passagemath-modules 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +806 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-c5c421e1.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
sage/matrix/special.py
ADDED
|
@@ -0,0 +1,3666 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
"""
|
|
3
|
+
Constructors for special matrices
|
|
4
|
+
|
|
5
|
+
This module gathers several constructors for special, commonly used or
|
|
6
|
+
interesting matrices. These can be reached through ``matrix.<tab>``.
|
|
7
|
+
|
|
8
|
+
For example, here is a circulant matrix of order five::
|
|
9
|
+
|
|
10
|
+
sage: matrix.circulant(SR.var('a b c d e')) # needs sage.symbolic
|
|
11
|
+
[a b c d e]
|
|
12
|
+
[e a b c d]
|
|
13
|
+
[d e a b c]
|
|
14
|
+
[c d e a b]
|
|
15
|
+
[b c d e a]
|
|
16
|
+
|
|
17
|
+
The following constructions are available:
|
|
18
|
+
|
|
19
|
+
.. csv-table::
|
|
20
|
+
:class: contentstable
|
|
21
|
+
:widths: 30
|
|
22
|
+
:delim: |
|
|
23
|
+
|
|
24
|
+
:meth:`~sage.matrix.special.block_diagonal_matrix`
|
|
25
|
+
:meth:`~sage.matrix.special.block_matrix`
|
|
26
|
+
:meth:`~sage.matrix.special.circulant`
|
|
27
|
+
:meth:`~sage.matrix.special.column_matrix`
|
|
28
|
+
:meth:`~sage.matrix.special.companion_matrix`
|
|
29
|
+
:meth:`~sage.matrix.special.diagonal_matrix`
|
|
30
|
+
:meth:`~sage.matrix.special.elementary_matrix`
|
|
31
|
+
:meth:`~sage.matrix.special.hankel`
|
|
32
|
+
:meth:`~sage.matrix.special.hilbert`
|
|
33
|
+
:meth:`~sage.matrix.special.identity_matrix`
|
|
34
|
+
:meth:`~sage.matrix.special.ith_to_zero_rotation_matrix`
|
|
35
|
+
:meth:`~sage.matrix.special.jordan_block`
|
|
36
|
+
:meth:`~sage.matrix.special.lehmer`
|
|
37
|
+
:meth:`~sage.matrix.special.ones_matrix`
|
|
38
|
+
:meth:`~sage.matrix.special.random_matrix`
|
|
39
|
+
:meth:`~sage.matrix.special.random_diagonalizable_matrix`
|
|
40
|
+
:meth:`~sage.matrix.special.random_echelonizable_matrix`
|
|
41
|
+
:meth:`~sage.matrix.special.random_rref_matrix`
|
|
42
|
+
:meth:`~sage.matrix.special.random_subspaces_matrix`
|
|
43
|
+
:meth:`~sage.matrix.special.random_unimodular_matrix`
|
|
44
|
+
:meth:`~sage.matrix.special.toeplitz`
|
|
45
|
+
:meth:`~sage.matrix.special.vandermonde`
|
|
46
|
+
:meth:`~sage.matrix.special.vector_on_axis_rotation_matrix`
|
|
47
|
+
:meth:`~sage.matrix.special.zero_matrix`
|
|
48
|
+
|
|
49
|
+
The Combinatorics module provides further matrix constructors, such as Hadamard
|
|
50
|
+
matrices and Latin squares. See:
|
|
51
|
+
|
|
52
|
+
- :mod:`sage.combinat.matrices.hadamard_matrix`
|
|
53
|
+
- :mod:`sage.combinat.matrices.latin`
|
|
54
|
+
"""
|
|
55
|
+
|
|
56
|
+
# ****************************************************************************
|
|
57
|
+
# Copyright (C) 2005 William Stein <wstein@gmail.com>
|
|
58
|
+
#
|
|
59
|
+
# This program is free software: you can redistribute it and/or modify
|
|
60
|
+
# it under the terms of the GNU General Public License as published by
|
|
61
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
62
|
+
# (at your option) any later version.
|
|
63
|
+
# https://www.gnu.org/licenses/
|
|
64
|
+
# ****************************************************************************
|
|
65
|
+
from copy import copy
|
|
66
|
+
|
|
67
|
+
import sage.matrix.matrix_space as matrix_space
|
|
68
|
+
from sage.categories.rings import Rings
|
|
69
|
+
from sage.modules.free_module_element import vector
|
|
70
|
+
from sage.structure.element import Matrix, parent, RingElement
|
|
71
|
+
from sage.structure.sequence import Sequence
|
|
72
|
+
from sage.rings.integer_ring import ZZ
|
|
73
|
+
from sage.rings.rational_field import QQ
|
|
74
|
+
from sage.rings.integer import Integer
|
|
75
|
+
from sage.misc.misc_c import running_total
|
|
76
|
+
from sage.misc.prandom import randint, shuffle
|
|
77
|
+
from .constructor import matrix
|
|
78
|
+
import sage.categories.pushout
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def matrix_method(func=None, name=None):
|
|
82
|
+
"""
|
|
83
|
+
Allow a function to be tab-completed on the global matrix
|
|
84
|
+
constructor object.
|
|
85
|
+
|
|
86
|
+
INPUT:
|
|
87
|
+
|
|
88
|
+
- ``*function`` -- a single argument; the function that is being
|
|
89
|
+
decorated
|
|
90
|
+
|
|
91
|
+
- ``**kwds`` -- a single optional keyword argument
|
|
92
|
+
``name=<string>``. The name of the corresponding method in the
|
|
93
|
+
global matrix constructor object. If not given, it is derived
|
|
94
|
+
from the function name.
|
|
95
|
+
|
|
96
|
+
EXAMPLES::
|
|
97
|
+
|
|
98
|
+
sage: from sage.matrix.constructor import matrix_method
|
|
99
|
+
sage: def foo_matrix(n): return matrix.diagonal(range(n))
|
|
100
|
+
sage: matrix_method(foo_matrix)
|
|
101
|
+
<function foo_matrix at ...>
|
|
102
|
+
sage: matrix.foo(5)
|
|
103
|
+
[0 0 0 0 0]
|
|
104
|
+
[0 1 0 0 0]
|
|
105
|
+
[0 0 2 0 0]
|
|
106
|
+
[0 0 0 3 0]
|
|
107
|
+
[0 0 0 0 4]
|
|
108
|
+
sage: matrix_method(foo_matrix, name='bar')
|
|
109
|
+
<function foo_matrix at ...>
|
|
110
|
+
sage: matrix.bar(3)
|
|
111
|
+
[0 0 0]
|
|
112
|
+
[0 1 0]
|
|
113
|
+
[0 0 2]
|
|
114
|
+
"""
|
|
115
|
+
if func is not None:
|
|
116
|
+
if name is None:
|
|
117
|
+
name = func.__name__.replace('matrix', '').strip('_')
|
|
118
|
+
prefix = " This function is available as %s(...) and matrix.%s(...)." % (
|
|
119
|
+
func.__name__, name)
|
|
120
|
+
func.__doc__ = "%s\n\n%s" % (prefix, func.__doc__)
|
|
121
|
+
setattr(matrix, name, func)
|
|
122
|
+
return func
|
|
123
|
+
else:
|
|
124
|
+
return lambda func: matrix_method(func, name=name)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
@matrix_method
|
|
128
|
+
def column_matrix(*args, **kwds):
|
|
129
|
+
r"""
|
|
130
|
+
Construct a matrix, and then swap rows for columns and columns for rows.
|
|
131
|
+
|
|
132
|
+
.. NOTE::
|
|
133
|
+
|
|
134
|
+
Linear algebra in Sage favors rows over columns. So,
|
|
135
|
+
generally, when creating a matrix, input vectors and lists are
|
|
136
|
+
treated as rows. This function is a convenience that turns
|
|
137
|
+
around this convention when creating a matrix. If you are not
|
|
138
|
+
familiar with the usual :func:`matrix`
|
|
139
|
+
constructor, you might want to consider it first.
|
|
140
|
+
|
|
141
|
+
INPUT:
|
|
142
|
+
|
|
143
|
+
Inputs are almost exactly the same as for the :func:`matrix`
|
|
144
|
+
constructor, which are documented there. But see
|
|
145
|
+
examples below for how dimensions are handled.
|
|
146
|
+
|
|
147
|
+
OUTPUT:
|
|
148
|
+
|
|
149
|
+
Output is exactly the transpose of what the :func:`matrix`
|
|
150
|
+
constructor would return. In other words, the
|
|
151
|
+
``matrix`` constructor builds a matrix and then this function
|
|
152
|
+
exchanges rows for columns, and columns for rows.
|
|
153
|
+
|
|
154
|
+
EXAMPLES:
|
|
155
|
+
|
|
156
|
+
The most compelling use of this function is when you have a
|
|
157
|
+
collection of lists or vectors that you would like to become the
|
|
158
|
+
columns of a matrix. In almost any other situation, the
|
|
159
|
+
:func:`matrix` constructor can probably do the
|
|
160
|
+
job just as easily, or easier. ::
|
|
161
|
+
|
|
162
|
+
sage: col_1 = [1,2,3]
|
|
163
|
+
sage: col_2 = [4,5,6]
|
|
164
|
+
sage: column_matrix([col_1, col_2])
|
|
165
|
+
[1 4]
|
|
166
|
+
[2 5]
|
|
167
|
+
[3 6]
|
|
168
|
+
|
|
169
|
+
sage: v1 = vector(QQ, [10, 20])
|
|
170
|
+
sage: v2 = vector(QQ, [30, 40])
|
|
171
|
+
sage: column_matrix(QQ, [v1, v2])
|
|
172
|
+
[10 30]
|
|
173
|
+
[20 40]
|
|
174
|
+
|
|
175
|
+
If you only specify one dimension along with a flat list of entries,
|
|
176
|
+
then it will be the number of columns in the result (which is different
|
|
177
|
+
from the behavior of the ``matrix`` constructor). ::
|
|
178
|
+
|
|
179
|
+
sage: column_matrix(ZZ, 8, range(24))
|
|
180
|
+
[ 0 3 6 9 12 15 18 21]
|
|
181
|
+
[ 1 4 7 10 13 16 19 22]
|
|
182
|
+
[ 2 5 8 11 14 17 20 23]
|
|
183
|
+
|
|
184
|
+
And when you specify two dimensions, then they should be number of
|
|
185
|
+
columns first, then the number of rows, which is the reverse of how
|
|
186
|
+
they would be specified for the ``matrix`` constructor. ::
|
|
187
|
+
|
|
188
|
+
sage: column_matrix(QQ, 5, 3, range(15))
|
|
189
|
+
[ 0 3 6 9 12]
|
|
190
|
+
[ 1 4 7 10 13]
|
|
191
|
+
[ 2 5 8 11 14]
|
|
192
|
+
|
|
193
|
+
And a few unproductive, but illustrative, examples. ::
|
|
194
|
+
|
|
195
|
+
sage: A = matrix(ZZ, 3, 4, range(12))
|
|
196
|
+
sage: B = column_matrix(ZZ, 3, 4, range(12))
|
|
197
|
+
sage: A == B.transpose()
|
|
198
|
+
True
|
|
199
|
+
|
|
200
|
+
sage: A = matrix(QQ, 7, 12, range(84))
|
|
201
|
+
sage: A == column_matrix(A.columns())
|
|
202
|
+
True
|
|
203
|
+
|
|
204
|
+
sage: A = column_matrix(QQ, matrix(ZZ, 3, 2, range(6)) )
|
|
205
|
+
sage: A
|
|
206
|
+
[0 2 4]
|
|
207
|
+
[1 3 5]
|
|
208
|
+
sage: A.parent()
|
|
209
|
+
Full MatrixSpace of 2 by 3 dense matrices over Rational Field
|
|
210
|
+
"""
|
|
211
|
+
return matrix(*args, **kwds).transpose()
|
|
212
|
+
|
|
213
|
+
|
|
214
|
+
@matrix_method
|
|
215
|
+
def random_matrix(ring, nrows, ncols=None, algorithm='randomize', implementation=None, *args, **kwds):
|
|
216
|
+
r"""
|
|
217
|
+
Return a random matrix with entries in a specified ring, and possibly with additional properties.
|
|
218
|
+
|
|
219
|
+
INPUT:
|
|
220
|
+
|
|
221
|
+
- ``ring`` -- base ring for entries of the matrix
|
|
222
|
+
|
|
223
|
+
- ``nrows`` -- integer; number of rows
|
|
224
|
+
|
|
225
|
+
- ``ncols`` -- (default: ``None``) number of columns. If ``None``
|
|
226
|
+
defaults to ``nrows``.
|
|
227
|
+
|
|
228
|
+
- ``algorithm`` -- (default: ``'randomize'``) determines what properties
|
|
229
|
+
the matrix will have. See examples below for possible additional
|
|
230
|
+
arguments.
|
|
231
|
+
|
|
232
|
+
- ``'randomize'`` -- create a matrix of random elements from the
|
|
233
|
+
base ring, possibly controlling the density of nonzero entries
|
|
234
|
+
|
|
235
|
+
- ``'echelon_form'`` -- creates a matrix in echelon form
|
|
236
|
+
|
|
237
|
+
- ``'echelonizable'`` -- creates a matrix that has a predictable
|
|
238
|
+
echelon form
|
|
239
|
+
|
|
240
|
+
- ``'subspaces'`` -- creates a matrix whose four subspaces, when
|
|
241
|
+
explored, have reasonably sized, integral valued, entries
|
|
242
|
+
|
|
243
|
+
- ``'unimodular'`` -- creates a matrix of determinant 1
|
|
244
|
+
|
|
245
|
+
- ``'diagonalizable'`` -- creates a diagonalizable matrix. if the
|
|
246
|
+
base ring is ``QQ`` creates a diagonalizable matrix whose eigenvectors,
|
|
247
|
+
if computed by hand, will have only integer entries. See the
|
|
248
|
+
documentation of :meth:`~sage.matrix.special.random_diagonalizable_matrix`
|
|
249
|
+
for more information
|
|
250
|
+
|
|
251
|
+
- ``implementation`` -- (``None`` or string or a matrix class) a possible
|
|
252
|
+
implementation. See the documentation of the constructor of
|
|
253
|
+
:class:`~sage.matrix.matrix_space.MatrixSpace`.
|
|
254
|
+
|
|
255
|
+
- ``*args, **kwds`` -- arguments and keywords to describe additional
|
|
256
|
+
properties. See more detailed documentation below
|
|
257
|
+
|
|
258
|
+
.. warning::
|
|
259
|
+
|
|
260
|
+
Matrices generated are not uniformly distributed. For unimodular
|
|
261
|
+
matrices over finite field this function does not even generate
|
|
262
|
+
all of them: for example ``Matrix.random(GF(3), 2, algorithm='unimodular')``
|
|
263
|
+
never generates ``[[2,0],[0,2]]``. This function is made for
|
|
264
|
+
teaching purposes.
|
|
265
|
+
|
|
266
|
+
.. warning::
|
|
267
|
+
|
|
268
|
+
An upper bound on the absolute value of the entries may be set
|
|
269
|
+
when the ``algorithm`` is ``echelonizable`` or ``unimodular``.
|
|
270
|
+
In these cases it is possible for this constructor to fail with
|
|
271
|
+
a :exc:`ValueError`. If you *must* have this routine return
|
|
272
|
+
successfully, do not set ``upper_bound``. This behavior can
|
|
273
|
+
be partially controlled by a ``max_tries`` keyword.
|
|
274
|
+
|
|
275
|
+
.. NOTE::
|
|
276
|
+
|
|
277
|
+
When constructing matrices with random entries and no
|
|
278
|
+
additional properties (i.e. when ``algorithm='randomize'``),
|
|
279
|
+
most of the randomness is controlled by the ``random_element``
|
|
280
|
+
method for elements of the base ring of the matrix, so the
|
|
281
|
+
documentation of that method may be relevant or useful.
|
|
282
|
+
|
|
283
|
+
EXAMPLES:
|
|
284
|
+
|
|
285
|
+
Random integer matrices. With no arguments, the majority of the entries
|
|
286
|
+
are zero, -1, and 1, and rarely "large." ::
|
|
287
|
+
|
|
288
|
+
sage: from collections import defaultdict
|
|
289
|
+
sage: total_count = 0
|
|
290
|
+
sage: dic = defaultdict(Integer)
|
|
291
|
+
sage: def add_samples(*args, **kwds):
|
|
292
|
+
....: global dic, total_count
|
|
293
|
+
....: for _ in range(100):
|
|
294
|
+
....: A = random_matrix(*args, **kwds)
|
|
295
|
+
....: for a in A.list():
|
|
296
|
+
....: dic[a] += 1
|
|
297
|
+
....: total_count += 1.0
|
|
298
|
+
|
|
299
|
+
sage: expected = lambda n : 2 / (5*abs(n)*(abs(n) + 1)) if n != 0 else 1/5
|
|
300
|
+
sage: expected(0)
|
|
301
|
+
1/5
|
|
302
|
+
sage: expected(0) == expected(1) == expected(-1)
|
|
303
|
+
True
|
|
304
|
+
sage: expected(100)
|
|
305
|
+
1/25250
|
|
306
|
+
sage: add_samples(ZZ, 5, 5)
|
|
307
|
+
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
|
|
308
|
+
....: add_samples(ZZ, 5, 5)
|
|
309
|
+
|
|
310
|
+
The ``distribution`` keyword set to ``uniform`` will limit values
|
|
311
|
+
between -2 and 2. ::
|
|
312
|
+
|
|
313
|
+
sage: expected = lambda n : 1/5 if n in range(-2, 3) else 0
|
|
314
|
+
sage: total_count = 0
|
|
315
|
+
sage: dic = defaultdict(Integer)
|
|
316
|
+
sage: add_samples(ZZ, 5, 5, distribution='uniform')
|
|
317
|
+
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
|
|
318
|
+
....: add_samples(ZZ, 5, 5, distribution='uniform')
|
|
319
|
+
|
|
320
|
+
The ``x`` and ``y`` keywords can be used to distribute entries uniformly.
|
|
321
|
+
When both are used ``x`` is the minimum and ``y`` is one greater than
|
|
322
|
+
the maximum. ::
|
|
323
|
+
|
|
324
|
+
sage: expected = lambda n : 1/30 if n in range(70, 100) else 0
|
|
325
|
+
sage: total_count = 0
|
|
326
|
+
sage: dic = defaultdict(Integer)
|
|
327
|
+
sage: add_samples(ZZ, 4, 8, x=70, y=100)
|
|
328
|
+
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
|
|
329
|
+
....: add_samples(ZZ, 4, 8, x=70, y=100)
|
|
330
|
+
|
|
331
|
+
sage: expected = lambda n : 1/10 if n in range(-5, 5) else 0
|
|
332
|
+
sage: total_count = 0
|
|
333
|
+
sage: dic = defaultdict(Integer)
|
|
334
|
+
sage: add_samples(ZZ, 3, 7, x=-5, y=5)
|
|
335
|
+
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
|
|
336
|
+
....: add_samples(ZZ, 3, 7, x=-5, y=5)
|
|
337
|
+
|
|
338
|
+
If only ``x`` is given, then it is used as the upper bound of a range
|
|
339
|
+
starting at 0. ::
|
|
340
|
+
|
|
341
|
+
sage: expected = lambda n : 1/25 if n in range(25) else 0
|
|
342
|
+
sage: total_count = 0
|
|
343
|
+
sage: dic = defaultdict(Integer)
|
|
344
|
+
sage: add_samples(ZZ, 5, 5, x=25)
|
|
345
|
+
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
|
|
346
|
+
....: add_samples(ZZ, 5, 5, x=25)
|
|
347
|
+
|
|
348
|
+
To control the number of nonzero entries, use the ``density`` keyword
|
|
349
|
+
at a value strictly below the default of 1.0. The ``density`` keyword
|
|
350
|
+
is used to compute the number of entries per row that will be nonzero, but the
|
|
351
|
+
same entry may be selected more than once. So the value provided will
|
|
352
|
+
be an upper bound for the density of the created matrix. Note that for
|
|
353
|
+
a square matrix it is only necessary to set a single dimension. ::
|
|
354
|
+
|
|
355
|
+
sage: def add_sample(*args, **kwds):
|
|
356
|
+
....: global density_sum, total_count
|
|
357
|
+
....: total_count += 1.0
|
|
358
|
+
....: A = random_matrix(*args, **kwds)
|
|
359
|
+
....: density_sum += float(A.density())
|
|
360
|
+
|
|
361
|
+
sage: # needs sage.libs.linbox (otherwise timeout)
|
|
362
|
+
sage: density_sum = 0.0
|
|
363
|
+
sage: total_count = 0.0
|
|
364
|
+
sage: add_sample(ZZ, 5, x=-10, y=10, density=0.75)
|
|
365
|
+
sage: expected_density = (1 - (4/5)^3)
|
|
366
|
+
sage: float(expected_density)
|
|
367
|
+
0.488
|
|
368
|
+
sage: while abs(density_sum/total_count - expected_density) > 0.001:
|
|
369
|
+
....: add_sample(ZZ, 5, x=-10, y=10, density=0.75)
|
|
370
|
+
|
|
371
|
+
sage: # needs sage.libs.linbox (otherwise timeout)
|
|
372
|
+
sage: density_sum = 0.0
|
|
373
|
+
sage: total_count = 0.0
|
|
374
|
+
sage: add_sample(ZZ, 5, x=20, y=30, density=0.75)
|
|
375
|
+
sage: while abs(density_sum/total_count - expected_density) > 0.001:
|
|
376
|
+
....: add_sample(ZZ, 5, x=20, y=30, density=0.75)
|
|
377
|
+
|
|
378
|
+
sage: # needs sage.libs.linbox (otherwise timeout)
|
|
379
|
+
sage: density_sum = 0.0
|
|
380
|
+
sage: total_count = 0.0
|
|
381
|
+
sage: add_sample(ZZ, 100, x=20, y=30, density=0.75)
|
|
382
|
+
sage: expected_density = (1 - (99/100)^75)
|
|
383
|
+
sage: float(expected_density)
|
|
384
|
+
0.529...
|
|
385
|
+
sage: while abs(density_sum/total_count - expected_density) > 0.001:
|
|
386
|
+
....: add_sample(ZZ, 100, x=20, y=30, density=0.75)
|
|
387
|
+
|
|
388
|
+
For a matrix with low density it may be advisable to insist on a sparse
|
|
389
|
+
representation, as this representation is not selected automatically. ::
|
|
390
|
+
|
|
391
|
+
sage: A = random_matrix(ZZ, 5, 5)
|
|
392
|
+
sage: A.is_sparse()
|
|
393
|
+
False
|
|
394
|
+
sage: A = random_matrix(ZZ, 5, 5, sparse=True)
|
|
395
|
+
sage: A.is_sparse()
|
|
396
|
+
True
|
|
397
|
+
|
|
398
|
+
For algorithm testing you might want to control the number of bits,
|
|
399
|
+
say 10,000 entries, each limited to 16 bits. ::
|
|
400
|
+
|
|
401
|
+
sage: # needs sage.libs.linbox (otherwise timeout)
|
|
402
|
+
sage: A = random_matrix(ZZ, 100, 100, x=2^16); A
|
|
403
|
+
100 x 100 dense matrix over Integer Ring (use the '.str()' method to see the entries)
|
|
404
|
+
|
|
405
|
+
One can prescribe a specific matrix implementation::
|
|
406
|
+
|
|
407
|
+
sage: K.<a> = FiniteField(2^8) # needs sage.rings.finite_rings
|
|
408
|
+
sage: type(random_matrix(K, 2, 5)) # needs sage.libs.m4ri sage.rings.finite_rings
|
|
409
|
+
<class 'sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense'>
|
|
410
|
+
sage: type(random_matrix(K, 2, 5, implementation='generic')) # needs sage.rings.finite_rings
|
|
411
|
+
<class 'sage.matrix.matrix_generic_dense.Matrix_generic_dense'>
|
|
412
|
+
|
|
413
|
+
Random rational matrices. Now ``num_bound`` and ``den_bound`` control the
|
|
414
|
+
generation of random elements, by specifying limits on the absolute value of
|
|
415
|
+
numerators and denominators (respectively). Entries will be positive and
|
|
416
|
+
negative (map the absolute value function through the entries to get all
|
|
417
|
+
positive values). If either the numerator or denominator bound (or both)
|
|
418
|
+
is not used, then the values default to ``2``::
|
|
419
|
+
|
|
420
|
+
sage: A = random_matrix(QQ, 2, 8, num_bound=20, den_bound=4)
|
|
421
|
+
sage: A.dimensions()
|
|
422
|
+
(2, 8)
|
|
423
|
+
sage: type(A) # needs sage.libs.flint
|
|
424
|
+
<class 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'>
|
|
425
|
+
sage: all(a.numerator() in range(-20, 21) and
|
|
426
|
+
....: a.denominator() in range(1, 5)
|
|
427
|
+
....: for a in A.list())
|
|
428
|
+
True
|
|
429
|
+
|
|
430
|
+
sage: A = random_matrix(QQ, 4, density=0.5, sparse=True)
|
|
431
|
+
sage: type(A)
|
|
432
|
+
<class 'sage.matrix.matrix_rational_sparse.Matrix_rational_sparse'>
|
|
433
|
+
sage: A.density() <= 0.5
|
|
434
|
+
True
|
|
435
|
+
|
|
436
|
+
sage: A = random_matrix(QQ, 3, 10, num_bound = 99, den_bound = 99)
|
|
437
|
+
sage: positives = list(map(abs, A.list()))
|
|
438
|
+
sage: A1 = matrix(QQ, 3, 10, positives)
|
|
439
|
+
sage: all(abs(A.list()[i]) == A1.list()[i] for i in range(30))
|
|
440
|
+
True
|
|
441
|
+
sage: all(a.numerator() in range(100) and
|
|
442
|
+
....: a.denominator() in range(1, 100)
|
|
443
|
+
....: for a in A1.list())
|
|
444
|
+
True
|
|
445
|
+
|
|
446
|
+
sage: A = random_matrix(QQ, 4, 10, den_bound = 10)
|
|
447
|
+
sage: all(a.numerator() in range(-2, 3) and
|
|
448
|
+
....: a.denominator() in range(1, 11)
|
|
449
|
+
....: for a in A.list())
|
|
450
|
+
True
|
|
451
|
+
|
|
452
|
+
sage: A = random_matrix(QQ, 4, 10)
|
|
453
|
+
sage: all(a.numerator() in range(-2, 3) and
|
|
454
|
+
....: a.denominator() in range(1, 3)
|
|
455
|
+
....: for a in A.list())
|
|
456
|
+
True
|
|
457
|
+
|
|
458
|
+
Random matrices over other rings. Several classes of matrices have specialized
|
|
459
|
+
``randomize()`` methods. You can locate these with the Sage command::
|
|
460
|
+
|
|
461
|
+
search_def('randomize')
|
|
462
|
+
|
|
463
|
+
The default implementation of :meth:`~sage.matrix.matrix2.randomize` relies
|
|
464
|
+
on the ``random_element()`` method for the base ring. The ``density`` and
|
|
465
|
+
``sparse`` keywords behave as described above. Since we have a different
|
|
466
|
+
randomisation when using the optional meataxe package, we have to make sure
|
|
467
|
+
that we use the default implementation in this test::
|
|
468
|
+
|
|
469
|
+
sage: K.<a> = FiniteField(3^2) # needs sage.rings.finite_rings
|
|
470
|
+
sage: A = random_matrix(K, 2, 5, implementation='generic') # needs sage.rings.finite_rings
|
|
471
|
+
sage: type(A)
|
|
472
|
+
<class 'sage.matrix.matrix_generic_dense.Matrix_generic_dense'>
|
|
473
|
+
sage: A.base_ring() is K # needs sage.rings.finite_rings
|
|
474
|
+
True
|
|
475
|
+
sage: TestSuite(A).run()
|
|
476
|
+
|
|
477
|
+
sage: A = random_matrix(RR, 3, 4, density=0.66)
|
|
478
|
+
sage: type(A)
|
|
479
|
+
<class 'sage.matrix.matrix_generic_dense.Matrix_generic_dense'>
|
|
480
|
+
sage: A.base_ring() is RR
|
|
481
|
+
True
|
|
482
|
+
sage: TestSuite(A).run()
|
|
483
|
+
|
|
484
|
+
sage: A = random_matrix(ComplexField(32), 3, density=0.8, sparse=True)
|
|
485
|
+
sage: A.is_sparse()
|
|
486
|
+
True
|
|
487
|
+
sage: type(A)
|
|
488
|
+
<class 'sage.matrix.matrix_generic_sparse.Matrix_generic_sparse'>
|
|
489
|
+
sage: A.base_ring() is ComplexField(32)
|
|
490
|
+
True
|
|
491
|
+
sage: TestSuite(A).run()
|
|
492
|
+
|
|
493
|
+
Random matrices in echelon form. The ``algorithm='echelon_form'`` keyword,
|
|
494
|
+
along with a requested number of nonzero rows (``num_pivots``) will return
|
|
495
|
+
a random matrix in echelon form. When the base ring is ``QQ`` the result has integer
|
|
496
|
+
entries. Other exact rings may be also specified. ::
|
|
497
|
+
|
|
498
|
+
sage: A = random_matrix(QQ, 4, 8, algorithm='echelon_form', num_pivots=3)
|
|
499
|
+
sage: A.base_ring()
|
|
500
|
+
Rational Field
|
|
501
|
+
sage: (A.nrows(), A.ncols())
|
|
502
|
+
(4, 8)
|
|
503
|
+
sage: A in sage.matrix.matrix_space.MatrixSpace(ZZ, 4, 8)
|
|
504
|
+
True
|
|
505
|
+
sage: A.rank()
|
|
506
|
+
3
|
|
507
|
+
sage: A == A.rref()
|
|
508
|
+
True
|
|
509
|
+
|
|
510
|
+
For more, see the documentation of the :func:`~sage.matrix.constructor.random_rref_matrix`
|
|
511
|
+
function. In the notebook or at the Sage command-line, first execute the following to make
|
|
512
|
+
this further documentation available::
|
|
513
|
+
|
|
514
|
+
from sage.matrix.constructor import random_rref_matrix
|
|
515
|
+
|
|
516
|
+
Random matrices with predictable echelon forms. The ``algorithm='echelonizable'``
|
|
517
|
+
keyword, along with a requested rank (``rank``) and optional size control
|
|
518
|
+
(``upper_bound``) will return a random matrix in echelon form. When the
|
|
519
|
+
base ring is ``ZZ`` or ``QQ`` the result has integer entries, whose magnitudes
|
|
520
|
+
can be limited by the value of ``upper_bound``, and the echelon form of the
|
|
521
|
+
matrix also has integer entries. Other exact rings may be also
|
|
522
|
+
specified, but there is no notion of controlling the size. Square matrices
|
|
523
|
+
of full rank generated by this function always have determinant one, and
|
|
524
|
+
can be constructed with the ``unimodular`` keyword. ::
|
|
525
|
+
|
|
526
|
+
sage: A = random_matrix(QQ, 4, 8, algorithm='echelonizable', rank=3, upper_bound=60)
|
|
527
|
+
sage: A.base_ring()
|
|
528
|
+
Rational Field
|
|
529
|
+
sage: (A.nrows(), A.ncols())
|
|
530
|
+
(4, 8)
|
|
531
|
+
sage: A in sage.matrix.matrix_space.MatrixSpace(ZZ, 4, 8)
|
|
532
|
+
True
|
|
533
|
+
sage: A.rank()
|
|
534
|
+
3
|
|
535
|
+
sage: all(abs(x)<60 for x in A.list())
|
|
536
|
+
True
|
|
537
|
+
sage: A.rref() in sage.matrix.matrix_space.MatrixSpace(ZZ, 4, 8)
|
|
538
|
+
True
|
|
539
|
+
|
|
540
|
+
For more, see the documentation of the :func:`~sage.matrix.constructor.random_echelonizable_matrix`
|
|
541
|
+
function. In the notebook or at the Sage command-line, first execute the following to make
|
|
542
|
+
this further documentation available::
|
|
543
|
+
|
|
544
|
+
from sage.matrix.constructor import random_echelonizable_matrix
|
|
545
|
+
|
|
546
|
+
Random diagonalizable matrices. The ``algorithm='diagonalizable'`` keyword,
|
|
547
|
+
along with a requested matrix size (``size``) and optional lists of
|
|
548
|
+
eigenvalues (``eigenvalues``) and the corresponding eigenspace
|
|
549
|
+
dimensions (``dimensions``) will return a random diagonalizable matrix.
|
|
550
|
+
When the eigenvalues and dimensions are not specified the result will have
|
|
551
|
+
randomly generated values for both that fit with the designated size. ::
|
|
552
|
+
|
|
553
|
+
sage: A = random_matrix(QQ, 5, algorithm='diagonalizable', # random
|
|
554
|
+
....: eigenvalues=[2,3,-1], dimensions=[1,2,2]); A
|
|
555
|
+
sage: all(x in ZZ for x in (A - (2*identity_matrix(5))).rref().list())
|
|
556
|
+
True
|
|
557
|
+
sage: all(x in ZZ for x in (A - 3*identity_matrix(5)).rref().list())
|
|
558
|
+
True
|
|
559
|
+
sage: all(x in ZZ for x in (A - (-1)*identity_matrix(5)).rref().list())
|
|
560
|
+
True
|
|
561
|
+
sage: A.jordan_form() # needs sage.combinat sage.libs.pari
|
|
562
|
+
[ 2| 0| 0| 0| 0]
|
|
563
|
+
[--+--+--+--+--]
|
|
564
|
+
[ 0| 3| 0| 0| 0]
|
|
565
|
+
[--+--+--+--+--]
|
|
566
|
+
[ 0| 0| 3| 0| 0]
|
|
567
|
+
[--+--+--+--+--]
|
|
568
|
+
[ 0| 0| 0|-1| 0]
|
|
569
|
+
[--+--+--+--+--]
|
|
570
|
+
[ 0| 0| 0| 0|-1]
|
|
571
|
+
|
|
572
|
+
For more, see the documentation of the :func:`~sage.matrix.constructor.random_diagonalizable_matrix`
|
|
573
|
+
function. In the notebook or at the Sage command-line, first execute the following to make
|
|
574
|
+
this further documentation available::
|
|
575
|
+
|
|
576
|
+
from sage.matrix.constructor import random_diagonalizable_matrix
|
|
577
|
+
|
|
578
|
+
Random matrices with predictable subspaces. The ``algorithm='subspaces'``
|
|
579
|
+
keyword, along with an optional rank (``rank``) will return
|
|
580
|
+
a matrix whose natural basis vectors for its four fundamental subspaces, if computed as
|
|
581
|
+
described in the documentation of the :func:`~sage.matrix.constructor.random_subspaces_matrix`
|
|
582
|
+
contain only integer entries. If ``rank``, is not set, the
|
|
583
|
+
rank of the matrix will be generated randomly. ::
|
|
584
|
+
|
|
585
|
+
sage: B = random_matrix(QQ, 5, 6, algorithm='subspaces', rank=3); B # random
|
|
586
|
+
sage: B_expanded = B.augment(identity_matrix(5)).rref()
|
|
587
|
+
sage: (B.nrows(), B.ncols())
|
|
588
|
+
(5, 6)
|
|
589
|
+
sage: all(x in ZZ for x in B_expanded.list())
|
|
590
|
+
True
|
|
591
|
+
sage: C = B_expanded.submatrix(0, 0, B.nrows() - B.nullity(), B.ncols())
|
|
592
|
+
sage: L = B_expanded.submatrix(B.nrows() - B.nullity(), B.ncols())
|
|
593
|
+
sage: B.right_kernel() == C.right_kernel()
|
|
594
|
+
True
|
|
595
|
+
sage: B.row_space() == C.row_space()
|
|
596
|
+
True
|
|
597
|
+
sage: B.column_space() == L.right_kernel()
|
|
598
|
+
True
|
|
599
|
+
sage: B.left_kernel() == L.row_space()
|
|
600
|
+
True
|
|
601
|
+
|
|
602
|
+
For more, see the documentation of the :func:`~sage.matrix.constructor.random_subspaces_matrix`
|
|
603
|
+
function. In the notebook or at the Sage command-line, first execute the following to make
|
|
604
|
+
this further documentation available::
|
|
605
|
+
|
|
606
|
+
from sage.matrix.constructor import random_subspaces_matrix
|
|
607
|
+
|
|
608
|
+
Random unimodular matrices. The ``algorithm='unimodular'``
|
|
609
|
+
keyword, along with an optional entry size control (``upper_bound``)
|
|
610
|
+
will return a matrix of determinant 1. When the base ring is ``ZZ``
|
|
611
|
+
or ``QQ`` the result has integer entries, whose magnitudes
|
|
612
|
+
can be limited by the value of ``upper_bound``. ::
|
|
613
|
+
|
|
614
|
+
sage: C = random_matrix(QQ, 5, algorithm='unimodular', upper_bound=70); C # random
|
|
615
|
+
sage: det(C)
|
|
616
|
+
1
|
|
617
|
+
sage: C.base_ring()
|
|
618
|
+
Rational Field
|
|
619
|
+
sage: (C.nrows(), C.ncols())
|
|
620
|
+
(5, 5)
|
|
621
|
+
sage: all(abs(x)<70 for x in C.list())
|
|
622
|
+
True
|
|
623
|
+
|
|
624
|
+
For more, see the documentation of the :func:`~sage.matrix.constructor.random_unimodular_matrix`
|
|
625
|
+
function. In the notebook or at the Sage command-line, first execute the following to make
|
|
626
|
+
this further documentation available::
|
|
627
|
+
|
|
628
|
+
from sage.matrix.constructor import random_unimodular_matrix
|
|
629
|
+
|
|
630
|
+
TESTS:
|
|
631
|
+
|
|
632
|
+
We return an error for a bogus value of ``algorithm``::
|
|
633
|
+
|
|
634
|
+
sage: random_matrix(ZZ, 5, algorithm='bogus')
|
|
635
|
+
Traceback (most recent call last):
|
|
636
|
+
...
|
|
637
|
+
ValueError: random matrix algorithm "bogus" is not recognized
|
|
638
|
+
|
|
639
|
+
AUTHOR:
|
|
640
|
+
|
|
641
|
+
- William Stein (2007-02-06)
|
|
642
|
+
|
|
643
|
+
- Rob Beezer (2010-08-25) Documentation, code to allow additional types of output
|
|
644
|
+
"""
|
|
645
|
+
if ncols is None:
|
|
646
|
+
ncols = nrows
|
|
647
|
+
sparse = kwds.pop('sparse', False)
|
|
648
|
+
# Construct the parent of the desired matrix
|
|
649
|
+
parent = matrix_space.MatrixSpace(ring, nrows, ncols, sparse=sparse, implementation=implementation)
|
|
650
|
+
if algorithm == 'randomize':
|
|
651
|
+
density = kwds.pop('density', None)
|
|
652
|
+
# zero matrix is immutable, copy is mutable
|
|
653
|
+
A = copy(parent.zero_matrix())
|
|
654
|
+
if density is None:
|
|
655
|
+
A.randomize(density=float(1), nonzero=False, *args, **kwds)
|
|
656
|
+
else:
|
|
657
|
+
A.randomize(density=density, nonzero=True, *args, **kwds)
|
|
658
|
+
return A
|
|
659
|
+
elif algorithm == 'echelon_form':
|
|
660
|
+
return random_rref_matrix(parent, *args, **kwds)
|
|
661
|
+
elif algorithm == 'echelonizable':
|
|
662
|
+
return random_echelonizable_matrix(parent, *args, **kwds)
|
|
663
|
+
elif algorithm == 'diagonalizable':
|
|
664
|
+
return random_diagonalizable_matrix(parent, *args, **kwds)
|
|
665
|
+
elif algorithm == 'subspaces':
|
|
666
|
+
return random_subspaces_matrix(parent, *args, **kwds)
|
|
667
|
+
elif algorithm == 'unimodular':
|
|
668
|
+
return random_unimodular_matrix(parent, *args, **kwds)
|
|
669
|
+
else:
|
|
670
|
+
raise ValueError('random matrix algorithm "%s" is not recognized' % algorithm)
|
|
671
|
+
|
|
672
|
+
|
|
673
|
+
@matrix_method
|
|
674
|
+
def diagonal_matrix(arg0=None, arg1=None, arg2=None, sparse=True):
|
|
675
|
+
r"""
|
|
676
|
+
Return a square matrix with specified diagonal entries, and zeros elsewhere.
|
|
677
|
+
|
|
678
|
+
FORMATS:
|
|
679
|
+
|
|
680
|
+
1. diagonal_matrix(entries)
|
|
681
|
+
|
|
682
|
+
2. diagonal_matrix(nrows, entries)
|
|
683
|
+
|
|
684
|
+
3. diagonal_matrix(ring, entries)
|
|
685
|
+
|
|
686
|
+
4. diagonal_matrix(ring, nrows, entries)
|
|
687
|
+
|
|
688
|
+
INPUT:
|
|
689
|
+
|
|
690
|
+
- ``entries`` -- the values to place along the diagonal
|
|
691
|
+
of the returned matrix. This may be a flat list, a
|
|
692
|
+
flat tuple, a vector or free module element, or
|
|
693
|
+
a one-dimensional NumPy array.
|
|
694
|
+
|
|
695
|
+
- ``nrows`` -- the size of the returned matrix, which
|
|
696
|
+
will have an equal number of columns
|
|
697
|
+
|
|
698
|
+
- ``ring`` -- the ring containing the entries of the
|
|
699
|
+
diagonal entries. This may not be specified in
|
|
700
|
+
combination with a NumPy array.
|
|
701
|
+
|
|
702
|
+
- ``sparse`` -- boolean (default: ``True``); whether or not
|
|
703
|
+
the result has a sparse implementation
|
|
704
|
+
|
|
705
|
+
OUTPUT:
|
|
706
|
+
|
|
707
|
+
A square matrix over the given ``ring`` with a size
|
|
708
|
+
given by ``nrows``. If the ring is not given it
|
|
709
|
+
is inferred from the given entries. The values on
|
|
710
|
+
the diagonal of the returned matrix come from ``entries``.
|
|
711
|
+
If the number of entries is not enough to fill the whole
|
|
712
|
+
diagonal, it is padded with zeros.
|
|
713
|
+
|
|
714
|
+
EXAMPLES:
|
|
715
|
+
|
|
716
|
+
We first demonstrate each of the input formats with various
|
|
717
|
+
different ways to specify the entries.
|
|
718
|
+
|
|
719
|
+
Format 1: a flat list of entries. ::
|
|
720
|
+
|
|
721
|
+
sage: A = diagonal_matrix([2, 1.3, 5]); A
|
|
722
|
+
[ 2.00000000000000 0.000000000000000 0.000000000000000]
|
|
723
|
+
[0.000000000000000 1.30000000000000 0.000000000000000]
|
|
724
|
+
[0.000000000000000 0.000000000000000 5.00000000000000]
|
|
725
|
+
sage: A.parent()
|
|
726
|
+
Full MatrixSpace of 3 by 3 sparse matrices over Real Field with 53 bits of precision
|
|
727
|
+
|
|
728
|
+
Format 2: size specified, a tuple with initial entries. Note that a short list of entries
|
|
729
|
+
is effectively padded with zeros. ::
|
|
730
|
+
|
|
731
|
+
sage: A = diagonal_matrix(3, (4, 5)); A
|
|
732
|
+
[4 0 0]
|
|
733
|
+
[0 5 0]
|
|
734
|
+
[0 0 0]
|
|
735
|
+
sage: A.parent()
|
|
736
|
+
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring
|
|
737
|
+
|
|
738
|
+
Format 3: ring specified, a vector of entries. ::
|
|
739
|
+
|
|
740
|
+
sage: A = diagonal_matrix(QQ, vector(ZZ, [1,2,3])); A
|
|
741
|
+
[1 0 0]
|
|
742
|
+
[0 2 0]
|
|
743
|
+
[0 0 3]
|
|
744
|
+
sage: A.parent()
|
|
745
|
+
Full MatrixSpace of 3 by 3 sparse matrices over Rational Field
|
|
746
|
+
|
|
747
|
+
Format 4: ring, size and list of entries. ::
|
|
748
|
+
|
|
749
|
+
sage: A = diagonal_matrix(FiniteField(3), 3, [2, 16]); A
|
|
750
|
+
[2 0 0]
|
|
751
|
+
[0 1 0]
|
|
752
|
+
[0 0 0]
|
|
753
|
+
sage: A.parent()
|
|
754
|
+
Full MatrixSpace of 3 by 3 sparse matrices over Finite Field of size 3
|
|
755
|
+
|
|
756
|
+
NumPy arrays may be used as input. ::
|
|
757
|
+
|
|
758
|
+
sage: # needs numpy
|
|
759
|
+
sage: import numpy
|
|
760
|
+
sage: entries = numpy.array([1.2, 5.6]); entries
|
|
761
|
+
array([1.2, 5.6])
|
|
762
|
+
sage: A = diagonal_matrix(3, entries); A
|
|
763
|
+
[1.2 0.0 0.0]
|
|
764
|
+
[0.0 5.6 0.0]
|
|
765
|
+
[0.0 0.0 0.0]
|
|
766
|
+
sage: A.parent()
|
|
767
|
+
Full MatrixSpace of 3 by 3 sparse matrices over Real Double Field
|
|
768
|
+
|
|
769
|
+
sage: # needs numpy
|
|
770
|
+
sage: j = complex(0,1)
|
|
771
|
+
sage: entries = numpy.array([2.0+j, 8.1, 3.4+2.6*j]); entries
|
|
772
|
+
array([2. +1.j , 8.1+0.j , 3.4+2.6j])
|
|
773
|
+
sage: A = diagonal_matrix(entries); A
|
|
774
|
+
[2.0 + 1.0*I 0.0 0.0]
|
|
775
|
+
[ 0.0 8.1 0.0]
|
|
776
|
+
[ 0.0 0.0 3.4 + 2.6*I]
|
|
777
|
+
sage: A.parent()
|
|
778
|
+
Full MatrixSpace of 3 by 3 sparse matrices over Complex Double Field
|
|
779
|
+
|
|
780
|
+
sage: # needs numpy
|
|
781
|
+
sage: entries = numpy.array([4, 5, 6])
|
|
782
|
+
sage: A = diagonal_matrix(entries); A
|
|
783
|
+
[4 0 0]
|
|
784
|
+
[0 5 0]
|
|
785
|
+
[0 0 6]
|
|
786
|
+
sage: A.parent()
|
|
787
|
+
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring
|
|
788
|
+
|
|
789
|
+
sage: entries = numpy.array([4.1, 5.2, 6.3]) # needs numpy
|
|
790
|
+
sage: A = diagonal_matrix(ZZ, entries); A # needs numpy
|
|
791
|
+
Traceback (most recent call last):
|
|
792
|
+
...
|
|
793
|
+
TypeError: unable to convert 4.1 to an element of Integer Ring
|
|
794
|
+
|
|
795
|
+
By default returned matrices have a sparse implementation. This can be changed
|
|
796
|
+
when using any of the formats. ::
|
|
797
|
+
|
|
798
|
+
sage: A = diagonal_matrix([1,2,3], sparse=False)
|
|
799
|
+
sage: A.parent()
|
|
800
|
+
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
|
|
801
|
+
|
|
802
|
+
An empty list and no ring specified defaults to the integers. ::
|
|
803
|
+
|
|
804
|
+
sage: A = diagonal_matrix([])
|
|
805
|
+
sage: A.parent()
|
|
806
|
+
Full MatrixSpace of 0 by 0 sparse matrices over Integer Ring
|
|
807
|
+
|
|
808
|
+
Giving the entries improperly may first complain about not being iterable::
|
|
809
|
+
|
|
810
|
+
sage: diagonal_matrix(QQ, 5, 10)
|
|
811
|
+
Traceback (most recent call last):
|
|
812
|
+
...
|
|
813
|
+
TypeError: 'sage.rings.integer.Integer' object is not iterable
|
|
814
|
+
|
|
815
|
+
Giving too many entries will raise an error. ::
|
|
816
|
+
|
|
817
|
+
sage: diagonal_matrix(QQ, 3, [1,2,3,4])
|
|
818
|
+
Traceback (most recent call last):
|
|
819
|
+
...
|
|
820
|
+
ValueError: number of diagonal matrix entries (4) exceeds the requested matrix size (3)
|
|
821
|
+
|
|
822
|
+
A negative size sometimes causes the error that there are too many elements. ::
|
|
823
|
+
|
|
824
|
+
sage: diagonal_matrix(-2, [2])
|
|
825
|
+
Traceback (most recent call last):
|
|
826
|
+
...
|
|
827
|
+
ValueError: number of diagonal matrix entries (1) exceeds the requested matrix size (-2)
|
|
828
|
+
|
|
829
|
+
Types for the entries need to be iterable (tuple, list, vector, NumPy array,
|
|
830
|
+
etc)::
|
|
831
|
+
|
|
832
|
+
sage: diagonal_matrix(x^2) # needs sage.symbolic
|
|
833
|
+
Traceback (most recent call last):
|
|
834
|
+
...
|
|
835
|
+
TypeError: 'sage.symbolic.expression.Expression' object is not iterable
|
|
836
|
+
|
|
837
|
+
TESTS::
|
|
838
|
+
|
|
839
|
+
sage: A = diagonal_matrix(reversed(range(4)))
|
|
840
|
+
|
|
841
|
+
AUTHOR:
|
|
842
|
+
|
|
843
|
+
- Rob Beezer (2011-01-11): total rewrite
|
|
844
|
+
"""
|
|
845
|
+
# Roll arguments leftward
|
|
846
|
+
#
|
|
847
|
+
# Leads with a ring?
|
|
848
|
+
# Formats 3, 4, else remains None
|
|
849
|
+
ring = None
|
|
850
|
+
if arg0 in Rings():
|
|
851
|
+
ring = arg0
|
|
852
|
+
arg0 = arg1
|
|
853
|
+
arg1 = arg2
|
|
854
|
+
# Size of matrix specified?
|
|
855
|
+
# Formats 2, 4
|
|
856
|
+
nrows = None
|
|
857
|
+
if isinstance(arg0, (Integer, int)):
|
|
858
|
+
nrows = arg0
|
|
859
|
+
arg0 = arg1
|
|
860
|
+
# Object holding entries
|
|
861
|
+
# Formats 1, 2, 3, 4
|
|
862
|
+
entries = arg0
|
|
863
|
+
|
|
864
|
+
# sanity check for entries
|
|
865
|
+
types = (list, tuple)
|
|
866
|
+
try:
|
|
867
|
+
from numpy import ndarray
|
|
868
|
+
except ImportError:
|
|
869
|
+
pass
|
|
870
|
+
else:
|
|
871
|
+
types += (ndarray,)
|
|
872
|
+
if not isinstance(entries, types):
|
|
873
|
+
entries = list(entries)
|
|
874
|
+
|
|
875
|
+
# Reconcile matrix size and number of entries
|
|
876
|
+
try:
|
|
877
|
+
nentries = len(entries)
|
|
878
|
+
except TypeError:
|
|
879
|
+
raise TypeError('unable to determine number of entries for diagonal matrix construction')
|
|
880
|
+
# sometimes catches a negative size
|
|
881
|
+
if nrows is not None and nentries > nrows:
|
|
882
|
+
raise ValueError('number of diagonal matrix entries (%s) exceeds the requested matrix size (%s)' % (nentries, nrows))
|
|
883
|
+
if nrows is None:
|
|
884
|
+
nrows = nentries
|
|
885
|
+
|
|
886
|
+
# provide a default ring for an empty list
|
|
887
|
+
if not nentries and ring is None:
|
|
888
|
+
ring = ZZ
|
|
889
|
+
|
|
890
|
+
# Convert entries to a list v over a common ring
|
|
891
|
+
from sage.modules.free_module_element import prepare
|
|
892
|
+
v, ring = prepare(entries, ring)
|
|
893
|
+
|
|
894
|
+
# Create a "diagonal" dictionary for matrix constructor
|
|
895
|
+
# If nentries < nrows, diagonal is effectively padded with zeros at end
|
|
896
|
+
w = {(i, i): v[i] for i in range(len(v))}
|
|
897
|
+
|
|
898
|
+
# Ship ring, matrix size, dictionary to matrix constructor
|
|
899
|
+
if ring is None:
|
|
900
|
+
return matrix(nrows, nrows, w, sparse=sparse)
|
|
901
|
+
else:
|
|
902
|
+
return matrix(ring, nrows, nrows, w, sparse=sparse)
|
|
903
|
+
|
|
904
|
+
|
|
905
|
+
@matrix_method
|
|
906
|
+
def identity_matrix(ring, n=0, sparse=False):
|
|
907
|
+
r"""
|
|
908
|
+
Return the `n \times n` identity matrix over the given
|
|
909
|
+
ring.
|
|
910
|
+
|
|
911
|
+
The default ring is the integers.
|
|
912
|
+
|
|
913
|
+
EXAMPLES::
|
|
914
|
+
|
|
915
|
+
sage: M = identity_matrix(QQ, 2); M
|
|
916
|
+
[1 0]
|
|
917
|
+
[0 1]
|
|
918
|
+
sage: M.parent()
|
|
919
|
+
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
|
|
920
|
+
sage: M = identity_matrix(2); M
|
|
921
|
+
[1 0]
|
|
922
|
+
[0 1]
|
|
923
|
+
sage: M.parent()
|
|
924
|
+
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
|
|
925
|
+
sage: M.is_mutable()
|
|
926
|
+
True
|
|
927
|
+
sage: M = identity_matrix(3, sparse=True); M
|
|
928
|
+
[1 0 0]
|
|
929
|
+
[0 1 0]
|
|
930
|
+
[0 0 1]
|
|
931
|
+
sage: M.parent()
|
|
932
|
+
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring
|
|
933
|
+
sage: M.is_mutable()
|
|
934
|
+
True
|
|
935
|
+
"""
|
|
936
|
+
if isinstance(ring, (Integer, int)):
|
|
937
|
+
n = ring
|
|
938
|
+
ring = ZZ
|
|
939
|
+
return matrix_space.MatrixSpace(ring, n, n, sparse)(1)
|
|
940
|
+
|
|
941
|
+
|
|
942
|
+
@matrix_method
|
|
943
|
+
def lehmer(ring, n=0):
|
|
944
|
+
r"""
|
|
945
|
+
Return the `n \times n` Lehmer matrix.
|
|
946
|
+
|
|
947
|
+
The default ring is the rationals.
|
|
948
|
+
|
|
949
|
+
Element `(i, j)` in the Lehmer matrix is
|
|
950
|
+
`min(i, j)/max(i, j)`.
|
|
951
|
+
|
|
952
|
+
See :wikipedia:`Lehmer_matrix`.
|
|
953
|
+
|
|
954
|
+
EXAMPLES::
|
|
955
|
+
|
|
956
|
+
sage: matrix.lehmer(3)
|
|
957
|
+
[ 1 1/2 1/3]
|
|
958
|
+
[1/2 1 2/3]
|
|
959
|
+
[1/3 2/3 1]
|
|
960
|
+
"""
|
|
961
|
+
from sage.sets.integer_range import IntegerRange
|
|
962
|
+
|
|
963
|
+
if isinstance(ring, (Integer, int)):
|
|
964
|
+
n = ring
|
|
965
|
+
ring = QQ
|
|
966
|
+
return matrix_space.MatrixSpace(ring, n, n).matrix([[min(i, j)/max(i, j) for i in IntegerRange(1, n+1)] for j in IntegerRange(1, n+1)])
|
|
967
|
+
|
|
968
|
+
|
|
969
|
+
@matrix_method
|
|
970
|
+
def zero_matrix(ring, nrows=None, ncols=None, sparse=False):
|
|
971
|
+
r"""
|
|
972
|
+
Return the `nrows \times ncols` zero matrix over the given
|
|
973
|
+
ring.
|
|
974
|
+
|
|
975
|
+
The default ring is the integers.
|
|
976
|
+
|
|
977
|
+
EXAMPLES::
|
|
978
|
+
|
|
979
|
+
sage: M = zero_matrix(QQ, 2); M
|
|
980
|
+
[0 0]
|
|
981
|
+
[0 0]
|
|
982
|
+
sage: M.parent()
|
|
983
|
+
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
|
|
984
|
+
sage: M = zero_matrix(2, 3); M
|
|
985
|
+
[0 0 0]
|
|
986
|
+
[0 0 0]
|
|
987
|
+
sage: M.parent()
|
|
988
|
+
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
|
|
989
|
+
sage: M.is_mutable()
|
|
990
|
+
True
|
|
991
|
+
sage: M = zero_matrix(3, 1, sparse=True); M
|
|
992
|
+
[0]
|
|
993
|
+
[0]
|
|
994
|
+
[0]
|
|
995
|
+
sage: M.parent()
|
|
996
|
+
Full MatrixSpace of 3 by 1 sparse matrices over Integer Ring
|
|
997
|
+
sage: M.is_mutable()
|
|
998
|
+
True
|
|
999
|
+
sage: matrix.zero(5)
|
|
1000
|
+
[0 0 0 0 0]
|
|
1001
|
+
[0 0 0 0 0]
|
|
1002
|
+
[0 0 0 0 0]
|
|
1003
|
+
[0 0 0 0 0]
|
|
1004
|
+
[0 0 0 0 0]
|
|
1005
|
+
|
|
1006
|
+
TESTS:
|
|
1007
|
+
|
|
1008
|
+
Check that :issue:`38221` is fixed::
|
|
1009
|
+
|
|
1010
|
+
sage: # needs sage.groups
|
|
1011
|
+
sage: G = CyclicPermutationGroup(7)
|
|
1012
|
+
sage: R = GF(2)
|
|
1013
|
+
sage: A = G.algebra(R)
|
|
1014
|
+
sage: zero_matrix(A, 3, 3)
|
|
1015
|
+
[0 0 0]
|
|
1016
|
+
[0 0 0]
|
|
1017
|
+
[0 0 0]
|
|
1018
|
+
"""
|
|
1019
|
+
if isinstance(ring, (Integer, int)):
|
|
1020
|
+
nrows, ncols = (ring, nrows)
|
|
1021
|
+
ring = ZZ
|
|
1022
|
+
return matrix_space.MatrixSpace(ring, nrows, ncols, sparse).matrix(None)
|
|
1023
|
+
|
|
1024
|
+
|
|
1025
|
+
@matrix_method
|
|
1026
|
+
def ones_matrix(ring, nrows=None, ncols=None, sparse=False):
|
|
1027
|
+
r"""
|
|
1028
|
+
Return a matrix with all entries equal to 1.
|
|
1029
|
+
|
|
1030
|
+
CALL FORMATS:
|
|
1031
|
+
|
|
1032
|
+
In each case, the optional keyword ``sparse`` can be used.
|
|
1033
|
+
|
|
1034
|
+
1. ones_matrix(ring, nrows, ncols)
|
|
1035
|
+
2. ones_matrix(ring, nrows)
|
|
1036
|
+
3. ones_matrix(nrows, ncols)
|
|
1037
|
+
4. ones_matrix(nrows)
|
|
1038
|
+
|
|
1039
|
+
INPUT:
|
|
1040
|
+
|
|
1041
|
+
- ``ring`` -- (default: ``ZZ``) base ring for the matrix
|
|
1042
|
+
- ``nrows`` -- number of rows in the matrix
|
|
1043
|
+
- ``ncols`` -- number of columns in the matrix;
|
|
1044
|
+
if omitted, defaults to the number of rows, producing a square matrix
|
|
1045
|
+
- ``sparse`` -- (default: ``False``) if ``True`` creates a sparse representation
|
|
1046
|
+
|
|
1047
|
+
OUTPUT:
|
|
1048
|
+
|
|
1049
|
+
A matrix of size ``nrows`` by ``ncols`` over the ``ring`` with every
|
|
1050
|
+
entry equal to 1. While the result is far from sparse, you may wish
|
|
1051
|
+
to choose a sparse representation when mixing this matrix with
|
|
1052
|
+
other sparse matrices.
|
|
1053
|
+
|
|
1054
|
+
EXAMPLES:
|
|
1055
|
+
|
|
1056
|
+
A call specifying the ring and the size. ::
|
|
1057
|
+
|
|
1058
|
+
sage: M= ones_matrix(QQ, 2, 5); M
|
|
1059
|
+
[1 1 1 1 1]
|
|
1060
|
+
[1 1 1 1 1]
|
|
1061
|
+
sage: M.parent()
|
|
1062
|
+
Full MatrixSpace of 2 by 5 dense matrices over Rational Field
|
|
1063
|
+
|
|
1064
|
+
Without specifying the number of columns, the result is square. ::
|
|
1065
|
+
|
|
1066
|
+
sage: M = ones_matrix(RR, 2); M
|
|
1067
|
+
[1.00000000000000 1.00000000000000]
|
|
1068
|
+
[1.00000000000000 1.00000000000000]
|
|
1069
|
+
sage: M.parent()
|
|
1070
|
+
Full MatrixSpace of 2 by 2 dense matrices over Real Field with 53 bits of precision
|
|
1071
|
+
|
|
1072
|
+
The ring defaults to the integers if not given. ::
|
|
1073
|
+
|
|
1074
|
+
sage: M = ones_matrix(2, 3); M
|
|
1075
|
+
[1 1 1]
|
|
1076
|
+
[1 1 1]
|
|
1077
|
+
sage: M.parent()
|
|
1078
|
+
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
|
|
1079
|
+
|
|
1080
|
+
A lone integer input produces a square matrix over the integers. ::
|
|
1081
|
+
|
|
1082
|
+
sage: M = ones_matrix(3); M
|
|
1083
|
+
[1 1 1]
|
|
1084
|
+
[1 1 1]
|
|
1085
|
+
[1 1 1]
|
|
1086
|
+
sage: M.parent()
|
|
1087
|
+
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
|
|
1088
|
+
|
|
1089
|
+
The result can have a sparse implementation. ::
|
|
1090
|
+
|
|
1091
|
+
sage: M = ones_matrix(3, 1, sparse=True); M
|
|
1092
|
+
[1]
|
|
1093
|
+
[1]
|
|
1094
|
+
[1]
|
|
1095
|
+
sage: M.parent()
|
|
1096
|
+
Full MatrixSpace of 3 by 1 sparse matrices over Integer Ring
|
|
1097
|
+
|
|
1098
|
+
Giving just a ring will yield an error. ::
|
|
1099
|
+
|
|
1100
|
+
sage: ones_matrix(CC)
|
|
1101
|
+
Traceback (most recent call last):
|
|
1102
|
+
...
|
|
1103
|
+
ValueError: constructing an all ones matrix requires at least one dimension
|
|
1104
|
+
"""
|
|
1105
|
+
if isinstance(ring, (Integer, int)):
|
|
1106
|
+
nrows, ncols = (ring, nrows)
|
|
1107
|
+
ring = ZZ
|
|
1108
|
+
if nrows is None:
|
|
1109
|
+
raise ValueError("constructing an all ones matrix requires at least one dimension")
|
|
1110
|
+
if ncols is None:
|
|
1111
|
+
nents = nrows**2
|
|
1112
|
+
else:
|
|
1113
|
+
nents = nrows*ncols
|
|
1114
|
+
one = ring(1)
|
|
1115
|
+
return matrix_space.MatrixSpace(ring, nrows, ncols, sparse).matrix([one]*nents)
|
|
1116
|
+
|
|
1117
|
+
|
|
1118
|
+
@matrix_method
|
|
1119
|
+
def elementary_matrix(arg0, arg1=None, **kwds):
|
|
1120
|
+
r"""
|
|
1121
|
+
Create a square matrix that corresponds to a row operation or a column operation.
|
|
1122
|
+
|
|
1123
|
+
FORMATS:
|
|
1124
|
+
|
|
1125
|
+
In each case, ``R`` is the base ring, and is optional. ``n`` is the size
|
|
1126
|
+
of the square matrix created. Any call may include the ``sparse`` keyword
|
|
1127
|
+
to determine the representation used. The default is ``False`` which
|
|
1128
|
+
leads to a dense representation. We describe the matrices by their
|
|
1129
|
+
associated row operation, see the output description for more.
|
|
1130
|
+
|
|
1131
|
+
- ``elementary_matrix(R, n, row1=i, row2=j)``
|
|
1132
|
+
|
|
1133
|
+
The matrix which swaps rows ``i`` and ``j``.
|
|
1134
|
+
|
|
1135
|
+
- ``elementary_matrix(R, n, row1=i, scale=s)``
|
|
1136
|
+
|
|
1137
|
+
The matrix which multiplies row ``i`` by ``s``.
|
|
1138
|
+
|
|
1139
|
+
- ``elementary_matrix(R, n, row1=i, row2=j, scale=s)``
|
|
1140
|
+
|
|
1141
|
+
The matrix which multiplies row ``j`` by ``s``
|
|
1142
|
+
and adds it to row ``i``.
|
|
1143
|
+
|
|
1144
|
+
Elementary matrices representing column operations are created
|
|
1145
|
+
in an entirely analogous way, replacing ``row1`` by ``col1`` and
|
|
1146
|
+
replacing ``row2`` by ``col2``.
|
|
1147
|
+
|
|
1148
|
+
Specifying the ring for entries of the matrix is optional. If it
|
|
1149
|
+
is not given, and a scale parameter is provided, then a ring containing
|
|
1150
|
+
the value of ``scale`` will be used. Otherwise, the ring defaults
|
|
1151
|
+
to the integers.
|
|
1152
|
+
|
|
1153
|
+
OUTPUT:
|
|
1154
|
+
|
|
1155
|
+
An elementary matrix is a square matrix that is very close to being
|
|
1156
|
+
an identity matrix. If ``E`` is an elementary matrix and ``A`` is any
|
|
1157
|
+
matrix with the same number of rows, then ``E*A`` is the result of
|
|
1158
|
+
applying a row operation to ``A``. This is how the three types
|
|
1159
|
+
created by this function are described. Similarly, an elementary matrix
|
|
1160
|
+
can be associated with a column operation, so if ``E`` has the same number
|
|
1161
|
+
of columns as ``A`` then ``A*E`` is the result of performing a column
|
|
1162
|
+
operation on ``A``.
|
|
1163
|
+
|
|
1164
|
+
An elementary matrix representing a row operation is created if ``row1``
|
|
1165
|
+
is specified, while an elementary matrix representing a column operation
|
|
1166
|
+
is created if ``col1`` is specified.
|
|
1167
|
+
|
|
1168
|
+
EXAMPLES:
|
|
1169
|
+
|
|
1170
|
+
Over the integers, creating row operations. Recall that row
|
|
1171
|
+
and column numbering begins at zero. ::
|
|
1172
|
+
|
|
1173
|
+
sage: A = matrix(ZZ, 4, 10, range(40)); A
|
|
1174
|
+
[ 0 1 2 3 4 5 6 7 8 9]
|
|
1175
|
+
[10 11 12 13 14 15 16 17 18 19]
|
|
1176
|
+
[20 21 22 23 24 25 26 27 28 29]
|
|
1177
|
+
[30 31 32 33 34 35 36 37 38 39]
|
|
1178
|
+
|
|
1179
|
+
sage: E = elementary_matrix(4, row1=1, row2=3); E
|
|
1180
|
+
[1 0 0 0]
|
|
1181
|
+
[0 0 0 1]
|
|
1182
|
+
[0 0 1 0]
|
|
1183
|
+
[0 1 0 0]
|
|
1184
|
+
sage: E*A
|
|
1185
|
+
[ 0 1 2 3 4 5 6 7 8 9]
|
|
1186
|
+
[30 31 32 33 34 35 36 37 38 39]
|
|
1187
|
+
[20 21 22 23 24 25 26 27 28 29]
|
|
1188
|
+
[10 11 12 13 14 15 16 17 18 19]
|
|
1189
|
+
|
|
1190
|
+
sage: E = elementary_matrix(4, row1=2, scale=10); E
|
|
1191
|
+
[ 1 0 0 0]
|
|
1192
|
+
[ 0 1 0 0]
|
|
1193
|
+
[ 0 0 10 0]
|
|
1194
|
+
[ 0 0 0 1]
|
|
1195
|
+
sage: E*A
|
|
1196
|
+
[ 0 1 2 3 4 5 6 7 8 9]
|
|
1197
|
+
[ 10 11 12 13 14 15 16 17 18 19]
|
|
1198
|
+
[200 210 220 230 240 250 260 270 280 290]
|
|
1199
|
+
[ 30 31 32 33 34 35 36 37 38 39]
|
|
1200
|
+
|
|
1201
|
+
sage: E = elementary_matrix(4, row1=2, row2=1, scale=10); E
|
|
1202
|
+
[ 1 0 0 0]
|
|
1203
|
+
[ 0 1 0 0]
|
|
1204
|
+
[ 0 10 1 0]
|
|
1205
|
+
[ 0 0 0 1]
|
|
1206
|
+
sage: E*A
|
|
1207
|
+
[ 0 1 2 3 4 5 6 7 8 9]
|
|
1208
|
+
[ 10 11 12 13 14 15 16 17 18 19]
|
|
1209
|
+
[120 131 142 153 164 175 186 197 208 219]
|
|
1210
|
+
[ 30 31 32 33 34 35 36 37 38 39]
|
|
1211
|
+
|
|
1212
|
+
Over the rationals, now as column operations. Recall that row
|
|
1213
|
+
and column numbering begins at zero. Checks now have the
|
|
1214
|
+
elementary matrix on the right. ::
|
|
1215
|
+
|
|
1216
|
+
sage: A = matrix(QQ, 5, 4, range(20)); A
|
|
1217
|
+
[ 0 1 2 3]
|
|
1218
|
+
[ 4 5 6 7]
|
|
1219
|
+
[ 8 9 10 11]
|
|
1220
|
+
[12 13 14 15]
|
|
1221
|
+
[16 17 18 19]
|
|
1222
|
+
|
|
1223
|
+
sage: E = elementary_matrix(QQ, 4, col1=1, col2=3); E
|
|
1224
|
+
[1 0 0 0]
|
|
1225
|
+
[0 0 0 1]
|
|
1226
|
+
[0 0 1 0]
|
|
1227
|
+
[0 1 0 0]
|
|
1228
|
+
sage: A*E
|
|
1229
|
+
[ 0 3 2 1]
|
|
1230
|
+
[ 4 7 6 5]
|
|
1231
|
+
[ 8 11 10 9]
|
|
1232
|
+
[12 15 14 13]
|
|
1233
|
+
[16 19 18 17]
|
|
1234
|
+
|
|
1235
|
+
sage: E = elementary_matrix(QQ, 4, col1=2, scale=1/2); E
|
|
1236
|
+
[ 1 0 0 0]
|
|
1237
|
+
[ 0 1 0 0]
|
|
1238
|
+
[ 0 0 1/2 0]
|
|
1239
|
+
[ 0 0 0 1]
|
|
1240
|
+
sage: A*E
|
|
1241
|
+
[ 0 1 1 3]
|
|
1242
|
+
[ 4 5 3 7]
|
|
1243
|
+
[ 8 9 5 11]
|
|
1244
|
+
[12 13 7 15]
|
|
1245
|
+
[16 17 9 19]
|
|
1246
|
+
|
|
1247
|
+
sage: E = elementary_matrix(QQ, 4, col1=2, col2=1, scale=10); E
|
|
1248
|
+
[ 1 0 0 0]
|
|
1249
|
+
[ 0 1 10 0]
|
|
1250
|
+
[ 0 0 1 0]
|
|
1251
|
+
[ 0 0 0 1]
|
|
1252
|
+
sage: A*E
|
|
1253
|
+
[ 0 1 12 3]
|
|
1254
|
+
[ 4 5 56 7]
|
|
1255
|
+
[ 8 9 100 11]
|
|
1256
|
+
[ 12 13 144 15]
|
|
1257
|
+
[ 16 17 188 19]
|
|
1258
|
+
|
|
1259
|
+
An elementary matrix is always nonsingular. Then repeated row
|
|
1260
|
+
operations can be represented by products of elementary matrices,
|
|
1261
|
+
and this product is again nonsingular. If row operations are to
|
|
1262
|
+
preserve fundamental properties of a matrix (like rank), we do not
|
|
1263
|
+
allow scaling a row by zero. Similarly, the corresponding elementary
|
|
1264
|
+
matrix is not constructed. Also, we do not allow adding a multiple
|
|
1265
|
+
of a row to itself, since this could also lead to a new zero row. ::
|
|
1266
|
+
|
|
1267
|
+
sage: A = matrix(QQ, 4, 10, range(40)); A
|
|
1268
|
+
[ 0 1 2 3 4 5 6 7 8 9]
|
|
1269
|
+
[10 11 12 13 14 15 16 17 18 19]
|
|
1270
|
+
[20 21 22 23 24 25 26 27 28 29]
|
|
1271
|
+
[30 31 32 33 34 35 36 37 38 39]
|
|
1272
|
+
|
|
1273
|
+
sage: E1 = elementary_matrix(QQ, 4, row1=0, row2=1)
|
|
1274
|
+
sage: E2 = elementary_matrix(QQ, 4, row1=3, row2=0, scale=100)
|
|
1275
|
+
sage: E = E2*E1
|
|
1276
|
+
sage: E.is_singular()
|
|
1277
|
+
False
|
|
1278
|
+
sage: E*A
|
|
1279
|
+
[ 10 11 12 13 14 15 16 17 18 19]
|
|
1280
|
+
[ 0 1 2 3 4 5 6 7 8 9]
|
|
1281
|
+
[ 20 21 22 23 24 25 26 27 28 29]
|
|
1282
|
+
[1030 1131 1232 1333 1434 1535 1636 1737 1838 1939]
|
|
1283
|
+
|
|
1284
|
+
sage: E3 = elementary_matrix(QQ, 4, row1=3, scale=0)
|
|
1285
|
+
Traceback (most recent call last):
|
|
1286
|
+
...
|
|
1287
|
+
ValueError: scale parameter of row of elementary matrix must be nonzero
|
|
1288
|
+
|
|
1289
|
+
sage: E4 = elementary_matrix(QQ, 4, row1=3, row2=3, scale=12)
|
|
1290
|
+
Traceback (most recent call last):
|
|
1291
|
+
...
|
|
1292
|
+
ValueError: cannot add a multiple of a row to itself
|
|
1293
|
+
|
|
1294
|
+
If the ring is not specified, and a scale parameter is given, the
|
|
1295
|
+
base ring for the matrix is chosen to contain the scale parameter.
|
|
1296
|
+
Otherwise, if no ring is given, the default is the integers. ::
|
|
1297
|
+
|
|
1298
|
+
sage: E = elementary_matrix(4, row1=1, row2=3)
|
|
1299
|
+
sage: E.parent()
|
|
1300
|
+
Full MatrixSpace of 4 by 4 dense matrices over Integer Ring
|
|
1301
|
+
|
|
1302
|
+
sage: E = elementary_matrix(4, row1=1, scale=4/3)
|
|
1303
|
+
sage: E.parent()
|
|
1304
|
+
Full MatrixSpace of 4 by 4 dense matrices over Rational Field
|
|
1305
|
+
|
|
1306
|
+
sage: # needs sage.symbolic
|
|
1307
|
+
sage: E = elementary_matrix(4, row1=1, scale=I)
|
|
1308
|
+
sage: E.parent()
|
|
1309
|
+
Full MatrixSpace of 4 by 4 dense matrices over
|
|
1310
|
+
Number Field in I with defining polynomial x^2 + 1 with I = 1*I
|
|
1311
|
+
|
|
1312
|
+
sage: # needs sage.rings.complex_double sage.symbolic
|
|
1313
|
+
sage: E = elementary_matrix(4, row1=1, scale=CDF(I))
|
|
1314
|
+
sage: E.parent()
|
|
1315
|
+
Full MatrixSpace of 4 by 4 dense matrices over Complex Double Field
|
|
1316
|
+
|
|
1317
|
+
sage: # needs sage.rings.number_field sage.symbolic
|
|
1318
|
+
sage: E = elementary_matrix(4, row1=1, scale=QQbar(I))
|
|
1319
|
+
sage: E.parent()
|
|
1320
|
+
Full MatrixSpace of 4 by 4 dense matrices over Algebraic Field
|
|
1321
|
+
|
|
1322
|
+
Returned matrices have a dense implementation by default,
|
|
1323
|
+
but a sparse implementation may be requested. ::
|
|
1324
|
+
|
|
1325
|
+
sage: E = elementary_matrix(4, row1=0, row2=1)
|
|
1326
|
+
sage: E.is_dense()
|
|
1327
|
+
True
|
|
1328
|
+
|
|
1329
|
+
sage: E = elementary_matrix(4, row1=0, row2=1, sparse=True)
|
|
1330
|
+
sage: E.is_sparse()
|
|
1331
|
+
True
|
|
1332
|
+
|
|
1333
|
+
And the ridiculously small cases. The zero-row matrix cannot be built
|
|
1334
|
+
since then there are no rows to manipulate. ::
|
|
1335
|
+
|
|
1336
|
+
sage: elementary_matrix(QQ, 1, row1=0, row2=0)
|
|
1337
|
+
[1]
|
|
1338
|
+
sage: elementary_matrix(QQ, 0, row1=0, row2=0)
|
|
1339
|
+
Traceback (most recent call last):
|
|
1340
|
+
...
|
|
1341
|
+
ValueError: size of elementary matrix must be 1 or greater, not 0
|
|
1342
|
+
|
|
1343
|
+
TESTS::
|
|
1344
|
+
|
|
1345
|
+
sage: E = elementary_matrix('junk', 5, row1=3, row2=1, scale=12)
|
|
1346
|
+
Traceback (most recent call last):
|
|
1347
|
+
...
|
|
1348
|
+
TypeError: optional first parameter must be a ring, not junk
|
|
1349
|
+
|
|
1350
|
+
sage: E = elementary_matrix(5, row1=3, scale='junk')
|
|
1351
|
+
Traceback (most recent call last):
|
|
1352
|
+
...
|
|
1353
|
+
TypeError: scale must be an element of some ring, not junk
|
|
1354
|
+
|
|
1355
|
+
sage: E = elementary_matrix(ZZ, 5, row1=3, col2=3, scale=12)
|
|
1356
|
+
Traceback (most recent call last):
|
|
1357
|
+
...
|
|
1358
|
+
ValueError: received an unexpected keyword: col2=3
|
|
1359
|
+
|
|
1360
|
+
sage: E = elementary_matrix(QQ, row1=3, scale=12)
|
|
1361
|
+
Traceback (most recent call last):
|
|
1362
|
+
...
|
|
1363
|
+
ValueError: size of elementary matrix must be given
|
|
1364
|
+
|
|
1365
|
+
sage: E = elementary_matrix(ZZ, 4/3, row1=3, row2=1, scale=12)
|
|
1366
|
+
Traceback (most recent call last):
|
|
1367
|
+
...
|
|
1368
|
+
TypeError: size of elementary matrix must be an integer, not 4/3
|
|
1369
|
+
|
|
1370
|
+
sage: E = elementary_matrix(ZZ, -3, row1=3, row2=1, scale=12)
|
|
1371
|
+
Traceback (most recent call last):
|
|
1372
|
+
...
|
|
1373
|
+
ValueError: size of elementary matrix must be 1 or greater, not -3
|
|
1374
|
+
|
|
1375
|
+
sage: E = elementary_matrix(ZZ, 5, row2=1, scale=12)
|
|
1376
|
+
Traceback (most recent call last):
|
|
1377
|
+
...
|
|
1378
|
+
ValueError: row1 or col1 must be specified
|
|
1379
|
+
|
|
1380
|
+
sage: E = elementary_matrix(ZZ, 5, row1=3, col1=3, scale=12)
|
|
1381
|
+
Traceback (most recent call last):
|
|
1382
|
+
...
|
|
1383
|
+
ValueError: cannot specify both row1 and col1
|
|
1384
|
+
|
|
1385
|
+
sage: E = elementary_matrix(ZZ, 5, row1=4/3, row2=1, scale=12)
|
|
1386
|
+
Traceback (most recent call last):
|
|
1387
|
+
...
|
|
1388
|
+
TypeError: row of elementary matrix must be an integer, not 4/3
|
|
1389
|
+
|
|
1390
|
+
sage: E = elementary_matrix(ZZ, 5, col1=5, col2=1, scale=12)
|
|
1391
|
+
Traceback (most recent call last):
|
|
1392
|
+
...
|
|
1393
|
+
ValueError: column of elementary matrix must be positive and smaller than 5, not 5
|
|
1394
|
+
|
|
1395
|
+
sage: E = elementary_matrix(ZZ, 5, col1=3, col2=4/3, scale=12)
|
|
1396
|
+
Traceback (most recent call last):
|
|
1397
|
+
...
|
|
1398
|
+
TypeError: column of elementary matrix must be an integer, not 4/3
|
|
1399
|
+
|
|
1400
|
+
sage: E = elementary_matrix(ZZ, 5, row1=3, row2=-1, scale=12)
|
|
1401
|
+
Traceback (most recent call last):
|
|
1402
|
+
...
|
|
1403
|
+
ValueError: row of elementary matrix must be positive and smaller than 5, not -1
|
|
1404
|
+
|
|
1405
|
+
sage: E = elementary_matrix(ZZ, 5, row1=3, row2=1, scale=4/3)
|
|
1406
|
+
Traceback (most recent call last):
|
|
1407
|
+
...
|
|
1408
|
+
TypeError: scale parameter of elementary matrix must an element of Integer Ring, not 4/3
|
|
1409
|
+
|
|
1410
|
+
sage: E = elementary_matrix(ZZ, 5, row1=3)
|
|
1411
|
+
Traceback (most recent call last):
|
|
1412
|
+
...
|
|
1413
|
+
ValueError: insufficient parameters provided to construct elementary matrix
|
|
1414
|
+
|
|
1415
|
+
sage: E = elementary_matrix(ZZ, 5, row1=3, row2=3, scale=12)
|
|
1416
|
+
Traceback (most recent call last):
|
|
1417
|
+
...
|
|
1418
|
+
ValueError: cannot add a multiple of a row to itself
|
|
1419
|
+
|
|
1420
|
+
sage: E = elementary_matrix(ZZ, 5, col1=3, scale=0)
|
|
1421
|
+
Traceback (most recent call last):
|
|
1422
|
+
...
|
|
1423
|
+
ValueError: scale parameter of column of elementary matrix must be nonzero
|
|
1424
|
+
|
|
1425
|
+
AUTHOR:
|
|
1426
|
+
|
|
1427
|
+
- Rob Beezer (2011-03-04)
|
|
1428
|
+
"""
|
|
1429
|
+
# determine ring and matrix size
|
|
1430
|
+
if arg1 is not None and arg0 not in Rings():
|
|
1431
|
+
raise TypeError('optional first parameter must be a ring, not {0}'.format(arg0))
|
|
1432
|
+
scale = kwds.pop('scale', None)
|
|
1433
|
+
if arg0 in Rings():
|
|
1434
|
+
R = arg0
|
|
1435
|
+
arg0 = arg1
|
|
1436
|
+
elif scale is not None:
|
|
1437
|
+
if not isinstance(scale, RingElement):
|
|
1438
|
+
raise TypeError('scale must be an element of some ring, not {0}'.format(scale))
|
|
1439
|
+
R = scale.parent()
|
|
1440
|
+
else:
|
|
1441
|
+
R = ZZ
|
|
1442
|
+
if arg0 is None:
|
|
1443
|
+
raise ValueError('size of elementary matrix must be given')
|
|
1444
|
+
try:
|
|
1445
|
+
n = Integer(arg0)
|
|
1446
|
+
except TypeError:
|
|
1447
|
+
raise TypeError('size of elementary matrix must be an integer, not {0}'.format(arg0))
|
|
1448
|
+
if n <= 0:
|
|
1449
|
+
raise ValueError('size of elementary matrix must be 1 or greater, not {0}'.format(n))
|
|
1450
|
+
# row operations or column operations?
|
|
1451
|
+
# column operation matrix will be transpose of a row operation matrix
|
|
1452
|
+
row1 = kwds.pop('row1', None)
|
|
1453
|
+
col1 = kwds.pop('col1', None)
|
|
1454
|
+
if row1 is None and col1 is None:
|
|
1455
|
+
raise ValueError('row1 or col1 must be specified')
|
|
1456
|
+
if row1 is not None and col1 is not None:
|
|
1457
|
+
raise ValueError('cannot specify both row1 and col1')
|
|
1458
|
+
rowop = row1 is not None
|
|
1459
|
+
if rowop:
|
|
1460
|
+
opstring = "row"
|
|
1461
|
+
row2 = kwds.pop('row2', None)
|
|
1462
|
+
else:
|
|
1463
|
+
opstring = "column"
|
|
1464
|
+
row1 = col1
|
|
1465
|
+
row2 = kwds.pop('col2', None)
|
|
1466
|
+
sparse = kwds.pop('sparse', False)
|
|
1467
|
+
if kwds:
|
|
1468
|
+
extra = kwds.popitem()
|
|
1469
|
+
raise ValueError('received an unexpected keyword: {0}={1}'.format(extra[0], extra[1]))
|
|
1470
|
+
|
|
1471
|
+
# analyze parameters to determine matrix type
|
|
1472
|
+
try:
|
|
1473
|
+
row1 = Integer(row1)
|
|
1474
|
+
except TypeError:
|
|
1475
|
+
raise TypeError('{0} of elementary matrix must be an integer, not {1}'.format(opstring, row1))
|
|
1476
|
+
if row1 < 0 or row1 >= n:
|
|
1477
|
+
raise ValueError('{0} of elementary matrix must be positive and smaller than {1}, not {2}'.format(opstring, n, row1))
|
|
1478
|
+
if row2 is not None:
|
|
1479
|
+
try:
|
|
1480
|
+
row2 = Integer(row2)
|
|
1481
|
+
except TypeError:
|
|
1482
|
+
raise TypeError('{0} of elementary matrix must be an integer, not {1}'.format(opstring, row2))
|
|
1483
|
+
if row2 < 0 or row2 >= n:
|
|
1484
|
+
raise ValueError('{0} of elementary matrix must be positive and smaller than {1}, not {2}'.format(opstring, n, row2))
|
|
1485
|
+
if scale is not None:
|
|
1486
|
+
try:
|
|
1487
|
+
scale = R(scale)
|
|
1488
|
+
except Exception:
|
|
1489
|
+
raise TypeError('scale parameter of elementary matrix must an element of {0}, not {1}'.format(R, scale))
|
|
1490
|
+
|
|
1491
|
+
# determine type of matrix and adjust an identity matrix
|
|
1492
|
+
# return row operation matrix or the transpose as a column operation matrix
|
|
1493
|
+
elem = identity_matrix(R, n, sparse=sparse)
|
|
1494
|
+
if row2 is None and scale is None:
|
|
1495
|
+
raise ValueError('insufficient parameters provided to construct elementary matrix')
|
|
1496
|
+
elif row2 is not None and scale is not None:
|
|
1497
|
+
if row1 == row2:
|
|
1498
|
+
raise ValueError('cannot add a multiple of a {0} to itself'.format(opstring))
|
|
1499
|
+
elem[row1, row2] = scale
|
|
1500
|
+
elif row2 is not None and scale is None:
|
|
1501
|
+
elem[row1, row1] = 0
|
|
1502
|
+
elem[row2, row2] = 0
|
|
1503
|
+
elem[row1, row2] = 1
|
|
1504
|
+
elem[row2, row1] = 1
|
|
1505
|
+
elif row2 is None and scale is not None:
|
|
1506
|
+
if scale == 0:
|
|
1507
|
+
raise ValueError('scale parameter of {0} of elementary matrix must be nonzero'.format(opstring))
|
|
1508
|
+
elem[row1, row1] = scale
|
|
1509
|
+
if rowop:
|
|
1510
|
+
return elem
|
|
1511
|
+
else:
|
|
1512
|
+
return elem.transpose()
|
|
1513
|
+
|
|
1514
|
+
|
|
1515
|
+
@matrix_method
|
|
1516
|
+
def circulant(v, sparse=None):
|
|
1517
|
+
r"""
|
|
1518
|
+
Return the circulant matrix specified by its 1st row `v`.
|
|
1519
|
+
|
|
1520
|
+
A circulant `n \times n` matrix specified by the 1st row `v=(v_0...v_{n-1})` is
|
|
1521
|
+
the matrix `(c_{ij})_{0 \leq i,j\leq n-1}`, where `c_{ij}=v_{j-i \mod b}`.
|
|
1522
|
+
|
|
1523
|
+
INPUT:
|
|
1524
|
+
|
|
1525
|
+
- ``v`` -- list or a vector of values
|
|
1526
|
+
|
|
1527
|
+
- ``sparse`` -- ``None`` by default; if ``sparse`` is set to ``True``, the output
|
|
1528
|
+
will be sparse. Respectively, setting it to ``False`` produces dense output.
|
|
1529
|
+
If ``sparse`` is not set, and if ``v`` is a vector, the output sparsity is determined
|
|
1530
|
+
by the sparsity of ``v``; else, the output will be dense.
|
|
1531
|
+
|
|
1532
|
+
EXAMPLES::
|
|
1533
|
+
|
|
1534
|
+
sage: v = [1,2,3,4,8]
|
|
1535
|
+
sage: matrix.circulant(v)
|
|
1536
|
+
[1 2 3 4 8]
|
|
1537
|
+
[8 1 2 3 4]
|
|
1538
|
+
[4 8 1 2 3]
|
|
1539
|
+
[3 4 8 1 2]
|
|
1540
|
+
[2 3 4 8 1]
|
|
1541
|
+
sage: m = matrix.circulant(vector(GF(3),[0,1,-1],sparse=True)); m
|
|
1542
|
+
[0 1 2]
|
|
1543
|
+
[2 0 1]
|
|
1544
|
+
[1 2 0]
|
|
1545
|
+
sage: m.is_sparse()
|
|
1546
|
+
True
|
|
1547
|
+
|
|
1548
|
+
TESTS::
|
|
1549
|
+
|
|
1550
|
+
sage: m = matrix.circulant(vector(GF(3),[0,1,-1],sparse=False))
|
|
1551
|
+
sage: m.is_sparse()
|
|
1552
|
+
False
|
|
1553
|
+
sage: matrix.circulant([0,1,-1]).is_sparse()
|
|
1554
|
+
False
|
|
1555
|
+
sage: matrix.circulant([0,1,-1], sparse=True).is_sparse()
|
|
1556
|
+
True
|
|
1557
|
+
"""
|
|
1558
|
+
if sparse is None:
|
|
1559
|
+
try:
|
|
1560
|
+
sparse = v.is_sparse()
|
|
1561
|
+
except AttributeError:
|
|
1562
|
+
sparse = False
|
|
1563
|
+
n = len(v)
|
|
1564
|
+
return matrix(n, n, lambda i, j: v[(j - i) % n], sparse=sparse)
|
|
1565
|
+
|
|
1566
|
+
|
|
1567
|
+
def _determine_block_matrix_grid(sub_matrices):
|
|
1568
|
+
r"""
|
|
1569
|
+
For internal use. This tries to determine the dimensions
|
|
1570
|
+
of rows/columns when assembling the matrices in sub_matrices in a
|
|
1571
|
+
rectangular grid. It returns a pair of lists containing
|
|
1572
|
+
respectively the sizes of rows and columns.
|
|
1573
|
+
|
|
1574
|
+
sub_matrices must be a list of lists of matrices. All sublists
|
|
1575
|
+
are expected to be the same size.
|
|
1576
|
+
|
|
1577
|
+
Non-zero scalars are considered to be square matrices of any size,
|
|
1578
|
+
and zeroes are considered to be zero matrices of any size.
|
|
1579
|
+
|
|
1580
|
+
A :exc:`ValueError` is raised if there is insufficient or
|
|
1581
|
+
conflicting information.
|
|
1582
|
+
|
|
1583
|
+
TESTS::
|
|
1584
|
+
|
|
1585
|
+
sage: from sage.matrix.special import _determine_block_matrix_grid
|
|
1586
|
+
sage: A = matrix(QQ, 2, 2, [3,9,6,10])
|
|
1587
|
+
sage: _determine_block_matrix_grid([[A, A], [A, A]])
|
|
1588
|
+
([2, 2], [2, 2])
|
|
1589
|
+
|
|
1590
|
+
sage: B = matrix(QQ, 1, 1, [ 1 ] )
|
|
1591
|
+
sage: C = matrix(QQ, 2, 2, [ 2, 3, 4, 5 ] )
|
|
1592
|
+
sage: _determine_block_matrix_grid([[B, 0], [0, C]])
|
|
1593
|
+
([1, 2], [1, 2])
|
|
1594
|
+
"""
|
|
1595
|
+
|
|
1596
|
+
nrows = len(sub_matrices)
|
|
1597
|
+
if nrows == 0:
|
|
1598
|
+
return ([], [])
|
|
1599
|
+
ncols = len(sub_matrices[0])
|
|
1600
|
+
|
|
1601
|
+
if ncols == 0:
|
|
1602
|
+
return ([0] * nrows, [])
|
|
1603
|
+
|
|
1604
|
+
row_heights = [None] * nrows
|
|
1605
|
+
col_widths = [None] * ncols
|
|
1606
|
+
|
|
1607
|
+
changing = True
|
|
1608
|
+
while changing:
|
|
1609
|
+
changing = False
|
|
1610
|
+
for i in range(nrows):
|
|
1611
|
+
for j in range(ncols):
|
|
1612
|
+
M = sub_matrices[i][j]
|
|
1613
|
+
sub_width = None
|
|
1614
|
+
sub_height = None
|
|
1615
|
+
if isinstance(M, Matrix):
|
|
1616
|
+
sub_width = M.ncols()
|
|
1617
|
+
sub_height = M.nrows()
|
|
1618
|
+
elif M: # nonzero scalar is interpreted as a square matrix
|
|
1619
|
+
if row_heights[i] is None:
|
|
1620
|
+
sub_width = col_widths[j]
|
|
1621
|
+
else:
|
|
1622
|
+
sub_width = row_heights[i]
|
|
1623
|
+
sub_height = sub_width
|
|
1624
|
+
if sub_width is not None:
|
|
1625
|
+
if col_widths[j] is None:
|
|
1626
|
+
changing = True
|
|
1627
|
+
col_widths[j] = sub_width
|
|
1628
|
+
elif col_widths[j] != sub_width:
|
|
1629
|
+
raise ValueError("incompatible submatrix widths")
|
|
1630
|
+
if sub_height is not None:
|
|
1631
|
+
if row_heights[i] is None:
|
|
1632
|
+
changing = True
|
|
1633
|
+
row_heights[i] = sub_height
|
|
1634
|
+
elif row_heights[i] != sub_height:
|
|
1635
|
+
raise ValueError("incompatible submatrix heights")
|
|
1636
|
+
|
|
1637
|
+
if None in row_heights or None in col_widths:
|
|
1638
|
+
if None in row_heights or None in col_widths:
|
|
1639
|
+
raise ValueError("insufficient information to determine dimensions.")
|
|
1640
|
+
|
|
1641
|
+
return (row_heights, col_widths)
|
|
1642
|
+
|
|
1643
|
+
|
|
1644
|
+
def _determine_block_matrix_rows(sub_matrices):
|
|
1645
|
+
"""
|
|
1646
|
+
For internal use. This tests if the matrices in sub_matrices
|
|
1647
|
+
fit in a rectangular matrix when assembled a row at a time.
|
|
1648
|
+
|
|
1649
|
+
sub_matrices must be a list of lists of matrices.
|
|
1650
|
+
|
|
1651
|
+
It returns a pair (row_heights, zero_widths, width) where
|
|
1652
|
+
row_heights is the list of row heights, zero_widths is the
|
|
1653
|
+
total width filled up by zero matrices per row, and width
|
|
1654
|
+
is the total width of the resulting matrix.
|
|
1655
|
+
|
|
1656
|
+
Non-zero scalars are considered to be square matrices of any size,
|
|
1657
|
+
and zeroes are considered to be zero matrices of any size.
|
|
1658
|
+
|
|
1659
|
+
A :exc:`ValueError` is raised if there is insufficient or
|
|
1660
|
+
conflicting information.
|
|
1661
|
+
|
|
1662
|
+
TESTS::
|
|
1663
|
+
|
|
1664
|
+
sage: from sage.matrix.special import _determine_block_matrix_rows
|
|
1665
|
+
sage: A = Matrix(ZZ, 1, 4, [1, 2, 3, 4])
|
|
1666
|
+
sage: _determine_block_matrix_rows([ [1, 1], [ A ] ])
|
|
1667
|
+
([2, 1], [0, 0], 4)
|
|
1668
|
+
|
|
1669
|
+
sage: B = Matrix(ZZ, 2, 2, [1, 2, 3, 4])
|
|
1670
|
+
sage: _determine_block_matrix_rows([ [B, B], [B, 1] ])
|
|
1671
|
+
([2, 2], [0, 0], 4)
|
|
1672
|
+
"""
|
|
1673
|
+
total_width = None
|
|
1674
|
+
row_heights = [None] * len(sub_matrices)
|
|
1675
|
+
zero_widths = [0] * len(sub_matrices)
|
|
1676
|
+
|
|
1677
|
+
# We first do a pass to see if we can determine the width
|
|
1678
|
+
unknowns = False
|
|
1679
|
+
for i in range(len(sub_matrices)):
|
|
1680
|
+
R = sub_matrices[i]
|
|
1681
|
+
height = None
|
|
1682
|
+
# We first do a pass to see if we can determine the height
|
|
1683
|
+
# of this row
|
|
1684
|
+
found_zeroes = False
|
|
1685
|
+
for M in R:
|
|
1686
|
+
if isinstance(M, Matrix):
|
|
1687
|
+
if height is None:
|
|
1688
|
+
height = M.nrows()
|
|
1689
|
+
elif height != M.nrows():
|
|
1690
|
+
raise ValueError("incompatible submatrix heights")
|
|
1691
|
+
elif not M:
|
|
1692
|
+
found_zeroes = True
|
|
1693
|
+
if not R:
|
|
1694
|
+
height = 0
|
|
1695
|
+
|
|
1696
|
+
# If we have a height, then we know the dimensions of any
|
|
1697
|
+
# nonzero scalars, and can maybe compute the width
|
|
1698
|
+
if height is not None and not found_zeroes:
|
|
1699
|
+
width = 0
|
|
1700
|
+
for M in R:
|
|
1701
|
+
if isinstance(M, Matrix):
|
|
1702
|
+
width += M.ncols()
|
|
1703
|
+
else:
|
|
1704
|
+
# nonzero scalar
|
|
1705
|
+
width += height
|
|
1706
|
+
if total_width is None:
|
|
1707
|
+
total_width = width
|
|
1708
|
+
elif total_width != width:
|
|
1709
|
+
raise ValueError("incompatible submatrix widths")
|
|
1710
|
+
row_heights[i] = height
|
|
1711
|
+
else:
|
|
1712
|
+
# We don't set height here even if we know it,
|
|
1713
|
+
# to signal this row hasn't been fit yet.
|
|
1714
|
+
unknowns = True
|
|
1715
|
+
|
|
1716
|
+
if total_width is None:
|
|
1717
|
+
raise ValueError("insufficient information to determine submatrix widths")
|
|
1718
|
+
|
|
1719
|
+
if unknowns:
|
|
1720
|
+
# Do a second pass and see if the remaining rows can be
|
|
1721
|
+
# determined now that we know the width of the matrix.
|
|
1722
|
+
for i in range(len(sub_matrices)):
|
|
1723
|
+
if row_heights[i] is not None:
|
|
1724
|
+
continue
|
|
1725
|
+
R = sub_matrices[i]
|
|
1726
|
+
zero_state = 0
|
|
1727
|
+
# 0: no zeroes found
|
|
1728
|
+
# 1: consecutive zeroes found
|
|
1729
|
+
# 2: consecutive zeroes followed by nonzero found
|
|
1730
|
+
# 3: non-consecutive zeroes found
|
|
1731
|
+
scalars = 0
|
|
1732
|
+
width = 0
|
|
1733
|
+
height = None
|
|
1734
|
+
for j in range(len(R)):
|
|
1735
|
+
M = R[j]
|
|
1736
|
+
if isinstance(M, Matrix):
|
|
1737
|
+
height = M.nrows()
|
|
1738
|
+
width += M.ncols()
|
|
1739
|
+
if zero_state == 1:
|
|
1740
|
+
zero_state = 2
|
|
1741
|
+
elif not M:
|
|
1742
|
+
if zero_state == 0:
|
|
1743
|
+
zero_state = 1
|
|
1744
|
+
elif zero_state == 2:
|
|
1745
|
+
zero_state = 3
|
|
1746
|
+
else:
|
|
1747
|
+
scalars += 1
|
|
1748
|
+
|
|
1749
|
+
remaining_width = total_width - width
|
|
1750
|
+
# This remaining width has to be split over the
|
|
1751
|
+
# zeroes and (nonzero) scalars
|
|
1752
|
+
|
|
1753
|
+
if height is not None:
|
|
1754
|
+
remaining_width -= scalars * height
|
|
1755
|
+
if remaining_width < 0:
|
|
1756
|
+
raise ValueError("incompatible submatrix widths")
|
|
1757
|
+
if remaining_width > 0 and zero_state == 3:
|
|
1758
|
+
raise ValueError("insufficient information to determine submatrix widths")
|
|
1759
|
+
if remaining_width > 0 and zero_state == 0:
|
|
1760
|
+
raise ValueError("incompatible submatrix widths")
|
|
1761
|
+
# otherwise, things fit
|
|
1762
|
+
row_heights[i] = height
|
|
1763
|
+
zero_widths[i] = remaining_width
|
|
1764
|
+
elif zero_state != 0:
|
|
1765
|
+
# if we don't know the height, and there are zeroes,
|
|
1766
|
+
# we can't determine the height
|
|
1767
|
+
raise ValueError("insufficient information to determine submatrix heights")
|
|
1768
|
+
elif total_width % len(R):
|
|
1769
|
+
raise ValueError("incompatible submatrix widths")
|
|
1770
|
+
else:
|
|
1771
|
+
height = int(total_width / len(R))
|
|
1772
|
+
row_heights[i] = height
|
|
1773
|
+
|
|
1774
|
+
# If we got this far, then everything fits
|
|
1775
|
+
return (row_heights, zero_widths, total_width)
|
|
1776
|
+
|
|
1777
|
+
|
|
1778
|
+
@matrix_method
|
|
1779
|
+
def block_matrix(*args, **kwds):
|
|
1780
|
+
r"""
|
|
1781
|
+
Return a larger matrix made by concatenating submatrices
|
|
1782
|
+
(rows first, then columns). For example, the matrix
|
|
1783
|
+
|
|
1784
|
+
::
|
|
1785
|
+
|
|
1786
|
+
[ A B ]
|
|
1787
|
+
[ C D ]
|
|
1788
|
+
|
|
1789
|
+
is made up of submatrices A, B, C, and D.
|
|
1790
|
+
|
|
1791
|
+
INPUT:
|
|
1792
|
+
|
|
1793
|
+
The block_matrix command takes a list of submatrices to add
|
|
1794
|
+
as blocks, optionally preceded by a ring and the number of block rows
|
|
1795
|
+
and block columns, and returns a matrix.
|
|
1796
|
+
|
|
1797
|
+
The submatrices can be specified as a list of matrices (using
|
|
1798
|
+
``nrows`` and ``ncols`` to determine their layout), or a list
|
|
1799
|
+
of lists of matrices, where each list forms a row.
|
|
1800
|
+
|
|
1801
|
+
- ``ring`` -- the base ring
|
|
1802
|
+
|
|
1803
|
+
- ``nrows`` -- the number of block rows
|
|
1804
|
+
|
|
1805
|
+
- ``ncols`` -- the number of block cols
|
|
1806
|
+
|
|
1807
|
+
- ``sub_matrices`` -- matrices (see below for syntax)
|
|
1808
|
+
|
|
1809
|
+
- ``subdivide`` -- boolean, whether or not to add
|
|
1810
|
+
subdivision information to the matrix
|
|
1811
|
+
|
|
1812
|
+
- ``sparse`` -- boolean, whether to make the resulting matrix sparse
|
|
1813
|
+
|
|
1814
|
+
EXAMPLES::
|
|
1815
|
+
|
|
1816
|
+
sage: A = matrix(QQ, 2, 2, [3,9,6,10])
|
|
1817
|
+
sage: block_matrix([ [A, -A], [~A, 100*A] ])
|
|
1818
|
+
[ 3 9| -3 -9]
|
|
1819
|
+
[ 6 10| -6 -10]
|
|
1820
|
+
[-----------+-----------]
|
|
1821
|
+
[-5/12 3/8| 300 900]
|
|
1822
|
+
[ 1/4 -1/8| 600 1000]
|
|
1823
|
+
|
|
1824
|
+
If the number of submatrices in each row is the same,
|
|
1825
|
+
you can specify the submatrices as a single list too::
|
|
1826
|
+
|
|
1827
|
+
sage: block_matrix(2, 2, [ A, A, A, A ])
|
|
1828
|
+
[ 3 9| 3 9]
|
|
1829
|
+
[ 6 10| 6 10]
|
|
1830
|
+
[-----+-----]
|
|
1831
|
+
[ 3 9| 3 9]
|
|
1832
|
+
[ 6 10| 6 10]
|
|
1833
|
+
|
|
1834
|
+
One can use constant entries::
|
|
1835
|
+
|
|
1836
|
+
sage: block_matrix([ [1, A], [0, 1] ])
|
|
1837
|
+
[ 1 0| 3 9]
|
|
1838
|
+
[ 0 1| 6 10]
|
|
1839
|
+
[-----+-----]
|
|
1840
|
+
[ 0 0| 1 0]
|
|
1841
|
+
[ 0 0| 0 1]
|
|
1842
|
+
|
|
1843
|
+
A zero entry may represent any square or non-square zero matrix::
|
|
1844
|
+
|
|
1845
|
+
sage: B = matrix(QQ, 1, 1, [ 1 ] )
|
|
1846
|
+
sage: C = matrix(QQ, 2, 2, [ 2, 3, 4, 5 ] )
|
|
1847
|
+
sage: block_matrix([ [B, 0], [0, C] ])
|
|
1848
|
+
[1|0 0]
|
|
1849
|
+
[-+---]
|
|
1850
|
+
[0|2 3]
|
|
1851
|
+
[0|4 5]
|
|
1852
|
+
|
|
1853
|
+
One can specify the number of rows or columns as keywords too::
|
|
1854
|
+
|
|
1855
|
+
sage: block_matrix([A, -A, ~A, 100*A], ncols=4)
|
|
1856
|
+
[ 3 9| -3 -9|-5/12 3/8| 300 900]
|
|
1857
|
+
[ 6 10| -6 -10| 1/4 -1/8| 600 1000]
|
|
1858
|
+
|
|
1859
|
+
sage: block_matrix([A, -A, ~A, 100*A], nrows=1)
|
|
1860
|
+
[ 3 9| -3 -9|-5/12 3/8| 300 900]
|
|
1861
|
+
[ 6 10| -6 -10| 1/4 -1/8| 600 1000]
|
|
1862
|
+
|
|
1863
|
+
It handles base rings nicely too::
|
|
1864
|
+
|
|
1865
|
+
sage: R.<x> = ZZ['x']
|
|
1866
|
+
sage: block_matrix(2, 2, [1/2, A, 0, x-1])
|
|
1867
|
+
[ 1/2 0| 3 9]
|
|
1868
|
+
[ 0 1/2| 6 10]
|
|
1869
|
+
[-----------+-----------]
|
|
1870
|
+
[ 0 0|x - 1 0]
|
|
1871
|
+
[ 0 0| 0 x - 1]
|
|
1872
|
+
|
|
1873
|
+
sage: block_matrix(2, 2, [1/2, A, 0, x-1]).parent()
|
|
1874
|
+
Full MatrixSpace of 4 by 4 dense matrices over Univariate Polynomial Ring in x over Rational Field
|
|
1875
|
+
|
|
1876
|
+
Subdivisions are optional. If they are disabled, the columns need not line up::
|
|
1877
|
+
|
|
1878
|
+
sage: B = matrix(QQ, 2, 3, range(6))
|
|
1879
|
+
sage: block_matrix([ [~A, B], [B, ~A] ], subdivide=False)
|
|
1880
|
+
[-5/12 3/8 0 1 2]
|
|
1881
|
+
[ 1/4 -1/8 3 4 5]
|
|
1882
|
+
[ 0 1 2 -5/12 3/8]
|
|
1883
|
+
[ 3 4 5 1/4 -1/8]
|
|
1884
|
+
|
|
1885
|
+
Without subdivisions it also deduces dimensions for scalars if possible::
|
|
1886
|
+
|
|
1887
|
+
sage: C = matrix(ZZ, 1, 2, range(2))
|
|
1888
|
+
sage: block_matrix([ [ C, 0 ], [ 3, 4 ], [ 5, 6, C ] ], subdivide=False )
|
|
1889
|
+
[0 1 0 0]
|
|
1890
|
+
[3 0 4 0]
|
|
1891
|
+
[0 3 0 4]
|
|
1892
|
+
[5 6 0 1]
|
|
1893
|
+
|
|
1894
|
+
If all submatrices are sparse (unless there are none at all), the result
|
|
1895
|
+
will be a sparse matrix. Otherwise it will be dense by default. The
|
|
1896
|
+
``sparse`` keyword can be used to override this::
|
|
1897
|
+
|
|
1898
|
+
sage: A = Matrix(ZZ, 2, 2, [0, 1, 0, 0], sparse=True)
|
|
1899
|
+
sage: block_matrix([ [ A ], [ A ] ]).parent()
|
|
1900
|
+
Full MatrixSpace of 4 by 2 sparse matrices over Integer Ring
|
|
1901
|
+
sage: block_matrix([ [ A ], [ A ] ], sparse=False).parent()
|
|
1902
|
+
Full MatrixSpace of 4 by 2 dense matrices over Integer Ring
|
|
1903
|
+
|
|
1904
|
+
Consecutive zero submatrices are consolidated. ::
|
|
1905
|
+
|
|
1906
|
+
sage: B = matrix(2, range(4))
|
|
1907
|
+
sage: C = matrix(2, 8, range(16))
|
|
1908
|
+
sage: block_matrix(2, [[B,0,0,B],[C]], subdivide=False)
|
|
1909
|
+
[ 0 1 0 0 0 0 0 1]
|
|
1910
|
+
[ 2 3 0 0 0 0 2 3]
|
|
1911
|
+
[ 0 1 2 3 4 5 6 7]
|
|
1912
|
+
[ 8 9 10 11 12 13 14 15]
|
|
1913
|
+
|
|
1914
|
+
Ambiguity is not tolerated. ::
|
|
1915
|
+
|
|
1916
|
+
sage: B = matrix(2, range(4))
|
|
1917
|
+
sage: C = matrix(2, 8, range(16))
|
|
1918
|
+
sage: block_matrix(2, [[B,0,B,0],[C]], subdivide=False)
|
|
1919
|
+
Traceback (most recent call last):
|
|
1920
|
+
...
|
|
1921
|
+
ValueError: insufficient information to determine submatrix widths
|
|
1922
|
+
|
|
1923
|
+
Giving only a flat list of submatrices does not work::
|
|
1924
|
+
|
|
1925
|
+
sage: A = matrix(2, 3, range(6))
|
|
1926
|
+
sage: B = matrix(3, 3, range(9))
|
|
1927
|
+
sage: block_matrix([A, A, B, B])
|
|
1928
|
+
Traceback (most recent call last):
|
|
1929
|
+
...
|
|
1930
|
+
ValueError: must specify either nrows or ncols
|
|
1931
|
+
|
|
1932
|
+
TESTS::
|
|
1933
|
+
|
|
1934
|
+
sage: A = matrix(ZZ, 2, 2, [3,5,8,13])
|
|
1935
|
+
sage: block_matrix(A)
|
|
1936
|
+
[ 3 5]
|
|
1937
|
+
[ 8 13]
|
|
1938
|
+
sage: block_matrix([[A, 0r], [1r, A]])
|
|
1939
|
+
[ 3 5| 0 0]
|
|
1940
|
+
[ 8 13| 0 0]
|
|
1941
|
+
[-----+-----]
|
|
1942
|
+
[ 1 0| 3 5]
|
|
1943
|
+
[ 0 1| 8 13]
|
|
1944
|
+
"""
|
|
1945
|
+
args = list(args)
|
|
1946
|
+
sparse = kwds.get('sparse', None)
|
|
1947
|
+
|
|
1948
|
+
if not args:
|
|
1949
|
+
if sparse is not None:
|
|
1950
|
+
return matrix_space.MatrixSpace(ZZ, 0, 0, sparse=sparse)([])
|
|
1951
|
+
else:
|
|
1952
|
+
return matrix_space.MatrixSpace(ZZ, 0, 0)([])
|
|
1953
|
+
|
|
1954
|
+
if len(args) >= 1 and args[0] in Rings():
|
|
1955
|
+
# A ring is specified
|
|
1956
|
+
if kwds.get('ring', args[0]) != args[0]:
|
|
1957
|
+
raise ValueError("base ring specified twice and they are different")
|
|
1958
|
+
ring = args[0]
|
|
1959
|
+
args.pop(0)
|
|
1960
|
+
else:
|
|
1961
|
+
ring = kwds.get('ring', None)
|
|
1962
|
+
|
|
1963
|
+
if len(args) >= 1:
|
|
1964
|
+
try:
|
|
1965
|
+
nrows = int(args[0])
|
|
1966
|
+
args.pop(0)
|
|
1967
|
+
if kwds.get('nrows', nrows) != nrows:
|
|
1968
|
+
raise ValueError("number of rows specified twice and they are different")
|
|
1969
|
+
except TypeError:
|
|
1970
|
+
nrows = kwds.get('nrows', None)
|
|
1971
|
+
else:
|
|
1972
|
+
nrows = kwds.get('nrows', None)
|
|
1973
|
+
|
|
1974
|
+
if len(args) >= 1:
|
|
1975
|
+
# check to see if additionally, the number of columns is specified
|
|
1976
|
+
try:
|
|
1977
|
+
ncols = int(args[0])
|
|
1978
|
+
args.pop(0)
|
|
1979
|
+
if kwds.get('ncols', ncols) != ncols:
|
|
1980
|
+
raise ValueError("number of columns specified twice and they are different")
|
|
1981
|
+
except TypeError:
|
|
1982
|
+
ncols = kwds.get('ncols', None)
|
|
1983
|
+
else:
|
|
1984
|
+
ncols = kwds.get('ncols', None)
|
|
1985
|
+
|
|
1986
|
+
# Now we've taken care of initial ring, nrows, and ncols arguments.
|
|
1987
|
+
|
|
1988
|
+
# Now the rest of the arguments are a list of rows, a flat list of
|
|
1989
|
+
# matrices, or a single value.
|
|
1990
|
+
|
|
1991
|
+
if not args:
|
|
1992
|
+
args = [[]]
|
|
1993
|
+
if len(args) > 1:
|
|
1994
|
+
print(args)
|
|
1995
|
+
raise TypeError("invalid block_matrix invocation")
|
|
1996
|
+
|
|
1997
|
+
sub_matrices = args[0]
|
|
1998
|
+
|
|
1999
|
+
if isinstance(sub_matrices, Matrix):
|
|
2000
|
+
M = sub_matrices
|
|
2001
|
+
# a single matrix (check nrows/ncols/ring)
|
|
2002
|
+
if (nrows is not None and nrows != 1) or \
|
|
2003
|
+
(ncols is not None and ncols != 1):
|
|
2004
|
+
raise ValueError("invalid nrows/ncols passed to block_matrix")
|
|
2005
|
+
if ring is not None:
|
|
2006
|
+
M = M.change_ring(ring)
|
|
2007
|
+
if sparse is not None and M.is_sparse() != sparse:
|
|
2008
|
+
M = M.sparse_matrix() if sparse else M.dense_matrix()
|
|
2009
|
+
return M
|
|
2010
|
+
|
|
2011
|
+
if not isinstance(sub_matrices, (list, tuple)):
|
|
2012
|
+
raise TypeError("invalid block_matrix invocation")
|
|
2013
|
+
|
|
2014
|
+
subdivide = kwds.get('subdivide', True)
|
|
2015
|
+
|
|
2016
|
+
# Will we try to place the matrices in a rectangular grid?
|
|
2017
|
+
try_grid = True
|
|
2018
|
+
|
|
2019
|
+
if not sub_matrices:
|
|
2020
|
+
if (nrows is not None and nrows != 0) or \
|
|
2021
|
+
(ncols is not None and ncols != 0):
|
|
2022
|
+
raise ValueError("invalid nrows/ncols passed to block_matrix")
|
|
2023
|
+
elif isinstance(sub_matrices[0], (list, tuple)):
|
|
2024
|
+
# A list of lists: verify all elements are lists, and if
|
|
2025
|
+
# ncols is set, the lengths match.
|
|
2026
|
+
if nrows is not None and len(sub_matrices) != nrows:
|
|
2027
|
+
raise ValueError("invalid nrows passed to block_matrix")
|
|
2028
|
+
first_len = len(sub_matrices[0])
|
|
2029
|
+
if ncols is not None and first_len != ncols:
|
|
2030
|
+
raise ValueError("invalid ncols passed to block_matrix")
|
|
2031
|
+
same_length = all(isinstance(v, (list, tuple)) and len(v) == first_len for v in sub_matrices)
|
|
2032
|
+
if subdivide and not same_length:
|
|
2033
|
+
raise ValueError("list of rows is not valid (rows are wrong types or lengths)")
|
|
2034
|
+
try_grid = same_length
|
|
2035
|
+
else:
|
|
2036
|
+
# A flat list
|
|
2037
|
+
# determine the block dimensions
|
|
2038
|
+
n = len(sub_matrices)
|
|
2039
|
+
if nrows is None:
|
|
2040
|
+
if ncols is None:
|
|
2041
|
+
raise ValueError("must specify either nrows or ncols")
|
|
2042
|
+
else:
|
|
2043
|
+
nrows = n // ncols
|
|
2044
|
+
elif ncols is None:
|
|
2045
|
+
ncols = n // nrows
|
|
2046
|
+
if nrows * ncols != n:
|
|
2047
|
+
raise ValueError("given number of rows (%s), columns (%s) incompatible with number of submatrices (%s)" % (nrows, ncols, n))
|
|
2048
|
+
# Now create a list of lists from this
|
|
2049
|
+
sub_matrices = [sub_matrices[i * ncols: (i + 1) * ncols]
|
|
2050
|
+
for i in range(nrows)]
|
|
2051
|
+
|
|
2052
|
+
# At this point sub_matrices is a list of lists
|
|
2053
|
+
|
|
2054
|
+
# determine the base ring and sparsity
|
|
2055
|
+
if ring is None:
|
|
2056
|
+
ring = ZZ
|
|
2057
|
+
for row in sub_matrices:
|
|
2058
|
+
for M in row:
|
|
2059
|
+
R = M.base_ring() if isinstance(M, Matrix) else parent(M)
|
|
2060
|
+
if R is not ZZ:
|
|
2061
|
+
ring = sage.categories.pushout.pushout(ring, R)
|
|
2062
|
+
|
|
2063
|
+
if sparse is None:
|
|
2064
|
+
sparse = True
|
|
2065
|
+
for row in sub_matrices:
|
|
2066
|
+
for M in row:
|
|
2067
|
+
if sparse and isinstance(M, Matrix) and not M.is_sparse():
|
|
2068
|
+
sparse = False
|
|
2069
|
+
|
|
2070
|
+
row_heights = None
|
|
2071
|
+
col_widths = None
|
|
2072
|
+
zero_widths = None
|
|
2073
|
+
total_width = None
|
|
2074
|
+
|
|
2075
|
+
# We first try to place the matrices in a rectangular grid
|
|
2076
|
+
if try_grid:
|
|
2077
|
+
try:
|
|
2078
|
+
(row_heights, col_widths) = _determine_block_matrix_grid(sub_matrices)
|
|
2079
|
+
except ValueError as e:
|
|
2080
|
+
if subdivide:
|
|
2081
|
+
raise ValueError(e)
|
|
2082
|
+
|
|
2083
|
+
if col_widths is None:
|
|
2084
|
+
# Try placing the matrices in rows instead
|
|
2085
|
+
# (Only if subdivide is False)
|
|
2086
|
+
(row_heights, zero_widths, total_width) = _determine_block_matrix_rows(sub_matrices)
|
|
2087
|
+
|
|
2088
|
+
# Success, so assemble the final matrix
|
|
2089
|
+
|
|
2090
|
+
big = None
|
|
2091
|
+
for i in range(len(sub_matrices)):
|
|
2092
|
+
R = sub_matrices[i]
|
|
2093
|
+
row = None
|
|
2094
|
+
for j in range(len(R)):
|
|
2095
|
+
M = R[j]
|
|
2096
|
+
|
|
2097
|
+
if isinstance(M, Matrix):
|
|
2098
|
+
if M.base_ring() is not ring:
|
|
2099
|
+
M = M.change_ring(ring)
|
|
2100
|
+
if M.is_sparse() != sparse:
|
|
2101
|
+
M = M.sparse_matrix() if sparse else M.dense_matrix()
|
|
2102
|
+
elif not M and zero_widths is not None:
|
|
2103
|
+
if zero_widths[i] > 0:
|
|
2104
|
+
M = matrix(ring, row_heights[i], zero_widths[i], 0, sparse=sparse)
|
|
2105
|
+
zero_widths[i] = 0
|
|
2106
|
+
else:
|
|
2107
|
+
continue # zero-width matrix
|
|
2108
|
+
else:
|
|
2109
|
+
if zero_widths is not None:
|
|
2110
|
+
M = matrix(ring, row_heights[i], row_heights[i], M, sparse=sparse)
|
|
2111
|
+
else:
|
|
2112
|
+
M = matrix(ring, row_heights[i], col_widths[j], M, sparse=sparse)
|
|
2113
|
+
|
|
2114
|
+
# append M to this row
|
|
2115
|
+
if row is None:
|
|
2116
|
+
row = M
|
|
2117
|
+
else:
|
|
2118
|
+
row = row.augment(M)
|
|
2119
|
+
|
|
2120
|
+
# append row to final matrix
|
|
2121
|
+
if big is None:
|
|
2122
|
+
big = row
|
|
2123
|
+
else:
|
|
2124
|
+
big = big.stack(row)
|
|
2125
|
+
|
|
2126
|
+
if big is None:
|
|
2127
|
+
if ring is None:
|
|
2128
|
+
ring = ZZ
|
|
2129
|
+
big = matrix(ring, 0, 0)
|
|
2130
|
+
|
|
2131
|
+
if subdivide:
|
|
2132
|
+
big.subdivide(running_total(row_heights[:-1]),
|
|
2133
|
+
running_total(col_widths[:-1]))
|
|
2134
|
+
|
|
2135
|
+
return big
|
|
2136
|
+
|
|
2137
|
+
|
|
2138
|
+
@matrix_method
|
|
2139
|
+
def block_diagonal_matrix(*sub_matrices, **kwds):
|
|
2140
|
+
"""
|
|
2141
|
+
Create a block matrix whose diagonal block entries are given by
|
|
2142
|
+
sub_matrices, with zero elsewhere.
|
|
2143
|
+
|
|
2144
|
+
See also :meth:`block_matrix`.
|
|
2145
|
+
|
|
2146
|
+
EXAMPLES::
|
|
2147
|
+
|
|
2148
|
+
sage: A = matrix(ZZ, 2, [1,2,3,4])
|
|
2149
|
+
sage: block_diagonal_matrix(A, A)
|
|
2150
|
+
[1 2|0 0]
|
|
2151
|
+
[3 4|0 0]
|
|
2152
|
+
[---+---]
|
|
2153
|
+
[0 0|1 2]
|
|
2154
|
+
[0 0|3 4]
|
|
2155
|
+
|
|
2156
|
+
The sub-matrices need not be square::
|
|
2157
|
+
|
|
2158
|
+
sage: B = matrix(QQ, 2, 3, range(6))
|
|
2159
|
+
sage: block_diagonal_matrix(~A, B)
|
|
2160
|
+
[ -2 1| 0 0 0]
|
|
2161
|
+
[ 3/2 -1/2| 0 0 0]
|
|
2162
|
+
[---------+--------------]
|
|
2163
|
+
[ 0 0| 0 1 2]
|
|
2164
|
+
[ 0 0| 3 4 5]
|
|
2165
|
+
"""
|
|
2166
|
+
if isinstance(sub_matrices, (list, tuple)) and len(sub_matrices) == 1:
|
|
2167
|
+
sub_matrices = sub_matrices[0]
|
|
2168
|
+
n = len(sub_matrices)
|
|
2169
|
+
entries = [ZZ.zero()] * n**2
|
|
2170
|
+
for i in range(n):
|
|
2171
|
+
entries[n*i+i] = sub_matrices[i]
|
|
2172
|
+
return block_matrix(n, n, entries, **kwds)
|
|
2173
|
+
|
|
2174
|
+
|
|
2175
|
+
@matrix_method
|
|
2176
|
+
def jordan_block(eigenvalue, size, sparse=False):
|
|
2177
|
+
r"""
|
|
2178
|
+
Return the Jordan block for the given eigenvalue with given size.
|
|
2179
|
+
|
|
2180
|
+
INPUT:
|
|
2181
|
+
|
|
2182
|
+
- ``eigenvalue`` -- eigenvalue for the diagonal entries of the block
|
|
2183
|
+
- ``size`` -- size of the square matrix
|
|
2184
|
+
- ``sparse`` -- (default: ``False``) if ``True``, return a sparse matrix
|
|
2185
|
+
|
|
2186
|
+
EXAMPLES::
|
|
2187
|
+
|
|
2188
|
+
sage: jordan_block(5, 3)
|
|
2189
|
+
[5 1 0]
|
|
2190
|
+
[0 5 1]
|
|
2191
|
+
[0 0 5]
|
|
2192
|
+
|
|
2193
|
+
TESTS::
|
|
2194
|
+
|
|
2195
|
+
sage: jordan_block(6.2, 'junk')
|
|
2196
|
+
Traceback (most recent call last):
|
|
2197
|
+
...
|
|
2198
|
+
TypeError: size of Jordan block needs to be an integer, not junk
|
|
2199
|
+
sage: jordan_block(6.2, -1)
|
|
2200
|
+
Traceback (most recent call last):
|
|
2201
|
+
...
|
|
2202
|
+
ValueError: size of Jordan block must be nonnegative, not -1
|
|
2203
|
+
"""
|
|
2204
|
+
try:
|
|
2205
|
+
size = ZZ(size)
|
|
2206
|
+
except TypeError:
|
|
2207
|
+
msg = "size of Jordan block needs to be an integer, not {0}"
|
|
2208
|
+
raise TypeError(msg.format(size))
|
|
2209
|
+
if size < 0:
|
|
2210
|
+
msg = "size of Jordan block must be nonnegative, not {0}"
|
|
2211
|
+
raise ValueError(msg.format(size))
|
|
2212
|
+
block = diagonal_matrix([eigenvalue] * size, sparse=sparse)
|
|
2213
|
+
for i in range(size - 1):
|
|
2214
|
+
block[i, i + 1] = 1
|
|
2215
|
+
return block
|
|
2216
|
+
|
|
2217
|
+
|
|
2218
|
+
@matrix_method
|
|
2219
|
+
def companion_matrix(poly, format='right'):
|
|
2220
|
+
r"""
|
|
2221
|
+
Create a companion matrix from a monic polynomial.
|
|
2222
|
+
|
|
2223
|
+
INPUT:
|
|
2224
|
+
|
|
2225
|
+
- ``poly`` -- a univariate polynomial, or an iterable containing
|
|
2226
|
+
the coefficients of a polynomial, with low-degree coefficients first.
|
|
2227
|
+
The polynomial (or the polynomial implied by the coefficients) must
|
|
2228
|
+
be monic. In other words, the leading coefficient must be one.
|
|
2229
|
+
A symbolic expression that might also be a polynomial is not
|
|
2230
|
+
proper input, see examples below.
|
|
2231
|
+
|
|
2232
|
+
- ``format`` -- (default: ``'right'``) specifies one of four
|
|
2233
|
+
variations of a companion matrix. Allowable values are
|
|
2234
|
+
``'right'``, ``'left'``, ``'top'`` and ``'bottom'``, which indicates
|
|
2235
|
+
which border of the matrix contains the negatives of the coefficients.
|
|
2236
|
+
|
|
2237
|
+
OUTPUT:
|
|
2238
|
+
|
|
2239
|
+
A square matrix with a size equal to the degree of the polynomial.
|
|
2240
|
+
The returned matrix has ones above, or below the diagonal, and the
|
|
2241
|
+
negatives of the coefficients along the indicated border of the
|
|
2242
|
+
matrix (excepting the leading one coefficient).
|
|
2243
|
+
See the first examples below for precise illustrations.
|
|
2244
|
+
|
|
2245
|
+
EXAMPLES:
|
|
2246
|
+
|
|
2247
|
+
Each of the four possibilities. Notice that the coefficients are
|
|
2248
|
+
specified and their negatives become the entries of the matrix. The
|
|
2249
|
+
leading one must be given, but is not used. The permutation matrix
|
|
2250
|
+
``P`` is the identity matrix, with the columns reversed. The last three
|
|
2251
|
+
statements test the general relationships between the four variants. ::
|
|
2252
|
+
|
|
2253
|
+
sage: poly = [-2, -3, -4, -5, -6, 1]
|
|
2254
|
+
sage: R = companion_matrix(poly, format='right'); R
|
|
2255
|
+
[0 0 0 0 2]
|
|
2256
|
+
[1 0 0 0 3]
|
|
2257
|
+
[0 1 0 0 4]
|
|
2258
|
+
[0 0 1 0 5]
|
|
2259
|
+
[0 0 0 1 6]
|
|
2260
|
+
sage: L = companion_matrix(poly, format='left'); L
|
|
2261
|
+
[6 1 0 0 0]
|
|
2262
|
+
[5 0 1 0 0]
|
|
2263
|
+
[4 0 0 1 0]
|
|
2264
|
+
[3 0 0 0 1]
|
|
2265
|
+
[2 0 0 0 0]
|
|
2266
|
+
sage: B = companion_matrix(poly, format='bottom'); B
|
|
2267
|
+
[0 1 0 0 0]
|
|
2268
|
+
[0 0 1 0 0]
|
|
2269
|
+
[0 0 0 1 0]
|
|
2270
|
+
[0 0 0 0 1]
|
|
2271
|
+
[2 3 4 5 6]
|
|
2272
|
+
sage: T = companion_matrix(poly, format='top'); T
|
|
2273
|
+
[6 5 4 3 2]
|
|
2274
|
+
[1 0 0 0 0]
|
|
2275
|
+
[0 1 0 0 0]
|
|
2276
|
+
[0 0 1 0 0]
|
|
2277
|
+
[0 0 0 1 0]
|
|
2278
|
+
|
|
2279
|
+
sage: perm = Permutation([5, 4, 3, 2, 1])
|
|
2280
|
+
sage: P = perm.to_matrix()
|
|
2281
|
+
sage: L == P*R*P
|
|
2282
|
+
True
|
|
2283
|
+
sage: B == R.transpose()
|
|
2284
|
+
True
|
|
2285
|
+
sage: T == P*R.transpose()*P
|
|
2286
|
+
True
|
|
2287
|
+
|
|
2288
|
+
A polynomial may be used as input, however a symbolic expression,
|
|
2289
|
+
even if it looks like a polynomial, is not regarded as such when used
|
|
2290
|
+
as input to this routine. Obtaining the list of coefficients from a
|
|
2291
|
+
symbolic polynomial is one route to the companion matrix. ::
|
|
2292
|
+
|
|
2293
|
+
sage: x = polygen(QQ, 'x')
|
|
2294
|
+
sage: p = x^3 - 4*x^2 + 8*x - 12
|
|
2295
|
+
sage: companion_matrix(p)
|
|
2296
|
+
[ 0 0 12]
|
|
2297
|
+
[ 1 0 -8]
|
|
2298
|
+
[ 0 1 4]
|
|
2299
|
+
|
|
2300
|
+
sage: # needs sage.symbolic
|
|
2301
|
+
sage: y = var('y')
|
|
2302
|
+
sage: q = y^3 - 2*y + 1
|
|
2303
|
+
sage: companion_matrix(q)
|
|
2304
|
+
Traceback (most recent call last):
|
|
2305
|
+
...
|
|
2306
|
+
TypeError: input must be a polynomial (not a symbolic expression, see docstring),
|
|
2307
|
+
or other iterable, not y^3 - 2*y + 1
|
|
2308
|
+
sage: coeff_list = [q(y=0)] + [q.coefficient(y^k)
|
|
2309
|
+
....: for k in range(1, q.degree(y) + 1)]
|
|
2310
|
+
sage: coeff_list
|
|
2311
|
+
[1, -2, 0, 1]
|
|
2312
|
+
sage: companion_matrix(coeff_list)
|
|
2313
|
+
[ 0 0 -1]
|
|
2314
|
+
[ 1 0 2]
|
|
2315
|
+
[ 0 1 0]
|
|
2316
|
+
|
|
2317
|
+
The minimal polynomial of a companion matrix is equal to the
|
|
2318
|
+
polynomial used to create it. Used in a block diagonal
|
|
2319
|
+
construction, they can be used to create matrices with
|
|
2320
|
+
any desired minimal polynomial, or characteristic polynomial. ::
|
|
2321
|
+
|
|
2322
|
+
sage: t = polygen(QQ, 't')
|
|
2323
|
+
sage: p = t^12 - 7*t^4 + 28*t^2 - 456
|
|
2324
|
+
sage: C = companion_matrix(p, format='top')
|
|
2325
|
+
sage: q = C.minpoly(var='t'); q # needs sage.libs.pari
|
|
2326
|
+
t^12 - 7*t^4 + 28*t^2 - 456
|
|
2327
|
+
sage: p == q # needs sage.libs.pari
|
|
2328
|
+
True
|
|
2329
|
+
|
|
2330
|
+
sage: p = t^3 + 3*t - 8
|
|
2331
|
+
sage: q = t^5 + t - 17
|
|
2332
|
+
sage: A = block_diagonal_matrix( companion_matrix(p),
|
|
2333
|
+
....: companion_matrix(p^2),
|
|
2334
|
+
....: companion_matrix(q),
|
|
2335
|
+
....: companion_matrix(q) )
|
|
2336
|
+
sage: A.charpoly(var='t').factor() # needs sage.libs.pari
|
|
2337
|
+
(t^3 + 3*t - 8)^3 * (t^5 + t - 17)^2
|
|
2338
|
+
sage: A.minpoly(var='t').factor() # needs sage.libs.pari
|
|
2339
|
+
(t^3 + 3*t - 8)^2 * (t^5 + t - 17)
|
|
2340
|
+
|
|
2341
|
+
TESTS::
|
|
2342
|
+
|
|
2343
|
+
sage: companion_matrix([4, 5, 1], format='junk')
|
|
2344
|
+
Traceback (most recent call last):
|
|
2345
|
+
...
|
|
2346
|
+
ValueError: format must be 'right', 'left', 'top' or 'bottom', not junk
|
|
2347
|
+
|
|
2348
|
+
sage: companion_matrix(sin(x)) # needs sage.symbolic
|
|
2349
|
+
Traceback (most recent call last):
|
|
2350
|
+
...
|
|
2351
|
+
TypeError: input must be a polynomial (not a symbolic expression, see docstring),
|
|
2352
|
+
or other iterable, not sin(x)
|
|
2353
|
+
|
|
2354
|
+
sage: companion_matrix([2, 3, 896])
|
|
2355
|
+
Traceback (most recent call last):
|
|
2356
|
+
...
|
|
2357
|
+
ValueError: polynomial (or the polynomial implied by coefficients) must be monic,
|
|
2358
|
+
not a leading coefficient of 896
|
|
2359
|
+
|
|
2360
|
+
sage: F.<a> = GF(2^2) # needs sage.rings.finite_rings
|
|
2361
|
+
sage: companion_matrix([4/3, a+1, 1]) # needs sage.rings.finite_rings
|
|
2362
|
+
Traceback (most recent call last):
|
|
2363
|
+
...
|
|
2364
|
+
TypeError: unable to find common ring for coefficients from polynomial
|
|
2365
|
+
|
|
2366
|
+
sage: A = companion_matrix([1])
|
|
2367
|
+
sage: A.nrows(); A.ncols()
|
|
2368
|
+
0
|
|
2369
|
+
0
|
|
2370
|
+
|
|
2371
|
+
sage: A = companion_matrix([])
|
|
2372
|
+
Traceback (most recent call last):
|
|
2373
|
+
...
|
|
2374
|
+
ValueError: polynomial cannot be specified by an empty list
|
|
2375
|
+
|
|
2376
|
+
sage: companion_matrix([QQ.one()]).parent()
|
|
2377
|
+
Full MatrixSpace of 0 by 0 dense matrices over Rational Field
|
|
2378
|
+
|
|
2379
|
+
AUTHOR:
|
|
2380
|
+
|
|
2381
|
+
- Rob Beezer (2011-05-19)
|
|
2382
|
+
"""
|
|
2383
|
+
import sage.matrix.constructor
|
|
2384
|
+
if format not in ['right', 'left', 'top', 'bottom']:
|
|
2385
|
+
raise ValueError("format must be 'right', 'left', 'top' or 'bottom', not {0}".format(format))
|
|
2386
|
+
try:
|
|
2387
|
+
poly = Sequence(poly)
|
|
2388
|
+
except TypeError:
|
|
2389
|
+
raise TypeError('input must be a polynomial (not a symbolic expression, see docstring), or other iterable, not {0}'.format(poly))
|
|
2390
|
+
n = len(poly) - 1
|
|
2391
|
+
if n == -1:
|
|
2392
|
+
raise ValueError('polynomial cannot be specified by an empty list')
|
|
2393
|
+
if not poly[n] == 1:
|
|
2394
|
+
raise ValueError('polynomial (or the polynomial implied by coefficients) must be monic, not a leading coefficient of {0}'.format(poly[n]))
|
|
2395
|
+
try:
|
|
2396
|
+
M = sage.matrix.constructor.matrix(poly.universe(), n, n)
|
|
2397
|
+
except TypeError:
|
|
2398
|
+
raise TypeError("unable to find common ring for coefficients from polynomial")
|
|
2399
|
+
# 1s below diagonal, or above diagonal
|
|
2400
|
+
if format in ['right', 'top']:
|
|
2401
|
+
for i in range(n - 1):
|
|
2402
|
+
M[i+1, i] = 1
|
|
2403
|
+
else:
|
|
2404
|
+
for i in range(n-1):
|
|
2405
|
+
M[i, i+1] = 1
|
|
2406
|
+
# right side, left side (reversed), bottom edge, top edge (reversed)
|
|
2407
|
+
if format == 'right':
|
|
2408
|
+
for i in range(n):
|
|
2409
|
+
M[i, n-1] = -poly[i]
|
|
2410
|
+
elif format == 'left':
|
|
2411
|
+
for i in range(n):
|
|
2412
|
+
M[n-1-i, 0] = -poly[i]
|
|
2413
|
+
elif format == 'bottom':
|
|
2414
|
+
for i in range(n):
|
|
2415
|
+
M[n-1, i] = -poly[i]
|
|
2416
|
+
elif format == 'top':
|
|
2417
|
+
for i in range(n):
|
|
2418
|
+
M[0, n-1-i] = -poly[i]
|
|
2419
|
+
return M
|
|
2420
|
+
|
|
2421
|
+
|
|
2422
|
+
@matrix_method
|
|
2423
|
+
def random_rref_matrix(parent, num_pivots):
|
|
2424
|
+
r"""
|
|
2425
|
+
Generate a matrix in reduced row-echelon form with a specified number of nonzero rows.
|
|
2426
|
+
|
|
2427
|
+
INPUT:
|
|
2428
|
+
|
|
2429
|
+
- ``parent`` -- a matrix space specifying the base ring, dimensions and
|
|
2430
|
+
representation (dense/sparse) for the result. The base ring must be exact.
|
|
2431
|
+
|
|
2432
|
+
- ``num_pivots`` -- the number of nonzero rows in the result, i.e. the rank
|
|
2433
|
+
|
|
2434
|
+
OUTPUT:
|
|
2435
|
+
|
|
2436
|
+
A matrix in reduced row echelon form with ``num_pivots`` nonzero rows. If the
|
|
2437
|
+
base ring is `ZZ` or `QQ` then the entries are all integers.
|
|
2438
|
+
|
|
2439
|
+
.. NOTE::
|
|
2440
|
+
|
|
2441
|
+
It is easiest to use this function via a call to the
|
|
2442
|
+
:func:`~sage.matrix.constructor.random_matrix`
|
|
2443
|
+
function with the ``algorithm='echelon_form'`` keyword. We provide
|
|
2444
|
+
one example accessing this function directly, while the remainder will
|
|
2445
|
+
use this more general function.
|
|
2446
|
+
|
|
2447
|
+
EXAMPLES:
|
|
2448
|
+
|
|
2449
|
+
Matrices generated are in reduced row-echelon form with specified rank. If the
|
|
2450
|
+
base ring is `QQ` the result has only integer entries. ::
|
|
2451
|
+
|
|
2452
|
+
sage: from sage.matrix.constructor import random_rref_matrix
|
|
2453
|
+
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 5, 6)
|
|
2454
|
+
sage: A = random_rref_matrix(matrix_space, num_pivots=4); A # random
|
|
2455
|
+
[ 1 0 0 -6 0 -3]
|
|
2456
|
+
[ 0 1 0 2 0 3]
|
|
2457
|
+
[ 0 0 1 -4 0 -2]
|
|
2458
|
+
[ 0 0 0 0 1 3]
|
|
2459
|
+
[ 0 0 0 0 0 0]
|
|
2460
|
+
sage: A.base_ring()
|
|
2461
|
+
Rational Field
|
|
2462
|
+
sage: (A.nrows(), A.ncols())
|
|
2463
|
+
(5, 6)
|
|
2464
|
+
sage: A in sage.matrix.matrix_space.MatrixSpace(ZZ, 5, 6)
|
|
2465
|
+
True
|
|
2466
|
+
sage: A.rank()
|
|
2467
|
+
4
|
|
2468
|
+
sage: A == A.rref()
|
|
2469
|
+
True
|
|
2470
|
+
|
|
2471
|
+
Matrices can be generated over other exact rings. ::
|
|
2472
|
+
|
|
2473
|
+
sage: B = random_matrix(FiniteField(7), 4, 4, # random
|
|
2474
|
+
....: algorithm='echelon_form', num_pivots=3); B
|
|
2475
|
+
[1 0 0 0]
|
|
2476
|
+
[0 1 0 6]
|
|
2477
|
+
[0 0 1 1]
|
|
2478
|
+
[0 0 0 0]
|
|
2479
|
+
sage: B.rank() == 3
|
|
2480
|
+
True
|
|
2481
|
+
sage: B.base_ring()
|
|
2482
|
+
Finite Field of size 7
|
|
2483
|
+
sage: B == B.rref()
|
|
2484
|
+
True
|
|
2485
|
+
|
|
2486
|
+
TESTS:
|
|
2487
|
+
|
|
2488
|
+
Rank zero::
|
|
2489
|
+
|
|
2490
|
+
sage: random_matrix(QQ, 1, 1, algorithm='echelon_form', num_pivots=0)
|
|
2491
|
+
[0]
|
|
2492
|
+
|
|
2493
|
+
Rank of a matrix must be an integer. ::
|
|
2494
|
+
|
|
2495
|
+
sage: random_matrix(QQ, 120, 56, algorithm='echelon_form', num_pivots=61/2)
|
|
2496
|
+
Traceback (most recent call last):
|
|
2497
|
+
...
|
|
2498
|
+
TypeError: the number of pivots must be an integer
|
|
2499
|
+
|
|
2500
|
+
Matrices must be generated over exact fields. ::
|
|
2501
|
+
|
|
2502
|
+
sage: random_matrix(RR, 40, 88, algorithm='echelon_form', num_pivots=39)
|
|
2503
|
+
Traceback (most recent call last):
|
|
2504
|
+
...
|
|
2505
|
+
TypeError: the base ring must be exact
|
|
2506
|
+
|
|
2507
|
+
Matrices must have the number of pivot columns be less than or equal to the number of rows. ::
|
|
2508
|
+
|
|
2509
|
+
sage: C = random_matrix(ZZ, 6,4, algorithm='echelon_form', num_pivots=7); C
|
|
2510
|
+
Traceback (most recent call last):
|
|
2511
|
+
...
|
|
2512
|
+
ValueError: number of pivots cannot exceed the number of rows or columns
|
|
2513
|
+
|
|
2514
|
+
Matrices must have the number of pivot columns be less than or equal to the number of columns. ::
|
|
2515
|
+
|
|
2516
|
+
sage: D = random_matrix(QQ, 1,3, algorithm='echelon_form', num_pivots=5); D
|
|
2517
|
+
Traceback (most recent call last):
|
|
2518
|
+
...
|
|
2519
|
+
ValueError: number of pivots cannot exceed the number of rows or columns
|
|
2520
|
+
|
|
2521
|
+
Matrices must have the number of pivot columns be greater than zero. ::
|
|
2522
|
+
|
|
2523
|
+
sage: random_matrix(QQ, 5, 4, algorithm='echelon_form', num_pivots=-1)
|
|
2524
|
+
Traceback (most recent call last):
|
|
2525
|
+
...
|
|
2526
|
+
ValueError: the number of pivots must be zero or greater
|
|
2527
|
+
|
|
2528
|
+
AUTHOR:
|
|
2529
|
+
|
|
2530
|
+
Billy Wonderly (2010-07)
|
|
2531
|
+
"""
|
|
2532
|
+
import sage.probability.probability_distribution as pd
|
|
2533
|
+
|
|
2534
|
+
try:
|
|
2535
|
+
num_pivots = ZZ(num_pivots)
|
|
2536
|
+
except TypeError:
|
|
2537
|
+
raise TypeError("the number of pivots must be an integer")
|
|
2538
|
+
if num_pivots < 0:
|
|
2539
|
+
raise ValueError("the number of pivots must be zero or greater")
|
|
2540
|
+
ring = parent.base_ring()
|
|
2541
|
+
if not ring.is_exact():
|
|
2542
|
+
raise TypeError("the base ring must be exact")
|
|
2543
|
+
num_row = parent.nrows()
|
|
2544
|
+
num_col = parent.ncols()
|
|
2545
|
+
if num_pivots > num_row or num_pivots > num_col:
|
|
2546
|
+
raise ValueError("number of pivots cannot exceed the number of rows or columns")
|
|
2547
|
+
|
|
2548
|
+
if num_pivots == 0:
|
|
2549
|
+
return parent.zero()
|
|
2550
|
+
|
|
2551
|
+
one = ring.one()
|
|
2552
|
+
# Create a matrix of the desired size to be modified and then returned.
|
|
2553
|
+
return_matrix = copy(parent.zero_matrix())
|
|
2554
|
+
|
|
2555
|
+
# No harm if no pivots at all.
|
|
2556
|
+
subset = list(range(1, num_col))
|
|
2557
|
+
shuffle(subset)
|
|
2558
|
+
pivots = [0] + sorted(subset[:num_pivots - 1])
|
|
2559
|
+
|
|
2560
|
+
# Use the list of pivot columns to set the pivot entries of the return_matrix to leading ones.
|
|
2561
|
+
for pivot_row, pivot in enumerate(pivots):
|
|
2562
|
+
return_matrix[pivot_row, pivot] = one
|
|
2563
|
+
if ring is QQ or ring is ZZ:
|
|
2564
|
+
# Keep track of the non-pivot columns by using the pivot_index, start at the first column to
|
|
2565
|
+
# the right of the initial pivot column, go until the first column to the left of the next
|
|
2566
|
+
# pivot column.
|
|
2567
|
+
for pivot_index in range(num_pivots - 1):
|
|
2568
|
+
for non_pivot_column_index in range(pivots[pivot_index] + 1, pivots[pivot_index + 1]):
|
|
2569
|
+
entry_generator1 = pd.RealDistribution("beta", [6, 4])
|
|
2570
|
+
# Experimental distribution used to generate the values.
|
|
2571
|
+
for non_pivot_column_entry in range(pivot_index + 1):
|
|
2572
|
+
sign1 = (2 * randint(0, 1) - 1)
|
|
2573
|
+
return_matrix[non_pivot_column_entry, non_pivot_column_index] = sign1 * int(entry_generator1.get_random_element() * ((1 - non_pivot_column_entry / return_matrix.ncols()) * 7))
|
|
2574
|
+
# Use index to fill entries of the columns to the right of the last pivot column.
|
|
2575
|
+
for rest_non_pivot_column in range(pivots[num_pivots - 1] + 1, num_col):
|
|
2576
|
+
entry_generator2 = pd.RealDistribution("beta", [2.6, 4])
|
|
2577
|
+
# experimental distribution to generate small values.
|
|
2578
|
+
for rest_entries in range(num_pivots):
|
|
2579
|
+
sign2 = (2 * randint(0, 1) - 1)
|
|
2580
|
+
return_matrix[rest_entries, rest_non_pivot_column] = sign2 * int(entry_generator2.get_random_element() * 5)
|
|
2581
|
+
else:
|
|
2582
|
+
for pivot_index in range(num_pivots - 1):
|
|
2583
|
+
for non_pivot_column_index in range(pivots[pivot_index] + 1, pivots[pivot_index + 1]):
|
|
2584
|
+
for non_pivot_column_entry in range(pivot_index + 1):
|
|
2585
|
+
return_matrix[non_pivot_column_entry, non_pivot_column_index] = ring.random_element()
|
|
2586
|
+
for rest_non_pivot_column in range(pivots[num_pivots - 1] + 1, num_col):
|
|
2587
|
+
for rest_entries in range(num_pivots):
|
|
2588
|
+
return_matrix[rest_entries, rest_non_pivot_column] = ring.random_element()
|
|
2589
|
+
return return_matrix
|
|
2590
|
+
|
|
2591
|
+
|
|
2592
|
+
@matrix_method
|
|
2593
|
+
def random_echelonizable_matrix(parent, rank, upper_bound=None, max_tries=100):
|
|
2594
|
+
r"""
|
|
2595
|
+
Generate a matrix of a desired size and rank, over a desired ring, whose reduced
|
|
2596
|
+
row-echelon form has only integral values.
|
|
2597
|
+
|
|
2598
|
+
INPUT:
|
|
2599
|
+
|
|
2600
|
+
- ``parent`` -- a matrix space specifying the base ring, dimensions and
|
|
2601
|
+
representation (dense/sparse) for the result. The base ring must be exact.
|
|
2602
|
+
|
|
2603
|
+
- ``rank`` -- rank of result, i.e the number of nonzero rows in the
|
|
2604
|
+
reduced row echelon form
|
|
2605
|
+
|
|
2606
|
+
- ``upper_bound`` -- if designated, size control of the matrix entries is desired
|
|
2607
|
+
Set ``upper_bound`` to 1 more than the maximum value entries can achieve.
|
|
2608
|
+
If ``None``, no size control occurs. But see the warning below. (default: ``None``)
|
|
2609
|
+
|
|
2610
|
+
- ``max_tries`` -- if designated, number of tries used to generate each new random row;s
|
|
2611
|
+
only matters when upper_bound!=None. Used to prevent endless looping. (default: 100)
|
|
2612
|
+
|
|
2613
|
+
OUTPUT: a matrix not in reduced row-echelon form with the desired
|
|
2614
|
+
dimensions and properties
|
|
2615
|
+
|
|
2616
|
+
.. warning::
|
|
2617
|
+
|
|
2618
|
+
When ``upper_bound`` is set, it is possible for this constructor to
|
|
2619
|
+
fail with a :exc:`ValueError`. This may happen when the ``upper_bound``,
|
|
2620
|
+
``rank`` and/or matrix dimensions are all so small that it becomes
|
|
2621
|
+
infeasible or unlikely to create the requested matrix. If you *must*
|
|
2622
|
+
have this routine return successfully, do not set ``upper_bound``.
|
|
2623
|
+
|
|
2624
|
+
.. NOTE::
|
|
2625
|
+
|
|
2626
|
+
It is easiest to use this function via a call to the
|
|
2627
|
+
:func:`~sage.matrix.constructor.random_matrix`
|
|
2628
|
+
function with the ``algorithm='echelonizable'`` keyword. We provide
|
|
2629
|
+
one example accessing this function directly, while the remainder will
|
|
2630
|
+
use this more general function.
|
|
2631
|
+
|
|
2632
|
+
EXAMPLES:
|
|
2633
|
+
|
|
2634
|
+
Generated matrices have the desired dimensions, rank and entry size. The
|
|
2635
|
+
matrix in reduced row-echelon form has only integer entries. ::
|
|
2636
|
+
|
|
2637
|
+
sage: from sage.matrix.constructor import random_echelonizable_matrix
|
|
2638
|
+
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 5, 6)
|
|
2639
|
+
sage: A = random_echelonizable_matrix(matrix_space, rank=4, upper_bound=40)
|
|
2640
|
+
sage: A.rank()
|
|
2641
|
+
4
|
|
2642
|
+
sage: max(map(abs,A.list())) < 40
|
|
2643
|
+
True
|
|
2644
|
+
sage: A.rref() == A.rref().change_ring(ZZ)
|
|
2645
|
+
True
|
|
2646
|
+
|
|
2647
|
+
An example with default settings (i.e. no entry size control). ::
|
|
2648
|
+
|
|
2649
|
+
sage: C = random_matrix(QQ, 6, 7, algorithm='echelonizable', rank=5)
|
|
2650
|
+
sage: C.rank()
|
|
2651
|
+
5
|
|
2652
|
+
sage: C.rref() == C.rref().change_ring(ZZ)
|
|
2653
|
+
True
|
|
2654
|
+
|
|
2655
|
+
A matrix without size control may have very large entry sizes. ::
|
|
2656
|
+
|
|
2657
|
+
sage: D = random_matrix(ZZ, 7, 8, algorithm='echelonizable', rank=6); D # random
|
|
2658
|
+
[ 1 2 8 -35 -178 -239 -284 778]
|
|
2659
|
+
[ 4 9 37 -163 -827 -1111 -1324 3624]
|
|
2660
|
+
[ 5 6 21 -88 -454 -607 -708 1951]
|
|
2661
|
+
[ -4 -5 -22 97 491 656 779 -2140]
|
|
2662
|
+
[ 4 4 13 -55 -283 -377 -436 1206]
|
|
2663
|
+
[ 4 11 43 -194 -982 -1319 -1576 4310]
|
|
2664
|
+
[ -1 -2 -13 59 294 394 481 -1312]
|
|
2665
|
+
|
|
2666
|
+
Matrices can be generated over any exact ring. ::
|
|
2667
|
+
|
|
2668
|
+
sage: # needs sage.rings.finite_rings
|
|
2669
|
+
sage: F.<a> = GF(2^3)
|
|
2670
|
+
sage: B = random_matrix(F, 4, 5, algorithm='echelonizable', rank=4,
|
|
2671
|
+
....: upper_bound=None)
|
|
2672
|
+
sage: B.rank()
|
|
2673
|
+
4
|
|
2674
|
+
sage: B.base_ring() is F
|
|
2675
|
+
True
|
|
2676
|
+
|
|
2677
|
+
Square matrices over ZZ or QQ with full rank are always unimodular. ::
|
|
2678
|
+
|
|
2679
|
+
sage: E = random_matrix(QQ, 7, 7, algorithm='echelonizable', rank=7)
|
|
2680
|
+
sage: det(E)
|
|
2681
|
+
1
|
|
2682
|
+
sage: E = random_matrix(ZZ, 7, 7, algorithm='echelonizable', rank=7)
|
|
2683
|
+
sage: det(E)
|
|
2684
|
+
1
|
|
2685
|
+
|
|
2686
|
+
TESTS:
|
|
2687
|
+
|
|
2688
|
+
Matrices must have a rank zero or greater, and less than
|
|
2689
|
+
both the number of rows and the number of columns. ::
|
|
2690
|
+
|
|
2691
|
+
sage: random_matrix(QQ, 3, 4, algorithm='echelonizable', rank=-1)
|
|
2692
|
+
Traceback (most recent call last):
|
|
2693
|
+
...
|
|
2694
|
+
ValueError: matrices must have rank zero or greater.
|
|
2695
|
+
sage: random_matrix(QQ, 3, 8, algorithm='echelonizable', rank=4)
|
|
2696
|
+
Traceback (most recent call last):
|
|
2697
|
+
...
|
|
2698
|
+
ValueError: matrices cannot have rank greater than min(ncols,nrows).
|
|
2699
|
+
sage: random_matrix(QQ, 8, 3, algorithm='echelonizable', rank=4)
|
|
2700
|
+
Traceback (most recent call last):
|
|
2701
|
+
...
|
|
2702
|
+
ValueError: matrices cannot have rank greater than min(ncols,nrows).
|
|
2703
|
+
|
|
2704
|
+
The base ring must be exact. ::
|
|
2705
|
+
|
|
2706
|
+
sage: random_matrix(RR, 3, 3, algorithm='echelonizable', rank=2)
|
|
2707
|
+
Traceback (most recent call last):
|
|
2708
|
+
...
|
|
2709
|
+
TypeError: the base ring must be exact
|
|
2710
|
+
|
|
2711
|
+
Works for rank==1, too. ::
|
|
2712
|
+
|
|
2713
|
+
sage: random_matrix(QQ, 3, 3, algorithm='echelonizable', rank=1).ncols()
|
|
2714
|
+
3
|
|
2715
|
+
|
|
2716
|
+
|
|
2717
|
+
AUTHOR:
|
|
2718
|
+
|
|
2719
|
+
Billy Wonderly (2010-07)
|
|
2720
|
+
"""
|
|
2721
|
+
from sage.misc.prandom import randint
|
|
2722
|
+
|
|
2723
|
+
ring = parent.base_ring()
|
|
2724
|
+
rows = parent.nrows()
|
|
2725
|
+
if rank < 0:
|
|
2726
|
+
raise ValueError("matrices must have rank zero or greater.")
|
|
2727
|
+
if rank > min(rows,parent.ncols()):
|
|
2728
|
+
raise ValueError("matrices cannot have rank greater than min(ncols,nrows).")
|
|
2729
|
+
matrix = random_rref_matrix(parent, rank)
|
|
2730
|
+
|
|
2731
|
+
# Entries of matrices over the ZZ or QQ can get large, entry size is regulated by finding the largest
|
|
2732
|
+
# entry of the resultant matrix after addition of scalar multiple of a row.
|
|
2733
|
+
if ring is QQ or ring is ZZ:
|
|
2734
|
+
# If upper_bound is not set, don't control entry size.
|
|
2735
|
+
if upper_bound is None:
|
|
2736
|
+
# If size control is not desired, the routine will run slightly faster, particularly with large matrices.
|
|
2737
|
+
for pivots in range(rank-1, -1, -1):
|
|
2738
|
+
row_index = 0
|
|
2739
|
+
while row_index < rows:
|
|
2740
|
+
if pivots == row_index:
|
|
2741
|
+
row_index += 1
|
|
2742
|
+
if pivots != row_index and row_index != rows:
|
|
2743
|
+
matrix.add_multiple_of_row(row_index,
|
|
2744
|
+
matrix.pivot_rows()[pivots],
|
|
2745
|
+
randint(-5, 5))
|
|
2746
|
+
row_index += 1
|
|
2747
|
+
if rows > 1:
|
|
2748
|
+
matrix.add_multiple_of_row(0, randint(1,rows-1), randint(-3,3))
|
|
2749
|
+
else:
|
|
2750
|
+
if rank == 1: # would be better just to have a special generator...
|
|
2751
|
+
tries = 0
|
|
2752
|
+
while max(abs(c) for c in matrix.list()) >= upper_bound:
|
|
2753
|
+
matrix = random_rref_matrix(parent, rank)
|
|
2754
|
+
tries += 1
|
|
2755
|
+
if tries > max_tries: # to prevent endless attempts
|
|
2756
|
+
raise ValueError("tried "+str(max_tries)+" times to get a rank 1 random matrix. Try bigger upper_bound?")
|
|
2757
|
+
matrix_copy = matrix
|
|
2758
|
+
|
|
2759
|
+
for pivots in range(len(matrix.pivots()) - 1, -1, -1):
|
|
2760
|
+
# keep track of the pivot column positions from the pivot column with the largest index to
|
|
2761
|
+
# the one with the smallest.
|
|
2762
|
+
row_index = 0
|
|
2763
|
+
tries = 0
|
|
2764
|
+
while row_index < rows:
|
|
2765
|
+
# To each row in a pivot column add a scalar multiple of the pivot row.
|
|
2766
|
+
# for full rank, square matrices, using only this row operation preserves the determinant of 1.
|
|
2767
|
+
if pivots != row_index:
|
|
2768
|
+
# To ensure a leading one is not removed by the addition of the pivot row by its
|
|
2769
|
+
# additive inverse.
|
|
2770
|
+
matrix_copy = matrix.with_added_multiple_of_row(row_index,matrix.pivot_rows()[pivots],randint(-5,5))
|
|
2771
|
+
tries += 1
|
|
2772
|
+
# Range for scalar multiples determined experimentally.
|
|
2773
|
+
if max(map(abs, matrix_copy.list())) < upper_bound:
|
|
2774
|
+
# Continue if the largest entry after a row operation is within the bound.
|
|
2775
|
+
matrix = matrix_copy
|
|
2776
|
+
row_index += 1
|
|
2777
|
+
tries = 0
|
|
2778
|
+
if tries > max_tries: # to prevent endless unsuccessful row adding
|
|
2779
|
+
raise ValueError("tried "+str(max_tries)+" times to get row number "+str(row_index)+". Try bigger upper_bound?")
|
|
2780
|
+
# The leading one in row one has not been altered, so add a scalar multiple of a random row
|
|
2781
|
+
# to row one.
|
|
2782
|
+
row1 = 0
|
|
2783
|
+
if rows > 1:
|
|
2784
|
+
while row1 < 1:
|
|
2785
|
+
matrix_copy = matrix.with_added_multiple_of_row(0,randint(1,rows-1),randint(-3,3))
|
|
2786
|
+
if max(map(abs,matrix_copy.list())) < upper_bound:
|
|
2787
|
+
matrix = matrix_copy
|
|
2788
|
+
row1 += 1
|
|
2789
|
+
# If the matrix generated over a different ring, random elements from the designated ring are used as and
|
|
2790
|
+
# the routine is run similarly to the size unchecked version for rationals and integers.
|
|
2791
|
+
else:
|
|
2792
|
+
for pivots in range(rank-1,-1,-1):
|
|
2793
|
+
row_index = 0
|
|
2794
|
+
while row_index < rows:
|
|
2795
|
+
if pivots == row_index:
|
|
2796
|
+
row_index += 1
|
|
2797
|
+
if pivots != row_index and row_index != rows:
|
|
2798
|
+
matrix.add_multiple_of_row(row_index,matrix.pivot_rows()[pivots],ring.random_element())
|
|
2799
|
+
row_index += 1
|
|
2800
|
+
if rows > 1:
|
|
2801
|
+
matrix.add_multiple_of_row(0,randint(1,rows-1),ring.random_element())
|
|
2802
|
+
return matrix
|
|
2803
|
+
|
|
2804
|
+
|
|
2805
|
+
@matrix_method
|
|
2806
|
+
def random_subspaces_matrix(parent, rank=None):
|
|
2807
|
+
r"""
|
|
2808
|
+
Create a matrix of the designated size and rank whose right and
|
|
2809
|
+
left null spaces, column space, and row space have desirable
|
|
2810
|
+
properties that simplify the subspaces.
|
|
2811
|
+
|
|
2812
|
+
INPUT:
|
|
2813
|
+
|
|
2814
|
+
- ``parent`` -- a matrix space specifying the base ring, dimensions, and
|
|
2815
|
+
representation (dense/sparse) for the result. The base ring must be exact.
|
|
2816
|
+
|
|
2817
|
+
- ``rank`` -- the desired rank of the return matrix (default: ``None``)
|
|
2818
|
+
|
|
2819
|
+
OUTPUT:
|
|
2820
|
+
|
|
2821
|
+
A matrix whose natural basis vectors for its four subspaces, when
|
|
2822
|
+
computed, have reasonably sized, integral valued, entries.
|
|
2823
|
+
|
|
2824
|
+
.. NOTE::
|
|
2825
|
+
|
|
2826
|
+
It is easiest to use this function via a call to the
|
|
2827
|
+
:func:`~sage.matrix.constructor.random_matrix`
|
|
2828
|
+
function with the ``algorithm='subspaces'`` keyword. We provide
|
|
2829
|
+
one example accessing this function directly, while the remainder will
|
|
2830
|
+
use this more general function.
|
|
2831
|
+
|
|
2832
|
+
EXAMPLES:
|
|
2833
|
+
|
|
2834
|
+
A 6x8 matrix with designated rank of 3. The four subspaces are
|
|
2835
|
+
determined using one simple routine in which we augment the
|
|
2836
|
+
original matrix with the equal row dimension identity matrix. The
|
|
2837
|
+
resulting matrix is then put in reduced row-echelon form and the
|
|
2838
|
+
subspaces can then be determined by analyzing subdivisions of this
|
|
2839
|
+
matrix. See the four subspaces routine in [Bee]_ for more. ::
|
|
2840
|
+
|
|
2841
|
+
sage: from sage.matrix.constructor import random_subspaces_matrix
|
|
2842
|
+
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 6, 8)
|
|
2843
|
+
sage: B = random_subspaces_matrix(matrix_space, rank=3)
|
|
2844
|
+
sage: B.rank()
|
|
2845
|
+
3
|
|
2846
|
+
sage: B.nullity()
|
|
2847
|
+
3
|
|
2848
|
+
sage: (B.nrows(), B.ncols())
|
|
2849
|
+
(6, 8)
|
|
2850
|
+
sage: all(x in ZZ for x in B.list())
|
|
2851
|
+
True
|
|
2852
|
+
sage: B_expanded = B.augment(identity_matrix(6)).rref()
|
|
2853
|
+
sage: all(x in ZZ for x in B_expanded.list())
|
|
2854
|
+
True
|
|
2855
|
+
|
|
2856
|
+
Check that we fixed :issue:`10543` (echelon forms should be immutable)::
|
|
2857
|
+
|
|
2858
|
+
sage: B_expanded.is_immutable()
|
|
2859
|
+
True
|
|
2860
|
+
|
|
2861
|
+
We want to modify B_expanded, so replace it with a copy::
|
|
2862
|
+
|
|
2863
|
+
sage: B_expanded = copy(B_expanded)
|
|
2864
|
+
sage: B_expanded.subdivide(B.nrows()-B.nullity(), B.ncols())
|
|
2865
|
+
sage: C = B_expanded.subdivision(0, 0)
|
|
2866
|
+
sage: L = B_expanded.subdivision(1, 1)
|
|
2867
|
+
sage: B.right_kernel() == C.right_kernel()
|
|
2868
|
+
True
|
|
2869
|
+
sage: B.row_space() == C.row_space()
|
|
2870
|
+
True
|
|
2871
|
+
sage: B.column_space() == L.right_kernel()
|
|
2872
|
+
True
|
|
2873
|
+
sage: B.left_kernel() == L.row_space()
|
|
2874
|
+
True
|
|
2875
|
+
|
|
2876
|
+
A matrix to show that the null space of the L matrix is the column space of the starting matrix. ::
|
|
2877
|
+
|
|
2878
|
+
sage: A = random_matrix(QQ, 5, 7, algorithm='subspaces', rank=None)
|
|
2879
|
+
sage: (A.nrows(), A.ncols())
|
|
2880
|
+
(5, 7)
|
|
2881
|
+
sage: all(x in ZZ for x in A.list())
|
|
2882
|
+
True
|
|
2883
|
+
sage: A_expanded = A.augment(identity_matrix(5)).rref()
|
|
2884
|
+
sage: all(x in ZZ for x in A_expanded.list())
|
|
2885
|
+
True
|
|
2886
|
+
sage: C = A_expanded.submatrix(0, 0, A.nrows() - A.nullity(), A.ncols())
|
|
2887
|
+
sage: L = A_expanded.submatrix(A.nrows() - A.nullity(), A.ncols())
|
|
2888
|
+
sage: A.right_kernel() == C.right_kernel()
|
|
2889
|
+
True
|
|
2890
|
+
sage: A.row_space() == C.row_space()
|
|
2891
|
+
True
|
|
2892
|
+
sage: A.column_space() == L.right_kernel()
|
|
2893
|
+
True
|
|
2894
|
+
sage: A.left_kernel() == L.row_space()
|
|
2895
|
+
True
|
|
2896
|
+
|
|
2897
|
+
TESTS:
|
|
2898
|
+
|
|
2899
|
+
The designated rank of the L matrix cannot be greater than the
|
|
2900
|
+
number of desired rows, nor can the rank be negative. ::
|
|
2901
|
+
|
|
2902
|
+
sage: random_matrix(QQ, 19, 20, algorithm='subspaces', rank=21)
|
|
2903
|
+
Traceback (most recent call last):
|
|
2904
|
+
...
|
|
2905
|
+
ValueError: rank cannot exceed the number of rows or columns.
|
|
2906
|
+
sage: random_matrix(QQ, 19, 20, algorithm='subspaces', rank=-1)
|
|
2907
|
+
Traceback (most recent call last):
|
|
2908
|
+
...
|
|
2909
|
+
ValueError: matrices must have rank zero or greater.
|
|
2910
|
+
|
|
2911
|
+
AUTHOR:
|
|
2912
|
+
|
|
2913
|
+
Billy Wonderly (2010-07)
|
|
2914
|
+
"""
|
|
2915
|
+
|
|
2916
|
+
import sage.probability.probability_distribution as pd
|
|
2917
|
+
|
|
2918
|
+
ring = parent.base_ring()
|
|
2919
|
+
rows = parent.nrows()
|
|
2920
|
+
columns = parent.ncols()
|
|
2921
|
+
|
|
2922
|
+
# If rank is not designated, generate using probability distribution
|
|
2923
|
+
# skewing to smaller numbers, always at least 1.
|
|
2924
|
+
if rank is None:
|
|
2925
|
+
left_nullity_generator = pd.RealDistribution("beta", [1.4, 5.5])
|
|
2926
|
+
nullity = int(left_nullity_generator.get_random_element()*(rows-1) + 1)
|
|
2927
|
+
rank = rows - nullity
|
|
2928
|
+
if rank < 0:
|
|
2929
|
+
raise ValueError("matrices must have rank zero or greater.")
|
|
2930
|
+
if rank > rows or rank > columns:
|
|
2931
|
+
raise ValueError("rank cannot exceed the number of rows or columns.")
|
|
2932
|
+
nullity = rows - rank
|
|
2933
|
+
B = random_matrix(ring, rows, columns, algorithm='echelon_form',
|
|
2934
|
+
num_pivots=rank)
|
|
2935
|
+
|
|
2936
|
+
# Create a nonsingular matrix whose columns will be used to stack a matrix
|
|
2937
|
+
# over the L matrix, forming a nonsingular matrix.
|
|
2938
|
+
K_nonzero_columns = random_matrix(ring, rank, rank,
|
|
2939
|
+
algorithm='echelonizable', rank=rank)
|
|
2940
|
+
K = matrix(QQ, rank, rows)
|
|
2941
|
+
L = random_matrix(ring, nullity, rows, algorithm='echelon_form',
|
|
2942
|
+
num_pivots=nullity)
|
|
2943
|
+
for column in range(len(L.nonpivots())):
|
|
2944
|
+
for entry in range(rank):
|
|
2945
|
+
K[entry, L.nonpivots()[column]] = K_nonzero_columns[entry, column]
|
|
2946
|
+
J = K.stack(L)
|
|
2947
|
+
|
|
2948
|
+
# By multiplying the B matrix by J.inverse() we hide the B matrix of the
|
|
2949
|
+
# solution using row operations required to change the solution K matrix to
|
|
2950
|
+
# the identity matrix.
|
|
2951
|
+
return J.inverse() * B
|
|
2952
|
+
|
|
2953
|
+
|
|
2954
|
+
@matrix_method
|
|
2955
|
+
def random_unimodular_matrix(parent, upper_bound=None, max_tries=100):
|
|
2956
|
+
r"""
|
|
2957
|
+
Generate a random unimodular (determinant 1) matrix of a desired size over a desired ring.
|
|
2958
|
+
|
|
2959
|
+
INPUT:
|
|
2960
|
+
|
|
2961
|
+
- ``parent`` -- a matrix space specifying the base ring, dimensions
|
|
2962
|
+
and representation (dense/sparse) for the result. The base ring
|
|
2963
|
+
must be exact.
|
|
2964
|
+
|
|
2965
|
+
- ``upper_bound`` -- for large matrices over QQ or ZZ,
|
|
2966
|
+
``upper_bound`` is the largest value matrix entries can achieve. But
|
|
2967
|
+
see the warning below.
|
|
2968
|
+
|
|
2969
|
+
- ``max_tries`` -- if designated, number of tries used to generate each new random row;
|
|
2970
|
+
only matters when upper_bound!=None. Used to prevent endless looping. (default: 100)
|
|
2971
|
+
|
|
2972
|
+
A matrix not in reduced row-echelon form with the desired dimensions and properties.
|
|
2973
|
+
|
|
2974
|
+
OUTPUT: an invertible matrix with the desired properties and determinant 1
|
|
2975
|
+
|
|
2976
|
+
.. warning::
|
|
2977
|
+
|
|
2978
|
+
When ``upper_bound`` is set, it is possible for this constructor to
|
|
2979
|
+
fail with a :exc:`ValueError`. This may happen when the ``upper_bound``,
|
|
2980
|
+
``rank`` and/or matrix dimensions are all so small that it becomes
|
|
2981
|
+
infeasible or unlikely to create the requested matrix. If you *must*
|
|
2982
|
+
have this routine return successfully, do not set ``upper_bound``.
|
|
2983
|
+
|
|
2984
|
+
.. NOTE::
|
|
2985
|
+
|
|
2986
|
+
It is easiest to use this function via a call to the
|
|
2987
|
+
:func:`~sage.matrix.constructor.random_matrix`
|
|
2988
|
+
function with the ``algorithm='unimodular'`` keyword. We provide
|
|
2989
|
+
one example accessing this function directly, while the remainder will
|
|
2990
|
+
use this more general function.
|
|
2991
|
+
|
|
2992
|
+
EXAMPLES:
|
|
2993
|
+
|
|
2994
|
+
A matrix size 5 over QQ. ::
|
|
2995
|
+
|
|
2996
|
+
sage: from sage.matrix.constructor import random_unimodular_matrix
|
|
2997
|
+
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 5)
|
|
2998
|
+
sage: A = random_unimodular_matrix(matrix_space)
|
|
2999
|
+
sage: det(A)
|
|
3000
|
+
1
|
|
3001
|
+
|
|
3002
|
+
A matrix size 6 with entries no larger than 50. ::
|
|
3003
|
+
|
|
3004
|
+
sage: B = random_matrix(ZZ, 7, algorithm='unimodular', upper_bound=50)
|
|
3005
|
+
sage: det(B)
|
|
3006
|
+
1
|
|
3007
|
+
sage: all(abs(b) < 50 for b in B.list())
|
|
3008
|
+
True
|
|
3009
|
+
|
|
3010
|
+
A matrix over the number Field in `y` with defining polynomial `y^2-2y-2`. ::
|
|
3011
|
+
|
|
3012
|
+
sage: # needs sage.rings.number_field
|
|
3013
|
+
sage: y = polygen(ZZ, 'y')
|
|
3014
|
+
sage: K = NumberField(y^2 - 2*y - 2, 'y')
|
|
3015
|
+
sage: C = random_matrix(K, 3, algorithm='unimodular')
|
|
3016
|
+
sage: C # random
|
|
3017
|
+
[ -1/7*y + 47/35 3/5*y - 127/70 -2917/70*y + 4419/70]
|
|
3018
|
+
[ 1 1/2*y - 1/2 -104/3*y + 211/6]
|
|
3019
|
+
[ 1/3*y - 1/3 y - 1 -35/6*y - 149/6]
|
|
3020
|
+
sage: det(C)
|
|
3021
|
+
1
|
|
3022
|
+
sage: C.base_ring() is K
|
|
3023
|
+
True
|
|
3024
|
+
|
|
3025
|
+
TESTS:
|
|
3026
|
+
|
|
3027
|
+
Unimodular matrices are square. ::
|
|
3028
|
+
|
|
3029
|
+
sage: random_matrix(QQ, 5, 6, algorithm='unimodular')
|
|
3030
|
+
Traceback (most recent call last):
|
|
3031
|
+
...
|
|
3032
|
+
TypeError: a unimodular matrix must be square.
|
|
3033
|
+
|
|
3034
|
+
Only matrices over ZZ and QQ can have size control. ::
|
|
3035
|
+
|
|
3036
|
+
sage: F.<a> = GF(5^7) # needs sage.rings.finite_rings
|
|
3037
|
+
sage: random_matrix(F, 5, algorithm='unimodular', upper_bound=20) # needs sage.rings.finite_rings
|
|
3038
|
+
Traceback (most recent call last):
|
|
3039
|
+
...
|
|
3040
|
+
TypeError: only matrices over ZZ or QQ can have size control.
|
|
3041
|
+
|
|
3042
|
+
AUTHOR:
|
|
3043
|
+
|
|
3044
|
+
Billy Wonderly (2010-07)
|
|
3045
|
+
"""
|
|
3046
|
+
|
|
3047
|
+
ring = parent.base_ring()
|
|
3048
|
+
size = parent.nrows()
|
|
3049
|
+
if parent.nrows() != parent.ncols():
|
|
3050
|
+
raise TypeError("a unimodular matrix must be square.")
|
|
3051
|
+
if upper_bound is not None and (ring != ZZ and ring != QQ):
|
|
3052
|
+
raise TypeError("only matrices over ZZ or QQ can have size control.")
|
|
3053
|
+
if upper_bound is None:
|
|
3054
|
+
# random_echelonizable_matrix() always returns a determinant one matrix if given full rank.
|
|
3055
|
+
return random_matrix(ring, size, algorithm='echelonizable', rank=size)
|
|
3056
|
+
elif upper_bound is not None and (ring == ZZ or ring == QQ):
|
|
3057
|
+
return random_matrix(ring, size,algorithm='echelonizable',rank=size, upper_bound=upper_bound, max_tries=max_tries)
|
|
3058
|
+
|
|
3059
|
+
|
|
3060
|
+
@matrix_method
|
|
3061
|
+
def random_diagonalizable_matrix(parent, eigenvalues=None, dimensions=None):
|
|
3062
|
+
"""
|
|
3063
|
+
Create a random matrix that diagonalizes nicely.
|
|
3064
|
+
|
|
3065
|
+
To be used as a teaching tool. The eigenvalues will be elements of the
|
|
3066
|
+
base ring. If the base ring used is ``QQ`` then the returned matrix will
|
|
3067
|
+
have integer eigenvalues.
|
|
3068
|
+
|
|
3069
|
+
INPUT:
|
|
3070
|
+
|
|
3071
|
+
If eigenvalues and dimensions are not specified in a list,
|
|
3072
|
+
they will be assigned randomly.
|
|
3073
|
+
|
|
3074
|
+
- ``parent`` -- the desired parent of the square matrix (a matrix space)
|
|
3075
|
+
|
|
3076
|
+
- ``eigenvalues`` -- the list of desired eigenvalues (default=None)
|
|
3077
|
+
|
|
3078
|
+
- ``dimensions`` -- the list of dimensions corresponding to each
|
|
3079
|
+
eigenspace (default=None)
|
|
3080
|
+
|
|
3081
|
+
OUTPUT:
|
|
3082
|
+
|
|
3083
|
+
A square, diagonalizable, matrix. Elements of the matrix are elements
|
|
3084
|
+
of the base ring. If the ring used is ``QQ`` then we have integer entries,
|
|
3085
|
+
and the eigenspaces of this matrix, if computed by hand, gives basis
|
|
3086
|
+
vectors with only integer entries.
|
|
3087
|
+
|
|
3088
|
+
.. NOTE::
|
|
3089
|
+
|
|
3090
|
+
It is easiest to use this function via a call to the
|
|
3091
|
+
:func:`~sage.matrix.constructor.random_matrix`
|
|
3092
|
+
function with the ``algorithm='diagonalizable'`` keyword. We provide
|
|
3093
|
+
one example accessing this function directly, while the remainder will
|
|
3094
|
+
use this more general function.
|
|
3095
|
+
|
|
3096
|
+
EXAMPLES:
|
|
3097
|
+
|
|
3098
|
+
A diagonalizable matrix, size 5. ::
|
|
3099
|
+
|
|
3100
|
+
sage: from sage.matrix.constructor import random_diagonalizable_matrix
|
|
3101
|
+
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 5)
|
|
3102
|
+
sage: A = random_diagonalizable_matrix(matrix_space)
|
|
3103
|
+
|
|
3104
|
+
sage: # needs sage.rings.number_field
|
|
3105
|
+
sage: eigenvalues = A.eigenvalues()
|
|
3106
|
+
sage: S = A.right_eigenmatrix()[1]
|
|
3107
|
+
sage: eigenvalues2 = (S.inverse()*A*S).diagonal()
|
|
3108
|
+
sage: sorted(eigenvalues) == sorted(eigenvalues2)
|
|
3109
|
+
True
|
|
3110
|
+
|
|
3111
|
+
A diagonalizable matrix with eigenvalues and dimensions designated,
|
|
3112
|
+
with a check that if eigenvectors were calculated by hand
|
|
3113
|
+
entries would all be integers. ::
|
|
3114
|
+
|
|
3115
|
+
sage: eigenvalues = [ZZ.random_element() for _ in range(3)]
|
|
3116
|
+
sage: B = random_matrix(QQ, 6, algorithm='diagonalizable',
|
|
3117
|
+
....: eigenvalues=eigenvalues, dimensions=[2,3,1])
|
|
3118
|
+
sage: all(x in ZZ for x in (B-(-12*identity_matrix(6))).rref().list())
|
|
3119
|
+
True
|
|
3120
|
+
sage: all(x in ZZ for x in (B-(4*identity_matrix(6))).rref().list())
|
|
3121
|
+
True
|
|
3122
|
+
sage: all(x in ZZ for x in (B-(6*identity_matrix(6))).rref().list())
|
|
3123
|
+
True
|
|
3124
|
+
|
|
3125
|
+
sage: # needs sage.rings.number_field
|
|
3126
|
+
sage: S = B.right_eigenmatrix()[1]
|
|
3127
|
+
sage: eigenvalues2 = (S.inverse()*B*S).diagonal()
|
|
3128
|
+
sage: all(e in eigenvalues for e in eigenvalues2)
|
|
3129
|
+
True
|
|
3130
|
+
|
|
3131
|
+
Matrices over finite fields are also supported::
|
|
3132
|
+
|
|
3133
|
+
sage: K = GF(3)
|
|
3134
|
+
sage: M = random_matrix(K, 3, 3, algorithm="diagonalizable")
|
|
3135
|
+
sage: M.parent()
|
|
3136
|
+
Full MatrixSpace of 3 by 3 dense matrices over Finite Field of size 3
|
|
3137
|
+
sage: M.is_diagonalizable() # needs sage.libs.pari
|
|
3138
|
+
True
|
|
3139
|
+
sage: M # random
|
|
3140
|
+
[0 0 1]
|
|
3141
|
+
[2 1 1]
|
|
3142
|
+
[1 0 0]
|
|
3143
|
+
|
|
3144
|
+
TESTS:
|
|
3145
|
+
|
|
3146
|
+
Eigenvalues must all be elements of the ring. ::
|
|
3147
|
+
|
|
3148
|
+
sage: random_matrix(QQ, 3, algorithm='diagonalizable', # needs sage.symbolic
|
|
3149
|
+
....: eigenvalues=[2+I, 2-I, 2], dimensions=[1,1,1])
|
|
3150
|
+
Traceback (most recent call last):
|
|
3151
|
+
...
|
|
3152
|
+
TypeError: eigenvalues must be elements of the corresponding ring.
|
|
3153
|
+
|
|
3154
|
+
Diagonal matrices must be square. ::
|
|
3155
|
+
|
|
3156
|
+
sage: random_matrix(QQ, 5, 7, algorithm='diagonalizable', eigenvalues=[-5,2,-3], dimensions=[1,1,3])
|
|
3157
|
+
Traceback (most recent call last):
|
|
3158
|
+
...
|
|
3159
|
+
TypeError: a diagonalizable matrix must be square.
|
|
3160
|
+
|
|
3161
|
+
A list of eigenvalues must be accompanied with a list of dimensions. ::
|
|
3162
|
+
|
|
3163
|
+
sage: random_matrix(QQ,10,algorithm='diagonalizable',eigenvalues=[4,8])
|
|
3164
|
+
Traceback (most recent call last):
|
|
3165
|
+
...
|
|
3166
|
+
ValueError: the list of eigenvalues must have a list of dimensions corresponding to each eigenvalue.
|
|
3167
|
+
|
|
3168
|
+
A list of dimensions must be accompanied with a list of eigenvalues. ::
|
|
3169
|
+
|
|
3170
|
+
sage: random_matrix(QQ, 10,algorithm='diagonalizable',dimensions=[2,2,4,2])
|
|
3171
|
+
Traceback (most recent call last):
|
|
3172
|
+
...
|
|
3173
|
+
ValueError: the list of dimensions must have a list of corresponding eigenvalues.
|
|
3174
|
+
|
|
3175
|
+
The sum of the eigenvalue dimensions must equal the size of the matrix. ::
|
|
3176
|
+
|
|
3177
|
+
sage: random_matrix(QQ,12,algorithm='diagonalizable',eigenvalues=[4,2,6,-1],dimensions=[2,3,5,1])
|
|
3178
|
+
Traceback (most recent call last):
|
|
3179
|
+
...
|
|
3180
|
+
ValueError: the size of the matrix must equal the sum of the dimensions.
|
|
3181
|
+
|
|
3182
|
+
Each eigenspace dimension must be at least 1. ::
|
|
3183
|
+
|
|
3184
|
+
sage: random_matrix(QQ,9,algorithm='diagonalizable',eigenvalues=[-15,22,8,-4,90,12],dimensions=[4,2,2,4,-3,0])
|
|
3185
|
+
Traceback (most recent call last):
|
|
3186
|
+
...
|
|
3187
|
+
ValueError: eigenspaces must have a dimension of at least 1.
|
|
3188
|
+
|
|
3189
|
+
Each eigenvalue must have a corresponding eigenspace dimension. ::
|
|
3190
|
+
|
|
3191
|
+
sage: random_matrix(QQ,12,algorithm='diagonalizable',eigenvalues=[4,2,6,-1],dimensions=[4,3,5])
|
|
3192
|
+
Traceback (most recent call last):
|
|
3193
|
+
...
|
|
3194
|
+
ValueError: each eigenvalue must have a corresponding dimension and each dimension a corresponding eigenvalue.
|
|
3195
|
+
|
|
3196
|
+
Each dimension must have an eigenvalue paired to it. ::
|
|
3197
|
+
|
|
3198
|
+
sage: random_matrix(QQ,12,algorithm='diagonalizable',eigenvalues=[4,2,6],dimensions=[2,3,5,2])
|
|
3199
|
+
Traceback (most recent call last):
|
|
3200
|
+
...
|
|
3201
|
+
ValueError: each eigenvalue must have a corresponding dimension and each dimension a corresponding eigenvalue.
|
|
3202
|
+
|
|
3203
|
+
.. TODO::
|
|
3204
|
+
|
|
3205
|
+
Modify the routine to allow for complex eigenvalues.
|
|
3206
|
+
|
|
3207
|
+
AUTHOR:
|
|
3208
|
+
|
|
3209
|
+
Billy Wonderly (2010-07)
|
|
3210
|
+
"""
|
|
3211
|
+
|
|
3212
|
+
from sage.misc.prandom import randint
|
|
3213
|
+
|
|
3214
|
+
size = parent.nrows()
|
|
3215
|
+
ring = parent.base_ring()
|
|
3216
|
+
if parent.nrows() != parent.ncols():
|
|
3217
|
+
raise TypeError("a diagonalizable matrix must be square.")
|
|
3218
|
+
if eigenvalues is not None and dimensions is None:
|
|
3219
|
+
raise ValueError("the list of eigenvalues must have a list of dimensions corresponding to each eigenvalue.")
|
|
3220
|
+
if eigenvalues is None and dimensions is not None:
|
|
3221
|
+
raise ValueError("the list of dimensions must have a list of corresponding eigenvalues.")
|
|
3222
|
+
if eigenvalues is None and dimensions is None:
|
|
3223
|
+
values = []
|
|
3224
|
+
# create a list with "size" number of entries
|
|
3225
|
+
for eigen_index in range(size):
|
|
3226
|
+
eigenvalue = ring(randint(-10, 10))
|
|
3227
|
+
values.append(eigenvalue)
|
|
3228
|
+
values.sort()
|
|
3229
|
+
dimensions = []
|
|
3230
|
+
eigenvalues = []
|
|
3231
|
+
# create a list with no duplicate values to be the eigenvalues
|
|
3232
|
+
for eigenvalue in range(size):
|
|
3233
|
+
if values[eigenvalue] not in eigenvalues:
|
|
3234
|
+
eigenvalues.append(values[eigenvalue])
|
|
3235
|
+
for dimension in range(len(eigenvalues)):
|
|
3236
|
+
# dimension is equal to how many times an eigenvalue was generated in the 'values' list
|
|
3237
|
+
dimensions.append(values.count(eigenvalues[dimension]))
|
|
3238
|
+
size_check = 0
|
|
3239
|
+
for check in range(len(dimensions)):
|
|
3240
|
+
size_check = size_check + dimensions[check]
|
|
3241
|
+
if not all(x in ring for x in eigenvalues):
|
|
3242
|
+
raise TypeError("eigenvalues must be elements of the corresponding ring.")
|
|
3243
|
+
if size != size_check:
|
|
3244
|
+
raise ValueError("the size of the matrix must equal the sum of the dimensions.")
|
|
3245
|
+
if min(dimensions) < 1:
|
|
3246
|
+
raise ValueError("eigenspaces must have a dimension of at least 1.")
|
|
3247
|
+
if len(eigenvalues) != len(dimensions):
|
|
3248
|
+
raise ValueError("each eigenvalue must have a corresponding dimension and each dimension a corresponding eigenvalue.")
|
|
3249
|
+
# sort the dimensions in order of increasing size, and sort the eigenvalues list in an identical fashion, to maintain corresponding values.
|
|
3250
|
+
dimensions_sort = sorted(zip(dimensions, eigenvalues))
|
|
3251
|
+
dimensions = [x[0] for x in dimensions_sort]
|
|
3252
|
+
eigenvalues = [x[1] for x in dimensions_sort]
|
|
3253
|
+
# Create the matrix of eigenvalues on the diagonal. Use a lower limit and upper limit determined by the eigenvalue dimensions.
|
|
3254
|
+
diagonal_matrix = matrix(ring, size)
|
|
3255
|
+
up_bound = 0
|
|
3256
|
+
low_bound = 0
|
|
3257
|
+
for row_index in range(len(dimensions)):
|
|
3258
|
+
up_bound = up_bound + dimensions[row_index]
|
|
3259
|
+
for entry in range(low_bound,up_bound):
|
|
3260
|
+
diagonal_matrix[entry, entry] = eigenvalues[row_index]
|
|
3261
|
+
low_bound = low_bound+dimensions[row_index]
|
|
3262
|
+
# Create a matrix to hold each of the eigenvectors as its columns, begin with an identity matrix so that after row and column
|
|
3263
|
+
# operations the resulting matrix will be unimodular.
|
|
3264
|
+
eigenvector_matrix = matrix.identity(ring, size)
|
|
3265
|
+
upper_limit = 0
|
|
3266
|
+
lower_limit = 0
|
|
3267
|
+
# run the routine over the necessary number of columns corresponding eigenvalue dimension.
|
|
3268
|
+
for dimension_index in range(len(dimensions)-1):
|
|
3269
|
+
upper_limit = upper_limit+dimensions[dimension_index]
|
|
3270
|
+
lowest_index_row_with_one = size-dimensions[dimension_index]
|
|
3271
|
+
# assign a one to the row that is the eigenvalue dimension rows up from the bottom row then assign ones diagonally down to the right.
|
|
3272
|
+
for eigen_ones in range(lower_limit,upper_limit):
|
|
3273
|
+
eigenvector_matrix[lowest_index_row_with_one,eigen_ones] = 1
|
|
3274
|
+
lowest_index_row_with_one += 1
|
|
3275
|
+
lower_limit = lower_limit+dimensions[dimension_index]
|
|
3276
|
+
# Create a list to give the eigenvalue dimension corresponding to each column.
|
|
3277
|
+
dimension_check = []
|
|
3278
|
+
for i in range(len(dimensions)):
|
|
3279
|
+
for k in range(dimensions[i]):
|
|
3280
|
+
dimension_check.append(dimensions[i])
|
|
3281
|
+
# run routine over the rows that are in the range of the protected ones. Use addition of column multiples to fill entries.
|
|
3282
|
+
for dimension_multiplicity in range(max(dimensions),min(dimensions),-1):
|
|
3283
|
+
highest_one_row = size-dimension_multiplicity
|
|
3284
|
+
highest_one_column = 0
|
|
3285
|
+
# find the column with the protected one in the lowest indexed row.
|
|
3286
|
+
while eigenvector_matrix[highest_one_row,highest_one_column] == 0:
|
|
3287
|
+
highest_one_column += 1
|
|
3288
|
+
# dimension_check determines if column has a low enough eigenvalue dimension to take a column multiple.
|
|
3289
|
+
for bottom_entry_filler in range(len(dimension_check)):
|
|
3290
|
+
if dimension_check[bottom_entry_filler] < dimension_multiplicity and eigenvector_matrix[highest_one_row,bottom_entry_filler] == 0:
|
|
3291
|
+
# randint range determined experimentally to keep entries manageable.
|
|
3292
|
+
eigenvector_matrix.add_multiple_of_column(bottom_entry_filler,highest_one_column,randint(-4,4))
|
|
3293
|
+
# Fill remaining rows using scalar row addition.
|
|
3294
|
+
for row in range(size-max(dimensions),size):
|
|
3295
|
+
for upper_row in range(size-max(dimensions)):
|
|
3296
|
+
# range of multiplier determined experimentally so that entries stay manageable for small matrices
|
|
3297
|
+
eigenvector_matrix.add_multiple_of_row(upper_row,row,randint(-4,4))
|
|
3298
|
+
return eigenvector_matrix*diagonal_matrix*(eigenvector_matrix.inverse())
|
|
3299
|
+
|
|
3300
|
+
|
|
3301
|
+
@matrix_method
|
|
3302
|
+
def vector_on_axis_rotation_matrix(v, i, ring=None):
|
|
3303
|
+
r"""
|
|
3304
|
+
Return a rotation matrix `M` such that `det(M)=1` sending the vector
|
|
3305
|
+
`v` on the `i`-th axis so that all other coordinates of `Mv` are zero.
|
|
3306
|
+
|
|
3307
|
+
.. NOTE::
|
|
3308
|
+
|
|
3309
|
+
Such a matrix is not uniquely determined. This function returns one
|
|
3310
|
+
such matrix.
|
|
3311
|
+
|
|
3312
|
+
INPUT:
|
|
3313
|
+
|
|
3314
|
+
- ``v`` -- vector
|
|
3315
|
+
- ``i`` -- integer
|
|
3316
|
+
- ``ring`` -- ring (default: ``None``) of the resulting matrix
|
|
3317
|
+
|
|
3318
|
+
OUTPUT: a matrix
|
|
3319
|
+
|
|
3320
|
+
EXAMPLES::
|
|
3321
|
+
|
|
3322
|
+
sage: from sage.matrix.constructor import vector_on_axis_rotation_matrix
|
|
3323
|
+
sage: v = vector((1,2,3))
|
|
3324
|
+
sage: vector_on_axis_rotation_matrix(v, 2) * v # needs sage.symbolic
|
|
3325
|
+
(0, 0, sqrt(14))
|
|
3326
|
+
sage: vector_on_axis_rotation_matrix(v, 1) * v # needs sage.symbolic
|
|
3327
|
+
(0, sqrt(14), 0)
|
|
3328
|
+
sage: vector_on_axis_rotation_matrix(v, 0) * v # needs sage.symbolic
|
|
3329
|
+
(sqrt(14), 0, 0)
|
|
3330
|
+
|
|
3331
|
+
::
|
|
3332
|
+
|
|
3333
|
+
sage: # needs sage.symbolic
|
|
3334
|
+
sage: x,y = var('x,y')
|
|
3335
|
+
sage: v = vector((x,y))
|
|
3336
|
+
sage: vector_on_axis_rotation_matrix(v, 1)
|
|
3337
|
+
[ y/sqrt(x^2 + y^2) -x/sqrt(x^2 + y^2)]
|
|
3338
|
+
[ x/sqrt(x^2 + y^2) y/sqrt(x^2 + y^2)]
|
|
3339
|
+
sage: vector_on_axis_rotation_matrix(v, 0)
|
|
3340
|
+
[ x/sqrt(x^2 + y^2) y/sqrt(x^2 + y^2)]
|
|
3341
|
+
[-y/sqrt(x^2 + y^2) x/sqrt(x^2 + y^2)]
|
|
3342
|
+
sage: vector_on_axis_rotation_matrix(v, 0) * v
|
|
3343
|
+
(x^2/sqrt(x^2 + y^2) + y^2/sqrt(x^2 + y^2), 0)
|
|
3344
|
+
sage: vector_on_axis_rotation_matrix(v, 1) * v
|
|
3345
|
+
(0, x^2/sqrt(x^2 + y^2) + y^2/sqrt(x^2 + y^2))
|
|
3346
|
+
|
|
3347
|
+
::
|
|
3348
|
+
|
|
3349
|
+
sage: v = vector((1,2,3,4))
|
|
3350
|
+
sage: vector_on_axis_rotation_matrix(v, 0) * v # needs sage.symbolic
|
|
3351
|
+
(sqrt(30), 0, 0, 0)
|
|
3352
|
+
sage: vector_on_axis_rotation_matrix(v, 0, ring=RealField(10))
|
|
3353
|
+
[ 0.18 0.37 0.55 0.73]
|
|
3354
|
+
[-0.98 0.068 0.10 0.14]
|
|
3355
|
+
[ 0.00 -0.93 0.22 0.30]
|
|
3356
|
+
[ 0.00 0.00 -0.80 0.60]
|
|
3357
|
+
sage: vector_on_axis_rotation_matrix(v, 0, ring=RealField(10)) * v
|
|
3358
|
+
(5.5, 0.00..., 0.00..., 0.00...)
|
|
3359
|
+
|
|
3360
|
+
AUTHORS:
|
|
3361
|
+
|
|
3362
|
+
Sébastien Labbé (April 2010)
|
|
3363
|
+
"""
|
|
3364
|
+
dim = len(v)
|
|
3365
|
+
v = vector(v)
|
|
3366
|
+
m = identity_matrix(dim, sparse=True)
|
|
3367
|
+
L = list(range(i - 1, -1, -1)) + list(range(dim - 1, i, -1))
|
|
3368
|
+
for i in L:
|
|
3369
|
+
rot = ith_to_zero_rotation_matrix(v, i, ring=ring)
|
|
3370
|
+
v = rot * v
|
|
3371
|
+
m = rot * m
|
|
3372
|
+
return m
|
|
3373
|
+
|
|
3374
|
+
|
|
3375
|
+
@matrix_method
|
|
3376
|
+
def ith_to_zero_rotation_matrix(v, i, ring=None):
|
|
3377
|
+
r"""
|
|
3378
|
+
Return a rotation matrix that sends the `i`-th coordinates of the
|
|
3379
|
+
vector v to zero by doing a rotation with the `(i-1)`-th coordinate.
|
|
3380
|
+
|
|
3381
|
+
INPUT:
|
|
3382
|
+
|
|
3383
|
+
- ``v`` -- vector
|
|
3384
|
+
- ``i`` -- integer
|
|
3385
|
+
- ``ring`` -- ring (default: ``None``) of the resulting matrix
|
|
3386
|
+
|
|
3387
|
+
OUTPUT: a matrix
|
|
3388
|
+
|
|
3389
|
+
EXAMPLES::
|
|
3390
|
+
|
|
3391
|
+
sage: from sage.matrix.constructor import ith_to_zero_rotation_matrix
|
|
3392
|
+
sage: v = vector((1,2,3))
|
|
3393
|
+
sage: ith_to_zero_rotation_matrix(v, 2) # needs sage.symbolic
|
|
3394
|
+
[ 1 0 0]
|
|
3395
|
+
[ 0 2/13*sqrt(13) 3/13*sqrt(13)]
|
|
3396
|
+
[ 0 -3/13*sqrt(13) 2/13*sqrt(13)]
|
|
3397
|
+
sage: ith_to_zero_rotation_matrix(v, 2) * v # needs sage.symbolic
|
|
3398
|
+
(1, sqrt(13), 0)
|
|
3399
|
+
|
|
3400
|
+
::
|
|
3401
|
+
|
|
3402
|
+
sage: ith_to_zero_rotation_matrix(v, 0) # needs sage.symbolic
|
|
3403
|
+
[ 3/10*sqrt(10) 0 -1/10*sqrt(10)]
|
|
3404
|
+
[ 0 1 0]
|
|
3405
|
+
[ 1/10*sqrt(10) 0 3/10*sqrt(10)]
|
|
3406
|
+
sage: ith_to_zero_rotation_matrix(v, 1) # needs sage.symbolic
|
|
3407
|
+
[ 1/5*sqrt(5) 2/5*sqrt(5) 0]
|
|
3408
|
+
[-2/5*sqrt(5) 1/5*sqrt(5) 0]
|
|
3409
|
+
[ 0 0 1]
|
|
3410
|
+
sage: ith_to_zero_rotation_matrix(v, 2) # needs sage.symbolic
|
|
3411
|
+
[ 1 0 0]
|
|
3412
|
+
[ 0 2/13*sqrt(13) 3/13*sqrt(13)]
|
|
3413
|
+
[ 0 -3/13*sqrt(13) 2/13*sqrt(13)]
|
|
3414
|
+
|
|
3415
|
+
::
|
|
3416
|
+
|
|
3417
|
+
sage: ith_to_zero_rotation_matrix(v, 0) * v # needs sage.symbolic
|
|
3418
|
+
(0, 2, sqrt(10))
|
|
3419
|
+
sage: ith_to_zero_rotation_matrix(v, 1) * v # needs sage.symbolic
|
|
3420
|
+
(sqrt(5), 0, 3)
|
|
3421
|
+
sage: ith_to_zero_rotation_matrix(v, 2) * v # needs sage.symbolic
|
|
3422
|
+
(1, sqrt(13), 0)
|
|
3423
|
+
|
|
3424
|
+
Other ring::
|
|
3425
|
+
|
|
3426
|
+
sage: ith_to_zero_rotation_matrix(v, 2, ring=RR)
|
|
3427
|
+
[ 1.00000000000000 0.000000000000000 0.000000000000000]
|
|
3428
|
+
[ 0.000000000000000 0.554700196225229 0.832050294337844]
|
|
3429
|
+
[ 0.000000000000000 -0.832050294337844 0.554700196225229]
|
|
3430
|
+
sage: ith_to_zero_rotation_matrix(v, 2, ring=RDF)
|
|
3431
|
+
[ 1.0 0.0 0.0]
|
|
3432
|
+
[ 0.0 0.5547001962252291 0.8320502943378437]
|
|
3433
|
+
[ 0.0 -0.8320502943378437 0.5547001962252291]
|
|
3434
|
+
|
|
3435
|
+
On the symbolic ring::
|
|
3436
|
+
|
|
3437
|
+
sage: # needs sage.symbolic
|
|
3438
|
+
sage: x,y,z = var('x,y,z')
|
|
3439
|
+
sage: v = vector((x,y,z))
|
|
3440
|
+
sage: ith_to_zero_rotation_matrix(v, 2)
|
|
3441
|
+
[ 1 0 0]
|
|
3442
|
+
[ 0 y/sqrt(y^2 + z^2) z/sqrt(y^2 + z^2)]
|
|
3443
|
+
[ 0 -z/sqrt(y^2 + z^2) y/sqrt(y^2 + z^2)]
|
|
3444
|
+
sage: ith_to_zero_rotation_matrix(v, 2) * v
|
|
3445
|
+
(x, y^2/sqrt(y^2 + z^2) + z^2/sqrt(y^2 + z^2), 0)
|
|
3446
|
+
|
|
3447
|
+
TESTS::
|
|
3448
|
+
|
|
3449
|
+
sage: ith_to_zero_rotation_matrix((1,0,0), 0)
|
|
3450
|
+
[ 0 0 -1]
|
|
3451
|
+
[ 0 1 0]
|
|
3452
|
+
[ 1 0 0]
|
|
3453
|
+
sage: ith_to_zero_rotation_matrix((1,0,0), 1)
|
|
3454
|
+
[1 0 0]
|
|
3455
|
+
[0 1 0]
|
|
3456
|
+
[0 0 1]
|
|
3457
|
+
sage: ith_to_zero_rotation_matrix((1,0,0), 2)
|
|
3458
|
+
[1 0 0]
|
|
3459
|
+
[0 1 0]
|
|
3460
|
+
[0 0 1]
|
|
3461
|
+
|
|
3462
|
+
AUTHORS:
|
|
3463
|
+
|
|
3464
|
+
Sébastien Labbé (April 2010)
|
|
3465
|
+
"""
|
|
3466
|
+
if ring is not None:
|
|
3467
|
+
# coerce the vector so that computations
|
|
3468
|
+
# are done in that ring
|
|
3469
|
+
v = vector(ring, v)
|
|
3470
|
+
dim = len(v)
|
|
3471
|
+
i = i % dim
|
|
3472
|
+
j = (i - 1) % dim
|
|
3473
|
+
a, b = v[j], v[i]
|
|
3474
|
+
if b == 0:
|
|
3475
|
+
return identity_matrix(dim, sparse=True)
|
|
3476
|
+
from sage.misc.functional import sqrt
|
|
3477
|
+
norm = sqrt(a * a + b * b)
|
|
3478
|
+
aa = a / norm
|
|
3479
|
+
bb = b / norm
|
|
3480
|
+
entries = {(k, k): 1 for k in range(dim)}
|
|
3481
|
+
entries.update({(j, j): aa, (j, i): bb, (i, j): -bb, (i, i): aa})
|
|
3482
|
+
return matrix(entries, nrows=dim, base_ring=ring)
|
|
3483
|
+
|
|
3484
|
+
|
|
3485
|
+
@matrix_method
|
|
3486
|
+
def hilbert(dim, ring=QQ):
|
|
3487
|
+
r"""
|
|
3488
|
+
Return a Hilbert matrix of the given dimension.
|
|
3489
|
+
|
|
3490
|
+
The `n` dimensional Hilbert matrix is a square matrix with entries being
|
|
3491
|
+
unit fractions,
|
|
3492
|
+
|
|
3493
|
+
.. MATH::
|
|
3494
|
+
|
|
3495
|
+
H_{ij} = \frac{1}{i+j-1},\qquad i, j = 1,\ldots, n.
|
|
3496
|
+
|
|
3497
|
+
For more information see the :wikipedia:`Hilbert_matrix`.
|
|
3498
|
+
|
|
3499
|
+
INPUT:
|
|
3500
|
+
|
|
3501
|
+
- ``dim`` -- integer; the dimension of the Hilbert matrix
|
|
3502
|
+
|
|
3503
|
+
- ``ring`` -- base ring (default: `\QQ`) of the resulting matrix
|
|
3504
|
+
|
|
3505
|
+
EXAMPLES::
|
|
3506
|
+
|
|
3507
|
+
sage: matrix.hilbert(5)
|
|
3508
|
+
[ 1 1/2 1/3 1/4 1/5]
|
|
3509
|
+
[1/2 1/3 1/4 1/5 1/6]
|
|
3510
|
+
[1/3 1/4 1/5 1/6 1/7]
|
|
3511
|
+
[1/4 1/5 1/6 1/7 1/8]
|
|
3512
|
+
[1/5 1/6 1/7 1/8 1/9]
|
|
3513
|
+
"""
|
|
3514
|
+
def entries(i, j):
|
|
3515
|
+
return ZZ.one() / (i + j + 1)
|
|
3516
|
+
return matrix(entries, nrows=dim, ncols=dim, base_ring=ring)
|
|
3517
|
+
|
|
3518
|
+
|
|
3519
|
+
@matrix_method
|
|
3520
|
+
def vandermonde(v, ring=None):
|
|
3521
|
+
r"""
|
|
3522
|
+
Return a Vandermonde matrix of the given vector.
|
|
3523
|
+
|
|
3524
|
+
The `n` dimensional Vandermonde matrix is a square matrix with columns
|
|
3525
|
+
being the powers of a given vector `v`,
|
|
3526
|
+
|
|
3527
|
+
.. MATH::
|
|
3528
|
+
|
|
3529
|
+
V_{ij} = v_i^{j-1},\qquad i, j = 1,\ldots, n.
|
|
3530
|
+
|
|
3531
|
+
For more information see the :wikipedia:`Vandermonde_matrix`.
|
|
3532
|
+
|
|
3533
|
+
INPUT:
|
|
3534
|
+
|
|
3535
|
+
- ``v`` -- vector, the second column of the Vandermonde matrix
|
|
3536
|
+
|
|
3537
|
+
- ``ring`` -- base ring (default: ``None``) of the resulting matrix
|
|
3538
|
+
|
|
3539
|
+
EXAMPLES:
|
|
3540
|
+
|
|
3541
|
+
A Vandermonde matrix of order three over the symbolic ring::
|
|
3542
|
+
|
|
3543
|
+
sage: matrix.vandermonde(SR.var(['x0', 'x1', 'x2'])) # needs sage.symbolic
|
|
3544
|
+
[ 1 x0 x0^2]
|
|
3545
|
+
[ 1 x1 x1^2]
|
|
3546
|
+
[ 1 x2 x2^2]
|
|
3547
|
+
"""
|
|
3548
|
+
def entries(i, j):
|
|
3549
|
+
return v[i]**j
|
|
3550
|
+
return matrix(entries, nrows=len(v), ncols=len(v), base_ring=ring)
|
|
3551
|
+
|
|
3552
|
+
|
|
3553
|
+
@matrix_method
|
|
3554
|
+
def toeplitz(c, r, ring=None):
|
|
3555
|
+
r"""
|
|
3556
|
+
Return a Toeplitz matrix of given first column and first row.
|
|
3557
|
+
|
|
3558
|
+
In a Toeplitz matrix, each descending diagonal from left to right is
|
|
3559
|
+
constant, such that:
|
|
3560
|
+
|
|
3561
|
+
.. MATH:: T_{i,j} = T_{i+1, j+1}.
|
|
3562
|
+
|
|
3563
|
+
For more information see the :wikipedia:`Toeplitz_matrix`.
|
|
3564
|
+
|
|
3565
|
+
INPUT:
|
|
3566
|
+
|
|
3567
|
+
- ``c`` -- vector, first column of the Toeplitz matrix
|
|
3568
|
+
|
|
3569
|
+
- ``r`` -- vector, first row of the Toeplitz matrix, counting from the
|
|
3570
|
+
second column
|
|
3571
|
+
|
|
3572
|
+
- ``ring`` -- base ring (default: ``None``) of the resulting matrix
|
|
3573
|
+
|
|
3574
|
+
EXAMPLES:
|
|
3575
|
+
|
|
3576
|
+
A rectangular Toeplitz matrix::
|
|
3577
|
+
|
|
3578
|
+
sage: matrix.toeplitz([1..4], [5..6])
|
|
3579
|
+
[1 5 6]
|
|
3580
|
+
[2 1 5]
|
|
3581
|
+
[3 2 1]
|
|
3582
|
+
[4 3 2]
|
|
3583
|
+
|
|
3584
|
+
The following `N\times N` Toeplitz matrix arises in the discretization of
|
|
3585
|
+
boundary value problems::
|
|
3586
|
+
|
|
3587
|
+
sage: N = 4
|
|
3588
|
+
sage: matrix.toeplitz([-2, 1] + [0]*(N-2), [1] + [0]*(N-2))
|
|
3589
|
+
[-2 1 0 0]
|
|
3590
|
+
[ 1 -2 1 0]
|
|
3591
|
+
[ 0 1 -2 1]
|
|
3592
|
+
[ 0 0 1 -2]
|
|
3593
|
+
"""
|
|
3594
|
+
def entries(i, j):
|
|
3595
|
+
return c[i - j] if i >= j else r[j - i - 1]
|
|
3596
|
+
return matrix(entries, nrows=len(c), ncols=len(r)+1, base_ring=ring)
|
|
3597
|
+
|
|
3598
|
+
|
|
3599
|
+
@matrix_method
|
|
3600
|
+
def hankel(c, r=None, ring=None):
|
|
3601
|
+
r"""
|
|
3602
|
+
Return a Hankel matrix of given first column and whose elements are zero
|
|
3603
|
+
below the first anti-diagonal.
|
|
3604
|
+
|
|
3605
|
+
The Hankel matrix is symmetric and constant across the anti-diagonals,
|
|
3606
|
+
with elements
|
|
3607
|
+
|
|
3608
|
+
.. MATH::
|
|
3609
|
+
|
|
3610
|
+
H_{ij} = v_{i+j-1},\qquad i = 1,\ldots, m,~j = 1,\ldots, n,
|
|
3611
|
+
|
|
3612
|
+
where the vector `v_i = c_i` for `i = 1,\ldots, m` and `v_{m+i} = r_i` for
|
|
3613
|
+
`i = 1, \ldots, n-1` completely determines the Hankel matrix. If the last
|
|
3614
|
+
row, `r`, is not given, the Hankel matrix is square by default and `r = 0`.
|
|
3615
|
+
For more information see the :wikipedia:`Hankel_matrix`.
|
|
3616
|
+
|
|
3617
|
+
INPUT:
|
|
3618
|
+
|
|
3619
|
+
- ``c`` -- vector, first column of the Hankel matrix
|
|
3620
|
+
|
|
3621
|
+
- ``r`` -- vector (default: ``None``); last row of the Hankel matrix, from
|
|
3622
|
+
the second to the last column
|
|
3623
|
+
|
|
3624
|
+
- ``ring`` -- base ring (default: ``None``) of the resulting matrix
|
|
3625
|
+
|
|
3626
|
+
EXAMPLES:
|
|
3627
|
+
|
|
3628
|
+
A Hankel matrix with symbolic entries::
|
|
3629
|
+
|
|
3630
|
+
sage: matrix.hankel(SR.var('a, b, c, d, e')) # needs sage.symbolic
|
|
3631
|
+
[a b c d e]
|
|
3632
|
+
[b c d e 0]
|
|
3633
|
+
[c d e 0 0]
|
|
3634
|
+
[d e 0 0 0]
|
|
3635
|
+
[e 0 0 0 0]
|
|
3636
|
+
|
|
3637
|
+
We can also pass the elements of the last row, starting at the second column::
|
|
3638
|
+
|
|
3639
|
+
sage: matrix.hankel(SR.var('a, b, c, d, e'), SR.var('f, g, h, i')) # needs sage.symbolic
|
|
3640
|
+
[a b c d e]
|
|
3641
|
+
[b c d e f]
|
|
3642
|
+
[c d e f g]
|
|
3643
|
+
[d e f g h]
|
|
3644
|
+
[e f g h i]
|
|
3645
|
+
|
|
3646
|
+
A third order Hankel matrix in the integers::
|
|
3647
|
+
|
|
3648
|
+
sage: matrix.hankel([1, 2, 3])
|
|
3649
|
+
[1 2 3]
|
|
3650
|
+
[2 3 0]
|
|
3651
|
+
[3 0 0]
|
|
3652
|
+
|
|
3653
|
+
The second argument allows to customize the last row::
|
|
3654
|
+
|
|
3655
|
+
sage: matrix.hankel([1..3], [7..10])
|
|
3656
|
+
[ 1 2 3 7 8]
|
|
3657
|
+
[ 2 3 7 8 9]
|
|
3658
|
+
[ 3 7 8 9 10]
|
|
3659
|
+
"""
|
|
3660
|
+
m = len(c)
|
|
3661
|
+
r = [0] * (m - 1) if r is None else list(r)
|
|
3662
|
+
n = len(r)
|
|
3663
|
+
|
|
3664
|
+
def entries(i):
|
|
3665
|
+
return c[i] if i < m else r[i - m]
|
|
3666
|
+
return matrix(lambda i, j: entries(i + j), nrows=m, ncols=n + 1, base_ring=ring)
|