursion on `\mu` -- occurs
|
|
344
|
+
in the corresponding weight lattice realization::
|
|
345
|
+
|
|
346
|
+
sage: E.L()
|
|
347
|
+
Ambient space of the Root system of type ['C', 2, 1]
|
|
348
|
+
sage: E.L_prime()
|
|
349
|
+
Coambient space of the Root system of type ['B', 2, 1]
|
|
350
|
+
sage: E.L_prime().classical()
|
|
351
|
+
Ambient space of the Root system of type ['C', 2]
|
|
352
|
+
|
|
353
|
+
See :meth:`L_prime` and
|
|
354
|
+
:meth:`.cartan_type.CartanType_affine.other_affinization`.
|
|
355
|
+
|
|
356
|
+
REFERENCES:
|
|
357
|
+
|
|
358
|
+
.. [HaimanICM] \M. Haiman, Cherednik algebras, Macdonald polynomials and combinatorics,
|
|
359
|
+
Proceedings of the International Congress of Mathematicians,
|
|
360
|
+
Madrid 2006, Vol. III, 843-872.
|
|
361
|
+
|
|
362
|
+
.. [HHL06] \J. Haglund, M. Haiman and N. Loehr,
|
|
363
|
+
A combinatorial formula for nonsymmetric Macdonald polynomials,
|
|
364
|
+
Amer. J. Math. 130, No. 2 (2008), 359-383.
|
|
365
|
+
|
|
366
|
+
.. [LNSSS12] \C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono,
|
|
367
|
+
A uniform model for Kirillov-Reshetikhin crystals I: Lifting
|
|
368
|
+
the parabolic quantum Bruhat graph, preprint :arxiv:`1211.2042`
|
|
369
|
+
[math.QA]
|
|
370
|
+
|
|
371
|
+
.. RUBRIC:: More examples
|
|
372
|
+
|
|
373
|
+
We show how to create the nonsymmetric Macdonald polynomials in
|
|
374
|
+
two different ways and check that they are the same::
|
|
375
|
+
|
|
376
|
+
sage: K = QQ['q,u'].fraction_field()
|
|
377
|
+
sage: q, u = K.gens()
|
|
378
|
+
sage: E = NonSymmetricMacdonaldPolynomials(['D',3,1], q, u, -1/u)
|
|
379
|
+
sage: omega = E.keys().fundamental_weights()
|
|
380
|
+
sage: E[omega[1]+omega[3]]
|
|
381
|
+
-((q*u^2-q)/(-q*u^4+1))*B[(1/2, -1/2, 1/2)]
|
|
382
|
+
- ((q*u^2-q)/(-q*u^4+1))*B[(1/2, 1/2, -1/2)] + B[(3/2, 1/2, 1/2)]
|
|
383
|
+
|
|
384
|
+
sage: KL = RootSystem(["D",3,1]).ambient_space().algebra(K)
|
|
385
|
+
sage: P = NonSymmetricMacdonaldPolynomials(KL, q, u, -1/u)
|
|
386
|
+
sage: E[omega[1]+omega[3]] == P[omega[1]+omega[3]]
|
|
387
|
+
True
|
|
388
|
+
sage: E[E.keys()((0,1,-1))]
|
|
389
|
+
-((q*u^2-q)/(-q*u^2+1))*B[(0, 0, 0)] - ((u^2-1)/(-q*u^2+1))*B[(1, 1, 0)]
|
|
390
|
+
- ((u^2-1)/(-q*u^2+1))*B[(1, 0, -1)] + B[(0, 1, -1)]
|
|
391
|
+
|
|
392
|
+
In type `A`, there is also a combinatorial implementation of the
|
|
393
|
+
nonsymmetric Macdonald polynomials in terms of augmented diagram
|
|
394
|
+
fillings as in [HHL06]_. See
|
|
395
|
+
:func:`sage.combinat.sf.ns_macdonald.E`. First we check that
|
|
396
|
+
these polynomials are indeed eigenvectors of the Cherednik
|
|
397
|
+
operators::
|
|
398
|
+
|
|
399
|
+
sage: K = QQ['q,t'].fraction_field()
|
|
400
|
+
sage: q,t = K.gens()
|
|
401
|
+
sage: q1 = t; q2 = -1
|
|
402
|
+
sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(K)
|
|
403
|
+
sage: KL0 = KL.classical()
|
|
404
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
|
|
405
|
+
sage: omega = E.keys().fundamental_weights()
|
|
406
|
+
sage: w = omega[1]
|
|
407
|
+
|
|
408
|
+
sage: # needs sage.combinat sage.groups
|
|
409
|
+
sage: import sage.combinat.sf.ns_macdonald as NS
|
|
410
|
+
sage: p = NS.E([1,0,0]); p
|
|
411
|
+
x0
|
|
412
|
+
sage: pp = KL0.from_polynomial(p)
|
|
413
|
+
sage: E.eigenvalues(KL0.from_polynomial(p))
|
|
414
|
+
[t, (-1)/(-q*t^2), t]
|
|
415
|
+
|
|
416
|
+
sage: def eig(l): return E.eigenvalues(KL0.from_polynomial(NS.E(l)))
|
|
417
|
+
|
|
418
|
+
sage: # needs sage.combinat sage.groups
|
|
419
|
+
sage: eig([1,0,0])
|
|
420
|
+
[t, (-1)/(-q*t^2), t]
|
|
421
|
+
sage: eig([2,0,0])
|
|
422
|
+
[q*t, (-1)/(-q^2*t^2), t]
|
|
423
|
+
sage: eig([3,0,0])
|
|
424
|
+
[q^2*t, (-1)/(-q^3*t^2), t]
|
|
425
|
+
sage: eig([2,0,4])
|
|
426
|
+
[(-1)/(-q^3*t), 1/(q^2*t), q^4*t^2]
|
|
427
|
+
|
|
428
|
+
Next we check explicitly that they agree with the current implementation::
|
|
429
|
+
|
|
430
|
+
sage: K = QQ['q','t'].fraction_field()
|
|
431
|
+
sage: q,t = K.gens()
|
|
432
|
+
sage: KL = RootSystem(["A",1,1]).ambient_lattice().algebra(K)
|
|
433
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
|
|
434
|
+
sage: L0 = E.keys()
|
|
435
|
+
sage: KL0 = KL.classical()
|
|
436
|
+
sage: P = K['x0,x1']
|
|
437
|
+
sage: def EE(weight): return E[L0(weight)].expand(P.gens())
|
|
438
|
+
|
|
439
|
+
sage: # needs sage.combinat
|
|
440
|
+
sage: import sage.combinat.sf.ns_macdonald as NS
|
|
441
|
+
sage: EE([0,0])
|
|
442
|
+
1
|
|
443
|
+
sage: NS.E([0,0]) # needs sage.groups
|
|
444
|
+
1
|
|
445
|
+
sage: EE([1,0])
|
|
446
|
+
x0
|
|
447
|
+
sage: NS.E([1,0]) # needs sage.groups
|
|
448
|
+
x0
|
|
449
|
+
sage: EE([0,1])
|
|
450
|
+
(t - 1)/(q*t - 1)*x0 + x1
|
|
451
|
+
sage: NS.E([0,1]) # needs sage.groups
|
|
452
|
+
(t - 1)/(q*t - 1)*x0 + x1
|
|
453
|
+
sage: EE([2,0])
|
|
454
|
+
x0^2 + (q*t - q)/(q*t - 1)*x0*x1
|
|
455
|
+
sage: NS.E([2,0]) # needs sage.groups
|
|
456
|
+
x0^2 + (q*t - q)/(q*t - 1)*x0*x1
|
|
457
|
+
|
|
458
|
+
The same, directly in the ambient lattice with several shifts::
|
|
459
|
+
|
|
460
|
+
sage: E[L0([2,0])] # needs sage.combinat
|
|
461
|
+
-((q*t-q)/(-q*t+1))*B[(1, 1)] + B[(2, 0)]
|
|
462
|
+
sage: E[L0([1,-1])] # needs sage.combinat
|
|
463
|
+
-((q*t-q)/(-q*t+1))*B[(0, 0)] + B[(1, -1)]
|
|
464
|
+
sage: E[L0([0,-2])] # needs sage.combinat
|
|
465
|
+
-((q*t-q)/(-q*t+1))*B[(-1, -1)] + B[(0, -2)]
|
|
466
|
+
|
|
467
|
+
Systematic checks with Sage's implementation of [HHL06]_::
|
|
468
|
+
|
|
469
|
+
sage: assert all(EE([x,y]) == NS.E([x,y]) # needs sage.combinat
|
|
470
|
+
....: for d in range(5) for x,y in IntegerVectors(d,2))
|
|
471
|
+
|
|
472
|
+
With the current implementation, we can compute nonsymmetric
|
|
473
|
+
Macdonald polynomials for any type, for example for type `E_6^{(1)}`::
|
|
474
|
+
|
|
475
|
+
sage: K = QQ['q,u'].fraction_field()
|
|
476
|
+
sage: q, u = K.gens()
|
|
477
|
+
sage: KL = RootSystem(["E",6,1]).weight_space(extended=True).algebra(K)
|
|
478
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q,u,-1/u)
|
|
479
|
+
sage: L0 = E.keys()
|
|
480
|
+
|
|
481
|
+
sage: E[L0.fundamental_weight(1).weyl_action([2,4,3,2,1])]
|
|
482
|
+
-((u^2-1)/(-q*u^16+1))*B[-Lambda[1] + Lambda[3]]
|
|
483
|
+
- ((u^2-1)/(-q*u^16+1))*B[Lambda[1]] + B[-Lambda[2] + Lambda[5]]
|
|
484
|
+
- ((u^2-1)/(-q*u^16+1))*B[Lambda[2]
|
|
485
|
+
- Lambda[4] + Lambda[5]] - ((u^2-1)/(-q*u^16+1))*B[-Lambda[3] + Lambda[4]]
|
|
486
|
+
|
|
487
|
+
sage: E[L0.fundamental_weight(2).weyl_action([2,5,3,4,2])] # long time (6s)
|
|
488
|
+
-((q^2*u^20-q^2*u^18-q*u^2+q)/(-q^2*u^32+2*q*u^16-1))*B[0]
|
|
489
|
+
+ B[Lambda[1] - Lambda[3] + Lambda[4] - Lambda[5] + Lambda[6]]
|
|
490
|
+
- ((u^2-1)/(-q*u^16+1))*B[Lambda[1] - Lambda[3] + Lambda[5]]
|
|
491
|
+
- ((q*u^20-q*u^18-u^2+1)/(-q^2*u^32+2*q*u^16-1))*B[-Lambda[2] + Lambda[4]]
|
|
492
|
+
- ((q*u^20-q*u^18-u^2+1)/(-q^2*u^32+2*q*u^16-1))*B[Lambda[2]]
|
|
493
|
+
+ ((u^4-2*u^2+1)/(q^2*u^32-2*q*u^16+1))*B[Lambda[3] - Lambda[4] + Lambda[5]]
|
|
494
|
+
- ((u^2-1)/(-q*u^16+1))*B[Lambda[3] - Lambda[5] + Lambda[6]]
|
|
495
|
+
sage: E[L0.fundamental_weight(1)+L0.fundamental_weight(6)] # long time (13s)
|
|
496
|
+
((q^2*u^10-q^2*u^8-q^2*u^2+q^2)/(q^2*u^26-q*u^16-q*u^10+1))*B[0]
|
|
497
|
+
- ((q*u^2-q)/(-q*u^10+1))*B[Lambda[1] - Lambda[2] + Lambda[6]]
|
|
498
|
+
- ((q*u^2-q)/(-q*u^10+1))*B[Lambda[1] + Lambda[2] - Lambda[4] + Lambda[6]]
|
|
499
|
+
- ((q*u^2-q)/(-q*u^10+1))*B[Lambda[1] - Lambda[3] + Lambda[4] - Lambda[5] + Lambda[6]]
|
|
500
|
+
- ((q*u^2-q)/(-q*u^10+1))*B[Lambda[1] - Lambda[3] + Lambda[5]] + B[Lambda[1] + Lambda[6]]
|
|
501
|
+
- ((q*u^2-q)/(-q*u^10+1))*B[-Lambda[2] + Lambda[4]]
|
|
502
|
+
- ((q*u^2-q)/(-q*u^10+1))*B[Lambda[2]]
|
|
503
|
+
- ((q*u^2-q)/(-q*u^10+1))*B[Lambda[3] - Lambda[4] + Lambda[5]]
|
|
504
|
+
- ((q*u^2-q)/(-q*u^10+1))*B[Lambda[3] - Lambda[5] + Lambda[6]]
|
|
505
|
+
|
|
506
|
+
We test various other types::
|
|
507
|
+
|
|
508
|
+
sage: K = QQ['q,u'].fraction_field()
|
|
509
|
+
sage: q, u = K.gens()
|
|
510
|
+
sage: KL = RootSystem(["A",5,2]).ambient_space().algebra(K)
|
|
511
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, u, -1/u)
|
|
512
|
+
sage: L0 = E.keys()
|
|
513
|
+
sage: E[L0.fundamental_weight(2)]
|
|
514
|
+
-((q*u^2-q)/(-q*u^8+1))*B[(0, 0, 0)] + B[(1, 1, 0)]
|
|
515
|
+
sage: E[L0((0,-1,1))] # long time (1.5s)
|
|
516
|
+
-((q^2*u^10-q^2*u^8+q*u^6-q*u^4-q*u^2-u^2+q+1)/(-q^3*u^12+q^2*u^8+q*u^4-1))*B[(0, 0, 0)]
|
|
517
|
+
- ((u^2-1)/(-q*u^4+1))*B[(1, -1, 0)]
|
|
518
|
+
+ ((u^6-u^4-u^2+1)/(q^3*u^12-q^2*u^8-q*u^4+1))*B[(1, 1, 0)]
|
|
519
|
+
+ ((u^4-2*u^2+1)/(q^3*u^12-q^2*u^8-q*u^4+1))*B[(1, 0, -1)]
|
|
520
|
+
+ ((q^2*u^12-q^2*u^10-u^2+1)/(q^3*u^12-q^2*u^8-q*u^4+1))*B[(1, 0, 1)]
|
|
521
|
+
+ B[(0, -1, 1)]
|
|
522
|
+
- ((u^2-1)/(-q^2*u^8+1))*B[(0, 1, -1)] - ((u^2-1)/(-q^2*u^8+1))*B[(0, 1, 1)]
|
|
523
|
+
sage: K = QQ['q,u'].fraction_field()
|
|
524
|
+
sage: q, u = K.gens()
|
|
525
|
+
sage: KL = RootSystem(["E",6,2]).ambient_space().algebra(K)
|
|
526
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q,u,-1/u)
|
|
527
|
+
sage: L0 = E.keys()
|
|
528
|
+
sage: E[L0.fundamental_weight(4)] # long time (5s)
|
|
529
|
+
-((q^3*u^20-q^3*u^18-q^2*u^2+q^2)/(-q^3*u^28+q^2*u^22+q*u^6-1))*B[(0, 0, 0, 0)]
|
|
530
|
+
- ((q*u^2-q)/(-q*u^6+1))*B[(1/2, 1/2, -1/2, -1/2)]
|
|
531
|
+
- ((q*u^2-q)/(-q*u^6+1))*B[(1/2, 1/2, -1/2, 1/2)]
|
|
532
|
+
- ((q*u^2-q)/(-q*u^6+1))*B[(1/2, 1/2, 1/2, -1/2)]
|
|
533
|
+
- ((q*u^2-q)/(-q*u^6+1))*B[(1/2, 1/2, 1/2, 1/2)]
|
|
534
|
+
+ ((q*u^2-q)/(q*u^6-1))*B[(1, 0, 0, 0)] + B[(1, 1, 0, 0)]
|
|
535
|
+
- ((q*u^2-q)/(-q*u^6+1))*B[(0, 1, 0, 0)]
|
|
536
|
+
sage: E[L0((1,-1,0,0))] # long time (23s)
|
|
537
|
+
((q^3*u^18-q^3*u^16+q*u^4-q^2*u^2-2*q*u^2+q^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(0, 0, 0, 0)]
|
|
538
|
+
- ((q^3*u^18-q^3*u^16-q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1/2, -1/2, -1/2, -1/2)]
|
|
539
|
+
- ((q^3*u^18-q^3*u^16-q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1/2, -1/2, -1/2, 1/2)]
|
|
540
|
+
+ ((q^3*u^18-q^3*u^16-q*u^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(1/2, -1/2, 1/2, -1/2)]
|
|
541
|
+
+ ((q^3*u^18-q^3*u^16-q*u^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(1/2, -1/2, 1/2, 1/2)]
|
|
542
|
+
+ ((q*u^8-q*u^6-q*u^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(1/2, 1/2, -1/2, -1/2)]
|
|
543
|
+
+ ((q*u^8-q*u^6-q*u^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(1/2, 1/2, -1/2, 1/2)]
|
|
544
|
+
- ((q*u^8-q*u^6-q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1/2, 1/2, 1/2, -1/2)]
|
|
545
|
+
- ((q*u^8-q*u^6-q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1/2, 1/2, 1/2, 1/2)]
|
|
546
|
+
- ((q^2*u^18-q^2*u^16+q*u^8-q*u^6-q*u^2-u^2+q+1)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1, 0, 0, 0)]
|
|
547
|
+
+ B[(1, -1, 0, 0)] - ((u^2-1)/(-q^2*u^12+1))*B[(1, 1, 0, 0)]
|
|
548
|
+
- ((u^2-1)/(-q^2*u^12+1))*B[(1, 0, -1, 0)]
|
|
549
|
+
+ ((u^2-1)/(q^2*u^12-1))*B[(1, 0, 1, 0)]
|
|
550
|
+
- ((u^2-1)/(-q^2*u^12+1))*B[(1, 0, 0, -1)]
|
|
551
|
+
- ((u^2-1)/(-q^2*u^12+1))*B[(1, 0, 0, 1)]
|
|
552
|
+
- ((q*u^2-q)/(-q*u^6+1))*B[(0, -1, 0, 0)]
|
|
553
|
+
- ((q*u^4-2*q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 1, 0, 0)]
|
|
554
|
+
- ((q*u^4-2*q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 0, -1, 0)]
|
|
555
|
+
- ((q*u^4-2*q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 0, 1, 0)]
|
|
556
|
+
- ((q*u^4-2*q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 0, 0, -1)]
|
|
557
|
+
- ((q*u^4-2*q*u^2+q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 0, 0, 1)]
|
|
558
|
+
|
|
559
|
+
Next we test a twisted type (checked against Maple computation by
|
|
560
|
+
Bogdan Ion for `q_1=t^2` and `q_2=-1`)::
|
|
561
|
+
|
|
562
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["A",5,2])
|
|
563
|
+
sage: omega = E.keys()
|
|
564
|
+
|
|
565
|
+
sage: E[omega[1]]
|
|
566
|
+
B[(1, 0, 0)]
|
|
567
|
+
|
|
568
|
+
sage: E[-omega[1]]
|
|
569
|
+
B[(-1, 0, 0)]
|
|
570
|
+
+ ((q*q1^6+q*q1^5*q2+q1*q2^5+q2^6)/(q^3*q1^6+q^2*q1^5*q2+q*q1*q2^5+q2^6))*B[(1, 0, 0)]
|
|
571
|
+
+ ((q1+q2)/(q*q1+q2))*B[(0, -1, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, 1, 0)]
|
|
572
|
+
+ ((q1+q2)/(q*q1+q2))*B[(0, 0, -1)] + ((q1+q2)/(q*q1+q2))*B[(0, 0, 1)]
|
|
573
|
+
|
|
574
|
+
sage: E[omega[2]]
|
|
575
|
+
-((q1*q2^3+q2^4)/(q*q1^4-q2^4))*B[(1, 0, 0)] + B[(0, 1, 0)]
|
|
576
|
+
|
|
577
|
+
sage: E[-omega[2]]
|
|
578
|
+
((q^2*q1^7+q^2*q1^6*q2-q1*q2^6-q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^7))*B[(1, 0, 0)]
|
|
579
|
+
+ B[(0, -1, 0)]
|
|
580
|
+
+ ((q*q1^5*q2^2+q*q1^4*q2^3-q1*q2^6-q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^7))*B[(0, 1, 0)]
|
|
581
|
+
- ((q1*q2+q2^2)/(q*q1^2-q2^2))*B[(0, 0, -1)]
|
|
582
|
+
+ ((q1*q2+q2^2)/(-q*q1^2+q2^2))*B[(0, 0, 1)]
|
|
583
|
+
|
|
584
|
+
sage: E[-omega[1]-omega[2]]
|
|
585
|
+
((q^3*q1^6+q^3*q1^5*q2+2*q^2*q1^6+3*q^2*q1^5*q2-q^2*q1^4*q2^2-2*q^2*q1^3*q2^3-q*q1^5*q2-2*q*q1^4*q2^2+q*q1^3*q2^3+2*q*q1^2*q2^4-q*q1*q2^5-q*q2^6+q1^3*q2^3+q1^2*q2^4-2*q1*q2^5-2*q2^6)/(q^4*q1^6+q^3*q1^5*q2-q^3*q1^4*q2^2+q*q1^2*q2^4-q*q1*q2^5-q2^6))*B[(0, 0, 0)]
|
|
586
|
+
+ B[(-1, -1, 0)]
|
|
587
|
+
+ ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(-1, 1, 0)]
|
|
588
|
+
+ ((q1+q2)/(q*q1+q2))*B[(-1, 0, -1)]
|
|
589
|
+
- ((q1+q2)/(-q*q1-q2))*B[(-1, 0, 1)]
|
|
590
|
+
+ ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, -1, 0)]
|
|
591
|
+
+ ((q^2*q1^6+q^2*q1^5*q2+q*q1^5*q2-q*q1^3*q2^3-q1^5*q2-q1^4*q2^2+q1^3*q2^3+q1^2*q2^4-q1*q2^5-q2^6)/(q^4*q1^6+q^3*q1^5*q2-q^3*q1^4*q2^2+q*q1^2*q2^4-q*q1*q2^5-q2^6))*B[(1, 1, 0)]
|
|
592
|
+
+ ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, 0, -1)]
|
|
593
|
+
+ ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, 0, 1)]
|
|
594
|
+
+ ((q1+q2)/(q*q1+q2))*B[(0, -1, -1)]
|
|
595
|
+
+ ((q1+q2)/(q*q1+q2))*B[(0, -1, 1)]
|
|
596
|
+
+ ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, -1)]
|
|
597
|
+
+ ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, 1)]
|
|
598
|
+
|
|
599
|
+
sage: E[omega[1]-omega[2]]
|
|
600
|
+
((q^3*q1^7+q^3*q1^6*q2-q*q1*q2^6-q*q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^7))*B[(0, 0, 0)]
|
|
601
|
+
+ B[(1, -1, 0)]
|
|
602
|
+
+ ((q*q1^5*q2^2+q*q1^4*q2^3-q1*q2^6-q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^7))*B[(1, 1, 0)]
|
|
603
|
+
- ((q1*q2+q2^2)/(q*q1^2-q2^2))*B[(1, 0, -1)]
|
|
604
|
+
+ ((q1*q2+q2^2)/(-q*q1^2+q2^2))*B[(1, 0, 1)]
|
|
605
|
+
|
|
606
|
+
sage: E[omega[3]]
|
|
607
|
+
-((q1*q2^2+q2^3)/(-q*q1^3-q2^3))*B[(1, 0, 0)]
|
|
608
|
+
- ((q1*q2^2+q2^3)/(-q*q1^3-q2^3))*B[(0, 1, 0)] + B[(0, 0, 1)]
|
|
609
|
+
|
|
610
|
+
sage: E[-omega[3]]
|
|
611
|
+
((q*q1^4*q2+q*q1^3*q2^2-q1*q2^4-q2^5)/(-q^2*q1^5-q2^5))*B[(1, 0, 0)]
|
|
612
|
+
+ ((q*q1^4*q2+q*q1^3*q2^2-q1*q2^4-q2^5)/(-q^2*q1^5-q2^5))*B[(0, 1, 0)]
|
|
613
|
+
+ B[(0, 0, -1)] - ((q1*q2^4+q2^5)/(-q^2*q1^5-q2^5))*B[(0, 0, 1)]
|
|
614
|
+
|
|
615
|
+
.. RUBRIC:: Comparison with the energy function of crystals
|
|
616
|
+
|
|
617
|
+
Next we test that the nonsymmetric Macdonald polynomials at `t=0`
|
|
618
|
+
match with the one-dimensional configuration sums involving
|
|
619
|
+
Kirillov-Reshetikhin crystals for various types. See
|
|
620
|
+
[LNSSS12]_::
|
|
621
|
+
|
|
622
|
+
sage: K = QQ['q,t'].fraction_field()
|
|
623
|
+
sage: q,t = K.gens()
|
|
624
|
+
sage: KL = RootSystem(["A",5,2]).ambient_space().algebra(K)
|
|
625
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
626
|
+
sage: omega = E.keys().fundamental_weights()
|
|
627
|
+
sage: E[-omega[1]].map_coefficients(lambda x: x.subs(t=0))
|
|
628
|
+
B[(-1, 0, 0)] + B[(1, 0, 0)] + B[(0, -1, 0)] + B[(0, 1, 0)]
|
|
629
|
+
+ B[(0, 0, -1)] + B[(0, 0, 1)]
|
|
630
|
+
sage: E[-omega[2]].map_coefficients(lambda x: x.subs(t=0)) # long time (3s)
|
|
631
|
+
(q+2)*B[(0, 0, 0)] + B[(-1, -1, 0)] + B[(-1, 1, 0)] + B[(-1, 0, -1)]
|
|
632
|
+
+ B[(-1, 0, 1)] + B[(1, -1, 0)] + B[(1, 1, 0)] + B[(1, 0, -1)] + B[(1, 0, 1)]
|
|
633
|
+
+ B[(0, -1, -1)] + B[(0, -1, 1)] + B[(0, 1, -1)] + B[(0, 1, 1)]
|
|
634
|
+
|
|
635
|
+
::
|
|
636
|
+
|
|
637
|
+
sage: KL = RootSystem(["C",3,1]).ambient_space().algebra(K)
|
|
638
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
639
|
+
sage: omega = E.keys().fundamental_weights()
|
|
640
|
+
sage: E[-omega[2]].map_coefficients(lambda x: x.subs(t=0)) # long time (5s)
|
|
641
|
+
2*B[(0, 0, 0)] + B[(-1, -1, 0)] + B[(-1, 1, 0)] + B[(-1, 0, -1)]
|
|
642
|
+
+ B[(-1, 0, 1)] + B[(1, -1, 0)] + B[(1, 1, 0)] + B[(1, 0, -1)] + B[(1, 0, 1)]
|
|
643
|
+
+ B[(0, -1, -1)] + B[(0, -1, 1)] + B[(0, 1, -1)] + B[(0, 1, 1)]
|
|
644
|
+
|
|
645
|
+
::
|
|
646
|
+
|
|
647
|
+
sage: R = RootSystem(['C',3,1])
|
|
648
|
+
sage: KL = R.weight_lattice(extended=True).algebra(K)
|
|
649
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
650
|
+
sage: omega = E.keys().fundamental_weights()
|
|
651
|
+
sage: La = R.weight_space().basis()
|
|
652
|
+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
|
|
653
|
+
sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (15s)
|
|
654
|
+
....: == LS.one_dimensional_configuration_sum(q))
|
|
655
|
+
True
|
|
656
|
+
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1] + La[2])
|
|
657
|
+
sage: (E[-omega[1] - omega[2]].map_coefficients(lambda x: x.subs(t=0)) # long time (45s)
|
|
658
|
+
....: == LS.one_dimensional_configuration_sum(q))
|
|
659
|
+
True
|
|
660
|
+
|
|
661
|
+
::
|
|
662
|
+
|
|
663
|
+
sage: R = RootSystem(['C',2,1])
|
|
664
|
+
sage: KL = R.weight_lattice(extended=True).algebra(K)
|
|
665
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
666
|
+
sage: omega = E.keys().fundamental_weights()
|
|
667
|
+
sage: La = R.weight_space().basis()
|
|
668
|
+
sage: for d in range(1,3): # long time (45s)
|
|
669
|
+
....: for x,y in IntegerVectors(d,2):
|
|
670
|
+
....: weight = x*La[1]+y*La[2]
|
|
671
|
+
....: weight0 = -x*omega[1]-y*omega[2]
|
|
672
|
+
....: LS = crystals.ProjectedLevelZeroLSPaths(weight)
|
|
673
|
+
....: assert (E[weight0].map_coefficients(lambda x:x.subs(t=0))
|
|
674
|
+
....: == LS.one_dimensional_configuration_sum(q))
|
|
675
|
+
|
|
676
|
+
::
|
|
677
|
+
|
|
678
|
+
sage: R = RootSystem(['B',3,1])
|
|
679
|
+
sage: KL = R.weight_lattice(extended=True).algebra(K)
|
|
680
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
681
|
+
sage: omega = E.keys().fundamental_weights()
|
|
682
|
+
sage: La = R.weight_space().basis()
|
|
683
|
+
|
|
684
|
+
sage: # needs sage.combinat
|
|
685
|
+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
|
|
686
|
+
sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (23s)
|
|
687
|
+
....: == LS.one_dimensional_configuration_sum(q))
|
|
688
|
+
True
|
|
689
|
+
sage: B = crystals.KirillovReshetikhin(['B',3,1],1,1)
|
|
690
|
+
sage: T = crystals.TensorProduct(B,B)
|
|
691
|
+
sage: (T.one_dimensional_configuration_sum(q) # long time (2s)
|
|
692
|
+
....: == LS.one_dimensional_configuration_sum(q))
|
|
693
|
+
True
|
|
694
|
+
|
|
695
|
+
::
|
|
696
|
+
|
|
697
|
+
sage: R = RootSystem(['BC',3,2])
|
|
698
|
+
sage: KL = R.weight_lattice(extended=True).algebra(K)
|
|
699
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
700
|
+
sage: omega = E.keys().fundamental_weights()
|
|
701
|
+
sage: La = R.weight_space().basis()
|
|
702
|
+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]) # needs sage.combinat
|
|
703
|
+
sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (21s), needs sage.combinat
|
|
704
|
+
....: == LS.one_dimensional_configuration_sum(q))
|
|
705
|
+
True
|
|
706
|
+
|
|
707
|
+
::
|
|
708
|
+
|
|
709
|
+
sage: R = RootSystem(CartanType(['BC',3,2]).dual())
|
|
710
|
+
sage: KL = R.weight_space(extended=True).algebra(K)
|
|
711
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
712
|
+
sage: omega = E.keys().fundamental_weights()
|
|
713
|
+
sage: La = R.weight_space().basis()
|
|
714
|
+
|
|
715
|
+
sage: # long time, needs sage.combinat
|
|
716
|
+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
|
|
717
|
+
sage: g = E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # 30s
|
|
718
|
+
sage: f = LS.one_dimensional_configuration_sum(q) # 1.5s
|
|
719
|
+
sage: P = g.support()[0].parent()
|
|
720
|
+
sage: B = P.algebra(q.parent())
|
|
721
|
+
sage: sum(p[1]*B(P(p[0])) for p in f) == g
|
|
722
|
+
True
|
|
723
|
+
|
|
724
|
+
::
|
|
725
|
+
|
|
726
|
+
sage: C = CartanType(['G',2,1])
|
|
727
|
+
sage: R = RootSystem(C.dual())
|
|
728
|
+
sage: K = QQ['q,t'].fraction_field()
|
|
729
|
+
sage: q,t = K.gens()
|
|
730
|
+
sage: KL = R.weight_lattice(extended=True).algebra(K)
|
|
731
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
732
|
+
sage: omega = E.keys().fundamental_weights()
|
|
733
|
+
sage: La = R.weight_space().basis()
|
|
734
|
+
|
|
735
|
+
sage: # needs sage.combinat
|
|
736
|
+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
|
|
737
|
+
sage: (E[-2*omega[1]].map_coefficients(lambda x: x.subs(t=0)) # long time (20s), not tested
|
|
738
|
+
....: == LS.one_dimensional_configuration_sum(q)
|
|
739
|
+
True
|
|
740
|
+
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1] + La[2])
|
|
741
|
+
sage: (E[-omega[1]-omega[2]].map_coefficients(lambda x: x.subs(t=0)) # long time (23s), not tested
|
|
742
|
+
....: == LS.one_dimensional_configuration_sum(q))
|
|
743
|
+
True
|
|
744
|
+
|
|
745
|
+
The next test breaks if the energy is not scaled by the
|
|
746
|
+
translation factor for dual type `G_2^{(1)}`::
|
|
747
|
+
|
|
748
|
+
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]+La[2]) # needs sage.combinat
|
|
749
|
+
sage: (E[-2*omega[1]-omega[2]].map_coefficients(lambda x: x.subs(t=0)) # long time (100s), not tested, needs sage.combinat
|
|
750
|
+
....: == LS.one_dimensional_configuration_sum(q)
|
|
751
|
+
True
|
|
752
|
+
|
|
753
|
+
sage: R = RootSystem(['D',4,1])
|
|
754
|
+
sage: KL = R.weight_lattice(extended=True).algebra(K)
|
|
755
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
|
|
756
|
+
sage: omega = E.keys().fundamental_weights()
|
|
757
|
+
sage: La = R.weight_space().basis()
|
|
758
|
+
sage: for d in range(1,2): # long time (41s)
|
|
759
|
+
....: for a,b,c,d in IntegerVectors(d,4):
|
|
760
|
+
....: weight = a*La[1] + b*La[2] + c*La[3] + d*La[4]
|
|
761
|
+
....: weight0 = -a*omega[1] - b*omega[2] - c*omega[3] - d*omega[4]
|
|
762
|
+
....: LS = crystals.ProjectedLevelZeroLSPaths(weight)
|
|
763
|
+
....: assert (E[weight0].map_coefficients(lambda x: x.subs(t=0))
|
|
764
|
+
....: == LS.one_dimensional_configuration_sum(q))
|
|
765
|
+
|
|
766
|
+
TESTS:
|
|
767
|
+
|
|
768
|
+
Calculations checked with Bogdan Ion 2013/04/18::
|
|
769
|
+
|
|
770
|
+
sage: K = QQ['q,t'].fraction_field()
|
|
771
|
+
sage: q,t = K.gens()
|
|
772
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["B",2,1], q=q,q1=t,q2=-1/t)
|
|
773
|
+
sage: L0 = E.keys()
|
|
774
|
+
sage: omega = L0.fundamental_weights()
|
|
775
|
+
|
|
776
|
+
sage: E[omega[1]]
|
|
777
|
+
-((q*t^4-q*t^2)/(-q*t^6+1))*B[(0, 0)] + B[(1, 0)]
|
|
778
|
+
sage: E[omega[2]]
|
|
779
|
+
B[(1/2, 1/2)]
|
|
780
|
+
sage: E[-omega[1]]
|
|
781
|
+
-((q^2*t^8-q^2*t^6+q*t^6-2*q*t^4+q*t^2-t^2+1)/(-q^3*t^8+q^2*t^6+q*t^2-1))*B[(0, 0)]
|
|
782
|
+
+ B[(-1, 0)] - ((q*t^8-q*t^6-t^2+1)/(-q^3*t^8+q^2*t^6+q*t^2-1))*B[(1, 0)]
|
|
783
|
+
- ((t^2-1)/(-q*t^2+1))*B[(0, -1)] + ((t^2-1)/(q*t^2-1))*B[(0, 1)]
|
|
784
|
+
sage: E[L0([0,1])]
|
|
785
|
+
-((q*t^4-q*t^2)/(-q*t^4+1))*B[(0, 0)] - ((t^2-1)/(-q*t^4+1))*B[(1, 0)] + B[(0, 1)]
|
|
786
|
+
sage: E[L0([1,1])]
|
|
787
|
+
((q*t^2-q)/(q*t^2-1))*B[(0, 0)] - ((q*t^2-q)/(-q*t^2+1))*B[(1, 0)]
|
|
788
|
+
+ B[(1, 1)] - ((q*t^2-q)/(-q*t^2+1))*B[(0, 1)]
|
|
789
|
+
|
|
790
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["A",2,1], q=q,q1=t,q2=-1/t)
|
|
791
|
+
sage: L0 = E.keys()
|
|
792
|
+
sage: factor(E[L0([-1,0,1])][L0.zero()])
|
|
793
|
+
(t - 1) * (t + 1) * (q*t^2 - 1)^-3 * (q*t^2 + 1)^-1
|
|
794
|
+
* (q^3*t^6 + 2*q^2*t^6 - 3*q^2*t^4 - 2*q*t^2 - t^2 + q + 2)
|
|
795
|
+
|
|
796
|
+
Checking step by step calculations in type `BC` with Bogdan Ion 2013/04/18::
|
|
797
|
+
|
|
798
|
+
sage: K = QQ['q,t'].fraction_field()
|
|
799
|
+
sage: q,t=K.gens()
|
|
800
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["BC",1,2], q=q,q1=t,q2=-1/t)
|
|
801
|
+
sage: KL0 = E.domain()
|
|
802
|
+
sage: L0 = E.keys()
|
|
803
|
+
sage: omega = L0.fundamental_weights()
|
|
804
|
+
sage: e = L0.basis()
|
|
805
|
+
sage: E._T_Y[1] ( KL0.monomial(e[0]) )
|
|
806
|
+
1/t*B[(-1)]
|
|
807
|
+
sage: E._T_Y[0] ( KL0.monomial(L0.zero()) )
|
|
808
|
+
t*B[(0)]
|
|
809
|
+
sage: E._T_Y[0] ( KL0.monomial(-e[0]))
|
|
810
|
+
-((t^2-1)/(q*t))*B[(0)] + 1/(q^2*t)*B[(1)]
|
|
811
|
+
|
|
812
|
+
sage: Y = E.Y()
|
|
813
|
+
sage: alphacheck = Y.keys().simple_roots()
|
|
814
|
+
sage: Y0 = Y[alphacheck[0]]
|
|
815
|
+
sage: Y1 = Y[alphacheck[1]]
|
|
816
|
+
sage: Y0
|
|
817
|
+
Generic endomorphism of Algebra of the Ambient space of the Root system of type ['C', 1]
|
|
818
|
+
over Fraction Field of Multivariate Polynomial Ring in q, t over Rational Field
|
|
819
|
+
sage: Y0.word, Y0.signs, Y0.scalar
|
|
820
|
+
((0, 1), (-1, -1), 1/q)
|
|
821
|
+
sage: Y1.word, Y1.signs, Y1.scalar
|
|
822
|
+
((1, 0), (1, 1), 1)
|
|
823
|
+
|
|
824
|
+
sage: T0_check = E._T[0]
|
|
825
|
+
|
|
826
|
+
Comparing with Bogdan Ion's hand calculations for type `BC`, 2013/05/13:
|
|
827
|
+
|
|
828
|
+
.. TODO:: add his notes in latex
|
|
829
|
+
|
|
830
|
+
::
|
|
831
|
+
|
|
832
|
+
sage: K = QQ['q,q1,q2'].fraction_field()
|
|
833
|
+
sage: q,q1,q2=K.gens()
|
|
834
|
+
sage: L = RootSystem(["A",4,2]).ambient_space()
|
|
835
|
+
sage: L.cartan_type()
|
|
836
|
+
['BC', 2, 2]
|
|
837
|
+
sage: L.null_root()
|
|
838
|
+
2*e['delta']
|
|
839
|
+
sage: L.simple_roots()
|
|
840
|
+
Finite family {0: -e[0] + e['delta'], 1: e[0] - e[1], 2: 2*e[1]}
|
|
841
|
+
sage: KL = L.algebra(K)
|
|
842
|
+
sage: KL0 = KL.classical()
|
|
843
|
+
sage: L0 = L.classical()
|
|
844
|
+
sage: L0.cartan_type()
|
|
845
|
+
['C', 2]
|
|
846
|
+
|
|
847
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q=q,q1=q1,q2=q2)
|
|
848
|
+
sage: E.keys()
|
|
849
|
+
Ambient space of the Root system of type ['C', 2]
|
|
850
|
+
sage: E.keys().simple_roots()
|
|
851
|
+
Finite family {1: (1, -1), 2: (0, 2)}
|
|
852
|
+
sage: omega = E.keys().fundamental_weights()
|
|
853
|
+
|
|
854
|
+
sage: E[0*omega[1]]
|
|
855
|
+
B[(0, 0)]
|
|
856
|
+
sage: E[omega[1]]
|
|
857
|
+
-((q*q1*q2^3+q*q2^4)/(q^2*q1^4-q2^4))*B[(0, 0)] + B[(1, 0)]
|
|
858
|
+
|
|
859
|
+
sage: E[2*omega[2]] # not checked against Bogdan's notes, but a good self-consistency test # long time
|
|
860
|
+
-((q^12*q1^6+q^12*q1^5*q2-2*q^10*q1^5*q2-5*q^10*q1^4*q2^2-3*q^10*q1^3*q2^3-2*q^8*q1^5*q2-4*q^8*q1^4*q2^2-q^8*q1^3*q2^3+q^8*q1^2*q2^4-q^8*q1*q2^5-q^8*q2^6+q^6*q1^3*q2^3-q^6*q1^2*q2^4-4*q^6*q1*q2^5-2*q^6*q2^6-q^4*q1^3*q2^3-3*q^4*q1^2*q2^4-4*q^4*q1*q2^5-2*q^4*q2^6)/(-q^12*q1^6-q^10*q1^5*q2-q^8*q1^3*q2^3+q^6*q1^4*q2^2-q^6*q1^2*q2^4+q^4*q1^3*q2^3+q^2*q1*q2^5+q2^6))*B[(0, 0)]
|
|
861
|
+
+ ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 0)]
|
|
862
|
+
- ((q^6*q1*q2+q^6*q2^2)/(q^6*q1^2-q2^2))*B[(-1, -1)]
|
|
863
|
+
+ ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 1)]
|
|
864
|
+
- ((q^3*q1*q2+q^3*q2^2)/(q^6*q1^2-q2^2))*B[(-1, 2)]
|
|
865
|
+
+ ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, 0)]
|
|
866
|
+
+ ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(1, -1)]
|
|
867
|
+
+ ((q^8*q1^3+q^8*q1^2*q2+q^6*q1^3+q^6*q1^2*q2-q^6*q1*q2^2-q^6*q2^3-2*q^4*q1^2*q2-4*q^4*q1*q2^2-2*q^4*q2^3-q^2*q1^2*q2-3*q^2*q1*q2^2-2*q^2*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, 1)]
|
|
868
|
+
+ ((q^5*q1^2+q^5*q1*q2-q^3*q1*q2-q^3*q2^2-q*q1*q2-q*q2^2)/(q^6*q1^2-q2^2))*B[(1, 2)]
|
|
869
|
+
- ((q^6*q1^2+q^6*q1*q2-q^4*q1*q2-q^4*q2^2-q^2*q1*q2-q^2*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 0)]
|
|
870
|
+
- ((q^3*q1*q2+q^3*q2^2)/(q^6*q1^2-q2^2))*B[(2, -1)]
|
|
871
|
+
- ((q^5*q1^2+q^5*q1*q2-q^3*q1*q2-q^3*q2^2-q*q1*q2-q*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 1)]
|
|
872
|
+
+ B[(2, 2)]
|
|
873
|
+
+ ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(0, -1)]
|
|
874
|
+
+ ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(0, 1)]
|
|
875
|
+
+ ((q^6*q1^2+q^6*q1*q2-q^4*q1*q2-q^4*q2^2-q^2*q1*q2-q^2*q2^2)/(q^6*q1^2-q2^2))*B[(0, 2)]
|
|
876
|
+
sage: E.recursion(2*omega[2])
|
|
877
|
+
[0, 1, 0, 2, 1, 0, 2, 1, 0]
|
|
878
|
+
|
|
879
|
+
Some tests that the `T` s are implemented properly by hand
|
|
880
|
+
defining the `Y` s in terms of them::
|
|
881
|
+
|
|
882
|
+
sage: T = E._T_Y
|
|
883
|
+
sage: Ye1 = T.Tw((1,2,1,0), scalar=(-1/(q1*q2))^2)
|
|
884
|
+
sage: Ye2 = T.Tw((2,1,0,1), signs=(1,1,1,-1), scalar=(-1/(q1*q2)))
|
|
885
|
+
sage: Yalpha0 = T.Tw((0,1,2,1), signs=(-1,-1,-1,-1), scalar=q^-1*(-q1*q2)^2)
|
|
886
|
+
sage: Yalpha1 = T.Tw((1,2,0,1,2,0), signs=(1,1,-1,1,-1,1), scalar=-1/(q1*q2))
|
|
887
|
+
sage: Yalpha2 = T.Tw((2,1,0,1,2,1,0,1), signs=(1,1,1,-1,1,1,1,-1),
|
|
888
|
+
....: scalar=(1/(q1*q2))^2)
|
|
889
|
+
|
|
890
|
+
sage: Ye1(KL0.one())
|
|
891
|
+
q1^2/q2^2*B[(0, 0)]
|
|
892
|
+
sage: Ye2(KL0.one())
|
|
893
|
+
-q1/q2*B[(0, 0)]
|
|
894
|
+
sage: Yalpha0(KL0.one())
|
|
895
|
+
q2^2/(q*q1^2)*B[(0, 0)]
|
|
896
|
+
sage: Yalpha1(KL0.one())
|
|
897
|
+
-q1/q2*B[(0, 0)]
|
|
898
|
+
sage: Yalpha2(KL0.one())
|
|
899
|
+
q1^2/q2^2*B[(0, 0)]
|
|
900
|
+
|
|
901
|
+
Testing the `Y` s directly::
|
|
902
|
+
|
|
903
|
+
sage: Y = E.Y()
|
|
904
|
+
sage: Y.keys()
|
|
905
|
+
Coroot lattice of the Root system of type ['BC', 2, 2]
|
|
906
|
+
sage: alpha = Y.keys().simple_roots()
|
|
907
|
+
sage: L(alpha[0])
|
|
908
|
+
-2*e[0] + e['deltacheck']
|
|
909
|
+
sage: L(alpha[1])
|
|
910
|
+
e[0] - e[1]
|
|
911
|
+
sage: L(alpha[2])
|
|
912
|
+
e[1]
|
|
913
|
+
sage: Y[alpha[0]].word
|
|
914
|
+
(0, 1, 2, 1)
|
|
915
|
+
sage: Y[alpha[0]].signs
|
|
916
|
+
(-1, -1, -1, -1)
|
|
917
|
+
sage: Y[alpha[0]].scalar # mind that Sage's q is the usual q^{1/2}
|
|
918
|
+
q1^2*q2^2/q
|
|
919
|
+
sage: Y[alpha[0]](KL0.one())
|
|
920
|
+
q2^2/(q*q1^2)*B[(0, 0)]
|
|
921
|
+
|
|
922
|
+
sage: Y[alpha[1]].word
|
|
923
|
+
(1, 2, 0, 1, 2, 0)
|
|
924
|
+
sage: Y[alpha[1]].signs
|
|
925
|
+
(1, 1, -1, 1, -1, 1)
|
|
926
|
+
sage: Y[alpha[1]].scalar
|
|
927
|
+
1/(-q1*q2)
|
|
928
|
+
|
|
929
|
+
sage: Y[alpha[2]].word # Bogdan says it should be the square of that; do we need to take translation factors into account or not?
|
|
930
|
+
(2, 1, 0, 1)
|
|
931
|
+
sage: Y[alpha[2]].signs
|
|
932
|
+
(1, 1, 1, -1)
|
|
933
|
+
sage: Y[alpha[2]].scalar
|
|
934
|
+
1/(-q1*q2)
|
|
935
|
+
|
|
936
|
+
Checking the provided nonsymmetric Macdonald polynomial::
|
|
937
|
+
|
|
938
|
+
sage: E10 = KL0.monomial(L0((1,0))) + KL0( q*(1-(-q1/q2)) / (1-q^2*(-q1/q2)^4) )
|
|
939
|
+
sage: E10 == E[omega[1]]
|
|
940
|
+
True
|
|
941
|
+
sage: E.eigenvalues(E10) # not checked
|
|
942
|
+
[q*q1^2/q2^2, q2^3/(-q^2*q1^3), q1/(-q2)]
|
|
943
|
+
|
|
944
|
+
Checking T0check::
|
|
945
|
+
|
|
946
|
+
sage: T0check_on_basis = KL.T0_check_on_basis(q1,q2, convention='dominant')
|
|
947
|
+
sage: T0check_on_basis.phi # note: this is in fact a0 phi
|
|
948
|
+
(2, 0)
|
|
949
|
+
sage: T0check_on_basis.v # what to match it with?
|
|
950
|
+
(1,)
|
|
951
|
+
sage: T0check_on_basis.j # what to match it with?
|
|
952
|
+
2
|
|
953
|
+
sage: T0check_on_basis(KL0.basis().keys().zero())
|
|
954
|
+
-q1^2/q2*B[(1, 0)]
|
|
955
|
+
|
|
956
|
+
sage: T0check = E._T[0]
|
|
957
|
+
sage: T0check(KL0.one())
|
|
958
|
+
-q1^2/q2*B[(1, 0)]
|
|
959
|
+
|
|
960
|
+
|
|
961
|
+
Systematic tests of nonsymmetric Macdonald polynomials in type
|
|
962
|
+
`A_1^{(1)}`, in the weight lattice. Each time, we specify the
|
|
963
|
+
eigenvalues for the action of `Y_{\alpha_0}`, and `Y_{\alpha_1}`::
|
|
964
|
+
|
|
965
|
+
sage: K = QQ['q','t'].fraction_field()
|
|
966
|
+
sage: q,t = K.gens()
|
|
967
|
+
sage: KL = RootSystem(["A",1,1]).weight_lattice(extended=True).algebra(K)
|
|
968
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
|
|
969
|
+
sage: omega = E.keys().fundamental_weights()
|
|
970
|
+
|
|
971
|
+
sage: x = E[0*omega[1]]; x
|
|
972
|
+
B[0]
|
|
973
|
+
sage: E.eigenvalues(x)
|
|
974
|
+
[1/(q*t), t]
|
|
975
|
+
sage: x.is_one()
|
|
976
|
+
True
|
|
977
|
+
sage: x.parent()
|
|
978
|
+
Algebra of the Weight lattice of the Root system of type ['A', 1]
|
|
979
|
+
over Fraction Field of Multivariate Polynomial Ring in q, t over Rational Field
|
|
980
|
+
sage: E[omega[1]]
|
|
981
|
+
B[Lambda[1]]
|
|
982
|
+
sage: E.eigenvalues(_)
|
|
983
|
+
[t, 1/(q*t)]
|
|
984
|
+
sage: E[2*omega[1]]
|
|
985
|
+
-((q*t-q)/(-q*t+1))*B[0] + B[2*Lambda[1]]
|
|
986
|
+
sage: E.eigenvalues(_)
|
|
987
|
+
[q*t, 1/(q^2*t)]
|
|
988
|
+
sage: E[3*omega[1]]
|
|
989
|
+
-((q^2*t-q^2)/(-q^2*t+1))*B[-Lambda[1]]
|
|
990
|
+
- ((q^2*t-q^2+q*t-q)/(-q^2*t+1))*B[Lambda[1]] + B[3*Lambda[1]]
|
|
991
|
+
sage: E.eigenvalues(_)
|
|
992
|
+
[q^2*t, 1/(q^3*t)]
|
|
993
|
+
sage: E[4*omega[1]]
|
|
994
|
+
((q^5*t^2-q^5*t+q^4*t^2-2*q^4*t+q^3*t^2+q^4-2*q^3*t+q^3-q^2*t+q^2)/(q^5*t^2-q^3*t-q^2*t+1))*B[0]
|
|
995
|
+
- ((q^3*t-q^3)/(-q^3*t+1))*B[-2*Lambda[1]]
|
|
996
|
+
- ((q^3*t-q^3+q^2*t-q^2+q*t-q)/(-q^3*t+1))*B[2*Lambda[1]]
|
|
997
|
+
+ B[4*Lambda[1]]
|
|
998
|
+
sage: E.eigenvalues(_)
|
|
999
|
+
[q^3*t, 1/(q^4*t)]
|
|
1000
|
+
sage: E[6*omega[1]]
|
|
1001
|
+
-((q^12*t^3-q^12*t^2+q^11*t^3-2*q^11*t^2+2*q^10*t^3+q^11*t-4*q^10*t^2+2*q^9*t^3+2*q^10*t-5*q^9*t^2+2*q^8*t^3+4*q^9*t-6*q^8*t^2+q^7*t^3-q^9+5*q^8*t-5*q^7*t^2+q^6*t^3-q^8+6*q^7*t-4*q^6*t^2-2*q^7+5*q^6*t-2*q^5*t^2-2*q^6+4*q^5*t-q^4*t^2-2*q^5+2*q^4*t-q^4+q^3*t-q^3)/(-q^12*t^3+q^9*t^2+q^8*t^2+q^7*t^2-q^5*t-q^4*t-q^3*t+1))*B[0]
|
|
1002
|
+
- ((q^5*t-q^5)/(-q^5*t+1))*B[-4*Lambda[1]]
|
|
1003
|
+
+ ((q^9*t^2-q^9*t+q^8*t^2-2*q^8*t+q^7*t^2+q^8-2*q^7*t+q^6*t^2+q^7-2*q^6*t+q^5*t^2+q^6-2*q^5*t+q^5-q^4*t+q^4)/(q^9*t^2-q^5*t-q^4*t+1))*B[-2*Lambda[1]]
|
|
1004
|
+
+ ((q^9*t^2-q^9*t+q^8*t^2-2*q^8*t+2*q^7*t^2+q^8-3*q^7*t+2*q^6*t^2+q^7-4*q^6*t+2*q^5*t^2+2*q^6-4*q^5*t+q^4*t^2+2*q^5-3*q^4*t+q^3*t^2+2*q^4-2*q^3*t+q^3-q^2*t+q^2)/(q^9*t^2-q^5*t-q^4*t+1))*B[2*Lambda[1]]
|
|
1005
|
+
+ ((q^5*t-q^5+q^4*t-q^4+q^3*t-q^3+q^2*t-q^2+q*t-q)/(q^5*t-1))*B[4*Lambda[1]]
|
|
1006
|
+
+ B[6*Lambda[1]]
|
|
1007
|
+
sage: E.eigenvalues(_)
|
|
1008
|
+
[q^5*t, 1/(q^6*t)]
|
|
1009
|
+
sage: E[-omega[1]]
|
|
1010
|
+
B[-Lambda[1]] - ((t-1)/(-q*t+1))*B[Lambda[1]]
|
|
1011
|
+
sage: E.eigenvalues(_)
|
|
1012
|
+
[(-1)/(-q^2*t), q*t]
|
|
1013
|
+
|
|
1014
|
+
As expected, `e^{-\omega}` is not an eigenvector::
|
|
1015
|
+
|
|
1016
|
+
sage: E.eigenvalues(KL.classical().monomial(-omega[1]))
|
|
1017
|
+
Traceback (most recent call last):
|
|
1018
|
+
...
|
|
1019
|
+
AssertionError
|
|
1020
|
+
|
|
1021
|
+
We proceed by comparing against the examples from the appendix of
|
|
1022
|
+
[HHL06]_ in type `A_2^{(1)}`::
|
|
1023
|
+
|
|
1024
|
+
sage: K = QQ['q','t'].fraction_field()
|
|
1025
|
+
sage: q,t = K.gens()
|
|
1026
|
+
sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(K)
|
|
1027
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
|
|
1028
|
+
sage: L0 = E.keys()
|
|
1029
|
+
sage: omega = L0.fundamental_weights()
|
|
1030
|
+
sage: P = K['x0,x1,x2']
|
|
1031
|
+
sage: def EE(weight): return E[L0(weight)].expand(P.gens())
|
|
1032
|
+
|
|
1033
|
+
sage: EE([0,0,0])
|
|
1034
|
+
1
|
|
1035
|
+
sage: EE([1,0,0])
|
|
1036
|
+
x0
|
|
1037
|
+
sage: EE([0,1,0])
|
|
1038
|
+
(t - 1)/(q*t^2 - 1)*x0 + x1
|
|
1039
|
+
sage: EE([0,0,1])
|
|
1040
|
+
(t - 1)/(q*t - 1)*x0 + (t - 1)/(q*t - 1)*x1 + x2
|
|
1041
|
+
sage: EE([1,1,0])
|
|
1042
|
+
x0*x1
|
|
1043
|
+
sage: EE([1,0,1])
|
|
1044
|
+
(t - 1)/(q*t^2 - 1)*x0*x1 + x0*x2
|
|
1045
|
+
sage: EE([0,1,1])
|
|
1046
|
+
(t - 1)/(q*t - 1)*x0*x1 + (t - 1)/(q*t - 1)*x0*x2 + x1*x2
|
|
1047
|
+
sage: EE([2,0,0])
|
|
1048
|
+
x0^2 + (q*t - q)/(q*t - 1)*x0*x1 + (q*t - q)/(q*t - 1)*x0*x2
|
|
1049
|
+
|
|
1050
|
+
sage: EE([0,2,0])
|
|
1051
|
+
(t - 1)/(q^2*t^2 - 1)*x0^2
|
|
1052
|
+
+ (q^2*t^3 - q^2*t^2 + q*t^2 - 2*q*t + q - t + 1)/(q^3*t^3 - q^2*t^2 - q*t + 1)*x0*x1
|
|
1053
|
+
+ x1^2
|
|
1054
|
+
+ (q*t^2 - 2*q*t + q)/(q^3*t^3 - q^2*t^2 - q*t + 1)*x0*x2
|
|
1055
|
+
+ (q*t - q)/(q*t - 1)*x1*x2
|
|
1056
|
+
|
|
1057
|
+
Systematic checks with Sage's implementation of [HHL06]_::
|
|
1058
|
+
|
|
1059
|
+
sage: import sage.combinat.sf.ns_macdonald as NS # needs sage.combinat
|
|
1060
|
+
sage: assert all(EE([x,y,z]) == NS.E([x,y,z]) for d in range(5) # long time (9s), needs sage.combinat
|
|
1061
|
+
....: for x,y,z in IntegerVectors(d,3))
|
|
1062
|
+
|
|
1063
|
+
We check that we get eigenvectors for generic `q_1`, `q_2`::
|
|
1064
|
+
|
|
1065
|
+
sage: K = QQ['q,q1,q2'].fraction_field()
|
|
1066
|
+
sage: q,q1,q2 = K.gens()
|
|
1067
|
+
sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(K)
|
|
1068
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, q1, q2)
|
|
1069
|
+
sage: L0 = E.keys()
|
|
1070
|
+
sage: omega = L0.fundamental_weights()
|
|
1071
|
+
sage: E[2*omega[2]]
|
|
1072
|
+
-((q*q1+q*q2)/(-q*q1-q2))*B[(1, 2, 1)] - ((q*q1+q*q2)/(-q*q1-q2))*B[(2, 1, 1)] + B[(2, 2, 0)]
|
|
1073
|
+
sage: for d in range(4): # long time (9s)
|
|
1074
|
+
....: for weight in IntegerVectors(d,3).map(list).map(L0):
|
|
1075
|
+
....: eigenvalues = E.eigenvalues(E[L0(weight)])
|
|
1076
|
+
|
|
1077
|
+
Some type `C` calculations::
|
|
1078
|
+
|
|
1079
|
+
sage: K = QQ['q','t'].fraction_field()
|
|
1080
|
+
sage: q, t = K.gens()
|
|
1081
|
+
sage: KL = RootSystem(["C",2,1]).ambient_space().algebra(K)
|
|
1082
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
|
|
1083
|
+
sage: L0 = E.keys()
|
|
1084
|
+
sage: omega = L0.fundamental_weights()
|
|
1085
|
+
sage: E[0*omega[1]]
|
|
1086
|
+
B[(0, 0)]
|
|
1087
|
+
sage: E.eigenvalues(_) # checked for i=0 with previous calculation
|
|
1088
|
+
[1/(q*t^3), t, t]
|
|
1089
|
+
sage: E[omega[1]]
|
|
1090
|
+
B[(1, 0)]
|
|
1091
|
+
sage: E.eigenvalues(_) # not checked
|
|
1092
|
+
[t, 1/(q*t^3), t]
|
|
1093
|
+
|
|
1094
|
+
sage: E[-omega[1]] # consistent with before refactoring
|
|
1095
|
+
B[(-1, 0)] - ((t-1)/(-q*t+1))*B[(1, 0)] - ((t-1)/(-q*t+1))*B[(0, -1)]
|
|
1096
|
+
+ ((t-1)/(q*t-1))*B[(0, 1)]
|
|
1097
|
+
sage: E.eigenvalues(_) # not checked
|
|
1098
|
+
[(-1)/(-q^2*t^3), q*t, t]
|
|
1099
|
+
sage: E[-omega[1]+omega[2]] # consistent with before refactoring
|
|
1100
|
+
-((t-1)/(-q*t^3+1))*B[(1, 0)] + B[(0, 1)]
|
|
1101
|
+
sage: E.eigenvalues(_) # not checked
|
|
1102
|
+
[t, q*t^3, (-1)/(-q*t^2)]
|
|
1103
|
+
sage: E[omega[1]-omega[2]] # consistent with before refactoring
|
|
1104
|
+
-((t-1)/(-q*t^2+1))*B[(1, 0)] + B[(0, -1)] - ((t-1)/(-q*t^2+1))*B[(0, 1)]
|
|
1105
|
+
sage: E.eigenvalues(_) # not checked
|
|
1106
|
+
[1/(q^2*t^3), 1/(q*t), q*t^2]
|
|
1107
|
+
|
|
1108
|
+
sage: E[-omega[2]]
|
|
1109
|
+
-((q^2*t^4-q^2*t^3+q*t^3-2*q*t^2+q*t-t+1)/(-q^3*t^4+q^2*t^3+q*t-1))*B[(0, 0)]
|
|
1110
|
+
+ B[(-1, -1)] - ((t-1)/(-q*t+1))*B[(-1, 1)] + ((t-1)/(q*t-1))*B[(1, -1)]
|
|
1111
|
+
- ((q*t^4-q*t^3-t+1)/(-q^3*t^4+q^2*t^3+q*t-1))*B[(1, 1)]
|
|
1112
|
+
sage: E.eigenvalues(_) # not checked # long time (1s)
|
|
1113
|
+
[1/(q^3*t^3), t, q*t]
|
|
1114
|
+
sage: E[-omega[2]].map_coefficients(lambda c: c.subs(t=0)) # checking against crystals
|
|
1115
|
+
B[(0, 0)] + B[(-1, -1)] + B[(-1, 1)] + B[(1, -1)] + B[(1, 1)]
|
|
1116
|
+
|
|
1117
|
+
sage: E[2*omega[2]]
|
|
1118
|
+
-((q^6*t^7-q^6*t^6+q^5*t^6-2*q^5*t^5+q^4*t^5+q^5*t^3-3*q^4*t^4+3*q^4*t^3-q^3*t^4-q^4*t^2+2*q^3*t^2-q^3*t+q^2*t-q^2)/(-q^6*t^7+q^5*t^6+q^4*t^4+q^3*t^4-q^3*t^3-q^2*t^3-q*t+1))*B[(0, 0)]
|
|
1119
|
+
- ((q^3*t^2-q^3*t)/(-q^3*t^3+1))*B[(-1, -1)]
|
|
1120
|
+
- ((q^3*t^3-2*q^3*t^2+q^3*t)/(-q^4*t^4+q^3*t^3+q*t-1))*B[(-1, 1)]
|
|
1121
|
+
- ((q^3*t^3-2*q^3*t^2+q^3*t)/(-q^4*t^4+q^3*t^3+q*t-1))*B[(1, -1)]
|
|
1122
|
+
- ((q^4*t^4-q^4*t^3+q^3*t^3-2*q^3*t^2+q^2*t^3+q^3*t-2*q^2*t^2+q^2*t-q*t+q)/(-q^4*t^4+q^3*t^3+q*t-1))*B[(1, 1)]
|
|
1123
|
+
+ ((q*t-q)/(q*t-1))*B[(2, 0)] + B[(2, 2)] - ((q*t-q)/(-q*t+1))*B[(0, 2)]
|
|
1124
|
+
sage: E.eigenvalues(_) # not checked
|
|
1125
|
+
[q^3*t^3, t, (-1)/(-q^2*t^2)]
|
|
1126
|
+
|
|
1127
|
+
The following computations were calculated by hand::
|
|
1128
|
+
|
|
1129
|
+
sage: KL0 = KL.classical()
|
|
1130
|
+
sage: E11 = KL0.sum_of_terms([[L0([1,1]), 1], [L0([0,0]), (-q*t^2 + q*t)/(1-q*t^3)]])
|
|
1131
|
+
sage: E11 == E[omega[2]]
|
|
1132
|
+
True
|
|
1133
|
+
sage: E.eigenvalues(E11)
|
|
1134
|
+
[q*t^3, t, (-1)/(-q*t^2)]
|
|
1135
|
+
|
|
1136
|
+
sage: E1m1 = KL0.sum_of_terms([[L0([1,-1]), 1], [L0([1,1]), (1-t)/(1-q*t^2)],
|
|
1137
|
+
....: [L0([0,0]), q*t*(1-t)/(1-q*t^2)]])
|
|
1138
|
+
sage: E1m1 == E[2*omega[1]-omega[2]]
|
|
1139
|
+
True
|
|
1140
|
+
sage: E.eigenvalues(E1m1)
|
|
1141
|
+
[1/(q*t), 1/(q^2*t^3), q*t^2]
|
|
1142
|
+
|
|
1143
|
+
Now we present an example for a twisted affine root system. The
|
|
1144
|
+
results are eigenvectors::
|
|
1145
|
+
|
|
1146
|
+
sage: K = QQ['q','t'].fraction_field()
|
|
1147
|
+
sage: q, t = K.gens()
|
|
1148
|
+
sage: KL = RootSystem("C2~*").ambient_space().algebra(K)
|
|
1149
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
|
|
1150
|
+
sage: omega = E.keys().fundamental_weights()
|
|
1151
|
+
sage: E[0*omega[1]]
|
|
1152
|
+
B[(0, 0)]
|
|
1153
|
+
sage: E.eigenvalues(_)
|
|
1154
|
+
[1/(q*t^2), t, t]
|
|
1155
|
+
sage: E[omega[1]]
|
|
1156
|
+
-((q*t-q)/(-q*t^2+1))*B[(0, 0)] + B[(1, 0)]
|
|
1157
|
+
sage: E.eigenvalues(_)
|
|
1158
|
+
[q*t^2, 1/(q^2*t^3), t]
|
|
1159
|
+
|
|
1160
|
+
sage: E[-omega[1]]
|
|
1161
|
+
-((q*t-q+t-1)/(-q^2*t+1))*B[(0, 0)] + B[(-1, 0)] - ((t-1)/(-q^2*t+1))*B[(1, 0)]
|
|
1162
|
+
- ((t-1)/(-q^2*t+1))*B[(0, -1)] + ((t-1)/(q^2*t-1))*B[(0, 1)]
|
|
1163
|
+
sage: E.eigenvalues(_)
|
|
1164
|
+
[(-1)/(-q^3*t^2), q^2*t, t]
|
|
1165
|
+
sage: E[-omega[1]+omega[2]]
|
|
1166
|
+
B[(-1/2, 1/2)] - ((t-1)/(-q^2*t^3+1))*B[(1/2, -1/2)]
|
|
1167
|
+
- ((q*t^3-q*t^2+t-1)/(-q^2*t^3+1))*B[(1/2, 1/2)]
|
|
1168
|
+
sage: E.eigenvalues(_)
|
|
1169
|
+
[(-1)/(-q^2*t^2), q^2*t^3, (-1)/(-q*t)]
|
|
1170
|
+
sage: E[omega[1]-omega[2]]
|
|
1171
|
+
B[(1/2, -1/2)] - ((t-1)/(-q*t^2+1))*B[(1/2, 1/2)]
|
|
1172
|
+
sage: E.eigenvalues(_)
|
|
1173
|
+
[t, 1/(q^2*t^3), q*t^2]
|
|
1174
|
+
|
|
1175
|
+
Type BC, comparison with calculations with Maple by Bogdan Ion::
|
|
1176
|
+
|
|
1177
|
+
sage: K = QQ['q','t'].fraction_field()
|
|
1178
|
+
sage: q,t = K.gens()
|
|
1179
|
+
sage: def to_SR(x):
|
|
1180
|
+
....: dim = x.parent().basis().keys().dimension()
|
|
1181
|
+
....: x_expanded = x.expand([SR.var('x%s'%i) for i in range(1, dim + 1)])
|
|
1182
|
+
....: return x_expanded.subs(q=SR.var('q'), t=SR.var('t'))
|
|
1183
|
+
sage: var('x1,x2,x3') # needs sage.symbolic
|
|
1184
|
+
(x1, x2, x3)
|
|
1185
|
+
|
|
1186
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["BC",2,2], q=q, q1=t^2, q2=-1)
|
|
1187
|
+
sage: omega = E.keys().fundamental_weights()
|
|
1188
|
+
sage: expected = (t-1)*(t+1)*(2+q^4+2*q^2-2*t^2-2*q^2*t^2-t^4*q^2-q^4*t^4+t^4-3*q^6*t^6-2*q^4*t^6+2*q^6*t^8+2*q^4*t^8+t^10*q^8)*q^4/((q^2*t^3-1)*(q^2*t^3+1)*(t*q-1)*(t*q+1)*(t^2*q^3+1)*(t^2*q^3-1))+(t-1)^2*(t+1)^2*(2*q^2+q^4+2+q^4*t^2)*q^3*x1/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1))+(t-1)^2*(t+1)^2*(q^2+1)*q^5/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1)*x1)+(t-1)^2*(t+1)^2*(q^2+1)*q^4*x2/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1)*x1)+(t-1)^2*(t+1)^2*(2*q^2+q^4+2+q^4*t^2)*q^3*x2/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1))+(t-1)^2*(t+1)^2*(q^2+1)*q^5/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1)*x2)+x1^2*x2^2+(t-1)*(t+1)*(-2*q^2-q^4-2+2*q^2*t^2+t^2+q^6*t^4+q^4*t^4)*q^2*x2*x1/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1))+(t-1)*(t+1)*(q^2+1+q^4*t^2)*q*x2^2*x1/((t^2*q^3-1)*(t^2*q^3+1))+(t-1)*(t+1)*q^3*x1^2/((t^2*q^3-1)*(t^2*q^3+1)*x2)+(t-1)*(t+1)*(q^2+1+q^4*t^2)*q*x2*x1^2/((t^2*q^3-1)*(t^2*q^3+1))+(t-1)*(t+1)*q^6/((t^2*q^3+1)*(t^2*q^3-1)*x1*x2)+(t-1)*(t+1)*(q^2+1+q^4*t^2)*q^2*x1^2/((t^2*q^3-1)*(t^2*q^3+1))+(t-1)*(t+1)*(q^2+1+q^4*t^2)*q^2*x2^2/((t^2*q^3-1)*(t^2*q^3+1))+(t-1)*(t+1)*q^3*x2^2/((t^2*q^3-1)*(t^2*q^3+1)*x1)+(t-1)^2*(t+1)^2*(q^2+1)*q^4*x1/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1)*x2) # needs sage.symbolic
|
|
1189
|
+
sage: to_SR(E[2*omega[2]]) - expected # long time (3.5s) # needs sage.symbolic
|
|
1190
|
+
0
|
|
1191
|
+
|
|
1192
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["BC",3,2], q=q, q1=t^2, q2=-1)
|
|
1193
|
+
sage: omega=E.keys().fundamental_weights()
|
|
1194
|
+
sage: mu = -3*omega[1] + 3*omega[2] - omega[3]; mu
|
|
1195
|
+
(-1, 2, -1)
|
|
1196
|
+
sage: expected = (t-1)^2*(t+1)^2*(3*q^2+q^4+1+t^2*q^4+q^2*t^2-3*t^4*q^2-5*t^6*q^4+2*t^8*q^4-4*t^8*q^6-q^8*t^10+2*t^10*q^6-2*q^8*t^12+t^14*q^8-t^14*q^10+q^10*t^16+q^8*t^16+q^10*t^18+t^18*q^12)*x2*x1/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(q^2*t^6+2*t^6*q^4-q^4*t^4+t^4*q^2-q^2*t^2+t^2-2-q^2)*q^2*x1/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)^2*(t+1)^2*(-q^2-1+t^4*q^2-q^4*t^4+2*t^6*q^4)*x1^2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t+1)*(t-1)*x2^2*x3/((t*q-1)*(t*q+1)*x1)+(t-1)^2*(t+1)^2*(3*q^2+q^4+2+t^2*q^4+2*q^2*t^2-4*t^4*q^2+q^4*t^4-6*t^6*q^4+t^8*q^4-4*t^8*q^6-q^8*t^10+t^10*q^6-3*q^8*t^12-2*t^14*q^10+2*t^14*q^8+2*q^10*t^16+q^8*t^16+t^18*q^12+2*q^10*t^18)*q*x2/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(1+q^4+2*q^2+t^2*q^4-3*t^4*q^2+q^2*t^6-5*t^6*q^4+3*t^8*q^4-4*t^8*q^6+2*t^10*q^6-q^8*t^12-t^14*q^10+t^14*q^8+q^10*t^16+t^18*q^12)*x3*x1/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(2*q^2+1+q^4+t^2*q^4-t^2+q^2*t^2-4*t^4*q^2+q^4*t^4+q^2*t^6-5*t^6*q^4+3*t^8*q^4-4*t^8*q^6+2*t^10*q^6+q^6*t^12-2*q^8*t^12-2*t^14*q^10+2*t^14*q^8+q^10*t^16+t^18*q^12)*q*x3/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(1+t^2+t^4*q^2)*q*x3*x2^2/((t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1))+(t-1)^2*(t+1)^2*(-q^2-2-q^2*t^2+t^4-q^4*t^4-t^4*q^2+3*q^2*t^6-t^6*q^4-t^8*q^6+t^8*q^4+t^10*q^4+2*q^6*t^12-q^8*t^12+t^14*q^8)*q*x3*x2*x1/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)*(t+1)*x1^2/((q^3*t^5-1)*(q^3*t^5+1)*x3*x2)+(t-1)*(t+1)*(-q^2-1+t^4*q^2-q^4*t^4+2*t^6*q^4)*x2^2/((t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1))+(t-1)*(t+1)*(t^3*q-1)*(t^3*q+1)*x3*x2^2*x1/((t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1))+(t-1)^2*(t+1)^2*(q^2+1)*q*x1/((t*q+1)*(t*q-1)*(q^3*t^5+1)*(q^3*t^5-1)*x3*x2)+(t-1)^2*(t+1)^2*(t^3*q-1)*(t^3*q+1)*x3*x2*x1^2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)^2*(t+1)^2*q^3*x3/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1*x2)+(t-1)*(t+1)*(-1-q^2+q^2*t^2+t^10*q^6)*q*x2/((t*q+1)*(t*q-1)*(q^3*t^5+1)*(q^3*t^5-1)*x3*x1)+x2^2/(x1*x3)+(t-1)*(t+1)*q*x2^2/((t*q-1)*(t*q+1)*x3)+(t-1)^3*(t+1)^3*(1+t^2+t^4*q^2)*q*x2*x1^2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)^2*(t+1)^2*q*x1^2/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*(q^2*t^6+2*t^6*q^4-q^4*t^4+t^4*q^2-q^2*t^2+t^2-2-q^2)*q^3/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)*(t+1)*(q^2+2-t^2+q^4*t^4-t^4*q^2-3*t^6*q^4+t^8*q^4-2*t^10*q^6-q^8*t^12+q^6*t^12+q^8*t^16+q^10*t^16)*q^2*x2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1)+(t-1)^2*(t+1)^2*(q^2+1)*q^2/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3*x2)+(t-1)*(t+1)*(1+q^4+2*q^2-2*q^2*t^2+t^4*q^6-q^4*t^4-3*q^6*t^6-t^6*q^4+2*t^8*q^6-t^10*q^6-q^8*t^10-t^14*q^10+t^14*q^8+2*q^10*t^16)*x2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*(-q^2-2-q^2*t^2-q^4*t^4+2*t^6*q^4+t^10*q^6+q^8*t^12+t^14*q^8)*q^3/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1)+(t-1)^2*(t+1)^2*(-1-q^2-q^2*t^2+t^2+t^4*q^2-q^4*t^4+2*t^6*q^4)*q^2*x3/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)*(t+1)*q*x2^2/((t*q-1)*(t*q+1)*x1)+(t-1)^2*(t+1)^2*(1+t^2+t^4*q^2)*q*x2^2*x1/((t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1))+(t-1)^2*(t+1)^2*q*x1^2/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)^2*(t+1)^2*(-1-q^4-2*q^2-t^2*q^4-q^2*t^2+t^4*q^2-t^4*q^6-2*q^4*t^4+3*t^6*q^4-q^6*t^6-t^8*q^8+t^8*q^6+2*t^10*q^6-q^10*t^12+3*q^8*t^12+2*t^14*q^10)*x3*x2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)*(t+1)*(q^2+1-t^2+q^4*t^4-t^4*q^2+q^2*t^6-3*t^6*q^4+t^8*q^4-t^10*q^6+q^6*t^12-q^8*t^12+q^10*t^16)*q^2*x3/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1)+(t-1)*(t+1)*(-1-q^2+q^2*t^2+t^10*q^6)*q^2/((t*q-1)*(t*q+1)*(q^3*t^5+1)*(q^3*t^5-1)*x1*x3)+(t-1)*(t+1)*(1+q^4+2*q^2-3*q^2*t^2+t^4*q^6-q^4*t^4-3*q^6*t^6-t^6*q^4+t^8*q^4+2*t^8*q^6-t^10*q^6+t^14*q^8-t^14*q^10+q^10*t^16)*x1/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*(3*q^2+q^4+2+q^2*t^2-t^2+t^2*q^4-6*t^4*q^2+q^4*t^4-7*t^6*q^4+q^2*t^6+3*t^8*q^4-4*t^8*q^6+t^10*q^4+3*t^10*q^6-q^8*t^12-t^14*q^10+t^14*q^8+q^8*t^16+q^10*t^18)*q*x1/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(-q^2-2-q^2*t^2-q^4*t^4+2*t^6*q^4+t^10*q^6+q^6*t^12+t^14*q^8)*q*x2*x1/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t+1)*(t-1)*x2^2*x1/((t*q-1)*(t*q+1)*x3)+(t-1)^3*(t+1)^3*(1+t^2+t^4*q^2)*q*x3*x1^2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)*(t+1)*q^3/((q^3*t^5+1)*(q^3*t^5-1)*x1*x2*x3)+(t-1)^2*(t+1)^2*(3+3*q^2+q^4+2*q^2*t^2-t^2+t^2*q^4-6*t^4*q^2+q^4*t^4-8*t^6*q^4+q^2*t^6+2*t^8*q^4-4*t^8*q^6+t^10*q^4+2*t^10*q^6-2*q^8*t^12-t^14*q^10+t^14*q^8+q^8*t^16+q^10*t^16+2*q^10*t^18)*q^2/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(-q^4-2*q^2-1-t^2*q^4-t^4*q^6+2*q^6*t^6+t^6*q^4+t^10*q^6+q^8*t^12+t^14*q^10)*q/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*(-1-q^2-q^2*t^2+t^2+t^4*q^2-q^4*t^4+2*t^6*q^4)*q*x3*x1/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)^2*(t+1)^2*x2*x1^2/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*x3*x1^2/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)^2*(t+1)^2*q^4/((t*q+1)*(t*q-1)*(q^3*t^5+1)*(q^3*t^5-1)*x1*x2)+(t-1)^2*(t+1)^2*(-q^2-1-q^2*t^2-q^4*t^4+t^6*q^4+t^10*q^6+q^8*t^12+t^14*q^10)*q*x3*x2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1) # needs sage.symbolic
|
|
1197
|
+
sage: to_SR(E[mu]) - expected # long time (20s) # needs sage.symbolic
|
|
1198
|
+
0
|
|
1199
|
+
|
|
1200
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["BC",1,2], q=q, q1=t^2, q2=-1)
|
|
1201
|
+
sage: omega = E.keys().fundamental_weights()
|
|
1202
|
+
sage: mu = -4*omega[1]; mu
|
|
1203
|
+
(-4)
|
|
1204
|
+
sage: expected = (t-1)*(t+1)*(-1+q^2*t^2-q^2-3*q^10-7*q^26*t^8+5*t^2*q^6-q^16-3*q^4+4*t^10*q^30-4*t^6*q^22-10*q^20*t^6+2*q^32*t^10-3*q^6-4*q^8+q^34*t^10-4*t^8*q^24-2*q^12-q^14+2*q^22*t^10+4*q^26*t^10+4*q^28*t^10+t^6*q^30-2*q^32*t^8-2*t^8*q^22+2*q^24*t^10-q^20*t^2-2*t^6*q^12+t^8*q^14+2*t^4*q^24-4*t^8*q^30+2*t^8*q^20-9*t^6*q^16+3*q^26*t^6+q^28*t^6+3*t^2*q^4+2*q^18*t^8-6*t^6*q^14+4*t^4*q^22-2*q^24*t^6+3*t^2*q^12+7*t^4*q^20-t^2*q^16+11*q^18*t^4-2*t^2*q^18+9*q^16*t^4-t^4*q^6+6*q^8*t^2+5*q^10*t^2-6*q^28*t^8+q^12*t^4+8*t^4*q^14-10*t^6*q^18-q^4*t^4+q^16*t^8-2*t^4*q^8)/((t*q^4-1)*(t*q^4+1)*(q^7*t^2-1)*(q^7*t^2+1)*(t*q^3-1)*(t*q^3+1)*(q^5*t^2+1)*(q^5*t^2-1))+(q^2+1)*(q^4+1)*(t-1)*(t+1)*(-1+q^2*t^2-q^2+t^2*q^6-q^4+t^6*q^22+3*q^10*t^4+t^2-q^8-2*t^8*q^24+q^22*t^10+q^26*t^10-2*t^8*q^22+q^24*t^10-4*t^6*q^12-2*t^8*q^20-3*t^6*q^16+2*t^2*q^4-t^6*q^10-2*t^6*q^14+t^8*q^12-t^2*q^12+2*q^16*t^4+q^8*t^2-q^10*t^2+3*q^12*t^4+2*t^4*q^14+t^6*q^18-2*q^4*t^4+q^16*t^8+q^20*t^10)*q*x1/((t*q^4-1)*(t*q^4+1)*(q^7*t^2-1)*(q^7*t^2+1)*(t*q^3-1)*(t*q^3+1)*(q^5*t^2+1)*(q^5*t^2-1))+(q^2+1)*(q^4+1)*(t-1)*(t+1)*(1+q^8+q^4+q^2-q^8*t^2-2*t^2*q^4-t^2*q^6+t^2*q^12-t^2+t^4*q^6-2*q^16*t^4-t^4*q^14-2*q^12*t^4+t^6*q^12+t^6*q^16+t^6*q^18+t^6*q^14)*q/((t*q^4-1)*(t*q^4+1)*(q^7*t^2-1)*(q^7*t^2+1)*(t*q^3-1)*(t*q^3+1)*x1)+(t-1)*(t+1)*(-1-q^2-q^6-q^4-q^8+t^2*q^4-t^2*q^14+t^2*q^6-q^10*t^2+q^8*t^2-t^2*q^12+q^12*t^4+q^10*t^4+q^16*t^4+2*t^4*q^14)*(q^4+1)/((q^7*t^2+1)*(q^7*t^2-1)*(t*q^4-1)*(t*q^4+1)*x1^2)+(t-1)*(t+1)*(q^4+1)*(q^2+1)*q/((t*q^4-1)*(t*q^4+1)*x1^3)+(q^4+1)*(t-1)*(t+1)*(1+q^6+q^8+q^2+q^4-q^2*t^2-3*t^2*q^4+q^10*t^2+t^2*q^12-2*t^2*q^6-q^8*t^2-2*q^16*t^4+q^4*t^4+t^4*q^6-q^10*t^4-2*q^12*t^4-2*t^4*q^14+t^6*q^12+t^6*q^18+2*t^6*q^16+t^6*q^14)*x1^2/((t*q^4-1)*(t*q^4+1)*(q^7*t^2-1)*(q^7*t^2+1)*(t*q^3-1)*(t*q^3+1))+(t-1)*(t+1)*(-1-t^2*q^6+t^2+t^4*q^8)*(q^4+1)*(q^2+1)*q*x1^3/((q^7*t^2+1)*(q^7*t^2-1)*(t*q^4-1)*(t*q^4+1))+1/x1^4+(t-1)*(t+1)*x1^4/((t*q^4-1)*(t*q^4+1)) # needs sage.symbolic
|
|
1205
|
+
sage: to_SR(E[mu]) - expected # needs sage.symbolic
|
|
1206
|
+
0
|
|
1207
|
+
|
|
1208
|
+
Type `BC` dual, comparison with hand calculations by Bogdan Ion::
|
|
1209
|
+
|
|
1210
|
+
sage: K = QQ['q,q1,q2'].fraction_field()
|
|
1211
|
+
sage: q,q1,q2 = K.gens()
|
|
1212
|
+
sage: ct = CartanType(["BC",2,2]).dual()
|
|
1213
|
+
sage: E = NonSymmetricMacdonaldPolynomials(ct, q=q, q1=q1, q2=q2)
|
|
1214
|
+
sage: KL = E.domain(); KL
|
|
1215
|
+
Algebra of the Ambient space of the Root system of type ['B', 2]
|
|
1216
|
+
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
|
|
1217
|
+
sage: alpha = E.keys().simple_roots(); alpha
|
|
1218
|
+
Finite family {1: (1, -1), 2: (0, 1)}
|
|
1219
|
+
sage: omega=E.keys().fundamental_weights(); omega
|
|
1220
|
+
Finite family {1: (1, 0), 2: (1/2, 1/2)}
|
|
1221
|
+
sage: epsilon = E.keys().basis(); epsilon
|
|
1222
|
+
Finite family {0: (1, 0), 1: (0, 1)}
|
|
1223
|
+
|
|
1224
|
+
Note: Sage's `q` is the usual `q^2`::
|
|
1225
|
+
|
|
1226
|
+
sage: E.L().null_root()
|
|
1227
|
+
e['delta']
|
|
1228
|
+
sage: E.L().null_coroot()
|
|
1229
|
+
2*e['deltacheck']
|
|
1230
|
+
|
|
1231
|
+
Some eigenvectors::
|
|
1232
|
+
|
|
1233
|
+
sage: E[0*omega[1]]
|
|
1234
|
+
B[(0, 0)]
|
|
1235
|
+
sage: E[omega[1]]
|
|
1236
|
+
-((q^2*q1^3*q2+q^2*q1^2*q2^2)/(q^2*q1^4-q2^4))*B[(0, 0)] + B[(1, 0)]
|
|
1237
|
+
sage: Eomega1 = (KL.one() * (q^2*(-q1/q2)^2*(1-(-q1/q2))) / (1-q^2*(-q1/q2)^4)
|
|
1238
|
+
....: + KL.monomial(omega[1]))
|
|
1239
|
+
sage: E[omega[1]] == Eomega1
|
|
1240
|
+
True
|
|
1241
|
+
|
|
1242
|
+
Checking the `Y` s::
|
|
1243
|
+
|
|
1244
|
+
sage: Y = E.Y()
|
|
1245
|
+
sage: alphacheck = Y.keys().simple_roots()
|
|
1246
|
+
sage: Y0 = Y[alphacheck[0]]
|
|
1247
|
+
sage: Y1 = Y[alphacheck[1]]
|
|
1248
|
+
sage: Y2 = Y[alphacheck[2]]
|
|
1249
|
+
|
|
1250
|
+
sage: Y0.word, Y0.signs, Y0.scalar
|
|
1251
|
+
((0, 1, 2, 1, 0, 1, 2, 1), (-1, -1, -1, -1, -1, -1, -1, -1), q1^4*q2^4/q^2)
|
|
1252
|
+
sage: Y1.word, Y1.signs, Y1.scalar
|
|
1253
|
+
((1, 2, 0, 1, 2, 0), (1, 1, -1, 1, -1, 1), 1/(-q1*q2))
|
|
1254
|
+
sage: Y2.word, Y2.signs, Y2.scalar
|
|
1255
|
+
((2, 1, 0, 1), (1, 1, 1, -1), 1/(-q1*q2))
|
|
1256
|
+
|
|
1257
|
+
sage: E.eigenvalues(0*omega[1])
|
|
1258
|
+
[q2^4/(q^2*q1^4), q1/(-q2), q1/(-q2)]
|
|
1259
|
+
|
|
1260
|
+
Checking the `T` and `T^{-1}` s::
|
|
1261
|
+
|
|
1262
|
+
sage: T = E._T_Y
|
|
1263
|
+
sage: Tinv0 = T.Tw_inverse([0])
|
|
1264
|
+
sage: Tinv1 = T.Tw_inverse([1])
|
|
1265
|
+
sage: Tinv2 = T.Tw_inverse([2])
|
|
1266
|
+
|
|
1267
|
+
sage: for x in [0*epsilon[0], -epsilon[0], -epsilon[1], epsilon[0], epsilon[1]]:
|
|
1268
|
+
....: x = KL.monomial(x)
|
|
1269
|
+
....: assert Tinv0(T[0](x)) == x and T[0](Tinv0(x)) == x
|
|
1270
|
+
....: assert Tinv1(T[1](x)) == x and T[1](Tinv1(x)) == x
|
|
1271
|
+
....: assert Tinv2(T[2](x)) == x and T[2](Tinv2(x)) == x
|
|
1272
|
+
|
|
1273
|
+
sage: start = E[omega[1]]; start
|
|
1274
|
+
-((q^2*q1^3*q2+q^2*q1^2*q2^2)/(q^2*q1^4-q2^4))*B[(0, 0)] + B[(1, 0)]
|
|
1275
|
+
sage: Tinv1(Tinv2(Tinv1(Tinv0(Tinv1(Tinv2(Tinv1(Tinv0(start)))))))) * (q1*q2)^4/q^2 == Y0(start)
|
|
1276
|
+
True
|
|
1277
|
+
sage: Y0(start) == q^2*q1^4/q2^4 * start
|
|
1278
|
+
True
|
|
1279
|
+
|
|
1280
|
+
Checking the relation between the `Y` s::
|
|
1281
|
+
|
|
1282
|
+
sage: q^2 * Y0(Y1(Y1(Y2(Y2(start))))) == start
|
|
1283
|
+
True
|
|
1284
|
+
sage: for x in [0*epsilon[0], -epsilon[0], -epsilon[1], epsilon[0], epsilon[1]]:
|
|
1285
|
+
....: x = KL.monomial(x)
|
|
1286
|
+
....: assert q^2 * Y0(Y1(Y1(Y2(Y2(start))))) == start
|
|
1287
|
+
"""
|
|
1288
|
+
|
|
1289
|
+
@staticmethod
|
|
1290
|
+
def __classcall__(cls, KL, q='q', q1='q1', q2='q2', normalized=True):
|
|
1291
|
+
r"""
|
|
1292
|
+
EXAMPLES::
|
|
1293
|
+
|
|
1294
|
+
sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1])
|
|
1295
|
+
The family of the Macdonald polynomials of type ['B', 2, 1] with parameters q, q1, q2
|
|
1296
|
+
"""
|
|
1297
|
+
from sage.combinat.root_system.cartan_type import CartanType
|
|
1298
|
+
K = None
|
|
1299
|
+
#if KL in Algebras:
|
|
1300
|
+
if isinstance(KL, CombinatorialFreeModule): # temporary work around C3 issue ...
|
|
1301
|
+
K = KL.base_ring()
|
|
1302
|
+
else:
|
|
1303
|
+
if q == 'q':
|
|
1304
|
+
from sage.rings.rational_field import QQ
|
|
1305
|
+
K = QQ['q','q1','q2'].fraction_field()
|
|
1306
|
+
else:
|
|
1307
|
+
K = q.parent()
|
|
1308
|
+
KL = CartanType(KL).root_system().ambient_space().algebra(K)
|
|
1309
|
+
q = K(q)
|
|
1310
|
+
q1 = K(q1)
|
|
1311
|
+
q2 = K(q2)
|
|
1312
|
+
return super().__classcall__(cls, KL, q, q1, q2, normalized)
|
|
1313
|
+
|
|
1314
|
+
def __init__(self, KL, q, q1, q2, normalized):
|
|
1315
|
+
r"""
|
|
1316
|
+
Initialize the nonsymmetric Macdonald polynomial class.
|
|
1317
|
+
|
|
1318
|
+
INPUT:
|
|
1319
|
+
|
|
1320
|
+
- ``KL`` -- algebra over weight space
|
|
1321
|
+
- ``q``, ``q1``, ``q2`` -- parameters
|
|
1322
|
+
- ``normalized`` -- boolean (default: ``True``); whether to normalize
|
|
1323
|
+
the result to have leading coefficient 1
|
|
1324
|
+
|
|
1325
|
+
EXAMPLES::
|
|
1326
|
+
|
|
1327
|
+
sage: K = QQ['q,q1,q2'].fraction_field()
|
|
1328
|
+
sage: q, q1, q2 = K.gens()
|
|
1329
|
+
sage: KL = RootSystem(["A",1,1]).weight_space(extended = True).algebra(K)
|
|
1330
|
+
sage: NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
|
|
1331
|
+
The family of the Macdonald polynomials of type ['A', 1, 1] with parameters q, q1, q2
|
|
1332
|
+
|
|
1333
|
+
sage: KL = RootSystem(["A",1,1]).ambient_space().algebra(K)
|
|
1334
|
+
sage: NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
|
|
1335
|
+
The family of the Macdonald polynomials of type ['A', 1, 1] with parameters q, q1, q2
|
|
1336
|
+
|
|
1337
|
+
sage: KL = RootSystem(["A",1,1]).weight_space().algebra(K)
|
|
1338
|
+
sage: NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
|
|
1339
|
+
Traceback (most recent call last):
|
|
1340
|
+
...
|
|
1341
|
+
AssertionError: The weight lattice needs to be extended!
|
|
1342
|
+
"""
|
|
1343
|
+
# TODO: check all the choices!
|
|
1344
|
+
self._KL = KL
|
|
1345
|
+
self._L = KL.basis().keys()
|
|
1346
|
+
assert self._L.is_extended(), "The weight lattice needs to be extended!"
|
|
1347
|
+
self._q = q
|
|
1348
|
+
self._q1 = q1
|
|
1349
|
+
self._q2 = q2
|
|
1350
|
+
assert self.L_prime().classical() is self.L().classical()
|
|
1351
|
+
T = KL.twisted_demazure_lusztig_operators(q1, q2, convention='dominant')
|
|
1352
|
+
T_Y = KL.demazure_lusztig_operators_on_classical(q, q1, q2, convention='dominant')
|
|
1353
|
+
CherednikOperatorsEigenvectors.__init__(self, T, T_Y, normalized=normalized)
|
|
1354
|
+
|
|
1355
|
+
def _repr_(self):
|
|
1356
|
+
r"""
|
|
1357
|
+
EXAMPLES::
|
|
1358
|
+
|
|
1359
|
+
sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1])
|
|
1360
|
+
The family of the Macdonald polynomials of type ['B', 2, 1] with parameters q, q1, q2
|
|
1361
|
+
"""
|
|
1362
|
+
return "The family of the Macdonald polynomials of type %s with parameters %s, %s, %s" % (self.cartan_type(),self._q, self._q1, self._q2)
|
|
1363
|
+
|
|
1364
|
+
# This is redundant with the cartan_type method of
|
|
1365
|
+
# CherednikOperatorsEigenvectors, but we need it very early in the
|
|
1366
|
+
# initialization, before self._T_Y is set ...
|
|
1367
|
+
@cached_method
|
|
1368
|
+
def cartan_type(self):
|
|
1369
|
+
r"""
|
|
1370
|
+
Return Cartan type of ``self``.
|
|
1371
|
+
|
|
1372
|
+
EXAMPLES::
|
|
1373
|
+
|
|
1374
|
+
sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).cartan_type()
|
|
1375
|
+
['B', 2, 1]
|
|
1376
|
+
"""
|
|
1377
|
+
return self._L.cartan_type()
|
|
1378
|
+
|
|
1379
|
+
def L(self):
|
|
1380
|
+
r"""
|
|
1381
|
+
Return the affinization of the classical weight space.
|
|
1382
|
+
|
|
1383
|
+
EXAMPLES::
|
|
1384
|
+
|
|
1385
|
+
sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).L()
|
|
1386
|
+
Ambient space of the Root system of type ['B', 2, 1]
|
|
1387
|
+
"""
|
|
1388
|
+
return self._L
|
|
1389
|
+
|
|
1390
|
+
@cached_method
|
|
1391
|
+
def L_check(self):
|
|
1392
|
+
r"""
|
|
1393
|
+
Return the other affinization of the classical weight space.
|
|
1394
|
+
|
|
1395
|
+
.. TODO:: should this just return `L` in the simply laced case?
|
|
1396
|
+
|
|
1397
|
+
EXAMPLES::
|
|
1398
|
+
|
|
1399
|
+
sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).L_check()
|
|
1400
|
+
Coambient space of the Root system of type ['C', 2, 1]
|
|
1401
|
+
sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).L_check().classical()
|
|
1402
|
+
Ambient space of the Root system of type ['B', 2]
|
|
1403
|
+
"""
|
|
1404
|
+
from sage.combinat.root_system.weight_space import WeightSpace
|
|
1405
|
+
from sage.combinat.root_system.type_affine import AmbientSpace
|
|
1406
|
+
L = self.L()
|
|
1407
|
+
other_affine_root_system = self.cartan_type().classical().dual().affine().root_system()
|
|
1408
|
+
if isinstance(L, WeightSpace): # TODO: make a nicer test
|
|
1409
|
+
return other_affine_root_system.coweight_space(L.base_ring(), extended=True)
|
|
1410
|
+
else:
|
|
1411
|
+
assert isinstance(L, AmbientSpace)
|
|
1412
|
+
return other_affine_root_system.coambient_space(L.base_ring())
|
|
1413
|
+
|
|
1414
|
+
@cached_method
|
|
1415
|
+
def L_prime(self):
|
|
1416
|
+
r"""
|
|
1417
|
+
The affine space where classical weights are lifted for the recursion.
|
|
1418
|
+
|
|
1419
|
+
Also the parent of `\rho'`.
|
|
1420
|
+
|
|
1421
|
+
EXAMPLES:
|
|
1422
|
+
|
|
1423
|
+
In the twisted case, this is the affinization of the classical
|
|
1424
|
+
ambient space::
|
|
1425
|
+
|
|
1426
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~*").L()
|
|
1427
|
+
Ambient space of the Root system of type ['B', 2, 1]^*
|
|
1428
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~*").L().classical()
|
|
1429
|
+
Ambient space of the Root system of type ['C', 2]
|
|
1430
|
+
|
|
1431
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~*").L_prime()
|
|
1432
|
+
Ambient space of the Root system of type ['B', 2, 1]^*
|
|
1433
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~*").L_prime().classical()
|
|
1434
|
+
Ambient space of the Root system of type ['C', 2]
|
|
1435
|
+
|
|
1436
|
+
In the untwisted case, this is the other affinization of the
|
|
1437
|
+
classical ambient space::
|
|
1438
|
+
|
|
1439
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~").L()
|
|
1440
|
+
Ambient space of the Root system of type ['B', 2, 1]
|
|
1441
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~").L().classical()
|
|
1442
|
+
Ambient space of the Root system of type ['B', 2]
|
|
1443
|
+
|
|
1444
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~").L_prime()
|
|
1445
|
+
Coambient space of the Root system of type ['C', 2, 1]
|
|
1446
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~").L_prime().classical()
|
|
1447
|
+
Ambient space of the Root system of type ['B', 2]
|
|
1448
|
+
|
|
1449
|
+
For simply laced, the two affinizations coincide::
|
|
1450
|
+
|
|
1451
|
+
sage: NonSymmetricMacdonaldPolynomials("A2~").L()
|
|
1452
|
+
Ambient space of the Root system of type ['A', 2, 1]
|
|
1453
|
+
sage: NonSymmetricMacdonaldPolynomials("A2~").L().classical()
|
|
1454
|
+
Ambient space of the Root system of type ['A', 2]
|
|
1455
|
+
|
|
1456
|
+
sage: NonSymmetricMacdonaldPolynomials("A2~").L_prime()
|
|
1457
|
+
Coambient space of the Root system of type ['A', 2, 1]
|
|
1458
|
+
sage: NonSymmetricMacdonaldPolynomials("A2~").L_prime().classical()
|
|
1459
|
+
Ambient space of the Root system of type ['A', 2]
|
|
1460
|
+
|
|
1461
|
+
.. NOTE:: do we want the coambient space of type `A_2^{(1)}` instead?
|
|
1462
|
+
|
|
1463
|
+
For type BC::
|
|
1464
|
+
|
|
1465
|
+
sage: NonSymmetricMacdonaldPolynomials(["BC",3,2]).L_prime()
|
|
1466
|
+
Ambient space of the Root system of type ['BC', 3, 2]
|
|
1467
|
+
"""
|
|
1468
|
+
ct = self.cartan_type()
|
|
1469
|
+
if ct.is_untwisted_affine():
|
|
1470
|
+
return self.L_check()
|
|
1471
|
+
else:
|
|
1472
|
+
return self.L()
|
|
1473
|
+
|
|
1474
|
+
@cached_method
|
|
1475
|
+
def L0(self):
|
|
1476
|
+
r"""
|
|
1477
|
+
Return the space indexing the monomials of the nonsymmetric Macdonald polynomials.
|
|
1478
|
+
|
|
1479
|
+
EXAMPLES::
|
|
1480
|
+
|
|
1481
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~").L0()
|
|
1482
|
+
Ambient space of the Root system of type ['B', 2]
|
|
1483
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~*").L0()
|
|
1484
|
+
Ambient space of the Root system of type ['C', 2]
|
|
1485
|
+
"""
|
|
1486
|
+
return self.L().classical()
|
|
1487
|
+
|
|
1488
|
+
@cached_method
|
|
1489
|
+
def KL0(self):
|
|
1490
|
+
r"""
|
|
1491
|
+
Return the group algebra where the nonsymmetric Macdonald polynomials live.
|
|
1492
|
+
|
|
1493
|
+
EXAMPLES::
|
|
1494
|
+
|
|
1495
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~").KL0()
|
|
1496
|
+
Algebra of the Ambient space of the Root system of type ['B', 2]
|
|
1497
|
+
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
|
|
1498
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~*").KL0()
|
|
1499
|
+
Algebra of the Ambient space of the Root system of type ['C', 2]
|
|
1500
|
+
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
|
|
1501
|
+
"""
|
|
1502
|
+
return self._KL.classical()
|
|
1503
|
+
|
|
1504
|
+
@lazy_attribute
|
|
1505
|
+
def Q_to_Qcheck(self):
|
|
1506
|
+
r"""
|
|
1507
|
+
The reindexing of the index set of the Y's by the coroot lattice.
|
|
1508
|
+
|
|
1509
|
+
EXAMPLES::
|
|
1510
|
+
|
|
1511
|
+
sage: E = NonSymmetricMacdonaldPolynomials("C2~")
|
|
1512
|
+
sage: alphacheck = E.Y().keys().simple_roots()
|
|
1513
|
+
sage: E.Q_to_Qcheck(alphacheck[0])
|
|
1514
|
+
alphacheck[0] - alphacheck[2]
|
|
1515
|
+
sage: E.Q_to_Qcheck(alphacheck[1])
|
|
1516
|
+
alphacheck[1]
|
|
1517
|
+
sage: E.Q_to_Qcheck(alphacheck[2])
|
|
1518
|
+
alphacheck[2]
|
|
1519
|
+
|
|
1520
|
+
sage: x = alphacheck[1] + 2*alphacheck[2]
|
|
1521
|
+
sage: x.parent()
|
|
1522
|
+
Root lattice of the Root system of type ['B', 2, 1]
|
|
1523
|
+
sage: E.Q_to_Qcheck(x)
|
|
1524
|
+
alphacheck[1] + 2*alphacheck[2]
|
|
1525
|
+
sage: _.parent()
|
|
1526
|
+
Coroot lattice of the Root system of type ['C', 2, 1]
|
|
1527
|
+
"""
|
|
1528
|
+
#assert self.cartan_type().is_untwisted_affine()
|
|
1529
|
+
Qcheck = self._T_Y.Y().keys()
|
|
1530
|
+
Q = Qcheck.cartan_type().other_affinization().root_system().root_lattice()
|
|
1531
|
+
assert Q.classical() is Qcheck.classical()
|
|
1532
|
+
return Q.module_morphism(Qcheck.simple_roots_tilde().__getitem__, codomain=Qcheck)
|
|
1533
|
+
|
|
1534
|
+
def Y(self):
|
|
1535
|
+
r"""
|
|
1536
|
+
Return the family of `Y` operators whose eigenvectors are the nonsymmetric Macdonald polynomials.
|
|
1537
|
+
|
|
1538
|
+
EXAMPLES::
|
|
1539
|
+
|
|
1540
|
+
sage: NonSymmetricMacdonaldPolynomials("C2~").Y()
|
|
1541
|
+
Lazy family (<lambda>(i))_{i in Root lattice of the Root system of type ['B', 2, 1]}
|
|
1542
|
+
sage: _.keys().classical()
|
|
1543
|
+
Root lattice of the Root system of type ['B', 2]
|
|
1544
|
+
sage: NonSymmetricMacdonaldPolynomials("C2~*").Y()
|
|
1545
|
+
Lazy family (<...Y_lambdacheck...>(i))_{i in Coroot lattice of the Root system of type ['C', 2, 1]^*}
|
|
1546
|
+
sage: _.keys().classical()
|
|
1547
|
+
Root lattice of the Root system of type ['C', 2]
|
|
1548
|
+
sage: NonSymmetricMacdonaldPolynomials(["BC", 3, 2]).Y()
|
|
1549
|
+
Lazy family (<...Y_lambdacheck...>(i))_{i in Coroot lattice of the Root system of type ['BC', 3, 2]}
|
|
1550
|
+
sage: _.keys().classical()
|
|
1551
|
+
Root lattice of the Root system of type ['B', 3]
|
|
1552
|
+
"""
|
|
1553
|
+
from sage.sets.family import Family
|
|
1554
|
+
Y = self._T_Y.Y()
|
|
1555
|
+
ct = self.cartan_type()
|
|
1556
|
+
# TODO: improve test
|
|
1557
|
+
if ct.dual().is_untwisted_affine() or ct.type() == "BC":
|
|
1558
|
+
return Y
|
|
1559
|
+
Q = self.Q_to_Qcheck.domain()
|
|
1560
|
+
return Family(Q, lambda lambdacheck: Y[self.Q_to_Qcheck(lambdacheck)])
|
|
1561
|
+
|
|
1562
|
+
def affine_lift(self, mu):
|
|
1563
|
+
r"""
|
|
1564
|
+
Return the affinization of `\mu` in `L'`.
|
|
1565
|
+
|
|
1566
|
+
INPUT:
|
|
1567
|
+
|
|
1568
|
+
- ``mu`` -- a classical weight `\mu`
|
|
1569
|
+
|
|
1570
|
+
.. SEEALSO::
|
|
1571
|
+
|
|
1572
|
+
- :meth:`.hecke_algebra_representation.CherednikOperatorsEigenvectors.affine_lift`
|
|
1573
|
+
- :meth:`affine_retract`
|
|
1574
|
+
- :meth:`L_prime`
|
|
1575
|
+
|
|
1576
|
+
EXAMPLES:
|
|
1577
|
+
|
|
1578
|
+
In the untwisted case, this is the other affinization at level 1::
|
|
1579
|
+
|
|
1580
|
+
sage: E = NonSymmetricMacdonaldPolynomials("B2~")
|
|
1581
|
+
sage: L0 = E.keys(); L0
|
|
1582
|
+
Ambient space of the Root system of type ['B', 2]
|
|
1583
|
+
sage: omega = L0.fundamental_weights()
|
|
1584
|
+
sage: E.affine_lift(omega[1])
|
|
1585
|
+
e[0] + e['deltacheck']
|
|
1586
|
+
sage: E.affine_lift(omega[1]).parent()
|
|
1587
|
+
Coambient space of the Root system of type ['C', 2, 1]
|
|
1588
|
+
|
|
1589
|
+
In the twisted case, this is the usual affinization at level 1::
|
|
1590
|
+
|
|
1591
|
+
sage: E = NonSymmetricMacdonaldPolynomials("B2~*")
|
|
1592
|
+
sage: L0 = E.keys(); L0
|
|
1593
|
+
Ambient space of the Root system of type ['C', 2]
|
|
1594
|
+
sage: omega = L0.fundamental_weights()
|
|
1595
|
+
sage: E.affine_lift(omega[1])
|
|
1596
|
+
e[0] + e['deltacheck']
|
|
1597
|
+
sage: E.affine_lift(omega[1]).parent()
|
|
1598
|
+
Ambient space of the Root system of type ['B', 2, 1]^*
|
|
1599
|
+
"""
|
|
1600
|
+
return self.L_prime().embed_at_level(mu, 1)
|
|
1601
|
+
|
|
1602
|
+
def twist(self, mu, i):
|
|
1603
|
+
r"""
|
|
1604
|
+
Act by `s_i` on the affine weight `\mu`.
|
|
1605
|
+
|
|
1606
|
+
This calls ``simple_reflection``; which is semantically the
|
|
1607
|
+
same as the default implementation.
|
|
1608
|
+
|
|
1609
|
+
EXAMPLES::
|
|
1610
|
+
|
|
1611
|
+
sage: # needs sage.libs.gap
|
|
1612
|
+
sage: W = WeylGroup(["B",3])
|
|
1613
|
+
sage: W.element_class._repr_ = lambda x: "".join(str(i)
|
|
1614
|
+
....: for i in x.reduced_word())
|
|
1615
|
+
sage: K = QQ['q1,q2']
|
|
1616
|
+
sage: q1, q2 = K.gens()
|
|
1617
|
+
sage: KW = W.algebra(K)
|
|
1618
|
+
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
|
|
1619
|
+
sage: E = T.Y_eigenvectors()
|
|
1620
|
+
sage: w = W.an_element(); w
|
|
1621
|
+
123
|
|
1622
|
+
sage: E.twist(w,1)
|
|
1623
|
+
1231
|
|
1624
|
+
"""
|
|
1625
|
+
return mu.simple_reflection(i)
|
|
1626
|
+
|
|
1627
|
+
def affine_retract(self, mu):
|
|
1628
|
+
r"""
|
|
1629
|
+
Retract the affine weight `\mu` into a classical weight.
|
|
1630
|
+
|
|
1631
|
+
INPUT:
|
|
1632
|
+
|
|
1633
|
+
- ``mu`` -- an affine weight `\mu` in `L'`
|
|
1634
|
+
|
|
1635
|
+
.. SEEALSO::
|
|
1636
|
+
|
|
1637
|
+
- :meth:`.hecke_algebra_representation.HeckeAlgebraRepresentation.affine_retract`
|
|
1638
|
+
- :meth:`affine_lift`
|
|
1639
|
+
- :meth:`L_prime`
|
|
1640
|
+
|
|
1641
|
+
EXAMPLES::
|
|
1642
|
+
|
|
1643
|
+
sage: E = NonSymmetricMacdonaldPolynomials("B2~")
|
|
1644
|
+
sage: L0 = E.keys(); L0
|
|
1645
|
+
Ambient space of the Root system of type ['B', 2]
|
|
1646
|
+
sage: omega = L0.fundamental_weights()
|
|
1647
|
+
sage: E.affine_lift(omega[1])
|
|
1648
|
+
e[0] + e['deltacheck']
|
|
1649
|
+
sage: E.affine_retract(E.affine_lift(omega[1]))
|
|
1650
|
+
(1, 0)
|
|
1651
|
+
"""
|
|
1652
|
+
assert mu in self.L_prime()
|
|
1653
|
+
return self.L0()(mu)
|
|
1654
|
+
|
|
1655
|
+
def __getitem__(self, mu):
|
|
1656
|
+
r"""
|
|
1657
|
+
Return the nonsymmetric Macdonald polynomial `E_\mu`.
|
|
1658
|
+
|
|
1659
|
+
INPUT:
|
|
1660
|
+
|
|
1661
|
+
- ``mu`` -- a weight `\mu` that lifts to a level 0 element of the affine weight lattice
|
|
1662
|
+
|
|
1663
|
+
This methods simply checks the weight and calls
|
|
1664
|
+
:meth:`.hecke_algebra_representation.CherednikOperatorsEigenvectors.__getitem__`.
|
|
1665
|
+
|
|
1666
|
+
.. NOTE::
|
|
1667
|
+
|
|
1668
|
+
Any element of the finite weight lattice lifts to a level
|
|
1669
|
+
0 element of the affine weight lattice.
|
|
1670
|
+
Exception: `\omega_n` in type `BC_n` dual.
|
|
1671
|
+
|
|
1672
|
+
EXAMPLES::
|
|
1673
|
+
|
|
1674
|
+
sage: ct = CartanType(["BC",2,2]).dual()
|
|
1675
|
+
sage: E = NonSymmetricMacdonaldPolynomials(ct)
|
|
1676
|
+
sage: omega = E.keys().fundamental_weights()
|
|
1677
|
+
sage: omega[2]
|
|
1678
|
+
(1/2, 1/2)
|
|
1679
|
+
sage: E[omega[2]]
|
|
1680
|
+
Traceback (most recent call last):
|
|
1681
|
+
...
|
|
1682
|
+
ValueError: 1/2*e[0] + 1/2*e[1] does not lift to a level 0 element
|
|
1683
|
+
of the affine weight lattice
|
|
1684
|
+
sage: E[2*omega[2]] # needs sage.libs.gap
|
|
1685
|
+
((q^2*q1^2+q^2*q1*q2)/(q^2*q1^2-q2^2))*B[(0, 0)]
|
|
1686
|
+
- ((q^2*q1^2+q^2*q1*q2)/(-q^2*q1^2+q2^2))*B[(1, 0)] + B[(1, 1)]
|
|
1687
|
+
- ((q^2*q1^2+q^2*q1*q2)/(-q^2*q1^2+q2^2))*B[(0, 1)]
|
|
1688
|
+
"""
|
|
1689
|
+
muaff = self._L.embed_at_level(mu, 0)
|
|
1690
|
+
if not all(muaff.scalar(coroot) in ZZ for coroot in self._L.simple_coroots()):
|
|
1691
|
+
raise ValueError("%s does not lift to a level 0 element of the affine weight lattice" % muaff)
|
|
1692
|
+
return super().__getitem__(mu)
|
|
1693
|
+
|
|
1694
|
+
@cached_method
|
|
1695
|
+
def rho_prime(self): # Should be rho_prime_check
|
|
1696
|
+
r"""
|
|
1697
|
+
Return the level 0 sum of the classical fundamental weights in `L'`.
|
|
1698
|
+
|
|
1699
|
+
.. SEEALSO:: :meth:`L_prime`
|
|
1700
|
+
|
|
1701
|
+
EXAMPLES:
|
|
1702
|
+
|
|
1703
|
+
Untwisted case::
|
|
1704
|
+
|
|
1705
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~").rho_prime() # CHECKME
|
|
1706
|
+
3/2*e[0] + 1/2*e[1]
|
|
1707
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~").rho_prime().parent()
|
|
1708
|
+
Coambient space of the Root system of type ['C', 2, 1]
|
|
1709
|
+
|
|
1710
|
+
Twisted case::
|
|
1711
|
+
|
|
1712
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~*").rho_prime() # CHECKME
|
|
1713
|
+
2*e[0] + e[1]
|
|
1714
|
+
sage: NonSymmetricMacdonaldPolynomials("B2~*").rho_prime().parent()
|
|
1715
|
+
Ambient space of the Root system of type ['B', 2, 1]^*
|
|
1716
|
+
"""
|
|
1717
|
+
return self.L_prime().rho_classical()
|
|
1718
|
+
|
|
1719
|
+
def eigenvalue_experimental(self, mu, l):
|
|
1720
|
+
r"""
|
|
1721
|
+
Return the eigenvalue of `Y^{\lambda^\vee}` acting on the macdonald polynomial `E_\mu`.
|
|
1722
|
+
|
|
1723
|
+
INPUT:
|
|
1724
|
+
|
|
1725
|
+
- ``mu`` -- the index `\mu` of an eigenvector
|
|
1726
|
+
- ``l`` -- an index `\lambda^\vee` of some `Y`
|
|
1727
|
+
|
|
1728
|
+
.. NOTE::
|
|
1729
|
+
|
|
1730
|
+
- This method is currently not used; most tests below even
|
|
1731
|
+
test the naive method. They are left here as a basis for
|
|
1732
|
+
a future implementation.
|
|
1733
|
+
|
|
1734
|
+
- This is actually equivariant, as long as `s_i` does not
|
|
1735
|
+
fix `\lambda`.
|
|
1736
|
+
|
|
1737
|
+
- This method is only really needed for
|
|
1738
|
+
`\lambda^\vee=\alpha^\vee_i` with `i=0,...,n`.
|
|
1739
|
+
|
|
1740
|
+
See Corollary 6.11 of [Haiman06]_.
|
|
1741
|
+
|
|
1742
|
+
EXAMPLES::
|
|
1743
|
+
|
|
1744
|
+
sage: K = QQ['q,t'].fraction_field()
|
|
1745
|
+
sage: q,t = K.gens()
|
|
1746
|
+
sage: q1 = t
|
|
1747
|
+
sage: q2 = -1
|
|
1748
|
+
sage: KL = RootSystem(["A",1,1]).ambient_space().algebra(K)
|
|
1749
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
|
|
1750
|
+
sage: L0 = E.keys()
|
|
1751
|
+
sage: E.eigenvalues(L0([0,0])) # Checked by hand by Mark and Arun # needs sage.libs.gap
|
|
1752
|
+
[1/(q*t), t]
|
|
1753
|
+
sage: alpha = E.Y().keys().simple_roots()
|
|
1754
|
+
sage: E.eigenvalue_experimental(L0([0,0]), alpha[0]) # todo: not implemented
|
|
1755
|
+
1/(q*t)
|
|
1756
|
+
sage: E.eigenvalue_experimental(L0([0,0]), alpha[1])
|
|
1757
|
+
t
|
|
1758
|
+
|
|
1759
|
+
Some examples of eigenvalues (not mathematically checked!!!)::
|
|
1760
|
+
|
|
1761
|
+
sage: # needs sage.libs.gap
|
|
1762
|
+
sage: E.eigenvalues(L0([1,0]))
|
|
1763
|
+
[t, 1/(q*t)]
|
|
1764
|
+
sage: E.eigenvalues(L0([0,1]))
|
|
1765
|
+
[1/(q^2*t), q*t]
|
|
1766
|
+
sage: E.eigenvalues(L0([1,1]))
|
|
1767
|
+
[1/(q*t), t]
|
|
1768
|
+
sage: E.eigenvalues(L0([2,1]))
|
|
1769
|
+
[t, 1/(q*t)]
|
|
1770
|
+
sage: E.eigenvalues(L0([-1,1]))
|
|
1771
|
+
[(-1)/(-q^3*t), q^2*t]
|
|
1772
|
+
sage: E.eigenvalues(L0([-2,1]))
|
|
1773
|
+
[(-1)/(-q^4*t), q^3*t]
|
|
1774
|
+
sage: E.eigenvalues(L0([-2,0]))
|
|
1775
|
+
[(-1)/(-q^3*t), q^2*t]
|
|
1776
|
+
|
|
1777
|
+
Some type `B` examples::
|
|
1778
|
+
|
|
1779
|
+
sage: K = QQ['q,t'].fraction_field()
|
|
1780
|
+
sage: q,t = K.gens()
|
|
1781
|
+
sage: q1 = t
|
|
1782
|
+
sage: q2 = -1
|
|
1783
|
+
sage: L = RootSystem(["B",2,1]).ambient_space()
|
|
1784
|
+
sage: KL = L.algebra(K)
|
|
1785
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
|
|
1786
|
+
sage: L0 = E.keys()
|
|
1787
|
+
sage: alpha = L.simple_coroots()
|
|
1788
|
+
|
|
1789
|
+
sage: # not tested
|
|
1790
|
+
sage: E.eigenvalue(L0((0,0)), alpha[0]) # not checked
|
|
1791
|
+
q/t
|
|
1792
|
+
sage: E.eigenvalue(L0((1,0)), alpha[1]) # What Mark got by hand
|
|
1793
|
+
q
|
|
1794
|
+
sage: E.eigenvalue(L0((1,0)), alpha[2]) # not checked
|
|
1795
|
+
t
|
|
1796
|
+
sage: E.eigenvalue(L0((1,0)), alpha[0]) # not checked
|
|
1797
|
+
1
|
|
1798
|
+
|
|
1799
|
+
sage: L = RootSystem("B2~*").ambient_space()
|
|
1800
|
+
sage: KL = L.algebra(K)
|
|
1801
|
+
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
|
|
1802
|
+
sage: L0 = E.keys()
|
|
1803
|
+
sage: alpha = L.simple_coroots()
|
|
1804
|
+
sage: E.eigenvalue(L0((0,0)), alpha[0]) # assuming Mark's calculation is correct, one should get # not tested
|
|
1805
|
+
1/(q*t^2)
|
|
1806
|
+
|
|
1807
|
+
The expected value can more or less be read off from equation
|
|
1808
|
+
(37), Corollary 6.15 of [Haiman06]_
|
|
1809
|
+
|
|
1810
|
+
.. TODO::
|
|
1811
|
+
|
|
1812
|
+
- Use proposition 6.9 of [Haiman06]_ to check the action
|
|
1813
|
+
of the `Y` s on monomials.
|
|
1814
|
+
|
|
1815
|
+
- Generalize to any `q_1`, `q_2`.
|
|
1816
|
+
|
|
1817
|
+
- Check claim by Mark: all scalar products should occur in
|
|
1818
|
+
the finite weight lattice, with alpha 0 being the
|
|
1819
|
+
appropriate projection of the affine alpha 0. Question:
|
|
1820
|
+
can this be emulated by being at level 0?
|
|
1821
|
+
"""
|
|
1822
|
+
assert self.Y().keys().is_parent_of(l)
|
|
1823
|
+
L_prime = self.L_prime()
|
|
1824
|
+
L0 = L_prime.classical()
|
|
1825
|
+
I0 = L0.index_set()
|
|
1826
|
+
assert L0.is_parent_of(mu)
|
|
1827
|
+
# Should we view mu as a translation, and ask for its alcove walk?
|
|
1828
|
+
muaff = self.affine_lift(mu) # embeds mu at level 1 in L_prime
|
|
1829
|
+
w = reversed(mu.reduced_word(I0, positive=False)) # the reduced word for w_\mu, Prop. 6.9 of [Haiman06]_
|
|
1830
|
+
# mu should be scaled to make sure it implements a translation
|
|
1831
|
+
#w = reversed(L.reduced_word_of_translation(L(mu)))
|
|
1832
|
+
#x = L.embed_at_level(L0.rho(),1)
|
|
1833
|
+
#x = L.rho() / L.rho().level()
|
|
1834
|
+
x = self.rho_prime()
|
|
1835
|
+
l = self.L_prime().coroot_lattice()(l) # there might need to be a `nu` here
|
|
1836
|
+
for i in w:
|
|
1837
|
+
x = x.simple_reflection(i)
|
|
1838
|
+
q1,q2 = self.hecke_parameters(1) # TODO: clean up
|
|
1839
|
+
t = -q2/q1 # TODO: generalize for any eigenvalue
|
|
1840
|
+
# In type BC, maybe this should be q^...*a[0]
|
|
1841
|
+
return self._q**(-muaff.scalar(l)) * t**(-x.scalar(l))
|
|
1842
|
+
|
|
1843
|
+
def seed(self, mu):
|
|
1844
|
+
r"""
|
|
1845
|
+
Return `E_\mu` for `\mu` minuscule, i.e. in the fundamental alcove.
|
|
1846
|
+
|
|
1847
|
+
INPUT:
|
|
1848
|
+
|
|
1849
|
+
- ``mu`` -- the index `\mu` of an eigenvector
|
|
1850
|
+
|
|
1851
|
+
EXAMPLES::
|
|
1852
|
+
|
|
1853
|
+
sage: E = NonSymmetricMacdonaldPolynomials(["A",2,1])
|
|
1854
|
+
sage: omega = E.keys().fundamental_weights()
|
|
1855
|
+
sage: E.seed(omega[1])
|
|
1856
|
+
B[(1, 0, 0)]
|
|
1857
|
+
"""
|
|
1858
|
+
return self.KL0().monomial(mu)
|
|
1859
|
+
|
|
1860
|
+
def symmetric_macdonald_polynomial(self, mu):
|
|
1861
|
+
r"""
|
|
1862
|
+
Return the symmetric Macdonald polynomial indexed by `\mu`.
|
|
1863
|
+
|
|
1864
|
+
INPUT:
|
|
1865
|
+
|
|
1866
|
+
- ``mu`` -- a dominant weight `\mu`
|
|
1867
|
+
|
|
1868
|
+
.. WARNING::
|
|
1869
|
+
|
|
1870
|
+
The result is Weyl-symmetric only for Hecke parameters of
|
|
1871
|
+
the form `q_1=v` and `q_2=-1/v`. In general the value of
|
|
1872
|
+
`v` below, should be the square root of `-q_1/q_2`, but the
|
|
1873
|
+
use of `q_1=t` and `q_2=-1` results in nonintegral powers of `t`.
|
|
1874
|
+
|
|
1875
|
+
EXAMPLES::
|
|
1876
|
+
|
|
1877
|
+
sage: K = QQ['q,v,t'].fraction_field()
|
|
1878
|
+
sage: q,v,t = K.gens()
|
|
1879
|
+
sage: E = NonSymmetricMacdonaldPolynomials(['A',2,1], q, v, -1/v)
|
|
1880
|
+
sage: om = E.L0().fundamental_weights()
|
|
1881
|
+
sage: E.symmetric_macdonald_polynomial(om[2]) # needs sage.libs.gap
|
|
1882
|
+
B[(1, 1, 0)] + B[(1, 0, 1)] + B[(0, 1, 1)]
|
|
1883
|
+
sage: E.symmetric_macdonald_polynomial(2*om[1]) # needs sage.libs.gap
|
|
1884
|
+
((q*v^2+v^2-q-1)/(q*v^2-1))*B[(1, 1, 0)]
|
|
1885
|
+
+ ((q*v^2+v^2-q-1)/(q*v^2-1))*B[(1, 0, 1)] + B[(2, 0, 0)]
|
|
1886
|
+
+ ((q*v^2+v^2-q-1)/(q*v^2-1))*B[(0, 1, 1)] + B[(0, 2, 0)] + B[(0, 0, 2)]
|
|
1887
|
+
sage: f = E.symmetric_macdonald_polynomial(E.L0()((2,1,0))); f # needs sage.libs.gap
|
|
1888
|
+
((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(1, 1, 1)] + B[(1, 2, 0)]
|
|
1889
|
+
+ B[(1, 0, 2)] + B[(2, 1, 0)] + B[(2, 0, 1)] + B[(0, 1, 2)] + B[(0, 2, 1)]
|
|
1890
|
+
|
|
1891
|
+
We compare with the type `A` Macdonald polynomials
|
|
1892
|
+
coming from symmetric functions::
|
|
1893
|
+
|
|
1894
|
+
sage: # needs sage.combinat
|
|
1895
|
+
sage: P = SymmetricFunctions(K).macdonald().P()
|
|
1896
|
+
sage: g = P[2,1].expand(3); g
|
|
1897
|
+
x0^2*x1 + x0*x1^2 + x0^2*x2
|
|
1898
|
+
+ (2*q*t^2 - q*t - q + t^2 + t - 2)/(q*t^2 - 1)*x0*x1*x2
|
|
1899
|
+
+ x1^2*x2 + x0*x2^2 + x1*x2^2
|
|
1900
|
+
sage: fe = f.expand(g.parent().gens()); fe # needs sage.libs.gap
|
|
1901
|
+
x0^2*x1 + x0*x1^2 + x0^2*x2
|
|
1902
|
+
+ (2*q*v^4 - q*v^2 - q + v^4 + v^2 - 2)/(q*v^4 - 1)*x0*x1*x2
|
|
1903
|
+
+ x1^2*x2 + x0*x2^2 + x1*x2^2
|
|
1904
|
+
sage: g.map_coefficients(lambda x: x.subs(t=v*v)) == fe # needs sage.libs.gap
|
|
1905
|
+
True
|
|
1906
|
+
|
|
1907
|
+
sage: E = NonSymmetricMacdonaldPolynomials(['C',3,1], q, v, -1/v)
|
|
1908
|
+
sage: om = E.L0().fundamental_weights()
|
|
1909
|
+
sage: E.symmetric_macdonald_polynomial(om[1]+om[2])
|
|
1910
|
+
B[(-2, -1, 0)] + B[(-2, 1, 0)] + B[(-2, 0, -1)] + B[(-2, 0, 1)]
|
|
1911
|
+
+ ((4*q^3*v^14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(q^3*v^14-q^2*v^10-q*v^4+1))*B[(-1, 0, 0)]
|
|
1912
|
+
+ B[(-1, -2, 0)] + ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(-1, -1, -1)]
|
|
1913
|
+
+ ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(-1, -1, 1)] + ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(-1, 1, -1)]
|
|
1914
|
+
+ ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(-1, 1, 1)] + B[(-1, 2, 0)] + B[(-1, 0, -2)] + B[(-1, 0, 2)]
|
|
1915
|
+
+ ((4*q^3*v^14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(q^3*v^14-q^2*v^10-q*v^4+1))*B[(1, 0, 0)] + B[(1, -2, 0)]
|
|
1916
|
+
+ ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(1, -1, -1)]
|
|
1917
|
+
+ ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(1, -1, 1)]
|
|
1918
|
+
+ ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(1, 1, -1)]
|
|
1919
|
+
+ ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(1, 1, 1)] + B[(1, 2, 0)] + B[(1, 0, -2)] + B[(1, 0, 2)]
|
|
1920
|
+
+ B[(2, -1, 0)] + B[(2, 1, 0)] + B[(2, 0, -1)] + B[(2, 0, 1)] + B[(0, -2, -1)] + B[(0, -2, 1)]
|
|
1921
|
+
- ((4*q^3*v^14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(-q^3*v^14+q^2*v^10+q*v^4-1))*B[(0, -1, 0)]
|
|
1922
|
+
+ B[(0, -1, -2)]
|
|
1923
|
+
+ B[(0, -1, 2)]
|
|
1924
|
+
- ((4*q^3*v^14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(-q^3*v^14+q^2*v^10+q*v^4-1))*B[(0, 1, 0)]
|
|
1925
|
+
+ B[(0, 1, -2)] + B[(0, 1, 2)] + B[(0, 2, -1)] + B[(0, 2, 1)]
|
|
1926
|
+
+ ((4*q^3*v^14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(q^3*v^14-q^2*v^10-q*v^4+1))*B[(0, 0, -1)]
|
|
1927
|
+
+ ((4*q^3*v^14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(q^3*v^14-q^2*v^10-q*v^4+1))*B[(0, 0, 1)]
|
|
1928
|
+
|
|
1929
|
+
An example for type `G`::
|
|
1930
|
+
|
|
1931
|
+
sage: E = NonSymmetricMacdonaldPolynomials(['G',2,1], q, v, -1/v)
|
|
1932
|
+
sage: om = E.L0().fundamental_weights()
|
|
1933
|
+
sage: E.symmetric_macdonald_polynomial(2*om[1])
|
|
1934
|
+
((3*q^6*v^22+3*q^5*v^22-3*q^6*v^20+q^4*v^22-4*q^5*v^20+q^4*v^18-q^5*v^16+q^3*v^18-2*q^4*v^16+q^5*v^14-q^3*v^16+q^4*v^14-4*q^4*v^12+q^2*v^14+q^5*v^10-8*q^3*v^12+4*q^4*v^10-4*q^2*v^12+8*q^3*v^10-q*v^12-q^4*v^8+4*q^2*v^10-q^2*v^8+q^3*v^6-q*v^8+2*q^2*v^6-q^3*v^4+q*v^6-q^2*v^4+4*q*v^2-q^2+3*v^2-3*q-3)/(q^6*v^22-q^5*v^20-q^4*v^12-q^3*v^12+q^3*v^10+q^2*v^10+q*v^2-1))*B[(0, 0, 0)]
|
|
1935
|
+
+ ((q*v^2+v^2-q-1)/(q*v^2-1))*B[(-2, 1, 1)] + B[(-2, 2, 0)] + B[(-2, 0, 2)]
|
|
1936
|
+
- ((q*v^2+v^2-q-1)/(-q*v^2+1))*B[(-1, -1, 2)]
|
|
1937
|
+
+ ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-2*q^3*v^10+q^2*v^8-q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^2+2*q+2)/(q^4*v^12-q^3*v^10-q*v^2+1))*B[(-1, 1, 0)]
|
|
1938
|
+
- ((q*v^2+v^2-q-1)/(-q*v^2+1))*B[(-1, 2, -1)]
|
|
1939
|
+
+ ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-2*q^3*v^10+q^2*v^8-q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^2+2*q+2)/(q^4*v^12-q^3*v^10-q*v^2+1))*B[(-1, 0, 1)]
|
|
1940
|
+
- ((q*v^2+v^2-q-1)/(-q*v^2+1))*B[(1, -2, 1)]
|
|
1941
|
+
- ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-2*q^3*v^10+q^2*v^8-q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^2+2*q+2)/(-q^4*v^12+q^3*v^10+q*v^2-1))*B[(1, -1, 0)]
|
|
1942
|
+
- ((q*v^2+v^2-q-1)/(-q*v^2+1))*B[(1, 1, -2)]
|
|
1943
|
+
- ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-2*q^3*v^10+q^2*v^8-q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^2+2*q+2)/(-q^4*v^12+q^3*v^10+q*v^2-1))*B[(1, 0, -1)]
|
|
1944
|
+
+ B[(2, -2, 0)] + ((q*v^2+v^2-q-1)/(q*v^2-1))*B[(2, -1, -1)] + B[(2, 0, -2)] + B[(0, -2, 2)]
|
|
1945
|
+
- ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-2*q^3*v^10+q^2*v^8-q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^2+2*q+2)/(-q^4*v^12+q^3*v^10+q*v^2-1))*B[(0, -1, 1)]
|
|
1946
|
+
+ ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-2*q^3*v^10+q^2*v^8-q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^2+2*q+2)/(q^4*v^12-q^3*v^10-q*v^2+1))*B[(0, 1, -1)]
|
|
1947
|
+
+ B[(0, 2, -2)]
|
|
1948
|
+
"""
|
|
1949
|
+
if self.cartan_type().classical() != mu.parent().cartan_type() or not mu.is_dominant():
|
|
1950
|
+
raise ValueError("%s must be a dominant weight for the classical subrootsystem of %s" % (mu, self.cartan_type()))
|
|
1951
|
+
v = self._q1
|
|
1952
|
+
KL0 = self.KL0()
|
|
1953
|
+
s = KL0.zero()
|
|
1954
|
+
# efficiently compute the finite Hecke symmetrization of the
|
|
1955
|
+
# nonsymmetric Macdonald polynomial of the dominant weight mu
|
|
1956
|
+
# by searching the Weyl orbit of mu and remembering
|
|
1957
|
+
Torbit = {}
|
|
1958
|
+
for c in mu._orbit_iter():
|
|
1959
|
+
i = c.first_descent()
|
|
1960
|
+
if i is None:
|
|
1961
|
+
Torbit[c] = self[mu] # the nonsymmetric Macdonald polynomial of mu
|
|
1962
|
+
else:
|
|
1963
|
+
Torbit[c] = v * self._T.Tw([i])(Torbit[c.simple_reflection(i)])
|
|
1964
|
+
s = s + Torbit[c]
|
|
1965
|
+
return s
|