passagemath-modules 10.6.31rc3__cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +806 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgfortran-e1b7dfc8.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-e3525837.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-c5c421e1.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-aarch64-linux-gnu.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,1184 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs
|
|
3
|
+
r"""
|
|
4
|
+
BGG Category O Dual Modules
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2024-01-07): Initial version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
#*****************************************************************************
|
|
12
|
+
# Copyright (C) 2024 Travis Scrimshaw <tcscrims at gmail.com>
|
|
13
|
+
#
|
|
14
|
+
# This program is free software: you can redistribute it and/or modify
|
|
15
|
+
# it under the terms of the GNU General Public License as published by
|
|
16
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
17
|
+
# (at your option) any later version.
|
|
18
|
+
# http://www.gnu.org/licenses/
|
|
19
|
+
#*****************************************************************************
|
|
20
|
+
|
|
21
|
+
try:
|
|
22
|
+
from typing import Self # type: ignore (Python >= 3.11)
|
|
23
|
+
except ImportError:
|
|
24
|
+
from typing_extensions import Self # type: ignore (Python 3.10)
|
|
25
|
+
|
|
26
|
+
from sage.algebras.lie_algebras.verma_module import ModulePrinting
|
|
27
|
+
from sage.categories.enumerated_sets import EnumeratedSets
|
|
28
|
+
from sage.categories.monoids import Monoids
|
|
29
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
30
|
+
from sage.data_structures.blas_dict import iaxpy
|
|
31
|
+
from sage.matrix.constructor import matrix
|
|
32
|
+
from sage.misc.cachefunc import cached_method
|
|
33
|
+
from sage.misc.lazy_attribute import lazy_attribute
|
|
34
|
+
from sage.monoids.indexed_free_monoid import IndexedFreeAbelianMonoid, IndexedMonoid
|
|
35
|
+
from sage.rings.integer_ring import ZZ
|
|
36
|
+
from sage.sets.family import Family
|
|
37
|
+
from sage.sets.finite_enumerated_set import FiniteEnumeratedSet
|
|
38
|
+
from sage.structure.indexed_generators import IndexedGenerators
|
|
39
|
+
from sage.structure.parent import Parent
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class BGGDualModule(CombinatorialFreeModule):
|
|
43
|
+
r"""
|
|
44
|
+
The dual module `M^{\vee}` in the BGG Category `\mathcal{O}`.
|
|
45
|
+
|
|
46
|
+
Let `\tau` be the transpose map of a semisimple (finite dimensional)
|
|
47
|
+
Lie algebra `\mathfrak{g}` over a field `R`. Let `M \in \mathcal{O}`.
|
|
48
|
+
The *BGG dual module* is the `R`-module `M^{\vee} :=
|
|
49
|
+
\bigoplus_{\lambda} M_{\lambda}^*` which has a `U(\mathfrak{g})`-module
|
|
50
|
+
structure given by
|
|
51
|
+
|
|
52
|
+
.. MATH::
|
|
53
|
+
|
|
54
|
+
x \cdot \phi(v) := \phi(\tau(x) \cdot v),
|
|
55
|
+
|
|
56
|
+
which is also a weight module with the same grading as `M`.
|
|
57
|
+
|
|
58
|
+
The basis we chose to work with here is the natural dual basis to the
|
|
59
|
+
distinguished basis `B` of `M`. That is, we define the dual function
|
|
60
|
+
to `b` as `\phi_b(c) = \delta_{bc}`.
|
|
61
|
+
|
|
62
|
+
EXAMPLES::
|
|
63
|
+
|
|
64
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
65
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
66
|
+
sage: M = g.verma_module(2*La[1])
|
|
67
|
+
sage: Mc = M.dual()
|
|
68
|
+
sage: B = Mc.basis()
|
|
69
|
+
sage: it = iter(B)
|
|
70
|
+
sage: elts = [next(it) for _ in range(7)]; elts
|
|
71
|
+
[v[2*Lambda[1]]^*,
|
|
72
|
+
f[-alpha[1]]*v[2*Lambda[1]]^*,
|
|
73
|
+
f[-alpha[1]]^2*v[2*Lambda[1]]^*,
|
|
74
|
+
f[-alpha[1]]^3*v[2*Lambda[1]]^*,
|
|
75
|
+
f[-alpha[1]]^4*v[2*Lambda[1]]^*,
|
|
76
|
+
f[-alpha[1]]^5*v[2*Lambda[1]]^*,
|
|
77
|
+
f[-alpha[1]]^6*v[2*Lambda[1]]^*]
|
|
78
|
+
sage: e, h, f = g.pbw_basis().algebra_generators()
|
|
79
|
+
sage: [f * vec for vec in elts]
|
|
80
|
+
[2*f[-alpha[1]]*v[2*Lambda[1]]^*,
|
|
81
|
+
2*f[-alpha[1]]^2*v[2*Lambda[1]]^*,
|
|
82
|
+
0,
|
|
83
|
+
-4*f[-alpha[1]]^4*v[2*Lambda[1]]^*,
|
|
84
|
+
-10*f[-alpha[1]]^5*v[2*Lambda[1]]^*,
|
|
85
|
+
-18*f[-alpha[1]]^6*v[2*Lambda[1]]^*,
|
|
86
|
+
-28*f[-alpha[1]]^7*v[2*Lambda[1]]^*]
|
|
87
|
+
sage: [e * vec for vec in elts]
|
|
88
|
+
[0,
|
|
89
|
+
v[2*Lambda[1]]^*,
|
|
90
|
+
f[-alpha[1]]*v[2*Lambda[1]]^*,
|
|
91
|
+
f[-alpha[1]]^2*v[2*Lambda[1]]^*,
|
|
92
|
+
f[-alpha[1]]^3*v[2*Lambda[1]]^*,
|
|
93
|
+
f[-alpha[1]]^4*v[2*Lambda[1]]^*,
|
|
94
|
+
f[-alpha[1]]^5*v[2*Lambda[1]]^*]
|
|
95
|
+
sage: [h * vec for vec in elts]
|
|
96
|
+
[2*v[2*Lambda[1]]^*,
|
|
97
|
+
0,
|
|
98
|
+
-2*f[-alpha[1]]^2*v[2*Lambda[1]]^*,
|
|
99
|
+
-4*f[-alpha[1]]^3*v[2*Lambda[1]]^*,
|
|
100
|
+
-6*f[-alpha[1]]^4*v[2*Lambda[1]]^*,
|
|
101
|
+
-8*f[-alpha[1]]^5*v[2*Lambda[1]]^*,
|
|
102
|
+
-10*f[-alpha[1]]^6*v[2*Lambda[1]]^*]
|
|
103
|
+
|
|
104
|
+
REFERENCES:
|
|
105
|
+
|
|
106
|
+
- [Humphreys08]_
|
|
107
|
+
"""
|
|
108
|
+
def __init__(self, module):
|
|
109
|
+
r"""
|
|
110
|
+
Initialize ``self``.
|
|
111
|
+
|
|
112
|
+
EXAMPLES::
|
|
113
|
+
|
|
114
|
+
sage: g = LieAlgebra(QQ, cartan_type=['B', 2])
|
|
115
|
+
sage: La = g.cartan_type().root_system().weight_space().fundamental_weights()
|
|
116
|
+
sage: M = g.verma_module(2*La[1] + La[2])
|
|
117
|
+
sage: Mc = M.dual()
|
|
118
|
+
sage: TestSuite(Mc).run()
|
|
119
|
+
|
|
120
|
+
sage: M = g.verma_module(2/3*La[1] - 3/5*La[2])
|
|
121
|
+
sage: Mc = M.dual()
|
|
122
|
+
sage: TestSuite(Mc).run()
|
|
123
|
+
"""
|
|
124
|
+
self._module = module
|
|
125
|
+
self._g = module.lie_algebra()
|
|
126
|
+
self._pbw = self._g.pbw_basis()
|
|
127
|
+
base_ring = module.base_ring()
|
|
128
|
+
indices = module.indices()
|
|
129
|
+
category = module.category()
|
|
130
|
+
CombinatorialFreeModule.__init__(self, base_ring, indices, category=category,
|
|
131
|
+
**module.print_options())
|
|
132
|
+
|
|
133
|
+
def _repr_(self):
|
|
134
|
+
r"""
|
|
135
|
+
Return a string representation of ``self``.
|
|
136
|
+
|
|
137
|
+
EXAMPLES::
|
|
138
|
+
|
|
139
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
140
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
141
|
+
sage: M = g.verma_module(2*La[1])
|
|
142
|
+
sage: M.dual()
|
|
143
|
+
BGG Dual of Verma module with highest weight 2*Lambda[1] of
|
|
144
|
+
Lie algebra of ['A', 1] in the Chevalley basis
|
|
145
|
+
"""
|
|
146
|
+
return "BGG Dual of " + repr(self._module)
|
|
147
|
+
|
|
148
|
+
def _latex_(self):
|
|
149
|
+
r"""
|
|
150
|
+
Return a latex representation of ``self``.
|
|
151
|
+
|
|
152
|
+
EXAMPLES::
|
|
153
|
+
|
|
154
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
155
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
156
|
+
sage: M = g.verma_module(2*La[1])
|
|
157
|
+
sage: Mc = M.dual()
|
|
158
|
+
sage: latex(Mc)
|
|
159
|
+
{ M_{2 \Lambda_{1}} }^{\vee}
|
|
160
|
+
"""
|
|
161
|
+
from sage.misc.latex import latex
|
|
162
|
+
return "{" + latex(self._module) + "}^{\\vee}"
|
|
163
|
+
|
|
164
|
+
def _repr_generator(self, m):
|
|
165
|
+
r"""
|
|
166
|
+
Return a string representation of the generator indexed by ``m``.
|
|
167
|
+
|
|
168
|
+
EXAMPLES::
|
|
169
|
+
|
|
170
|
+
sage: g = lie_algebras.sp(QQ, 4)
|
|
171
|
+
sage: La = g.cartan_type().root_system().ambient_space().fundamental_weights()
|
|
172
|
+
sage: Mc = g.verma_module(La[1] + 3/7*La[2]).dual()
|
|
173
|
+
sage: f1, f2 = g.f()
|
|
174
|
+
sage: x = g.pbw_basis()(g([f1, [f1, f2]]))
|
|
175
|
+
sage: v = x * Mc.highest_weight_vector()
|
|
176
|
+
sage: Mc._repr_generator(v.leading_support())
|
|
177
|
+
'f[-alpha[1]]*f[-alpha[1] - alpha[2]]*v[(10/7, 3/7)]^*'
|
|
178
|
+
"""
|
|
179
|
+
return self._module._repr_generator(m) + "^*"
|
|
180
|
+
|
|
181
|
+
def _latex_generator(self, m):
|
|
182
|
+
r"""
|
|
183
|
+
Return a latex representation of the generator indexed by ``m``.
|
|
184
|
+
|
|
185
|
+
EXAMPLES::
|
|
186
|
+
|
|
187
|
+
sage: g = lie_algebras.sp(QQ, 4)
|
|
188
|
+
sage: La = g.cartan_type().root_system().ambient_space().fundamental_weights()
|
|
189
|
+
sage: Mc = g.verma_module(La[1] + 3/7*La[2]).dual()
|
|
190
|
+
sage: f1, f2 = g.f()
|
|
191
|
+
sage: x = g.pbw_basis()(g([f1, [f1, f2]]))
|
|
192
|
+
sage: v = x * Mc.highest_weight_vector()
|
|
193
|
+
sage: Mc._latex_generator(v.leading_support())
|
|
194
|
+
{ f_{-\alpha_{1}} f_{-\alpha_{1} - \alpha_{2}} v_{\frac{10}{7} e_{0} + \frac{3}{7} e_{1}} }^{\vee}
|
|
195
|
+
"""
|
|
196
|
+
return "{" + self._module._latex_generator(m) + "}^{\\vee}"
|
|
197
|
+
|
|
198
|
+
_repr_term = _repr_generator
|
|
199
|
+
_latex_term = _latex_generator
|
|
200
|
+
|
|
201
|
+
def degree_on_basis(self, m):
|
|
202
|
+
r"""
|
|
203
|
+
Return the degree of the basis element indexed by ``m``.
|
|
204
|
+
|
|
205
|
+
EXAMPLES::
|
|
206
|
+
|
|
207
|
+
sage: g = LieAlgebra(QQ, cartan_type=['D', 5])
|
|
208
|
+
sage: La = g.cartan_type().root_system().weight_space().fundamental_weights()
|
|
209
|
+
sage: M = g.verma_module(La[1] + La[4] - 1/3*La[5])
|
|
210
|
+
sage: Mc = M.dual()
|
|
211
|
+
sage: elt = Mc.an_element(); elt
|
|
212
|
+
f[-alpha[5]]^2*f[-alpha[4]]^2*f[-alpha[3]]^3*v[Lambda[1] + Lambda[4] - 1/3*Lambda[5]]^*
|
|
213
|
+
+ 2*f[-alpha[5]]*v[Lambda[1] + Lambda[4] - 1/3*Lambda[5]]^*
|
|
214
|
+
+ 3*f[-alpha[4]]*v[Lambda[1] + Lambda[4] - 1/3*Lambda[5]]^*
|
|
215
|
+
+ v[Lambda[1] + Lambda[4] - 1/3*Lambda[5]]^*
|
|
216
|
+
sage: [M.degree_on_basis(m) for m in elt.support()]
|
|
217
|
+
[Lambda[1] + 3*Lambda[2] - 2*Lambda[3] - 4/3*Lambda[5],
|
|
218
|
+
Lambda[1] + Lambda[4] - 1/3*Lambda[5],
|
|
219
|
+
Lambda[1] + Lambda[3] + Lambda[4] - 7/3*Lambda[5],
|
|
220
|
+
Lambda[1] + Lambda[3] - Lambda[4] - 1/3*Lambda[5]]
|
|
221
|
+
"""
|
|
222
|
+
return self._module.degree_on_basis(m)
|
|
223
|
+
|
|
224
|
+
def highest_weight(self):
|
|
225
|
+
r"""
|
|
226
|
+
Return the highest weight of ``self``.
|
|
227
|
+
|
|
228
|
+
EXAMPLES::
|
|
229
|
+
|
|
230
|
+
sage: g = LieAlgebra(QQ, cartan_type=['E', 7])
|
|
231
|
+
sage: La = g.cartan_type().root_system().weight_space().fundamental_weights()
|
|
232
|
+
sage: M = g.verma_module(2*La[1] + 5/3*La[4] - 3*La[6])
|
|
233
|
+
sage: Mc = M.dual()
|
|
234
|
+
sage: Mc.highest_weight()
|
|
235
|
+
2*Lambda[1] + 5/3*Lambda[4] - 3*Lambda[6]
|
|
236
|
+
"""
|
|
237
|
+
return self._module.highest_weight()
|
|
238
|
+
|
|
239
|
+
def highest_weight_vector(self):
|
|
240
|
+
r"""
|
|
241
|
+
Return the highest weight vector of ``self`` (assuming the
|
|
242
|
+
defining module defines such a vector).
|
|
243
|
+
|
|
244
|
+
EXAMPLES::
|
|
245
|
+
|
|
246
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
247
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
248
|
+
sage: M = g.verma_module(2*La[1])
|
|
249
|
+
sage: Mc = M.dual()
|
|
250
|
+
sage: Mc.highest_weight_vector()
|
|
251
|
+
v[2*Lambda[1]]^*
|
|
252
|
+
"""
|
|
253
|
+
hwv = self._module.highest_weight_vector()
|
|
254
|
+
return self.element_class(self, hwv.monomial_coefficients(copy=False))
|
|
255
|
+
|
|
256
|
+
def lie_algebra(self):
|
|
257
|
+
r"""
|
|
258
|
+
Return the underlying Lie algebra of ``self``.
|
|
259
|
+
|
|
260
|
+
EXAMPLES::
|
|
261
|
+
|
|
262
|
+
sage: g = LieAlgebra(QQ, cartan_type=['B', 3])
|
|
263
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
264
|
+
sage: M = g.verma_module(2*La[1] + La[3])
|
|
265
|
+
sage: Mc = M.dual()
|
|
266
|
+
sage: Mc.lie_algebra() is g
|
|
267
|
+
True
|
|
268
|
+
"""
|
|
269
|
+
return self._g
|
|
270
|
+
|
|
271
|
+
def dual(self):
|
|
272
|
+
r"""
|
|
273
|
+
Return the dual module of ``self``.
|
|
274
|
+
|
|
275
|
+
In Category `\mathcal{O}`, we have `(M^{\vee})^{\vee} \cong M`, so
|
|
276
|
+
we return the defining module `M` of `M^{\vee}`.
|
|
277
|
+
|
|
278
|
+
EXAMPLES::
|
|
279
|
+
|
|
280
|
+
sage: g = LieAlgebra(QQ, cartan_type=['F', 4])
|
|
281
|
+
sage: La = g.cartan_type().root_system().weight_space().fundamental_weights()
|
|
282
|
+
sage: M = g.verma_module(La[1] - 5/3*La[2] + 3*La[4])
|
|
283
|
+
sage: Mc = M.dual()
|
|
284
|
+
sage: Mc.dual() is M
|
|
285
|
+
True
|
|
286
|
+
"""
|
|
287
|
+
return self._module
|
|
288
|
+
|
|
289
|
+
@cached_method
|
|
290
|
+
def _lie_algebra_on_basis(self, b, m):
|
|
291
|
+
r"""
|
|
292
|
+
Return the action of the Lie algebra basis element indexed by ``b``
|
|
293
|
+
on the basis element of ``self`` indexed by ``m``.
|
|
294
|
+
|
|
295
|
+
EXAMPLES::
|
|
296
|
+
|
|
297
|
+
sage: g = LieAlgebra(QQ, cartan_type=['B', 2])
|
|
298
|
+
sage: La = g.cartan_type().root_system().weight_space().fundamental_weights()
|
|
299
|
+
sage: M = g.verma_module(La[1])
|
|
300
|
+
sage: Mc = M.dual()
|
|
301
|
+
sage: it = iter(Mc.basis())
|
|
302
|
+
sage: list(g.basis())
|
|
303
|
+
[E[alpha[2]], E[alpha[1]], E[alpha[1] + alpha[2]], E[alpha[1] + 2*alpha[2]],
|
|
304
|
+
h1, h2,
|
|
305
|
+
E[-alpha[2]], E[-alpha[1]], E[-alpha[1] - alpha[2]], E[-alpha[1] - 2*alpha[2]]]
|
|
306
|
+
sage: for _ in range(3):
|
|
307
|
+
....: m = next(it).leading_support()
|
|
308
|
+
....: print(m, [Mc._lie_algebra_on_basis(k, m) for k in g.basis().keys()])
|
|
309
|
+
1 [0, 0, 0, 0, v[Lambda[1]]^*, 0, 0, f[-alpha[1]]*v[Lambda[1]]^*,
|
|
310
|
+
-2*f[-alpha[2]]*f[-alpha[1]]*v[Lambda[1]]^* + 2*f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*,
|
|
311
|
+
-2*f[-alpha[2]]^2*f[-alpha[1]]*v[Lambda[1]]^*
|
|
312
|
+
+ 2*f[-alpha[2]]*f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
313
|
+
+ f[-alpha[1] - 2*alpha[2]]*v[Lambda[1]]^*]
|
|
314
|
+
f[-alpha[2]] [v[Lambda[1]]^*, 0, 0, 0, 2*f[-alpha[2]]*v[Lambda[1]]^*,
|
|
315
|
+
-2*f[-alpha[2]]*v[Lambda[1]]^*, -2*f[-alpha[2]]^2*v[Lambda[1]]^*,
|
|
316
|
+
f[-alpha[2]]*f[-alpha[1]]*v[Lambda[1]]^* + f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*,
|
|
317
|
+
-4*f[-alpha[2]]^2*f[-alpha[1]]*v[Lambda[1]]^* - f[-alpha[1] - 2*alpha[2]]*v[Lambda[1]]^*,
|
|
318
|
+
-6*f[-alpha[2]]^3*f[-alpha[1]]*v[Lambda[1]]^* + 2*f[-alpha[2]]^2*f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*]
|
|
319
|
+
f[-alpha[1]] [0, v[Lambda[1]]^*, 0, 0, -f[-alpha[1]]*v[Lambda[1]]^*,
|
|
320
|
+
2*f[-alpha[1]]*v[Lambda[1]]^*,
|
|
321
|
+
2*f[-alpha[2]]*f[-alpha[1]]*v[Lambda[1]]^* - 2*f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*,
|
|
322
|
+
0, 0, f[-alpha[1]]*f[-alpha[1] - 2*alpha[2]]*v[Lambda[1]]^* + 2*f[-alpha[1] - alpha[2]]^2*v[Lambda[1]]^*]
|
|
323
|
+
"""
|
|
324
|
+
al = self._g.degree_on_basis(b)
|
|
325
|
+
wt = self.degree_on_basis(m)
|
|
326
|
+
if al == 0: # b is indexing part of the Cartan subalgebra
|
|
327
|
+
# We are assuming b is part of the coroot lattice.
|
|
328
|
+
# FIXME: Add something at the category level to return this.
|
|
329
|
+
ac = b
|
|
330
|
+
return self.term(m, wt.scalar(ac))
|
|
331
|
+
|
|
332
|
+
# TODO: Avoid calling homogeneous_component_basis() as the result is not cached
|
|
333
|
+
gens = self._module.homogeneous_component_basis(wt + al)
|
|
334
|
+
elt = self._g.basis()[b]
|
|
335
|
+
# TODO: Determine if we can meaningfully store these results.
|
|
336
|
+
# Computing gens is ~1/3 of the computation and vecs is ~2/3.
|
|
337
|
+
vecs = {g.leading_support(): elt.transpose() * g for g in gens}
|
|
338
|
+
return self.element_class(self, {k: c for k, v in vecs.items() if (c := v[m])})
|
|
339
|
+
|
|
340
|
+
def _pbw_monomial_on_basis(self, p, m):
|
|
341
|
+
r"""
|
|
342
|
+
Return the action of the PBW monomial indexed by ``p`` on the basis
|
|
343
|
+
element of ``self`` indexed by ``m``.
|
|
344
|
+
|
|
345
|
+
EXAMPLES::
|
|
346
|
+
|
|
347
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
348
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
349
|
+
sage: PBW = g.pbw_basis()
|
|
350
|
+
sage: e, h, f = PBW.algebra_generators()
|
|
351
|
+
sage: M = g.verma_module(2*La[1])
|
|
352
|
+
sage: Mc = M.dual()
|
|
353
|
+
sage: v = Mc.highest_weight_vector()
|
|
354
|
+
sage: Mc._pbw_monomial_on_basis((e*f^2).leading_support(), v.leading_support())
|
|
355
|
+
4*f[-alpha[1]]*v[2*Lambda[1]]^*
|
|
356
|
+
sage: B = Mc.basis()
|
|
357
|
+
sage: it = iter(B)
|
|
358
|
+
sage: elts = [next(it) for _ in range(7)]; elts
|
|
359
|
+
[v[2*Lambda[1]]^*,
|
|
360
|
+
f[-alpha[1]]*v[2*Lambda[1]]^*,
|
|
361
|
+
f[-alpha[1]]^2*v[2*Lambda[1]]^*,
|
|
362
|
+
f[-alpha[1]]^3*v[2*Lambda[1]]^*,
|
|
363
|
+
f[-alpha[1]]^4*v[2*Lambda[1]]^*,
|
|
364
|
+
f[-alpha[1]]^5*v[2*Lambda[1]]^*,
|
|
365
|
+
f[-alpha[1]]^6*v[2*Lambda[1]]^*]
|
|
366
|
+
"""
|
|
367
|
+
ret = self.monomial(m)
|
|
368
|
+
for b, exp in reversed(p._sorted_items()):
|
|
369
|
+
for _ in range(exp):
|
|
370
|
+
ret = self.linear_combination((self._lie_algebra_on_basis(b, m), mc)
|
|
371
|
+
for m, mc in ret._monomial_coefficients.items())
|
|
372
|
+
return ret
|
|
373
|
+
|
|
374
|
+
class Element(CombinatorialFreeModule.Element):
|
|
375
|
+
def _acted_upon_(self, scalar, self_on_left=False):
|
|
376
|
+
r"""
|
|
377
|
+
Return the action of ``scalar`` on ``self``.
|
|
378
|
+
|
|
379
|
+
EXAMPLES::
|
|
380
|
+
|
|
381
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
382
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
383
|
+
sage: PBW = g.pbw_basis()
|
|
384
|
+
sage: e, h, f = PBW.algebra_generators()
|
|
385
|
+
sage: M = g.verma_module(2*La[1])
|
|
386
|
+
sage: Mc = M.dual()
|
|
387
|
+
sage: v = Mc.highest_weight_vector()
|
|
388
|
+
sage: (h*e^2*f^2) * v
|
|
389
|
+
8*v[2*Lambda[1]]^*
|
|
390
|
+
sage: g.casimir_element(UEA=PBW) * v
|
|
391
|
+
v[2*Lambda[1]]^*
|
|
392
|
+
sage: 5 * v
|
|
393
|
+
5*v[2*Lambda[1]]^*
|
|
394
|
+
"""
|
|
395
|
+
P = self.parent()
|
|
396
|
+
# Check for scalars first
|
|
397
|
+
if scalar in P.base_ring():
|
|
398
|
+
# Don't have this be a super call
|
|
399
|
+
return CombinatorialFreeModule.Element._acted_upon_(self, scalar, self_on_left)
|
|
400
|
+
|
|
401
|
+
# Check for Lie algebra elements
|
|
402
|
+
try:
|
|
403
|
+
scalar = P._g(scalar)
|
|
404
|
+
except (ValueError, TypeError):
|
|
405
|
+
pass
|
|
406
|
+
if scalar.parent() is P._g:
|
|
407
|
+
if self_on_left: # only implemented as a left module
|
|
408
|
+
return None
|
|
409
|
+
mc = scalar.monomial_coefficients(copy=False)
|
|
410
|
+
return P.linear_combination((P._lie_algebra_on_basis(b, m), bc * mc)
|
|
411
|
+
for b, bc in mc.items()
|
|
412
|
+
for m, mc in self._monomial_coefficients.items())
|
|
413
|
+
|
|
414
|
+
# Check for PBW elements
|
|
415
|
+
try:
|
|
416
|
+
scalar = P._pbw(scalar)
|
|
417
|
+
except (ValueError, TypeError):
|
|
418
|
+
# Cannot be made into a PBW element, so propagate it up
|
|
419
|
+
return CombinatorialFreeModule.Element._acted_upon_(self,
|
|
420
|
+
scalar, self_on_left)
|
|
421
|
+
|
|
422
|
+
# We only implement x * self, i.e., as a left module
|
|
423
|
+
if self_on_left:
|
|
424
|
+
return None
|
|
425
|
+
|
|
426
|
+
mc = scalar.monomial_coefficients(copy=False)
|
|
427
|
+
return P.linear_combination((P._pbw_monomial_on_basis(p, m), pc * mc)
|
|
428
|
+
for p, pc in mc.items()
|
|
429
|
+
for m, mc in self._monomial_coefficients.items())
|
|
430
|
+
|
|
431
|
+
|
|
432
|
+
#####################################################################
|
|
433
|
+
# Simple modules
|
|
434
|
+
|
|
435
|
+
|
|
436
|
+
# This is an abuse as the monoid is not free.
|
|
437
|
+
# TODO: Rewrite this (or the indexed monoid class) to use explicit vectors
|
|
438
|
+
# since we only want to consider ordered elements.
|
|
439
|
+
# Note, such a rewrite would force the Lie algebra to be finite dimensional.
|
|
440
|
+
class SimpleModuleIndices(IndexedFreeAbelianMonoid):
|
|
441
|
+
r"""
|
|
442
|
+
The indices of the basis for a simple `U(\mathfrak{g})`-module.
|
|
443
|
+
|
|
444
|
+
.. NOTE::
|
|
445
|
+
|
|
446
|
+
The current implementation assumes the Lie algebra `\mathfrak{g}`
|
|
447
|
+
is finite dimensional.
|
|
448
|
+
"""
|
|
449
|
+
# This is only necessary because of the IndexedMonoid.__classcall__.
|
|
450
|
+
@staticmethod
|
|
451
|
+
def __classcall__(cls, simple, prefix='f', **kwds):
|
|
452
|
+
r"""
|
|
453
|
+
Normalize input to ensure a unique representation.
|
|
454
|
+
|
|
455
|
+
TESTS::
|
|
456
|
+
|
|
457
|
+
sage: g = LieAlgebra(QQ, cartan_type=['E', 6])
|
|
458
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
459
|
+
sage: L = g.simple_module(La[1] + La[3])
|
|
460
|
+
sage: from sage.algebras.lie_algebras.bgg_dual_module import SimpleModuleIndices
|
|
461
|
+
sage: SimpleModuleIndices(L) is L._indices
|
|
462
|
+
True
|
|
463
|
+
"""
|
|
464
|
+
return super(IndexedMonoid, cls).__classcall__(cls, simple, prefix=prefix, **kwds)
|
|
465
|
+
|
|
466
|
+
def __init__(self, simple, prefix, category=None, **kwds):
|
|
467
|
+
r"""
|
|
468
|
+
Initialize ``self``.
|
|
469
|
+
|
|
470
|
+
TESTS::
|
|
471
|
+
|
|
472
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
|
|
473
|
+
sage: La = g.cartan_type().root_system().weight_space().fundamental_weights()
|
|
474
|
+
sage: I = g.simple_module(2*La[1] + La[2]).indices()
|
|
475
|
+
sage: TestSuite(I).run()
|
|
476
|
+
|
|
477
|
+
sage: I = g.simple_module(2*La[1] - 1/3*La[2]).indices()
|
|
478
|
+
sage: TestSuite(I).run(max_runs=150) # long time
|
|
479
|
+
"""
|
|
480
|
+
self._simple = simple
|
|
481
|
+
self._g = simple.lie_algebra()
|
|
482
|
+
self._reached_max_depth = False
|
|
483
|
+
# Below was mostly copied from IndexedMonoid.__init__()
|
|
484
|
+
self._indices = FiniteEnumeratedSet(self._g._negative_half_index_set())
|
|
485
|
+
category = Monoids().or_subcategory(category)
|
|
486
|
+
category = category & EnumeratedSets()
|
|
487
|
+
category = category.FinitelyGeneratedAsMagma()
|
|
488
|
+
if self._simple._dom_int:
|
|
489
|
+
category = category.Finite()
|
|
490
|
+
else:
|
|
491
|
+
category = category.Infinite()
|
|
492
|
+
Parent.__init__(self, category=category)
|
|
493
|
+
|
|
494
|
+
# ignore the optional 'key' since it only affects CachedRepresentation
|
|
495
|
+
kwds.pop('key', None)
|
|
496
|
+
sorting_key = kwds.pop('sorting_key', self._simple._pbw._monoid_key)
|
|
497
|
+
IndexedGenerators.__init__(self, self._indices, prefix, sorting_key=sorting_key, **kwds)
|
|
498
|
+
|
|
499
|
+
self._sorted_supp = sorted(self._g._negative_half_index_set(), key=self._simple._pbw._basis_key,
|
|
500
|
+
reverse=self.print_options()['sorting_reverse'])
|
|
501
|
+
self._basis = {self.one(): self._simple._ambient.highest_weight_vector()}
|
|
502
|
+
self._lead_supp_to_index = {self._simple._ambient.highest_weight_vector().leading_support(): self.one()}
|
|
503
|
+
# This is used for iteration and keeps track of the current depth
|
|
504
|
+
self._basis_by_depth = [dict(self._basis)]
|
|
505
|
+
# The basis is given as a list of indices corresponding to basis vectors in self._basis
|
|
506
|
+
self._weight_space_bases = {self._simple.highest_weight(): [self.one()]}
|
|
507
|
+
|
|
508
|
+
def _an_element_(self):
|
|
509
|
+
r"""
|
|
510
|
+
Return an element of ``self``.
|
|
511
|
+
|
|
512
|
+
The only element we can quickly guarantee is in ``self`` is 1,
|
|
513
|
+
so we return this.
|
|
514
|
+
|
|
515
|
+
EXAMPLES::
|
|
516
|
+
|
|
517
|
+
sage: g = LieAlgebra(QQ, cartan_type=['E', 6])
|
|
518
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
519
|
+
sage: I = g.simple_module(2*La[1] + La[2]).indices()
|
|
520
|
+
sage: I._an_element_()
|
|
521
|
+
1
|
|
522
|
+
"""
|
|
523
|
+
return self.one()
|
|
524
|
+
|
|
525
|
+
def _weight_max_depth(self, mu):
|
|
526
|
+
r"""
|
|
527
|
+
Return the maximum depth of the weight ``mu``.
|
|
528
|
+
|
|
529
|
+
EXAMPLES::
|
|
530
|
+
|
|
531
|
+
sage: g = LieAlgebra(QQ, cartan_type=['E', 6])
|
|
532
|
+
sage: P = g.cartan_type().root_system().weight_lattice()
|
|
533
|
+
sage: La = P.fundamental_weights()
|
|
534
|
+
sage: al = P.simple_roots()
|
|
535
|
+
sage: wt = 2*La[1] + La[2]
|
|
536
|
+
sage: I = g.simple_module(wt).indices()
|
|
537
|
+
sage: I._weight_max_depth(wt)
|
|
538
|
+
0
|
|
539
|
+
sage: I._weight_max_depth(wt + al[2]) is None
|
|
540
|
+
True
|
|
541
|
+
sage: I._weight_max_depth(wt - 2*al[2] - 5*al[4] - 3*al[6])
|
|
542
|
+
10
|
|
543
|
+
|
|
544
|
+
sage: g = LieAlgebra(QQ, cartan_type=['F', 4])
|
|
545
|
+
sage: P = g.cartan_type().root_system().weight_space()
|
|
546
|
+
sage: La = P.fundamental_weights()
|
|
547
|
+
sage: al = P.simple_roots()
|
|
548
|
+
sage: wt = 2*La[1] - 3/2*La[2]
|
|
549
|
+
sage: I = g.simple_module(wt).indices()
|
|
550
|
+
sage: I._weight_max_depth(wt)
|
|
551
|
+
0
|
|
552
|
+
sage: I._weight_max_depth(wt + al[2]) is None
|
|
553
|
+
True
|
|
554
|
+
sage: I._weight_max_depth(wt - 2*al[2] - 3*al[4])
|
|
555
|
+
5
|
|
556
|
+
sage: I._weight_max_depth(wt - 2/3*al[1]) is None
|
|
557
|
+
True
|
|
558
|
+
"""
|
|
559
|
+
al = (self._simple.highest_weight() - mu)._to_root_vector()
|
|
560
|
+
if any(c not in ZZ or c < 0 for c in al):
|
|
561
|
+
return None
|
|
562
|
+
return sum(al)
|
|
563
|
+
|
|
564
|
+
def weight_space_basis(self, mu):
|
|
565
|
+
r"""
|
|
566
|
+
Return the indices of the ``mu`` weight space basis elements.
|
|
567
|
+
|
|
568
|
+
EXAMPLES::
|
|
569
|
+
|
|
570
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
|
|
571
|
+
sage: P = g.cartan_type().root_system().weight_lattice()
|
|
572
|
+
sage: La = P.fundamental_weights()
|
|
573
|
+
sage: al = P.simple_roots()
|
|
574
|
+
sage: wt = -3*La[1] + 3*La[2]
|
|
575
|
+
sage: I = g.simple_module(wt).indices()
|
|
576
|
+
sage: I.weight_space_basis(wt)
|
|
577
|
+
[1]
|
|
578
|
+
sage: I.weight_space_basis(wt - al[1])
|
|
579
|
+
[f[-alpha[1]]]
|
|
580
|
+
sage: I.weight_space_basis(wt - al[2])
|
|
581
|
+
[f[-alpha[2]]]
|
|
582
|
+
sage: I.weight_space_basis(wt - al[1] - al[2])
|
|
583
|
+
[f[-alpha[1] - alpha[2]], f[-alpha[2]]*f[-alpha[1]]]
|
|
584
|
+
sage: I.weight_space_basis(wt - 4*al[1])
|
|
585
|
+
[f[-alpha[1]]^4]
|
|
586
|
+
sage: I.weight_space_basis(wt - 4*al[2])
|
|
587
|
+
[]
|
|
588
|
+
"""
|
|
589
|
+
if self._reached_max_depth:
|
|
590
|
+
return self._weight_space_bases.get(mu, [])
|
|
591
|
+
|
|
592
|
+
max_depth = self._weight_max_depth(mu)
|
|
593
|
+
while max_depth >= len(self._basis_by_depth):
|
|
594
|
+
if self._reached_max_depth: # we've already reached everything
|
|
595
|
+
break
|
|
596
|
+
self._construct_next_level()
|
|
597
|
+
return self._weight_space_bases.get(mu, [])
|
|
598
|
+
|
|
599
|
+
def __contains__(self, m):
|
|
600
|
+
r"""
|
|
601
|
+
Check if ``m`` is contained in ``self``.
|
|
602
|
+
|
|
603
|
+
EXAMPLES::
|
|
604
|
+
|
|
605
|
+
sage: g = LieAlgebra(QQ, cartan_type=['G', 2])
|
|
606
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
607
|
+
sage: L = g.simple_module(La[1])
|
|
608
|
+
sage: I = L.indices()
|
|
609
|
+
sage: I.one() in I
|
|
610
|
+
True
|
|
611
|
+
sage: it = iter(I)
|
|
612
|
+
sage: for _ in range(3):
|
|
613
|
+
....: elt = next(it)
|
|
614
|
+
....: print(elt, elt in I)
|
|
615
|
+
1 True
|
|
616
|
+
f[-alpha[1]] True
|
|
617
|
+
f[-alpha[1] - alpha[2]] True
|
|
618
|
+
sage: gens = list(I.gens()); gens
|
|
619
|
+
[f[-alpha[2]],
|
|
620
|
+
f[-alpha[1]],
|
|
621
|
+
f[-alpha[1] - alpha[2]],
|
|
622
|
+
f[-2*alpha[1] - alpha[2]],
|
|
623
|
+
f[-3*alpha[1] - alpha[2]],
|
|
624
|
+
f[-3*alpha[1] - 2*alpha[2]]]
|
|
625
|
+
sage: gens[1] in I
|
|
626
|
+
True
|
|
627
|
+
sage: gens[0] * gens[1] in I
|
|
628
|
+
False
|
|
629
|
+
sage: gens[2] in I
|
|
630
|
+
True
|
|
631
|
+
sage: gens[0]^10 in I
|
|
632
|
+
False
|
|
633
|
+
sage: gens[5]^6 * gens[2]^10 in I
|
|
634
|
+
False
|
|
635
|
+
"""
|
|
636
|
+
if not isinstance(m, self.Element) or m.parent() is not self:
|
|
637
|
+
return False
|
|
638
|
+
depth = m.length()
|
|
639
|
+
while depth >= len(self._basis_by_depth):
|
|
640
|
+
if self._reached_max_depth: # we've already reached everything
|
|
641
|
+
break
|
|
642
|
+
self._construct_next_level()
|
|
643
|
+
return m in self._basis
|
|
644
|
+
|
|
645
|
+
def __iter__(self):
|
|
646
|
+
r"""
|
|
647
|
+
Iterate over ``self``.
|
|
648
|
+
|
|
649
|
+
EXAMPLES::
|
|
650
|
+
|
|
651
|
+
sage: g = LieAlgebra(QQ, cartan_type=['B', 2])
|
|
652
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
653
|
+
sage: L = g.simple_module(La[2])
|
|
654
|
+
sage: I = L.indices()
|
|
655
|
+
sage: list(I)
|
|
656
|
+
[1, f[-alpha[2]], f[-alpha[1] - alpha[2]], f[-alpha[1] - 2*alpha[2]]]
|
|
657
|
+
|
|
658
|
+
sage: L = g.simple_module(La[1]-La[2])
|
|
659
|
+
sage: I = L.indices()
|
|
660
|
+
sage: it = iter(I)
|
|
661
|
+
sage: [next(it) for _ in range(6)]
|
|
662
|
+
[1, f[-alpha[2]], f[-alpha[1]], f[-alpha[1] - alpha[2]],
|
|
663
|
+
f[-alpha[1] - 2*alpha[2]], f[-alpha[2]]^2]
|
|
664
|
+
"""
|
|
665
|
+
depth = 0
|
|
666
|
+
while True:
|
|
667
|
+
while depth >= len(self._basis_by_depth):
|
|
668
|
+
if self._reached_max_depth: # we've already reached everything
|
|
669
|
+
return
|
|
670
|
+
self._construct_next_level()
|
|
671
|
+
yield from self._basis_by_depth[depth]
|
|
672
|
+
depth += 1
|
|
673
|
+
|
|
674
|
+
def _construct_next_level(self):
|
|
675
|
+
r"""
|
|
676
|
+
Construct the image for the next level of ``self``.
|
|
677
|
+
|
|
678
|
+
ALGORITHM:
|
|
679
|
+
|
|
680
|
+
For each image vector of `f_{\beta_1}^{b_1} \cdots f_{\beta_k}^{b_k}
|
|
681
|
+
v_{\lambda}` at the current depth `b_1 + \cdots b_k`, consider the
|
|
682
|
+
image under multiplication by every generator `f_{\alpha}` for
|
|
683
|
+
all `\alpha \leq \beta_1` in the fixed PBW ordering of the (dual)
|
|
684
|
+
Verma module.
|
|
685
|
+
|
|
686
|
+
.. TODO::
|
|
687
|
+
|
|
688
|
+
Avoid unnecessary computations by using the corresponding
|
|
689
|
+
(combinatorial) crystal.
|
|
690
|
+
|
|
691
|
+
EXAMPLES::
|
|
692
|
+
|
|
693
|
+
sage: g = LieAlgebra(QQ, cartan_type=['C', 3])
|
|
694
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
695
|
+
sage: L = g.simple_module(La[1])
|
|
696
|
+
sage: I = L.indices()
|
|
697
|
+
sage: len(I._basis)
|
|
698
|
+
1
|
|
699
|
+
sage: I._construct_next_level()
|
|
700
|
+
sage: len(I._basis)
|
|
701
|
+
6
|
|
702
|
+
sage: I._reached_max_depth
|
|
703
|
+
False
|
|
704
|
+
sage: I._construct_next_level() # long time
|
|
705
|
+
sage: len(I._basis) # long time
|
|
706
|
+
6
|
|
707
|
+
sage: I._reached_max_depth # long time
|
|
708
|
+
True
|
|
709
|
+
sage: I._construct_next_level() # long time
|
|
710
|
+
"""
|
|
711
|
+
if self._reached_max_depth: # we've already reached everything
|
|
712
|
+
return # so nothing more to do
|
|
713
|
+
|
|
714
|
+
gens = self._g.basis()
|
|
715
|
+
next_level = {}
|
|
716
|
+
R = self._g.base_ring()
|
|
717
|
+
ambient = self._simple._ambient
|
|
718
|
+
pbw = ambient._pbw
|
|
719
|
+
for m, vec in self._basis_by_depth[-1].items():
|
|
720
|
+
# find the first support index
|
|
721
|
+
ind = len(self._sorted_supp)
|
|
722
|
+
for i, ls in enumerate(self._sorted_supp):
|
|
723
|
+
if ls in m._monomial:
|
|
724
|
+
ind = i + 1
|
|
725
|
+
break
|
|
726
|
+
|
|
727
|
+
for ls in self._sorted_supp[:ind]:
|
|
728
|
+
mp = dict(m._monomial) # make a (shallow) copy
|
|
729
|
+
mp[ls] = mp.get(ls, 0) + 1
|
|
730
|
+
key = self.element_class(self, mp)
|
|
731
|
+
new_vec = gens[ls] * vec
|
|
732
|
+
if not new_vec:
|
|
733
|
+
continue
|
|
734
|
+
# Echelonize the corresponding weight space
|
|
735
|
+
mu = ambient.degree_on_basis(key)
|
|
736
|
+
if mu not in self._weight_space_bases:
|
|
737
|
+
# the only vector in the weight space
|
|
738
|
+
self._weight_space_bases[mu] = [key]
|
|
739
|
+
next_level[key] = new_vec
|
|
740
|
+
self._basis[key] = next_level[key]
|
|
741
|
+
lead_supp = next_level[key].trailing_support(key=pbw._monomial_key)
|
|
742
|
+
self._lead_supp_to_index[lead_supp] = key
|
|
743
|
+
continue
|
|
744
|
+
|
|
745
|
+
supp = set()
|
|
746
|
+
wt_basis = [self._basis[k] for k in self._weight_space_bases[mu]]
|
|
747
|
+
wt_basis.append(new_vec)
|
|
748
|
+
for b in wt_basis:
|
|
749
|
+
supp.update(b.support())
|
|
750
|
+
supp = sorted(supp, key=pbw._monomial_key)
|
|
751
|
+
mat = matrix(R, [[b[s] for s in supp] for b in wt_basis])
|
|
752
|
+
mat.echelonize()
|
|
753
|
+
for i, k in enumerate(self._weight_space_bases[mu]):
|
|
754
|
+
data = {supp[ind]: R(c) for ind, c in mat[i].iteritems() if c}
|
|
755
|
+
self._basis[k] = ambient.element_class(ambient, data)
|
|
756
|
+
i = mat.nrows() - 1
|
|
757
|
+
data = {supp[ind]: R(c) for ind, c in mat[i].iteritems() if c}
|
|
758
|
+
if data:
|
|
759
|
+
next_level[key] = ambient.element_class(ambient, data)
|
|
760
|
+
self._basis[key] = next_level[key]
|
|
761
|
+
lead_supp = next_level[key].trailing_support(key=pbw._monomial_key)
|
|
762
|
+
self._lead_supp_to_index[lead_supp] = key
|
|
763
|
+
self._weight_space_bases[mu].append(key)
|
|
764
|
+
|
|
765
|
+
if not next_level:
|
|
766
|
+
self._reached_max_depth = True
|
|
767
|
+
return
|
|
768
|
+
self._basis_by_depth.append(next_level)
|
|
769
|
+
|
|
770
|
+
@cached_method
|
|
771
|
+
def cardinality(self):
|
|
772
|
+
r"""
|
|
773
|
+
Return the cardinality of ``self``.
|
|
774
|
+
|
|
775
|
+
EXAMPLES::
|
|
776
|
+
|
|
777
|
+
sage: g = LieAlgebra(QQ, cartan_type=['E', 6])
|
|
778
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
779
|
+
sage: L = g.simple_module(La[1]+La[4])
|
|
780
|
+
sage: L._indices.cardinality()
|
|
781
|
+
51975
|
|
782
|
+
"""
|
|
783
|
+
if self._simple._dom_int:
|
|
784
|
+
weight = self._simple.highest_weight()
|
|
785
|
+
Phi = self._g.cartan_type().root_system()
|
|
786
|
+
P = Phi.weight_lattice()
|
|
787
|
+
coroots = Phi.root_lattice().simple_coroots()
|
|
788
|
+
la = P._from_dict({i: weight.scalar(ac) for i, ac in coroots.items()})
|
|
789
|
+
from sage.combinat.crystals.monomial_crystals import (
|
|
790
|
+
CrystalOfNakajimaMonomials,
|
|
791
|
+
)
|
|
792
|
+
return CrystalOfNakajimaMonomials(la).cardinality()
|
|
793
|
+
from sage.rings.infinity import infinity
|
|
794
|
+
return infinity
|
|
795
|
+
|
|
796
|
+
|
|
797
|
+
class SimpleModule(ModulePrinting, CombinatorialFreeModule):
|
|
798
|
+
r"""
|
|
799
|
+
Return the simple module `L_{\lambda}` as the image of the natural
|
|
800
|
+
morphism `\phi: M_{\lambda} \to M_{\lambda}^{\vee}`.
|
|
801
|
+
"""
|
|
802
|
+
@staticmethod
|
|
803
|
+
def __classcall_private__(cls, g, weight, *args, **kwds):
|
|
804
|
+
r"""
|
|
805
|
+
Normalize input to ensure a unique representation and return
|
|
806
|
+
the correct type.
|
|
807
|
+
|
|
808
|
+
EXAMPLES::
|
|
809
|
+
|
|
810
|
+
sage: g = LieAlgebra(QQ, cartan_type=['E', 6])
|
|
811
|
+
sage: La = g.cartan_type().root_system().weight_space().fundamental_weights()
|
|
812
|
+
sage: type(g.simple_module(La[1] + La[2]))
|
|
813
|
+
<class 'sage.algebras.lie_algebras.bgg_dual_module.FiniteDimensionalSimpleModule_with_category'>
|
|
814
|
+
sage: type(g.simple_module(La[1] - La[2]))
|
|
815
|
+
<class 'sage.algebras.lie_algebras.bgg_dual_module.SimpleModule_with_category'>
|
|
816
|
+
sage: type(g.simple_module(La[1] + 3/2*La[2]))
|
|
817
|
+
<class 'sage.algebras.lie_algebras.bgg_dual_module.SimpleModule_with_category'>
|
|
818
|
+
"""
|
|
819
|
+
if weight.is_dominant_weight():
|
|
820
|
+
return FiniteDimensionalSimpleModule(g, weight, *args, **kwds)
|
|
821
|
+
return super().__classcall__(cls, g, weight, *args, **kwds)
|
|
822
|
+
|
|
823
|
+
def __init__(self, g, weight, prefix='f', basis_key=None, **kwds):
|
|
824
|
+
r"""
|
|
825
|
+
Initialize ``self``.
|
|
826
|
+
|
|
827
|
+
EXAMPLES::
|
|
828
|
+
|
|
829
|
+
sage: g = LieAlgebra(QQ, cartan_type=['G', 2])
|
|
830
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
831
|
+
sage: L = g.simple_module(La[1] + La[2])
|
|
832
|
+
sage: TestSuite(L).run()
|
|
833
|
+
|
|
834
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
|
|
835
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
836
|
+
sage: L = g.simple_module(La[1] - La[2])
|
|
837
|
+
sage: TestSuite(L).run()
|
|
838
|
+
"""
|
|
839
|
+
self._g = g
|
|
840
|
+
self._weight = weight
|
|
841
|
+
self._dom_int = weight.is_dominant_weight()
|
|
842
|
+
self._verma = g.verma_module(weight, basis_key=basis_key)
|
|
843
|
+
self._ambient = self._verma.dual()
|
|
844
|
+
self._pbw = self._verma.pbw_basis()
|
|
845
|
+
base_ring = self._g.base_ring()
|
|
846
|
+
indices = SimpleModuleIndices(self, prefix=prefix, **kwds)
|
|
847
|
+
category = self._ambient.category().Subobjects()
|
|
848
|
+
if self._dom_int:
|
|
849
|
+
category = category.FiniteDimensional()
|
|
850
|
+
ModulePrinting.__init__(self, 'u')
|
|
851
|
+
CombinatorialFreeModule.__init__(self, base_ring, indices, category=category,
|
|
852
|
+
**self._ambient.print_options())
|
|
853
|
+
|
|
854
|
+
def _repr_(self):
|
|
855
|
+
r"""
|
|
856
|
+
Return a string representation of ``self``.
|
|
857
|
+
|
|
858
|
+
EXAMPLES::
|
|
859
|
+
|
|
860
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
861
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
862
|
+
sage: g.simple_module(2*La[1])
|
|
863
|
+
Simple module with highest weight 2*Lambda[1] of
|
|
864
|
+
Lie algebra of ['A', 1] in the Chevalley basis
|
|
865
|
+
"""
|
|
866
|
+
return "Simple module with highest weight {} of {}".format(self._weight, self._g)
|
|
867
|
+
|
|
868
|
+
def _latex_(self):
|
|
869
|
+
r"""
|
|
870
|
+
Return a latex representation of ``self``.
|
|
871
|
+
|
|
872
|
+
EXAMPLES::
|
|
873
|
+
|
|
874
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
875
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
876
|
+
sage: L = g.simple_module(2*La[1])
|
|
877
|
+
sage: latex(L)
|
|
878
|
+
L_{2 \Lambda_{1}}
|
|
879
|
+
"""
|
|
880
|
+
from sage.misc.latex import latex
|
|
881
|
+
return "L_{{{}}}".format(latex(self._weight))
|
|
882
|
+
|
|
883
|
+
def ambient(self):
|
|
884
|
+
r"""
|
|
885
|
+
Return the ambient module of ``self``.
|
|
886
|
+
|
|
887
|
+
EXAMPLES::
|
|
888
|
+
|
|
889
|
+
sage: g = LieAlgebra(QQ, cartan_type=['G', 2])
|
|
890
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
891
|
+
sage: L = g.simple_module(2*La[1])
|
|
892
|
+
sage: L.ambient()
|
|
893
|
+
BGG Dual of Verma module with highest weight 2*Lambda[1] of
|
|
894
|
+
Lie algebra of ['G', 2] in the Chevalley basis
|
|
895
|
+
"""
|
|
896
|
+
return self._ambient
|
|
897
|
+
|
|
898
|
+
@lazy_attribute
|
|
899
|
+
def lift(self):
|
|
900
|
+
r"""
|
|
901
|
+
Return the lift map of ``self`` to the ambient dual Verma module.
|
|
902
|
+
|
|
903
|
+
EXAMPLES::
|
|
904
|
+
|
|
905
|
+
sage: g = LieAlgebra(QQ, cartan_type=['G', 2])
|
|
906
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
907
|
+
sage: L = g.simple_module(La[1])
|
|
908
|
+
sage: [L.lift(b) for b in L.basis()] # long time
|
|
909
|
+
[v[Lambda[1]]^*,
|
|
910
|
+
f[-alpha[1]]*v[Lambda[1]]^*,
|
|
911
|
+
f[-alpha[2]]*f[-alpha[1]]*v[Lambda[1]]^* - f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*,
|
|
912
|
+
f[-alpha[1]]*f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
913
|
+
+ f[-2*alpha[1] - alpha[2]]*v[Lambda[1]]^*,
|
|
914
|
+
f[-alpha[1]]^2*f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
915
|
+
+ f[-alpha[1]]*f[-2*alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
916
|
+
+ 1/2*f[-3*alpha[1] - alpha[2]]*v[Lambda[1]]^*,
|
|
917
|
+
f[-alpha[2]]*f[-alpha[1]]^2*f[-alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
918
|
+
+ f[-alpha[2]]*f[-alpha[1]]*f[-2*alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
919
|
+
+ 1/2*f[-alpha[2]]*f[-3*alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
920
|
+
- f[-alpha[1] - alpha[2]]*f[-2*alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
921
|
+
+ 1/2*f[-3*alpha[1] - 2*alpha[2]]*v[Lambda[1]]^*,
|
|
922
|
+
f[-alpha[1]]*f[-alpha[1] - alpha[2]]*f[-2*alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
923
|
+
- 1/2*f[-alpha[1]]*f[-3*alpha[1] - 2*alpha[2]]*v[Lambda[1]]^*
|
|
924
|
+
- 1/2*f[-alpha[1] - alpha[2]]*f[-3*alpha[1] - alpha[2]]*v[Lambda[1]]^*
|
|
925
|
+
+ f[-2*alpha[1] - alpha[2]]^2*v[Lambda[1]]^*]
|
|
926
|
+
"""
|
|
927
|
+
return self.module_morphism(self._lift_on_basis, codomain=self._ambient, unitriangular="upper")
|
|
928
|
+
|
|
929
|
+
def retract(self, x):
|
|
930
|
+
r"""
|
|
931
|
+
Return the retraction of ``x`` in ``self``.
|
|
932
|
+
|
|
933
|
+
EXAMPLES::
|
|
934
|
+
|
|
935
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
|
|
936
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
937
|
+
sage: L = g.simple_module(2*La[1])
|
|
938
|
+
sage: L.retract(L.lift(sum(L.basis())))
|
|
939
|
+
f[-alpha[1]]^2*u[2*Lambda[1]] + f[-alpha[1]]*f[-alpha[1] - alpha[2]]*u[2*Lambda[1]]
|
|
940
|
+
+ f[-alpha[1] - alpha[2]]^2*u[2*Lambda[1]] + f[-alpha[1]]*u[2*Lambda[1]]
|
|
941
|
+
+ f[-alpha[1] - alpha[2]]*u[2*Lambda[1]] + u[2*Lambda[1]]
|
|
942
|
+
sage: B = list(L.basis())
|
|
943
|
+
sage: L.retract(3/2*L.lift(B[0]) - L.lift(B[2]) - 10/3*L.lift(B[3]))
|
|
944
|
+
-10/3*f[-alpha[1]]^2*u[2*Lambda[1]]
|
|
945
|
+
- f[-alpha[1] - alpha[2]]*u[2*Lambda[1]]
|
|
946
|
+
+ 3/2*u[2*Lambda[1]]
|
|
947
|
+
"""
|
|
948
|
+
supp = sorted(x.support(), key=self._pbw._monomial_key)
|
|
949
|
+
data = x.monomial_coefficients(copy=True) # this is destructive to data
|
|
950
|
+
R = self.base_ring()
|
|
951
|
+
ret = {}
|
|
952
|
+
for ls in supp:
|
|
953
|
+
if ls not in data:
|
|
954
|
+
continue
|
|
955
|
+
if ls not in self._indices._lead_supp_to_index:
|
|
956
|
+
mu = self._ambient.degree_on_basis(ls)
|
|
957
|
+
# this will guarantee the computation is correct
|
|
958
|
+
self._indices.weight_space_basis(mu)
|
|
959
|
+
if ls not in self._indices._lead_supp_to_index:
|
|
960
|
+
raise ValueError(f"not an element of the simple module of weight {self._weight}")
|
|
961
|
+
key = self._indices._lead_supp_to_index[ls]
|
|
962
|
+
vec = self._indices._basis[key]
|
|
963
|
+
coeff = R(data[ls] / vec[ls])
|
|
964
|
+
iaxpy(-coeff, vec._monomial_coefficients, data)
|
|
965
|
+
ret[key] = coeff
|
|
966
|
+
return self.element_class(self, ret)
|
|
967
|
+
|
|
968
|
+
def _lift_on_basis(self, m):
|
|
969
|
+
r"""
|
|
970
|
+
Return the lift of the basis element indexed by ``m``.
|
|
971
|
+
|
|
972
|
+
EXAMPLES::
|
|
973
|
+
|
|
974
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 1])
|
|
975
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
976
|
+
sage: L = g.simple_module(2*La[1])
|
|
977
|
+
sage: I = L.indices()
|
|
978
|
+
sage: gen = list(I.gens())[0]
|
|
979
|
+
sage: L._lift_on_basis(gen^2)
|
|
980
|
+
4*f[-alpha[1]]^2*v[2*Lambda[1]]^*
|
|
981
|
+
sage: L._lift_on_basis(gen^3)
|
|
982
|
+
Traceback (most recent call last):
|
|
983
|
+
...
|
|
984
|
+
ValueError: f[-alpha[1]]^3 does not index a basis element
|
|
985
|
+
"""
|
|
986
|
+
# This builds the result up to the necessary depth
|
|
987
|
+
if m not in self._indices:
|
|
988
|
+
raise ValueError(f"{m} does not index a basis element")
|
|
989
|
+
return self._indices._basis[m]
|
|
990
|
+
|
|
991
|
+
def dual(self) -> Self:
|
|
992
|
+
r"""
|
|
993
|
+
Return the dual module of ``self``, which is ``self`` since simple
|
|
994
|
+
modules are self-dual.
|
|
995
|
+
|
|
996
|
+
EXAMPLES::
|
|
997
|
+
|
|
998
|
+
sage: g = LieAlgebra(QQ, cartan_type=['B', 4])
|
|
999
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
1000
|
+
sage: L = g.simple_module(2*La[1] + 3*La[4])
|
|
1001
|
+
sage: L.dual() is L
|
|
1002
|
+
True
|
|
1003
|
+
"""
|
|
1004
|
+
return self
|
|
1005
|
+
|
|
1006
|
+
def highest_weight(self):
|
|
1007
|
+
r"""
|
|
1008
|
+
Return the highest weight of ``self``.
|
|
1009
|
+
|
|
1010
|
+
EXAMPLES::
|
|
1011
|
+
|
|
1012
|
+
sage: g = lie_algebras.so(QQ, 7)
|
|
1013
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
1014
|
+
sage: L = g.simple_module(La[1] + La[2])
|
|
1015
|
+
sage: L.highest_weight()
|
|
1016
|
+
Lambda[1] + Lambda[2]
|
|
1017
|
+
"""
|
|
1018
|
+
return self._weight
|
|
1019
|
+
|
|
1020
|
+
@cached_method
|
|
1021
|
+
def highest_weight_vector(self):
|
|
1022
|
+
r"""
|
|
1023
|
+
Return the highest weight vector of ``self``.
|
|
1024
|
+
|
|
1025
|
+
EXAMPLES::
|
|
1026
|
+
|
|
1027
|
+
sage: g = lie_algebras.sp(QQ, 6)
|
|
1028
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
1029
|
+
sage: L = g.simple_module(La[1] + La[2])
|
|
1030
|
+
sage: L.highest_weight_vector()
|
|
1031
|
+
u[Lambda[1] + Lambda[2]]
|
|
1032
|
+
"""
|
|
1033
|
+
one = self.base_ring().one()
|
|
1034
|
+
return self._from_dict({self._indices.one(): one},
|
|
1035
|
+
remove_zeros=False, coerce=False)
|
|
1036
|
+
|
|
1037
|
+
def lie_algebra(self):
|
|
1038
|
+
r"""
|
|
1039
|
+
Return the underlying Lie algebra of ``self``.
|
|
1040
|
+
|
|
1041
|
+
EXAMPLES::
|
|
1042
|
+
|
|
1043
|
+
sage: g = lie_algebras.so(QQ, 9)
|
|
1044
|
+
sage: La = g.cartan_type().root_system().weight_space().fundamental_weights()
|
|
1045
|
+
sage: L = g.simple_module(La[3] - 1/2*La[1])
|
|
1046
|
+
sage: L.lie_algebra()
|
|
1047
|
+
Lie algebra of ['B', 4] in the Chevalley basis
|
|
1048
|
+
"""
|
|
1049
|
+
return self._g
|
|
1050
|
+
|
|
1051
|
+
def pbw_basis(self):
|
|
1052
|
+
r"""
|
|
1053
|
+
Return the PBW basis of the underlying Lie algebra
|
|
1054
|
+
used to define ``self``.
|
|
1055
|
+
|
|
1056
|
+
EXAMPLES::
|
|
1057
|
+
|
|
1058
|
+
sage: g = lie_algebras.so(QQ, 8)
|
|
1059
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
1060
|
+
sage: L = g.simple_module(La[2] - 2*La[3])
|
|
1061
|
+
sage: L.pbw_basis()
|
|
1062
|
+
Universal enveloping algebra of Lie algebra of ['D', 4] in the Chevalley basis
|
|
1063
|
+
in the Poincare-Birkhoff-Witt basis
|
|
1064
|
+
"""
|
|
1065
|
+
return self._pbw
|
|
1066
|
+
|
|
1067
|
+
def homogeneous_component_basis(self, mu):
|
|
1068
|
+
r"""
|
|
1069
|
+
Return a basis for the ``mu`` weight space of ``self``.
|
|
1070
|
+
|
|
1071
|
+
EXAMPLES::
|
|
1072
|
+
|
|
1073
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
|
|
1074
|
+
sage: P = g.cartan_type().root_system().weight_lattice()
|
|
1075
|
+
sage: La = P.fundamental_weights()
|
|
1076
|
+
sage: la = La[1] + La[2]
|
|
1077
|
+
sage: L = g.simple_module(la)
|
|
1078
|
+
sage: from itertools import product
|
|
1079
|
+
sage: al = P.simple_roots()
|
|
1080
|
+
sage: for wts in product(range(4), repeat=2):
|
|
1081
|
+
....: mu = la - wts[0] * al[1] - wts[1] * al[2]
|
|
1082
|
+
....: print(mu)
|
|
1083
|
+
....: print(L.homogeneous_component_basis(mu))
|
|
1084
|
+
Lambda[1] + Lambda[2]
|
|
1085
|
+
Family (u[Lambda[1] + Lambda[2]],)
|
|
1086
|
+
2*Lambda[1] - Lambda[2]
|
|
1087
|
+
Family (f[-alpha[2]]*u[Lambda[1] + Lambda[2]],)
|
|
1088
|
+
3*Lambda[1] - 3*Lambda[2]
|
|
1089
|
+
Family ()
|
|
1090
|
+
4*Lambda[1] - 5*Lambda[2]
|
|
1091
|
+
Family ()
|
|
1092
|
+
-Lambda[1] + 2*Lambda[2]
|
|
1093
|
+
Family (f[-alpha[1]]*u[Lambda[1] + Lambda[2]],)
|
|
1094
|
+
0
|
|
1095
|
+
Family (f[-alpha[1] - alpha[2]]*u[Lambda[1] + Lambda[2]], f[-alpha[2]]*f[-alpha[1]]*u[Lambda[1] + Lambda[2]])
|
|
1096
|
+
Lambda[1] - 2*Lambda[2]
|
|
1097
|
+
Family (f[-alpha[2]]*f[-alpha[1] - alpha[2]]*u[Lambda[1] + Lambda[2]],)
|
|
1098
|
+
2*Lambda[1] - 4*Lambda[2]
|
|
1099
|
+
Family ()
|
|
1100
|
+
-3*Lambda[1] + 3*Lambda[2]
|
|
1101
|
+
Family ()
|
|
1102
|
+
-2*Lambda[1] + Lambda[2]
|
|
1103
|
+
Family (f[-alpha[1]]*f[-alpha[1] - alpha[2]]*u[Lambda[1] + Lambda[2]],)
|
|
1104
|
+
-Lambda[1] - Lambda[2]
|
|
1105
|
+
Family (f[-alpha[1] - alpha[2]]^2*u[Lambda[1] + Lambda[2]],)
|
|
1106
|
+
-3*Lambda[2]
|
|
1107
|
+
Family ()
|
|
1108
|
+
-5*Lambda[1] + 4*Lambda[2]
|
|
1109
|
+
Family ()
|
|
1110
|
+
-4*Lambda[1] + 2*Lambda[2]
|
|
1111
|
+
Family ()
|
|
1112
|
+
-3*Lambda[1]
|
|
1113
|
+
Family ()
|
|
1114
|
+
-2*Lambda[1] - 2*Lambda[2]
|
|
1115
|
+
Family ()
|
|
1116
|
+
"""
|
|
1117
|
+
return Family([self.monomial(b) for b in self._indices.weight_space_basis(mu)])
|
|
1118
|
+
|
|
1119
|
+
weight_space_basis = homogeneous_component_basis
|
|
1120
|
+
|
|
1121
|
+
class Element(CombinatorialFreeModule.Element):
|
|
1122
|
+
def _acted_upon_(self, scalar, self_on_left=True):
|
|
1123
|
+
r"""
|
|
1124
|
+
Return the action of ``scalar`` on ``self``.
|
|
1125
|
+
|
|
1126
|
+
EXAMPLES::
|
|
1127
|
+
|
|
1128
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
|
|
1129
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
1130
|
+
sage: L = g.simple_module(La[1] + La[2])
|
|
1131
|
+
sage: v = L.highest_weight_vector(); v
|
|
1132
|
+
u[Lambda[1] + Lambda[2]]
|
|
1133
|
+
sage: f1, f2 = g.pbw_basis().f()
|
|
1134
|
+
sage: 5 * v
|
|
1135
|
+
5*u[Lambda[1] + Lambda[2]]
|
|
1136
|
+
sage: f1 * f2 * v
|
|
1137
|
+
f[-alpha[2]]*f[-alpha[1]]*u[Lambda[1] + Lambda[2]]
|
|
1138
|
+
+ f[-alpha[1] - alpha[2]]*u[Lambda[1] + Lambda[2]]
|
|
1139
|
+
sage: f2 * f1 * v
|
|
1140
|
+
-f[-alpha[2]]*f[-alpha[1]]*u[Lambda[1] + Lambda[2]]
|
|
1141
|
+
+ 2*f[-alpha[1] - alpha[2]]*u[Lambda[1] + Lambda[2]]
|
|
1142
|
+
sage: f2 * f2 * f1 * v
|
|
1143
|
+
-2*f[-alpha[2]]*f[-alpha[1] - alpha[2]]*u[Lambda[1] + Lambda[2]]
|
|
1144
|
+
sage: f1 * f2 * f1 * v
|
|
1145
|
+
f[-alpha[1]]*f[-alpha[1] - alpha[2]]*u[Lambda[1] + Lambda[2]]
|
|
1146
|
+
sage: f2 * f1 * f2 * f1 * v
|
|
1147
|
+
f[-alpha[1] - alpha[2]]^2*u[Lambda[1] + Lambda[2]]
|
|
1148
|
+
sage: f1 * f2 * f2 * f1 * v
|
|
1149
|
+
2*f[-alpha[1] - alpha[2]]^2*u[Lambda[1] + Lambda[2]]
|
|
1150
|
+
"""
|
|
1151
|
+
# check for scalars first
|
|
1152
|
+
ret = CombinatorialFreeModule.Element._acted_upon_(self, scalar, self_on_left)
|
|
1153
|
+
if ret is not None:
|
|
1154
|
+
return ret
|
|
1155
|
+
|
|
1156
|
+
if self_on_left: # this is a left module action
|
|
1157
|
+
return None
|
|
1158
|
+
|
|
1159
|
+
P = self.parent()
|
|
1160
|
+
return P.retract(scalar * P.lift(self))
|
|
1161
|
+
|
|
1162
|
+
_lmul_ = _acted_upon_
|
|
1163
|
+
_rmul_ = _acted_upon_
|
|
1164
|
+
|
|
1165
|
+
|
|
1166
|
+
class FiniteDimensionalSimpleModule(SimpleModule):
|
|
1167
|
+
"""
|
|
1168
|
+
A finite dimensional simple module.
|
|
1169
|
+
"""
|
|
1170
|
+
def bgg_resolution(self):
|
|
1171
|
+
"""
|
|
1172
|
+
Return the BGG resolution of ``self``.
|
|
1173
|
+
|
|
1174
|
+
EXAMPLES::
|
|
1175
|
+
|
|
1176
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
|
|
1177
|
+
sage: La = g.cartan_type().root_system().weight_lattice().fundamental_weights()
|
|
1178
|
+
sage: L = g.simple_module(La[1] + La[2])
|
|
1179
|
+
sage: L.bgg_resolution() # needs sage.groups
|
|
1180
|
+
BGG resolution of Simple module with highest weight Lambda[1] + Lambda[2]
|
|
1181
|
+
of Lie algebra of ['A', 2] in the Chevalley basis
|
|
1182
|
+
"""
|
|
1183
|
+
from sage.algebras.lie_algebras.bgg_resolution import BGGResolution
|
|
1184
|
+
return BGGResolution(self)
|