passagemath-gap-pkg-semigroups 10.6.30__cp312-abi3-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1158 -0
- gap/pkg/semigroups/config.status +1131 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,392 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/main/froidure-pin.tst
|
|
4
|
+
#Y Copyright (C) 2016-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
# This file contains tests for main/froidure-pin.g* which use the
|
|
12
|
+
# implementation of the Froidure-Pin algorithm in the Semigroups package kernel
|
|
13
|
+
# module and not the version in libsemigroups.
|
|
14
|
+
|
|
15
|
+
#@local F, G, ListIterator, LoopIterator, N, R, S, T, TestEnumerator
|
|
16
|
+
#@local TestIterator, acting, an, cong, copy, elts, final, first, found, gens
|
|
17
|
+
#@local genslookup, genstoapply, ht, i, left, len, lenindex, list, mat, nr
|
|
18
|
+
#@local nrrules, one, out, parent, pos, prefix, reduced, right, rules, stopper
|
|
19
|
+
#@local suffix, valid, words, x
|
|
20
|
+
gap> START_TEST("Semigroups package: standard/main/froidure-pin.tst");
|
|
21
|
+
gap> LoadPackage("semigroups", false);;
|
|
22
|
+
|
|
23
|
+
#
|
|
24
|
+
gap> SEMIGROUPS.StartTest();
|
|
25
|
+
gap> ListIterator := function(it)
|
|
26
|
+
> local out, i, x;
|
|
27
|
+
> out := [];
|
|
28
|
+
> i := 0;
|
|
29
|
+
> for x in it do
|
|
30
|
+
> i := i + 1;
|
|
31
|
+
> out[i] := x;
|
|
32
|
+
> od;
|
|
33
|
+
> return out;
|
|
34
|
+
> end;;
|
|
35
|
+
gap> TestEnumerator := function(en)
|
|
36
|
+
> return ForAll(en, x -> en[Position(en, x)] = x)
|
|
37
|
+
> and ForAll([1 .. Length(en)], i -> Position(en, en[i]) = i)
|
|
38
|
+
> and ForAll(en, x -> x in en)
|
|
39
|
+
> and ForAll([1 .. Length(en)], i -> IsBound(en[i]))
|
|
40
|
+
> and ForAll([Length(en) + 1 .. Length(en) + 10], i -> not IsBound(en[i]));
|
|
41
|
+
> end;;
|
|
42
|
+
gap> TestIterator := function(S, it)
|
|
43
|
+
> local LoopIterator;
|
|
44
|
+
> LoopIterator := function(it)
|
|
45
|
+
> local valid, len, x;
|
|
46
|
+
> valid := true;;
|
|
47
|
+
> len := 0;
|
|
48
|
+
> for x in it do
|
|
49
|
+
> len := len + 1;
|
|
50
|
+
> if not x in S then
|
|
51
|
+
> valid := false;
|
|
52
|
+
> break;
|
|
53
|
+
> fi;
|
|
54
|
+
> od;
|
|
55
|
+
> return valid and IsDoneIterator(it) and len = Size(S);
|
|
56
|
+
> end;
|
|
57
|
+
> return LoopIterator(it) and LoopIterator(ShallowCopy(it));
|
|
58
|
+
> end;;
|
|
59
|
+
|
|
60
|
+
# CanUseGapFroidurePin for RZMS
|
|
61
|
+
gap> S := ReesZeroMatrixSemigroup(Group([()]), [[(), (), ()], [0, (), 0],
|
|
62
|
+
> [(), 0, ()]]);;
|
|
63
|
+
gap> CanUseGapFroidurePin(S);
|
|
64
|
+
true
|
|
65
|
+
|
|
66
|
+
# CanUseGapFroidurePin for a quotient semigroup
|
|
67
|
+
gap> S := FullTransformationMonoid(4);;
|
|
68
|
+
gap> cong := SemigroupCongruence(S, [S.2, S.3]);;
|
|
69
|
+
gap> CanUseLibsemigroupsFroidurePin(S / cong);
|
|
70
|
+
true
|
|
71
|
+
gap> S := Semigroup(SEMIGROUPS.UniversalFakeOne);;
|
|
72
|
+
gap> cong := SemigroupCongruence(S, [[S.1, S.1]]);;
|
|
73
|
+
gap> CanUseLibsemigroupsFroidurePin(S / cong);
|
|
74
|
+
false
|
|
75
|
+
|
|
76
|
+
# CanUseGapFroidurePin for a free band
|
|
77
|
+
gap> CanUseGapFroidurePin(FreeBand(4));
|
|
78
|
+
true
|
|
79
|
+
gap> CanUseGapFroidurePin(FreeBand(5));
|
|
80
|
+
true
|
|
81
|
+
|
|
82
|
+
# Test GapFroidurePin
|
|
83
|
+
gap> S := FreeBand(5);;
|
|
84
|
+
gap> GapFroidurePin(S);
|
|
85
|
+
rec( elts := [ x1, x2, x3, x4, x5 ], final := [ 1, 2, 3, 4, 5 ],
|
|
86
|
+
first := [ 1, 2, 3, 4, 5 ], found := false, gens := [ x1, x2, x3, x4, x5 ],
|
|
87
|
+
genslookup := [ 1, 2, 3, 4, 5 ], genstoapply := [ 1 .. 5 ],
|
|
88
|
+
ht := <tree hash table len=12517 used=5 colls=0 accs=10>,
|
|
89
|
+
left := [ [ ], [ ], [ ], [ ], [ ] ], len := 1, lenindex := [ 1 ],
|
|
90
|
+
nr := 5, nrrules := 0, one := false, parent := <free band on the generators
|
|
91
|
+
[ x1, x2, x3, x4, x5 ]>, pos := 1, prefix := [ 0, 0, 0, 0, 0 ],
|
|
92
|
+
reduced := [ [ false, false, false, false, false ],
|
|
93
|
+
[ false, false, false, false, false ],
|
|
94
|
+
[ false, false, false, false, false ],
|
|
95
|
+
[ false, false, false, false, false ],
|
|
96
|
+
[ false, false, false, false, false ] ],
|
|
97
|
+
right := [ [ ], [ ], [ ], [ ], [ ] ], rules := [ ], stopper := false,
|
|
98
|
+
suffix := [ 0, 0, 0, 0, 0 ], words := [ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] ]
|
|
99
|
+
)
|
|
100
|
+
gap> S := RegularBooleanMatMonoid(3);;
|
|
101
|
+
gap> GapFroidurePin(S);
|
|
102
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
103
|
+
Error, no 2nd choice method found for `GapFroidurePin' on 1 arguments
|
|
104
|
+
gap> Size(S);
|
|
105
|
+
506
|
|
106
|
+
gap> GapFroidurePin(S);
|
|
107
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
108
|
+
Error, no 2nd choice method found for `GapFroidurePin' on 1 arguments
|
|
109
|
+
gap> S := Semigroup(Generators(S), Generators(S));;
|
|
110
|
+
gap> GapFroidurePin(S);
|
|
111
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
112
|
+
Error, no 2nd choice method found for `GapFroidurePin' on 1 arguments
|
|
113
|
+
|
|
114
|
+
# EnumeratorSorted
|
|
115
|
+
gap> EnumeratorSorted(FreeBand(2));
|
|
116
|
+
[ x1, x2x1x2, x2x1, x2, x1x2, x1x2x1 ]
|
|
117
|
+
gap> TestEnumerator(EnumeratorSorted(FreeBand(2)));
|
|
118
|
+
true
|
|
119
|
+
|
|
120
|
+
# EnumeratorCanonical for CanUseGapFroidurePin without generators
|
|
121
|
+
gap> G := Range(IsomorphismPermGroup(SmallGroup(6, 1)));;
|
|
122
|
+
gap> mat := [[G.1, G.2], [G.1 * G.2, G.1], [G.2, G.2]];;
|
|
123
|
+
gap> S := ReesMatrixSemigroup(G, mat);;
|
|
124
|
+
gap> CanUseGapFroidurePin(S);
|
|
125
|
+
true
|
|
126
|
+
gap> HasGeneratorsOfSemigroup(S);
|
|
127
|
+
false
|
|
128
|
+
gap> TestEnumerator(EnumeratorCanonical(S));;
|
|
129
|
+
|
|
130
|
+
# MultiplicationTable
|
|
131
|
+
gap> S := ReesMatrixSemigroup(Group([(1, 2)]), [[(), (1, 2)], [(), ()]]);;
|
|
132
|
+
gap> GeneratorsOfSemigroup(S);
|
|
133
|
+
[ (1,(1,2),1), (2,(),2) ]
|
|
134
|
+
gap> S := Semigroup(S.1, S.2 ^ 2);
|
|
135
|
+
<subsemigroup of 2x2 Rees matrix semigroup with 2 generators>
|
|
136
|
+
gap> CanUseGapFroidurePin(S);
|
|
137
|
+
true
|
|
138
|
+
gap> MultiplicationTable(S);
|
|
139
|
+
[ [ 1, 2, 3, 4, 3, 4, 1, 2 ], [ 1, 2, 3, 4, 1, 2, 3, 4 ],
|
|
140
|
+
[ 3, 4, 1, 2, 1, 2, 3, 4 ], [ 3, 4, 1, 2, 3, 4, 1, 2 ],
|
|
141
|
+
[ 5, 6, 7, 8, 7, 8, 5, 6 ], [ 5, 6, 7, 8, 5, 6, 7, 8 ],
|
|
142
|
+
[ 7, 8, 5, 6, 5, 6, 7, 8 ], [ 7, 8, 5, 6, 7, 8, 5, 6 ] ]
|
|
143
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[(), (1, 2)], [(), 0]]);;
|
|
144
|
+
gap> GeneratorsOfSemigroup(S);
|
|
145
|
+
[ (1,(1,2),1), (1,(),2), (2,(),1) ]
|
|
146
|
+
gap> S := Semigroup(S.1, S.2 ^ 2);
|
|
147
|
+
<subsemigroup of 2x2 Rees 0-matrix semigroup with 2 generators>
|
|
148
|
+
gap> CanUseGapFroidurePin(S);
|
|
149
|
+
true
|
|
150
|
+
gap> MultiplicationTable(S);
|
|
151
|
+
[ [ 1, 2, 3, 4 ], [ 1, 2, 3, 4 ], [ 3, 4, 1, 2 ], [ 3, 4, 1, 2 ] ]
|
|
152
|
+
|
|
153
|
+
# PositionCanonical (for a group)
|
|
154
|
+
gap> G := Group((1, 2, 3), (1, 2));;
|
|
155
|
+
gap> CanUseGapFroidurePin(G);
|
|
156
|
+
true
|
|
157
|
+
|
|
158
|
+
# CanUseGapFroidurePin for a dual semigroup
|
|
159
|
+
gap> S := Semigroup([Transformation([1, 3, 2]), Transformation([1, 4, 4, 2])]);
|
|
160
|
+
<transformation semigroup of degree 4 with 2 generators>
|
|
161
|
+
gap> T := DualSemigroup(S);
|
|
162
|
+
<dual semigroup of <transformation semigroup of degree 4 with 2 generators>>
|
|
163
|
+
gap> CanUseGapFroidurePin(T);
|
|
164
|
+
true
|
|
165
|
+
|
|
166
|
+
# GapFroidurePin, for a semigroup with identity in generators, and duplicate
|
|
167
|
+
# generators
|
|
168
|
+
gap> S := Group((1, 2, 3), (), ());
|
|
169
|
+
Group([ (1,2,3), (), () ])
|
|
170
|
+
gap> GapFroidurePin(S);
|
|
171
|
+
rec( elts := [ (1,2,3), () ], final := [ 1, 2 ], first := [ 1, 2 ],
|
|
172
|
+
found := false, gens := [ (1,2,3), (), () ], genslookup := [ 1, 2, 2 ],
|
|
173
|
+
genstoapply := [ 1 .. 3 ], ht := <tree hash table len=12517 used=2 colls=
|
|
174
|
+
0 accs=5>, left := [ [ ], [ ] ], len := 1, lenindex := [ 1 ], nr := 2,
|
|
175
|
+
nrrules := 1, one := 2, parent := Group([ (1,2,3), (), () ]), pos := 1,
|
|
176
|
+
prefix := [ 0, 0 ],
|
|
177
|
+
reduced := [ [ false, false, false ], [ false, false, false ] ],
|
|
178
|
+
right := [ [ ], [ ] ], rules := [ [ [ 3 ], [ 2 ] ] ], stopper := false,
|
|
179
|
+
suffix := [ 0, 0 ], words := [ [ 1 ], [ 2 ] ] )
|
|
180
|
+
|
|
181
|
+
# AsListCanonical
|
|
182
|
+
gap> S := FreeBand(2);
|
|
183
|
+
<free band on the generators [ x1, x2 ]>
|
|
184
|
+
gap> TestEnumerator(EnumeratorCanonical(S));
|
|
185
|
+
true
|
|
186
|
+
gap> EnumeratorCanonical(S)[10];
|
|
187
|
+
fail
|
|
188
|
+
gap> AsListCanonical(S);
|
|
189
|
+
[ x1, x2, x1x2, x2x1, x1x2x1, x2x1x2 ]
|
|
190
|
+
gap> S := ReesMatrixSemigroup(Group([(1, 2)]), [[(), (1, 2)], [(), ()]]);;
|
|
191
|
+
gap> AsListCanonical(S);
|
|
192
|
+
[ (1,(1,2),1), (2,(),2), (1,(),1), (1,(),2), (2,(1,2),1), (1,(1,2),2),
|
|
193
|
+
(2,(),1), (2,(1,2),2) ]
|
|
194
|
+
gap> EnumeratorCanonical(S);
|
|
195
|
+
[ (1,(1,2),1), (2,(),2), (1,(),1), (1,(),2), (2,(1,2),1), (1,(1,2),2),
|
|
196
|
+
(2,(),1), (2,(1,2),2) ]
|
|
197
|
+
gap> Enumerator(S);
|
|
198
|
+
<enumerator of Rees matrix semigroup>
|
|
199
|
+
|
|
200
|
+
# AsListCanonical/AsSet for an infinite semigroup
|
|
201
|
+
gap> S := GraphInverseSemigroup(CycleDigraph(2));
|
|
202
|
+
<infinite graph inverse semigroup with 2 vertices, 2 edges>
|
|
203
|
+
gap> AsSet(S);
|
|
204
|
+
Error, the argument (a semigroup) is not finite
|
|
205
|
+
gap> AsListCanonical(S);
|
|
206
|
+
Error, the argument (a semigroup) is not finite
|
|
207
|
+
gap> EnumeratorSorted(S);
|
|
208
|
+
Error, the argument (a semigroup) is not finite
|
|
209
|
+
gap> N := EnumeratorCanonical(S);
|
|
210
|
+
<enumerator of <infinite graph inverse semigroup with 2 vertices, 2 edges>>
|
|
211
|
+
gap> N[1];
|
|
212
|
+
e_1
|
|
213
|
+
|
|
214
|
+
# Iterators
|
|
215
|
+
gap> S := FreeBand(2);
|
|
216
|
+
<free band on the generators [ x1, x2 ]>
|
|
217
|
+
gap> TestIterator(S, IteratorCanonical(S));
|
|
218
|
+
true
|
|
219
|
+
gap> TestIterator(S, Iterator(S));
|
|
220
|
+
true
|
|
221
|
+
gap> TestIterator(S, IteratorSorted(S));
|
|
222
|
+
true
|
|
223
|
+
gap> F := FreeSemigroup(2);;
|
|
224
|
+
gap> R := [[F.1 * F.2, F.2 * F.1]];;
|
|
225
|
+
gap> S := F / R;
|
|
226
|
+
<fp semigroup with 2 generators and 1 relation of length 6>
|
|
227
|
+
gap> NextIterator(Iterator(S));
|
|
228
|
+
s1
|
|
229
|
+
gap> IteratorSorted(S);
|
|
230
|
+
Error, the argument (a semigroup) is not finite
|
|
231
|
+
gap> NextIterator(IteratorCanonical(S));
|
|
232
|
+
s1
|
|
233
|
+
|
|
234
|
+
# Size
|
|
235
|
+
gap> S := Semigroup(FreeBand(2));
|
|
236
|
+
<semigroup with 2 generators>
|
|
237
|
+
gap> Size(S);
|
|
238
|
+
6
|
|
239
|
+
gap> F := FreeSemigroup(2);;
|
|
240
|
+
gap> R := [[F.1 * F.2, F.2 * F.1]];;
|
|
241
|
+
gap> S := F / R;
|
|
242
|
+
<fp semigroup with 2 generators and 1 relation of length 6>
|
|
243
|
+
gap> Size(S);
|
|
244
|
+
infinity
|
|
245
|
+
|
|
246
|
+
# \in
|
|
247
|
+
gap> S := Semigroup(FreeBand(2));
|
|
248
|
+
<semigroup with 2 generators>
|
|
249
|
+
gap> ForAll(AsList(S), x -> x in S);
|
|
250
|
+
true
|
|
251
|
+
|
|
252
|
+
# Nr/Idempotents
|
|
253
|
+
gap> S := Semigroup(FreeBand(2));
|
|
254
|
+
<semigroup with 2 generators>
|
|
255
|
+
gap> Idempotents(S);
|
|
256
|
+
[ x1, x2, x1x2, x2x1, x1x2x1, x2x1x2 ]
|
|
257
|
+
gap> NrIdempotents(S);
|
|
258
|
+
6
|
|
259
|
+
gap> S := GraphInverseSemigroup(CycleDigraph(2));
|
|
260
|
+
<infinite graph inverse semigroup with 2 vertices, 2 edges>
|
|
261
|
+
gap> Idempotents(S);
|
|
262
|
+
Error, the argument (a semigroup) is not finite
|
|
263
|
+
gap> NrIdempotents(S);
|
|
264
|
+
Error, the argument (a semigroup) is not finite
|
|
265
|
+
|
|
266
|
+
# PositionCanonical
|
|
267
|
+
gap> S := Semigroup(FreeBand(2));
|
|
268
|
+
<semigroup with 2 generators>
|
|
269
|
+
gap> PositionCanonical(S, 1);
|
|
270
|
+
fail
|
|
271
|
+
gap> S := Semigroup(FreeBand(5));
|
|
272
|
+
<semigroup with 5 generators>
|
|
273
|
+
gap> PositionCanonical(S, S.1 * S.2 * S.3 * S.2 * S.1);
|
|
274
|
+
422
|
|
275
|
+
gap> x := Matrix(GF(2 ^ 2),
|
|
276
|
+
> [[Z(2 ^ 2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
277
|
+
> [Z(2 ^ 2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
278
|
+
> [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
279
|
+
> [0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
280
|
+
> [0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2)],
|
|
281
|
+
> [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)]]);;
|
|
282
|
+
gap> S := Monoid(x, rec(acting := false));
|
|
283
|
+
<commutative monoid of 6x6 matrices over GF(2^2) with 1 generator>
|
|
284
|
+
gap> CanUseGapFroidurePin(S);
|
|
285
|
+
true
|
|
286
|
+
gap> PositionCanonical(S, Matrix(GF(2), [[Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2),
|
|
287
|
+
> 0 * Z(2), 0 * Z(2)], [0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2)],
|
|
288
|
+
> [0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2), 0 * Z(2)], [0 * Z(2), 0 *
|
|
289
|
+
> Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2), 0 * Z(2)],
|
|
290
|
+
> [0 * Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0, 0 * Z(2)], [0 * Z(2), 0 *
|
|
291
|
+
> Z(2), 0 * Z(2), 0 * Z(2), 0 * Z(2), Z(2) ^ 0]]));
|
|
292
|
+
fail
|
|
293
|
+
|
|
294
|
+
# Position
|
|
295
|
+
gap> S := Semigroup(FreeBand(2));
|
|
296
|
+
<semigroup with 2 generators>
|
|
297
|
+
gap> Position(S, S.1);
|
|
298
|
+
1
|
|
299
|
+
gap> Position(S, S.2);
|
|
300
|
+
2
|
|
301
|
+
gap> Position(S, S.1 * S.2);
|
|
302
|
+
fail
|
|
303
|
+
gap> Position(S, 1);
|
|
304
|
+
fail
|
|
305
|
+
|
|
306
|
+
# PositionSorted
|
|
307
|
+
gap> S := Semigroup(FreeBand(2));;
|
|
308
|
+
gap> list := AsListCanonical(S);;
|
|
309
|
+
gap> copy := ShallowCopy(list);;
|
|
310
|
+
gap> Sort(copy, {x, y} -> PositionSorted(S, x) < PositionSorted(S, y));
|
|
311
|
+
gap> SortedList(list) = copy;
|
|
312
|
+
true
|
|
313
|
+
gap> PositionSorted(S, 1);
|
|
314
|
+
fail
|
|
315
|
+
gap> S := GraphInverseSemigroup(CycleDigraph(2));
|
|
316
|
+
<infinite graph inverse semigroup with 2 vertices, 2 edges>
|
|
317
|
+
gap> PositionSorted(S, S.1);
|
|
318
|
+
Error, the 1st argument (a semigroup) is not finite
|
|
319
|
+
|
|
320
|
+
# IsEnumerated
|
|
321
|
+
gap> S := Semigroup(FreeBand(2));;
|
|
322
|
+
gap> IsEnumerated(S);
|
|
323
|
+
false
|
|
324
|
+
gap> Size(S);
|
|
325
|
+
6
|
|
326
|
+
gap> IsEnumerated(S);
|
|
327
|
+
true
|
|
328
|
+
|
|
329
|
+
# Enumerate
|
|
330
|
+
gap> S := Semigroup(FreeBand(2));;
|
|
331
|
+
gap> Enumerate(S, 10);
|
|
332
|
+
<semigroup with 2 generators>
|
|
333
|
+
gap> Enumerate(S);
|
|
334
|
+
<semigroup with 2 generators>
|
|
335
|
+
|
|
336
|
+
# Left/RightCayleyGraphSemigroup
|
|
337
|
+
gap> S := Semigroup(FreeBand(2));;
|
|
338
|
+
gap> LeftCayleyGraphSemigroup(S);
|
|
339
|
+
[ [ 1, 4 ], [ 3, 2 ], [ 3, 6 ], [ 5, 4 ], [ 5, 4 ], [ 3, 6 ] ]
|
|
340
|
+
gap> RightCayleyGraphSemigroup(S);
|
|
341
|
+
[ [ 1, 3 ], [ 4, 2 ], [ 5, 3 ], [ 4, 6 ], [ 5, 3 ], [ 4, 6 ] ]
|
|
342
|
+
gap> LeftCayleyDigraph(S);
|
|
343
|
+
<immutable digraph with 6 vertices, 12 edges>
|
|
344
|
+
gap> RightCayleyDigraph(S);
|
|
345
|
+
<immutable digraph with 6 vertices, 12 edges>
|
|
346
|
+
gap> S := GraphInverseSemigroup(CycleDigraph(2));
|
|
347
|
+
<infinite graph inverse semigroup with 2 vertices, 2 edges>
|
|
348
|
+
gap> LeftCayleyGraphSemigroup(S);
|
|
349
|
+
Error, the argument (a semigroup) is not finite
|
|
350
|
+
gap> RightCayleyGraphSemigroup(S);
|
|
351
|
+
Error, the argument (a semigroup) is not finite
|
|
352
|
+
gap> LeftCayleyDigraph(S);
|
|
353
|
+
Error, the argument (a semigroup) is not finite
|
|
354
|
+
gap> RightCayleyDigraph(S);
|
|
355
|
+
Error, the argument (a semigroup) is not finite
|
|
356
|
+
|
|
357
|
+
# Minimal/Factorization
|
|
358
|
+
gap> S := FreeBand(2);
|
|
359
|
+
<free band on the generators [ x1, x2 ]>
|
|
360
|
+
gap> T := Semigroup(S.1);;
|
|
361
|
+
gap> Factorization(T, 10);
|
|
362
|
+
Error, the 2nd argument (a positive integer) is greater than the size of the 1\
|
|
363
|
+
st argument (a semigroup)
|
|
364
|
+
gap> Factorization(T, 1);
|
|
365
|
+
[ 1 ]
|
|
366
|
+
gap> Factorization(T, T.1 ^ 10);
|
|
367
|
+
[ 1 ]
|
|
368
|
+
gap> MinimalFactorization(T, 1);
|
|
369
|
+
[ 1 ]
|
|
370
|
+
gap> MinimalFactorization(T, T.1 ^ 10);
|
|
371
|
+
[ 1 ]
|
|
372
|
+
gap> MinimalFactorization(T, S.2);
|
|
373
|
+
Error, the 2nd argument (a mult. elt.) is not an element of the 1st argument (\
|
|
374
|
+
a semigroup)
|
|
375
|
+
gap> Factorization(T, S.2);
|
|
376
|
+
Error, the 2nd argument (a mult. elt.) is not an element of the 1st argument (\
|
|
377
|
+
a semigroup)
|
|
378
|
+
|
|
379
|
+
# RulesOfSemigroup
|
|
380
|
+
gap> S := FreeBand(2);
|
|
381
|
+
<free band on the generators [ x1, x2 ]>
|
|
382
|
+
gap> RulesOfSemigroup(S);
|
|
383
|
+
[ [ [ 1, 1 ], [ 1 ] ], [ [ 2, 2 ], [ 2 ] ], [ [ 1, 2, 1, 2 ], [ 1, 2 ] ],
|
|
384
|
+
[ [ 2, 1, 2, 1 ], [ 2, 1 ] ] ]
|
|
385
|
+
gap> S := GraphInverseSemigroup(CycleDigraph(2));
|
|
386
|
+
<infinite graph inverse semigroup with 2 vertices, 2 edges>
|
|
387
|
+
gap> RulesOfSemigroup(S);
|
|
388
|
+
Error, the argument (a semigroup) is not finite
|
|
389
|
+
|
|
390
|
+
#
|
|
391
|
+
gap> SEMIGROUPS.StopTest();
|
|
392
|
+
gap> STOP_TEST("Semigroups package: standard/main/froidure-pin.tst");
|
|
@@ -0,0 +1,203 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/main/semiact.tst
|
|
4
|
+
#Y Copyright (C) 2016-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local I, S, T, acting, an, regular, x
|
|
12
|
+
gap> START_TEST("Semigroups package: standard/main/semiact.tst");
|
|
13
|
+
gap> LoadPackage("semigroups", false);;
|
|
14
|
+
|
|
15
|
+
#
|
|
16
|
+
gap> SEMIGROUPS.StartTest();
|
|
17
|
+
|
|
18
|
+
# ClosureSemigroup, for an acting semigroup
|
|
19
|
+
gap> S := Semigroup(IdentityTransformation);;
|
|
20
|
+
gap> Size(S);
|
|
21
|
+
1
|
|
22
|
+
gap> S := ClosureSemigroup(S, AsSet(FullTransformationMonoid(3)));;
|
|
23
|
+
gap> Size(S);
|
|
24
|
+
27
|
|
25
|
+
gap> S := Semigroup(Transformation([2, 1, 2]));;
|
|
26
|
+
gap> Size(S);
|
|
27
|
+
2
|
|
28
|
+
gap> S := ClosureSemigroup(S, AsSet(OrderEndomorphisms(5)));;
|
|
29
|
+
gap> Size(S);
|
|
30
|
+
576
|
|
31
|
+
gap> S := ClosureSemigroup(S, AsSet(OrderAntiEndomorphisms(5)));;
|
|
32
|
+
gap> Size(S);
|
|
33
|
+
1927
|
|
34
|
+
gap> S := Semigroup(IdentityTransformation);;
|
|
35
|
+
gap> S := ClosureSemigroup(S, Transformation([2, 1]));;
|
|
36
|
+
gap> S := AsSemigroup(IsTransformationSemigroup,
|
|
37
|
+
> Semigroup(Matrix(IsBooleanMat, [[0, 0], [0, 0]])));;
|
|
38
|
+
gap> S := ClosureSemigroup(S, AsSemigroup(IsTransformationSemigroup,
|
|
39
|
+
> RegularBooleanMatMonoid(3)));;
|
|
40
|
+
gap> # The next result is correct, since different embeddings are used
|
|
41
|
+
gap> # in the previous two lines.
|
|
42
|
+
gap> Size(S);
|
|
43
|
+
27874
|
|
44
|
+
gap> S := ClosureSemigroup(S, AsSemigroup(IsTransformationSemigroup,
|
|
45
|
+
> FullBooleanMatMonoid(3)));;
|
|
46
|
+
gap> Size(S);
|
|
47
|
+
27880
|
|
48
|
+
gap> S := InverseSemigroup(PartialPerm([1 .. 3]));;
|
|
49
|
+
gap> Size(S);
|
|
50
|
+
1
|
|
51
|
+
gap> S := ClosureInverseSemigroup(S, AsSet(SymmetricInverseMonoid(6)));;
|
|
52
|
+
gap> Size(S);
|
|
53
|
+
13327
|
|
54
|
+
gap> S := InverseSemigroup(PartialPerm([1, 2, 3, 4, 5, 6],
|
|
55
|
+
> [1, 3, 4, 5, 2, 6]));;
|
|
56
|
+
gap> Size(S);
|
|
57
|
+
4
|
|
58
|
+
gap> S := ClosureInverseSemigroup(S, AsSet(POPI(6)));;
|
|
59
|
+
gap> Size(S);
|
|
60
|
+
13327
|
|
61
|
+
gap> S := InverseSemigroup(PartialPerm([1 .. 3]));;
|
|
62
|
+
gap> S := ClosureInverseSemigroup(S, PartialPerm([2, 1]));;
|
|
63
|
+
gap> I := SemigroupIdeal(S, S.1);;
|
|
64
|
+
gap> ClosureInverseSemigroup(I, PartialPerm([1 .. 7]));;
|
|
65
|
+
|
|
66
|
+
# Random, for an acting semigroup
|
|
67
|
+
gap> S := Semigroup(FullTransformationMonoid(4), rec(acting := true));;
|
|
68
|
+
gap> IsActingSemigroup(S);
|
|
69
|
+
true
|
|
70
|
+
gap> Random(S);;
|
|
71
|
+
gap> Size(S);;
|
|
72
|
+
gap> Random(S);;
|
|
73
|
+
gap> IsRegularSemigroup(S);
|
|
74
|
+
true
|
|
75
|
+
gap> I := SemigroupIdeal(S, S.1);;
|
|
76
|
+
gap> Random(I);;
|
|
77
|
+
|
|
78
|
+
# Random, for an regular acting semigroup rep
|
|
79
|
+
gap> S := OrderEndomorphisms(5);;
|
|
80
|
+
gap> IsRegularActingSemigroupRep(S);
|
|
81
|
+
true
|
|
82
|
+
gap> Random(S);;
|
|
83
|
+
gap> NrRClasses(S);;
|
|
84
|
+
gap> Random(S);;
|
|
85
|
+
gap> NrLClasses(S);;
|
|
86
|
+
gap> Random(S);;
|
|
87
|
+
gap> I := SemigroupIdeal(S, S.1);;
|
|
88
|
+
gap> Random(I);;
|
|
89
|
+
|
|
90
|
+
# Random, for an inverse acting semigroup rep
|
|
91
|
+
gap> S := POPI(5);;
|
|
92
|
+
gap> IsInverseActingSemigroupRep(S) or not IsActingSemigroup(S);
|
|
93
|
+
true
|
|
94
|
+
gap> Random(S);;
|
|
95
|
+
gap> NrRClasses(S);;
|
|
96
|
+
gap> Random(S);;
|
|
97
|
+
gap> NrLClasses(S);;
|
|
98
|
+
gap> Random(S);;
|
|
99
|
+
gap> I := SemigroupIdeal(S, S.1);;
|
|
100
|
+
gap> Random(I);;
|
|
101
|
+
|
|
102
|
+
# \in, for an regular acting semigroup rep
|
|
103
|
+
gap> S := Semigroup(OrderEndomorphisms(5), rec(regular := true));;
|
|
104
|
+
gap> IsRegularActingSemigroupRep(S);
|
|
105
|
+
true
|
|
106
|
+
gap> Size(S);
|
|
107
|
+
126
|
|
108
|
+
gap> ConstantTransformation(6, 1) in S;
|
|
109
|
+
false
|
|
110
|
+
gap> PartialPerm([1]) in S;
|
|
111
|
+
false
|
|
112
|
+
gap> Enumerate(S);;
|
|
113
|
+
gap> S.1 in S;
|
|
114
|
+
true
|
|
115
|
+
gap> Transformation([2, 1]) in S;
|
|
116
|
+
false
|
|
117
|
+
gap> S := RegularSemigroup(Transformation([1, 1, 1]));;
|
|
118
|
+
gap> x := Transformation([1, 2, 2]);;
|
|
119
|
+
gap> x in S;
|
|
120
|
+
false
|
|
121
|
+
gap> S := RegularSemigroup(x);;
|
|
122
|
+
gap> MinimalIdeal(S);;
|
|
123
|
+
gap> Transformation([1, 1, 1]) in S;
|
|
124
|
+
false
|
|
125
|
+
gap> S := RegularSemigroup(x);;
|
|
126
|
+
gap> AsSet(S);;
|
|
127
|
+
gap> Transformation([1, 1, 1]) in S;
|
|
128
|
+
false
|
|
129
|
+
gap> S := RegularSemigroup(x);;
|
|
130
|
+
gap> Transformation([2, 3, 3]) in S;
|
|
131
|
+
false
|
|
132
|
+
gap> Transformation([1, 1, 2]) in S;
|
|
133
|
+
false
|
|
134
|
+
gap> x in S;
|
|
135
|
+
true
|
|
136
|
+
gap> Size(S);
|
|
137
|
+
1
|
|
138
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, AlternatingGroup(3));;
|
|
139
|
+
gap> S := DirectProduct(S, Semigroup(Transformation([1, 1, 1])));;
|
|
140
|
+
gap> S := Semigroup(S, Transformation([1, 1, 2]), rec(acting := true,
|
|
141
|
+
> regular := true));
|
|
142
|
+
<regular transformation semigroup of degree 6 with 3 generators>
|
|
143
|
+
gap> Number(FullTransformationMonoid(3), x -> x in S);
|
|
144
|
+
2
|
|
145
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, AlternatingGroup(3));;
|
|
146
|
+
gap> S := Semigroup(S, Transformation([1, 1, 2]), rec(acting := true,
|
|
147
|
+
> regular := true));
|
|
148
|
+
<regular transformation semigroup of degree 3 with 2 generators>
|
|
149
|
+
gap> Number(FullTransformationMonoid(3), x -> x in S);
|
|
150
|
+
24
|
|
151
|
+
gap> S := PartitionMonoid(3);;
|
|
152
|
+
gap> T := Bipartition([[1, -2], [2], [3, -3], [-1]]);;
|
|
153
|
+
gap> I := SemigroupIdeal(S, T);
|
|
154
|
+
<regular bipartition *-semigroup ideal of degree 3 with 1 generator>
|
|
155
|
+
gap> S := OrderEndomorphisms(7);;
|
|
156
|
+
gap> Transformation([2, 4, 4, 4, 7, 7, 7]) in S;
|
|
157
|
+
true
|
|
158
|
+
|
|
159
|
+
# \in, for an inverse acting semigroup rep
|
|
160
|
+
gap> S := InverseSemigroup(POPI(5));;
|
|
161
|
+
gap> IsInverseActingSemigroupRep(S) or not IsActingSemigroup(S);
|
|
162
|
+
true
|
|
163
|
+
gap> ConstantTransformation(6, 1) in S;
|
|
164
|
+
false
|
|
165
|
+
gap> PartialPerm([1]) in S;
|
|
166
|
+
true
|
|
167
|
+
gap> AsSSortedList(S);;
|
|
168
|
+
gap> Enumerate(S);;
|
|
169
|
+
gap> S.1 in S;
|
|
170
|
+
true
|
|
171
|
+
gap> PartialPerm([3, 5]) in S;
|
|
172
|
+
true
|
|
173
|
+
gap> PartialPerm([5, 3]) in S;
|
|
174
|
+
true
|
|
175
|
+
gap> PartialPerm([1 .. 6]) in S;
|
|
176
|
+
false
|
|
177
|
+
gap> PartialPerm([5, 4, 3, 2, 1]) in S;
|
|
178
|
+
false
|
|
179
|
+
gap> S := InverseSemigroup(PartialPerm([5], [5]));;
|
|
180
|
+
gap> IsInverseActingSemigroupRep(S) or not IsActingSemigroup(S);
|
|
181
|
+
true
|
|
182
|
+
gap> PartialPerm([2, 1]) in S;
|
|
183
|
+
false
|
|
184
|
+
gap> S := InverseSemigroup(PartialPerm([0, 3, 2]));;
|
|
185
|
+
gap> IsInverseActingSemigroupRep(S) or not IsActingSemigroup(S);
|
|
186
|
+
true
|
|
187
|
+
gap> MinimalIdeal(S);;
|
|
188
|
+
gap> PartialPerm([]) in S;
|
|
189
|
+
false
|
|
190
|
+
gap> PartialPerm([2, 0, 3]) in S;
|
|
191
|
+
false
|
|
192
|
+
gap> S := InverseSemigroup([
|
|
193
|
+
> PartialPerm([2], [3]), PartialPerm([2, 3], [1, 4]),
|
|
194
|
+
> PartialPerm([2, 3], [2, 1]), PartialPerm([2, 4], [2, 3]),
|
|
195
|
+
> PartialPerm([2, 3], [3, 4]), PartialPerm([1, 3], [2, 3])]);;
|
|
196
|
+
gap> IsInverseActingSemigroupRep(S) or not IsActingSemigroup(S);
|
|
197
|
+
true
|
|
198
|
+
gap> Number(SymmetricInverseMonoid(4), x -> x in S) = Size(S);
|
|
199
|
+
true
|
|
200
|
+
|
|
201
|
+
#
|
|
202
|
+
gap> SEMIGROUPS.StopTest();
|
|
203
|
+
gap> STOP_TEST("Semigroups package: standard/main/semiact.tst");
|