passagemath-gap-pkg-semigroups 10.6.30__cp312-abi3-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1158 -0
- gap/pkg/semigroups/config.status +1131 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,1436 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/greens/generic.tst
|
|
4
|
+
#Y Copyright (C) 2016-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local D, DD, DDD, H, J, L, L3, LL, R, RR, RRR, S, S1, T, acting, an, gens, id
|
|
12
|
+
#@local iter, m1, m2, x, y
|
|
13
|
+
gap> START_TEST("Semigroups package: standard/greens/generic.tst");
|
|
14
|
+
gap> LoadPackage("semigroups", false);;
|
|
15
|
+
|
|
16
|
+
#
|
|
17
|
+
gap> SEMIGROUPS.StartTest();
|
|
18
|
+
|
|
19
|
+
# Test IsXTrivial (for Green's classes)
|
|
20
|
+
gap> S := Semigroup(
|
|
21
|
+
> [Matrix(GF(5), [[0 * Z(5), Z(5) ^ 3], [Z(5) ^ 2, Z(5) ^ 0]]),
|
|
22
|
+
> Matrix(GF(5), [[Z(5) ^ 0, Z(5)], [Z(5), Z(5) ^ 3]]),
|
|
23
|
+
> Matrix(GF(5), [[Z(5) ^ 0, Z(5) ^ 3], [0 * Z(5), 0 * Z(5)]]),
|
|
24
|
+
> Matrix(GF(5), [[Z(5), Z(5) ^ 0], [0 * Z(5), Z(5) ^ 3]]),
|
|
25
|
+
> Matrix(GF(5), [[Z(5), Z(5) ^ 0], [Z(5) ^ 0, Z(5)]]),
|
|
26
|
+
> Matrix(GF(5), [[Z(5) ^ 2, 0 * Z(5)], [Z(5), 0 * Z(5)]]),
|
|
27
|
+
> Matrix(GF(5), [[Z(5) ^ 2, Z(5)], [0 * Z(5), 0 * Z(5)]])]);;
|
|
28
|
+
gap> D := GreensDClassOfElement(S,
|
|
29
|
+
> Matrix(GF(5), [[Z(5) ^ 3, Z(5) ^ 2], [Z(5) ^ 3, Z(5)]]));
|
|
30
|
+
<Green's D-class: <matrix object of dimensions 2x2 over GF(5)>>
|
|
31
|
+
gap> IsHTrivial(D);
|
|
32
|
+
false
|
|
33
|
+
gap> IsLTrivial(D);
|
|
34
|
+
false
|
|
35
|
+
gap> IsRTrivial(D);
|
|
36
|
+
false
|
|
37
|
+
|
|
38
|
+
# Test \= (for Green's relations)
|
|
39
|
+
gap> S := FullBooleanMatMonoid(3);;
|
|
40
|
+
gap> T := FullBooleanMatMonoid(2);;
|
|
41
|
+
gap> GreensRRelation(S) = GreensRRelation(T);
|
|
42
|
+
false
|
|
43
|
+
gap> GreensRRelation(S) = GreensLRelation(S);
|
|
44
|
+
false
|
|
45
|
+
gap> GreensLRelation(S) = GreensRRelation(S);
|
|
46
|
+
false
|
|
47
|
+
gap> GreensHRelation(S) = GreensRRelation(S);
|
|
48
|
+
false
|
|
49
|
+
gap> GreensDRelation(S) = GreensRRelation(S);
|
|
50
|
+
false
|
|
51
|
+
gap> GreensJRelation(S) = GreensRRelation(S);
|
|
52
|
+
false
|
|
53
|
+
gap> S := FreeInverseSemigroup(3);;
|
|
54
|
+
gap> GreensJRelation(S) = GreensRRelation(S);
|
|
55
|
+
false
|
|
56
|
+
|
|
57
|
+
# Test AsSSortedList, 1/1
|
|
58
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
59
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
60
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
61
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
62
|
+
gap> L := LClass(S, PartialPerm([1, 7], [3, 5]));;
|
|
63
|
+
gap> AsSet(L);
|
|
64
|
+
[ [1,3][2,5], [1,5][2,3], [2,3,5], [2,5](3), [1,3,5], [1,5](3),
|
|
65
|
+
<identity partial perm on [ 3, 5 ]>, (3,5), [2,3](5), [2,5,3], [1,3](5),
|
|
66
|
+
[1,5,3], [7,5](3), [7,3,5], [1,3][7,5], [1,5][7,3] ]
|
|
67
|
+
|
|
68
|
+
# Test \< and \=, 1/1
|
|
69
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
70
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
71
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
72
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
73
|
+
gap> L := LClass(S, PartialPerm([1, 7], [3, 5]));;
|
|
74
|
+
gap> LL := LClass(S, S.1);;
|
|
75
|
+
gap> LL = L;
|
|
76
|
+
false
|
|
77
|
+
gap> L < L;
|
|
78
|
+
false
|
|
79
|
+
gap> L < LL;
|
|
80
|
+
true
|
|
81
|
+
gap> LL < L;
|
|
82
|
+
false
|
|
83
|
+
gap> D := DClass(L);;
|
|
84
|
+
gap> L = D;
|
|
85
|
+
false
|
|
86
|
+
gap> L < D;
|
|
87
|
+
false
|
|
88
|
+
|
|
89
|
+
# Test \< for H-classes Issue #198
|
|
90
|
+
gap> S := FullTropicalMinPlusMonoid(2, 2);
|
|
91
|
+
<monoid of 2x2 tropical min-plus matrices with 6 generators>
|
|
92
|
+
gap> H := Set(GeneratorsOfSemigroup(S), x -> HClass(S, x));
|
|
93
|
+
[ <Green's H-class: Matrix(IsTropicalMinPlusMatrix, [[0, infinity],
|
|
94
|
+
[infinity, 0]], 2)>,
|
|
95
|
+
<Green's H-class: Matrix(IsTropicalMinPlusMatrix, [[infinity, 0], [0, 0]], 2
|
|
96
|
+
)>,
|
|
97
|
+
<Green's H-class: Matrix(IsTropicalMinPlusMatrix, [[infinity, 0], [0, 1]], 2
|
|
98
|
+
)>,
|
|
99
|
+
<Green's H-class: Matrix(IsTropicalMinPlusMatrix, [[infinity, 0], [0, 2]], 2
|
|
100
|
+
)>,
|
|
101
|
+
<Green's H-class: Matrix(IsTropicalMinPlusMatrix, [[infinity, 0],
|
|
102
|
+
[1, infinity]], 2)>,
|
|
103
|
+
<Green's H-class: Matrix(IsTropicalMinPlusMatrix, [[infinity, 0],
|
|
104
|
+
[infinity, infinity]], 2)> ]
|
|
105
|
+
|
|
106
|
+
# Test \< for H-classes Issue #198
|
|
107
|
+
gap> gens := [
|
|
108
|
+
> Transformation([1, 3, 4, 1, 5, 5, 5]),
|
|
109
|
+
> Transformation([1, 4, 1, 3, 5, 5, 5]),
|
|
110
|
+
> Transformation([3, 3, 1, 2, 5, 5, 5]),
|
|
111
|
+
> Transformation([4, 4, 2, 3, 5, 5, 5]),
|
|
112
|
+
> Transformation([1, 1, 3, 4, 5, 5, 6]),
|
|
113
|
+
> Transformation([1, 2, 2]),
|
|
114
|
+
> Transformation([1, 4, 3, 4]),
|
|
115
|
+
> Transformation([1, 2, 4, 4])];;
|
|
116
|
+
gap> S := Semigroup(gens);
|
|
117
|
+
<transformation semigroup of degree 7 with 8 generators>
|
|
118
|
+
gap> D := DClass(S, gens[1]);;
|
|
119
|
+
gap> ForAll(gens{[1 .. 4]}, x -> x in D);
|
|
120
|
+
true
|
|
121
|
+
gap> NrRClasses(D);
|
|
122
|
+
6
|
|
123
|
+
gap> R := List(gens{[1 .. 3]}, x -> RClass(S, x));;
|
|
124
|
+
gap> IsDuplicateFreeList(R);
|
|
125
|
+
true
|
|
126
|
+
gap> x := Difference(RClasses(D), R);;
|
|
127
|
+
gap> Length(x);
|
|
128
|
+
3
|
|
129
|
+
|
|
130
|
+
# Test MultiplicativeNeutralElement, One, for an H-class, 1
|
|
131
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
132
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
133
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
134
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
135
|
+
gap> H := HClass(S, S.4);;
|
|
136
|
+
gap> MultiplicativeNeutralElement(H);
|
|
137
|
+
fail
|
|
138
|
+
gap> OneImmutable(H);
|
|
139
|
+
<identity partial perm on [ 1, 2, 3, 4, 5, 6, 7 ]>
|
|
140
|
+
gap> H := HClass(S, PartialPerm([3, 5], [3, 5]));;
|
|
141
|
+
gap> MultiplicativeNeutralElement(H);
|
|
142
|
+
<identity partial perm on [ 3, 5 ]>
|
|
143
|
+
gap> OneImmutable(H);
|
|
144
|
+
<identity partial perm on [ 3, 5 ]>
|
|
145
|
+
|
|
146
|
+
# Test MultiplicativeNeutralElement, One, for an H-class, 2
|
|
147
|
+
gap> S := Semigroup([
|
|
148
|
+
> Transformation([1, 1, 3, 2, 4]),
|
|
149
|
+
> Transformation([1, 5, 5, 2, 5]),
|
|
150
|
+
> Transformation([4, 1, 3, 5, 5])]);;
|
|
151
|
+
gap> H := HClass(S, S.1);;
|
|
152
|
+
gap> MultiplicativeNeutralElement(H);
|
|
153
|
+
fail
|
|
154
|
+
gap> OneImmutable(H);
|
|
155
|
+
IdentityTransformation
|
|
156
|
+
gap> H := HClass(S, Transformation([1, 1]));;
|
|
157
|
+
gap> MultiplicativeNeutralElement(H);
|
|
158
|
+
Transformation( [ 1, 1 ] )
|
|
159
|
+
gap> OneImmutable(H);
|
|
160
|
+
Transformation( [ 1, 1 ] )
|
|
161
|
+
|
|
162
|
+
# Test StructureDescription, for an H-class, 1/1
|
|
163
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
164
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
165
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
166
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
167
|
+
gap> H := HClass(S, PartialPerm([3, 5], [3, 5]));;
|
|
168
|
+
gap> StructureDescription(H);
|
|
169
|
+
"C2"
|
|
170
|
+
gap> H := HClass(S, S.4);;
|
|
171
|
+
gap> StructureDescription(H);
|
|
172
|
+
fail
|
|
173
|
+
|
|
174
|
+
# Test DClassOfLClass, 1/1
|
|
175
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
176
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
177
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
178
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
179
|
+
gap> L := LClass(S, PartialPerm([1, 7], [3, 5]));;
|
|
180
|
+
gap> Size(L);
|
|
181
|
+
16
|
|
182
|
+
gap> D := DClass(L);;
|
|
183
|
+
gap> Size(D);
|
|
184
|
+
128
|
|
185
|
+
gap> DD := DClassOfLClass(L);;
|
|
186
|
+
gap> DD = D;
|
|
187
|
+
true
|
|
188
|
+
gap> DDD := DClass(S, Representative(L));;
|
|
189
|
+
gap> DDD = DD;
|
|
190
|
+
true
|
|
191
|
+
|
|
192
|
+
# Test DClassOfRClass, 1/1
|
|
193
|
+
gap> S := Semigroup([Transformation([2, 2, 1, 2, 4, 4]),
|
|
194
|
+
> Transformation([2, 6, 6, 5, 1, 4]), Transformation([3, 2, 5, 5, 6, 4]),
|
|
195
|
+
> Transformation([3, 5, 3, 4, 1]), Transformation([4, 2, 3, 1, 4, 2]),
|
|
196
|
+
> Transformation([4, 4, 2, 6, 6, 3]), Transformation([5, 5, 5, 6, 5, 4]),
|
|
197
|
+
> Transformation([6, 3, 1, 3, 1, 6])]);;
|
|
198
|
+
gap> R := RClass(S, Transformation([4, 4, 5, 4, 4, 4]));;
|
|
199
|
+
gap> Size(R);
|
|
200
|
+
30
|
|
201
|
+
gap> D := DClass(R);;
|
|
202
|
+
gap> Size(D);
|
|
203
|
+
930
|
|
204
|
+
gap> DD := DClassOfRClass(R);;
|
|
205
|
+
gap> DD = D;
|
|
206
|
+
true
|
|
207
|
+
gap> DDD := DClass(S, Representative(R));;
|
|
208
|
+
gap> DDD = DD;
|
|
209
|
+
true
|
|
210
|
+
|
|
211
|
+
# Test DClassOfHClass, 1/1
|
|
212
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
213
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
214
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
215
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
216
|
+
gap> H := HClass(S, S.4);;
|
|
217
|
+
gap> Size(H);
|
|
218
|
+
1
|
|
219
|
+
gap> D := DClass(H);;
|
|
220
|
+
gap> Size(D);
|
|
221
|
+
1
|
|
222
|
+
gap> DD := DClassOfHClass(H);;
|
|
223
|
+
gap> DD = D;
|
|
224
|
+
true
|
|
225
|
+
gap> DDD := DClass(S, Representative(H));;
|
|
226
|
+
gap> DDD = DD;
|
|
227
|
+
true
|
|
228
|
+
|
|
229
|
+
# Test LClassOfHClass, 1/1
|
|
230
|
+
gap> S := Monoid(
|
|
231
|
+
> [Bipartition([[1, 2, 3, 4, 5, -1], [6, -5], [-2, -3, -4], [-6]]),
|
|
232
|
+
> Bipartition([[1, 2, 3, 5, -3, -4, -5], [4, 6, -2], [-1, -6]]),
|
|
233
|
+
> Bipartition([[1, 2, -5, -6], [3, 5, 6, -1, -4], [4, -2, -3]]),
|
|
234
|
+
> Bipartition([[1, 3, -3], [2, 5, 6, -2], [4, -1, -4, -5], [-6]]),
|
|
235
|
+
> Bipartition([[1, 3, -1, -6], [2, 6, -2], [4, -3, -5], [5], [-4]]),
|
|
236
|
+
> Bipartition([[1, -3], [2, 3, 4, 5, -1, -4], [6, -2, -6], [-5]]),
|
|
237
|
+
> Bipartition([[1, 5, -5, -6], [2, 3, -1, -2, -4], [4, 6, -3]]),
|
|
238
|
+
> Bipartition([[1, 4, 6, -1, -2, -4], [2, 5, -5, -6], [3], [-3]]),
|
|
239
|
+
> Bipartition([[1, 5, -1, -3], [2, 4, 6], [3, -2, -6], [-4, -5]]),
|
|
240
|
+
> Bipartition([[1, 5, -2], [2, -1, -5], [3, 4, -6], [6, -3], [-4]])]);;
|
|
241
|
+
gap> H := HClass(S, S.1 * S.5 * S.8);;
|
|
242
|
+
gap> Size(H);
|
|
243
|
+
1
|
|
244
|
+
gap> L := LClass(H);;
|
|
245
|
+
gap> Size(L);
|
|
246
|
+
26
|
|
247
|
+
gap> LL := LClassOfHClass(H);;
|
|
248
|
+
gap> LL = L;
|
|
249
|
+
true
|
|
250
|
+
gap> L3 := LClass(S, Representative(H));;
|
|
251
|
+
gap> L3 = LL;
|
|
252
|
+
true
|
|
253
|
+
|
|
254
|
+
# Test RClassOfHClass, 1/1
|
|
255
|
+
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3), [
|
|
256
|
+
> [(), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
257
|
+
> [0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
258
|
+
> [0, 0, (), 0, (1, 3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
259
|
+
> [0, 0, 0, (), (1, 3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
260
|
+
> [0, 0, (1, 3), (2, 3), (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
261
|
+
> 0],
|
|
262
|
+
> [0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
263
|
+
> [0, 0, 0, 0, 0, 0, (), (2, 3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
264
|
+
> [0, 0, 0, 0, 0, 0, (1, 3, 2), (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
265
|
+
> 0],
|
|
266
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
267
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, (), (1, 3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
268
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
269
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, (1, 2), 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
270
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
271
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (1, 3), (), (), 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
272
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), (1, 2), 0, 0, 0, 0, 0, 0, 0],
|
|
273
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0],
|
|
274
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0],
|
|
275
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), (1, 2, 3), (1, 3, 2),
|
|
276
|
+
> 0, 0, 0],
|
|
277
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0],
|
|
278
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0],
|
|
279
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), (1, 3), 0],
|
|
280
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0],
|
|
281
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ()]]);;
|
|
282
|
+
gap> S := Semigroup(S);
|
|
283
|
+
<subsemigroup of 23x23 Rees 0-matrix semigroup with 46 generators>
|
|
284
|
+
gap> Size(S);
|
|
285
|
+
3175
|
|
286
|
+
gap> H := HClass(S, S.1);;
|
|
287
|
+
gap> Size(H);
|
|
288
|
+
6
|
|
289
|
+
gap> R := RClass(H);;
|
|
290
|
+
gap> Size(R);
|
|
291
|
+
138
|
|
292
|
+
gap> RR := RClassOfHClass(H);;
|
|
293
|
+
gap> RR = R;
|
|
294
|
+
true
|
|
295
|
+
gap> RRR := RClass(S, Representative(H));;
|
|
296
|
+
gap> RRR = RR;
|
|
297
|
+
true
|
|
298
|
+
|
|
299
|
+
# Test GreensDClassOfElement, fail, 1/1
|
|
300
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
301
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
302
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
303
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])], rec(acting := false));;
|
|
304
|
+
gap> GreensDClassOfElement(S, PartialPerm([19]));
|
|
305
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
306
|
+
t argument (a Green's relation)
|
|
307
|
+
|
|
308
|
+
# Test GreensDClassOfElementNC, 1/1
|
|
309
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
310
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
311
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
312
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])], rec(acting := false));;
|
|
313
|
+
gap> D := GreensDClassOfElementNC(S, PartialPerm([19]));;
|
|
314
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
315
|
+
t argument (a Green's relation)
|
|
316
|
+
|
|
317
|
+
# Test GreensJClassOfElement, 1/1
|
|
318
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
319
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
320
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
321
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])], rec(acting := false));;
|
|
322
|
+
gap> J := GreensJClassOfElement(S, S.2);
|
|
323
|
+
<Green's D-class: [6,4,7,1,2,5](3)>
|
|
324
|
+
|
|
325
|
+
# Test GreensL/RClassOfElement, fail, 1/1
|
|
326
|
+
gap> S := Semigroup([Transformation([2, 2, 1, 2, 4, 4]),
|
|
327
|
+
> Transformation([2, 6, 6, 5, 1, 4]), Transformation([3, 2, 5, 5, 6, 4]),
|
|
328
|
+
> Transformation([3, 5, 3, 4, 1]), Transformation([4, 2, 3, 1, 4, 2]),
|
|
329
|
+
> Transformation([4, 4, 2, 6, 6, 3]), Transformation([5, 5, 5, 6, 5, 4]),
|
|
330
|
+
> Transformation([6, 3, 1, 3, 1, 6])], rec(acting := false));;
|
|
331
|
+
gap> RClass(S, ConstantTransformation(7, 7));
|
|
332
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
333
|
+
t argument (a Green's relation)
|
|
334
|
+
gap> LClass(S, ConstantTransformation(7, 7));
|
|
335
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
336
|
+
t argument (a Green's relation)
|
|
337
|
+
gap> HClass(S, ConstantTransformation(7, 7));
|
|
338
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
339
|
+
t argument (a Green's relation)
|
|
340
|
+
|
|
341
|
+
# Test GreensL/RClassOfElementNC, 1/1
|
|
342
|
+
gap> S := Semigroup([Transformation([2, 2, 1, 2, 4, 4]),
|
|
343
|
+
> Transformation([2, 6, 6, 5, 1, 4]), Transformation([3, 2, 5, 5, 6, 4]),
|
|
344
|
+
> Transformation([3, 5, 3, 4, 1]), Transformation([4, 2, 3, 1, 4, 2]),
|
|
345
|
+
> Transformation([4, 4, 2, 6, 6, 3]), Transformation([5, 5, 5, 6, 5, 4]),
|
|
346
|
+
> Transformation([6, 3, 1, 3, 1, 6])], rec(acting := false));;
|
|
347
|
+
gap> R := RClassNC(S, S.1);
|
|
348
|
+
<Green's R-class: Transformation( [ 2, 2, 1, 2, 4, 4 ] )>
|
|
349
|
+
gap> Size(R);
|
|
350
|
+
120
|
|
351
|
+
gap> L := LClassNC(S, S.1);
|
|
352
|
+
<Green's L-class: Transformation( [ 2, 2, 1, 2, 4, 4 ] )>
|
|
353
|
+
gap> Size(L);
|
|
354
|
+
396
|
|
355
|
+
gap> H := HClassNC(S, S.1);
|
|
356
|
+
<Green's H-class: Transformation( [ 2, 2, 1, 2, 4, 4 ] )>
|
|
357
|
+
gap> Size(H);
|
|
358
|
+
6
|
|
359
|
+
|
|
360
|
+
# Test GreensL/RClassOfElement, for a D-class, 1/1
|
|
361
|
+
gap> S := Monoid(
|
|
362
|
+
> [Bipartition([[1, 2, 3, 4, 5, -1], [6, -5], [-2, -3, -4], [-6]]),
|
|
363
|
+
> Bipartition([[1, 2, 3, 5, -3, -4, -5], [4, 6, -2], [-1, -6]]),
|
|
364
|
+
> Bipartition([[1, 2, -5, -6], [3, 5, 6, -1, -4], [4, -2, -3]]),
|
|
365
|
+
> Bipartition([[1, 3, -3], [2, 5, 6, -2], [4, -1, -4, -5], [-6]]),
|
|
366
|
+
> Bipartition([[1, 3, -1, -6], [2, 6, -2], [4, -3, -5], [5], [-4]]),
|
|
367
|
+
> Bipartition([[1, -3], [2, 3, 4, 5, -1, -4], [6, -2, -6], [-5]]),
|
|
368
|
+
> Bipartition([[1, 5, -5, -6], [2, 3, -1, -2, -4], [4, 6, -3]]),
|
|
369
|
+
> Bipartition([[1, 4, 6, -1, -2, -4], [2, 5, -5, -6], [3], [-3]]),
|
|
370
|
+
> Bipartition([[1, 5, -1, -3], [2, 4, 6], [3, -2, -6], [-4, -5]]),
|
|
371
|
+
> Bipartition([[1, 5, -2], [2, -1, -5], [3, 4, -6], [6, -3], [-4]])],
|
|
372
|
+
> rec(acting := false));;
|
|
373
|
+
gap> D := DClass(S, S.4 * S.5);;
|
|
374
|
+
gap> Size(D);
|
|
375
|
+
12
|
|
376
|
+
gap> x := Bipartition([[1, 3, 4, -2], [2, 5, 6, -1, -6],
|
|
377
|
+
> [-3, -5], [-4]]);;
|
|
378
|
+
gap> R := RClass(D, x);;
|
|
379
|
+
gap> Size(R);
|
|
380
|
+
12
|
|
381
|
+
gap> L := LClass(D, x);;
|
|
382
|
+
gap> Size(L);
|
|
383
|
+
1
|
|
384
|
+
gap> LClass(D, IdentityBipartition(8));
|
|
385
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
386
|
+
t argument (a Green's relation)
|
|
387
|
+
gap> RClass(D, IdentityBipartition(8));
|
|
388
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
389
|
+
t argument (a Green's relation)
|
|
390
|
+
gap> x := Bipartition([[1, 4, -1, -2, -6], [2, 3, 5, -4],
|
|
391
|
+
> [6, -3], [-5]]);;
|
|
392
|
+
gap> LClassNC(D, x);
|
|
393
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
394
|
+
t argument (a Green's relation)
|
|
395
|
+
gap> RClassNC(D, x);
|
|
396
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
397
|
+
t argument (a Green's relation)
|
|
398
|
+
|
|
399
|
+
# Test GreensHClassOfElement, 1/1
|
|
400
|
+
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3), [
|
|
401
|
+
> [(), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
402
|
+
> [0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
403
|
+
> [0, 0, (), 0, (1, 3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
404
|
+
> [0, 0, 0, (), (1, 3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
405
|
+
> [0, 0, (1, 3), (2, 3), (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
406
|
+
> 0],
|
|
407
|
+
> [0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
408
|
+
> [0, 0, 0, 0, 0, 0, (), (2, 3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
409
|
+
> [0, 0, 0, 0, 0, 0, (1, 3, 2), (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
410
|
+
> 0],
|
|
411
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
412
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, (), (1, 3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
413
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
414
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, (1, 2), 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
415
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
416
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (1, 3), (), (), 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
417
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), (1, 2), 0, 0, 0, 0, 0, 0, 0],
|
|
418
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0, 0],
|
|
419
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0, 0, 0],
|
|
420
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), (1, 2, 3), (1, 3, 2),
|
|
421
|
+
> 0, 0, 0],
|
|
422
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0, 0],
|
|
423
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0, 0, 0],
|
|
424
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), (1, 3), 0],
|
|
425
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (), 0],
|
|
426
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ()]]);;
|
|
427
|
+
gap> S := Semigroup(S, rec(acting := false));;
|
|
428
|
+
gap> D := DClass(S, S.4 * S.5);;
|
|
429
|
+
gap> H := HClass(D, MultiplicativeZero(S));
|
|
430
|
+
<Green's H-class: 0>
|
|
431
|
+
gap> H := HClassNC(D, MultiplicativeZero(S));
|
|
432
|
+
<Green's H-class: 0>
|
|
433
|
+
gap> H := HClass(D, IdentityTransformation);
|
|
434
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the source of the 1s\
|
|
435
|
+
t argument (a Green's relation)
|
|
436
|
+
|
|
437
|
+
# Test GreensHClassOfElement(L/R-class, x), 1/1
|
|
438
|
+
gap> S := Semigroup([Transformation([2, 2, 1, 2, 4, 4]),
|
|
439
|
+
> Transformation([2, 6, 6, 5, 1, 4]), Transformation([3, 2, 5, 5, 6, 4]),
|
|
440
|
+
> Transformation([3, 5, 3, 4, 1]), Transformation([4, 2, 3, 1, 4, 2]),
|
|
441
|
+
> Transformation([4, 4, 2, 6, 6, 3]), Transformation([5, 5, 5, 6, 5, 4]),
|
|
442
|
+
> Transformation([6, 3, 1, 3, 1, 6])], rec(acting := false));;
|
|
443
|
+
gap> R := RClass(S, S.3 * S.1 * S.8);;
|
|
444
|
+
gap> Size(R);
|
|
445
|
+
30
|
|
446
|
+
gap> Size(HClass(R, S.3 * S.1 * S.8));
|
|
447
|
+
2
|
|
448
|
+
gap> L := LClass(S, S.3 * S.1 * S.8);;
|
|
449
|
+
gap> Size(L);
|
|
450
|
+
62
|
|
451
|
+
gap> Size(HClass(L, S.3 * S.1 * S.8));
|
|
452
|
+
2
|
|
453
|
+
|
|
454
|
+
# Test \in, for D-class, 1/4
|
|
455
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
456
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
457
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
458
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
459
|
+
gap> D := DClass(S, S.1);;
|
|
460
|
+
gap> ForAll(D, x -> x in D);
|
|
461
|
+
true
|
|
462
|
+
gap> Size(D);
|
|
463
|
+
1
|
|
464
|
+
gap> Number(S, x -> x in D);
|
|
465
|
+
1
|
|
466
|
+
|
|
467
|
+
# Test \in, for D-class, 2/4
|
|
468
|
+
gap> S := OrderEndomorphisms(5);;
|
|
469
|
+
gap> x := Transformation([1, 2, 2, 4, 5]);;
|
|
470
|
+
gap> D := DClass(S, x);;
|
|
471
|
+
gap> x in D;
|
|
472
|
+
true
|
|
473
|
+
gap> Transformation([1, 2, 1, 4, 5]) in D;
|
|
474
|
+
false
|
|
475
|
+
|
|
476
|
+
# Test \in, for D-class, 3/4
|
|
477
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[0, 0, 0, ()], [
|
|
478
|
+
> (), 0, 0, 0], [(), (), 0, 0], [0, (), (), 0], [0, 0, (), ()]]);;
|
|
479
|
+
gap> S := Semigroup(S);;
|
|
480
|
+
gap> D := DClass(S, S.1);;
|
|
481
|
+
gap> Size(S);
|
|
482
|
+
41
|
|
483
|
+
gap> Size(D) = Size(S) - 1;
|
|
484
|
+
true
|
|
485
|
+
gap> ForAll(D, x -> x in D);
|
|
486
|
+
true
|
|
487
|
+
|
|
488
|
+
# Test \in, for D-class, 4/4
|
|
489
|
+
gap> x := Transformation([2, 3, 4, 1, 5, 5]);;
|
|
490
|
+
gap> S := Semigroup(x);
|
|
491
|
+
<commutative transformation semigroup of degree 6 with 1 generator>
|
|
492
|
+
gap> y := Transformation([2, 1, 3, 4, 5, 5]);;
|
|
493
|
+
gap> D := DClass(S, x);;
|
|
494
|
+
gap> y in D;
|
|
495
|
+
false
|
|
496
|
+
|
|
497
|
+
# Test \in, for L-class, 1/5
|
|
498
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
499
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
500
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
501
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
502
|
+
gap> L := LClass(S, S.1);;
|
|
503
|
+
gap> ForAll(L, x -> x in L);
|
|
504
|
+
true
|
|
505
|
+
gap> Size(L);
|
|
506
|
+
1
|
|
507
|
+
gap> Number(S, x -> x in L);
|
|
508
|
+
1
|
|
509
|
+
|
|
510
|
+
# Test \in, for L-class, 2/5
|
|
511
|
+
gap> S := OrderEndomorphisms(5);;
|
|
512
|
+
gap> x := Transformation([1, 2, 2, 4, 5]);;
|
|
513
|
+
gap> L := LClass(S, x);;
|
|
514
|
+
gap> x in L;
|
|
515
|
+
true
|
|
516
|
+
gap> Transformation([1, 2, 1, 4, 5]) in L;
|
|
517
|
+
false
|
|
518
|
+
|
|
519
|
+
# Test \in, for L-class, 3/5
|
|
520
|
+
gap> S := ReesZeroMatrixSemigroup(Group([(1, 2)]),
|
|
521
|
+
> [[0, 0, 0, ()],
|
|
522
|
+
> [(), 0, 0, 0],
|
|
523
|
+
> [(), (), 0, 0],
|
|
524
|
+
> [0, (), (), 0],
|
|
525
|
+
> [0, 0, (), ()]]);;
|
|
526
|
+
gap> S := Semigroup(S);;
|
|
527
|
+
gap> L := LClass(S, S.1);;
|
|
528
|
+
gap> Size(S);
|
|
529
|
+
41
|
|
530
|
+
gap> ForAll(L, x -> x in L);
|
|
531
|
+
true
|
|
532
|
+
|
|
533
|
+
# Test \in, for L-class, 4/5
|
|
534
|
+
gap> x := Transformation([2, 3, 4, 1, 5, 5]);;
|
|
535
|
+
gap> S := Semigroup(x);
|
|
536
|
+
<commutative transformation semigroup of degree 6 with 1 generator>
|
|
537
|
+
gap> y := Transformation([2, 1, 3, 4, 5, 5]);;
|
|
538
|
+
gap> L := LClass(S, x);;
|
|
539
|
+
gap> y in L;
|
|
540
|
+
false
|
|
541
|
+
|
|
542
|
+
# Test \in, for L-class, 5/5
|
|
543
|
+
gap> x := Transformation([1, 1, 3, 4, 5, 5]);;
|
|
544
|
+
gap> S := Semigroup(x);;
|
|
545
|
+
gap> y := Transformation([1, 1, 4, 3, 5, 5]);;
|
|
546
|
+
gap> L := LClass(S, x);;
|
|
547
|
+
gap> y in L;
|
|
548
|
+
false
|
|
549
|
+
|
|
550
|
+
# Test \in, for R-class, 1/6
|
|
551
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
552
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
553
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
554
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
555
|
+
gap> R := LClass(S, S.1);;
|
|
556
|
+
gap> ForAll(R, x -> x in R);
|
|
557
|
+
true
|
|
558
|
+
gap> Size(R);
|
|
559
|
+
1
|
|
560
|
+
gap> Number(S, x -> x in R);
|
|
561
|
+
1
|
|
562
|
+
|
|
563
|
+
# Test \in, for R-class, 2/6
|
|
564
|
+
gap> x := Transformation([1, 1, 3, 4, 5, 5]);;
|
|
565
|
+
gap> S := Semigroup(x);;
|
|
566
|
+
gap> y := Transformation([1, 1, 4, 3, 5, 5]);;
|
|
567
|
+
gap> R := RClass(S, x);;
|
|
568
|
+
gap> y in R;
|
|
569
|
+
false
|
|
570
|
+
|
|
571
|
+
# Test \in, for R-class, 3/6
|
|
572
|
+
gap> x := Transformation([1, 1, 3, 4, 5, 5]);;
|
|
573
|
+
gap> S := Semigroup(x);;
|
|
574
|
+
gap> y := Transformation([1, 1, 3, 3, 5, 5]);;
|
|
575
|
+
gap> R := RClass(S, x);;
|
|
576
|
+
gap> y in R;
|
|
577
|
+
false
|
|
578
|
+
|
|
579
|
+
# Test \in, for R-class, 4/6
|
|
580
|
+
gap> x := Transformation([1, 1, 3, 4, 5, 5]);;
|
|
581
|
+
gap> S := Semigroup(x);;
|
|
582
|
+
gap> y := Transformation([1, 1, 2, 3, 5, 5]);;
|
|
583
|
+
gap> R := RClass(S, x);;
|
|
584
|
+
gap> y in R;
|
|
585
|
+
false
|
|
586
|
+
|
|
587
|
+
# Test \in, for R-class, 5/6
|
|
588
|
+
gap> S := OrderEndomorphisms(5);;
|
|
589
|
+
gap> x := Transformation([1, 2, 2, 4, 5]);;
|
|
590
|
+
gap> R := RClass(S, x);;
|
|
591
|
+
gap> x in R;
|
|
592
|
+
true
|
|
593
|
+
gap> Transformation([1, 2, 1, 4, 5]) in R;
|
|
594
|
+
false
|
|
595
|
+
|
|
596
|
+
# Test \in, for R-class, 6/6
|
|
597
|
+
gap> x := Transformation([2, 3, 4, 1, 5, 5]);;
|
|
598
|
+
gap> S := Semigroup(x);
|
|
599
|
+
<commutative transformation semigroup of degree 6 with 1 generator>
|
|
600
|
+
gap> y := Transformation([2, 1, 3, 4, 5, 5]);;
|
|
601
|
+
gap> R := RClass(S, x);;
|
|
602
|
+
gap> y in R;
|
|
603
|
+
false
|
|
604
|
+
|
|
605
|
+
# Test \in, for H-class, 1/3
|
|
606
|
+
gap> x := Transformation([2, 3, 4, 1, 5, 5]);;
|
|
607
|
+
gap> S := Semigroup(x);
|
|
608
|
+
<commutative transformation semigroup of degree 6 with 1 generator>
|
|
609
|
+
gap> y := Transformation([2, 1, 3, 4, 5, 5]);;
|
|
610
|
+
gap> H := HClass(S, x);;
|
|
611
|
+
gap> y in H;
|
|
612
|
+
false
|
|
613
|
+
|
|
614
|
+
# Test \in, for H-class, 2/3
|
|
615
|
+
gap> x := Transformation([1, 1, 3, 4, 5, 5]);;
|
|
616
|
+
gap> S := Semigroup(x);;
|
|
617
|
+
gap> y := Transformation([1, 1, 2, 3, 5, 5]);;
|
|
618
|
+
gap> H := HClass(S, x);;
|
|
619
|
+
gap> y in H;
|
|
620
|
+
false
|
|
621
|
+
|
|
622
|
+
# Test \in, for H-class, 3/3
|
|
623
|
+
gap> x := Transformation([1, 1, 3, 4, 5, 5]);;
|
|
624
|
+
gap> S := Semigroup(x);;
|
|
625
|
+
gap> H := HClass(S, x);;
|
|
626
|
+
gap> ForAll(H, x -> x in H);
|
|
627
|
+
true
|
|
628
|
+
|
|
629
|
+
# Test R-classes/reps, 1/1
|
|
630
|
+
gap> S := OrderEndomorphisms(5);;
|
|
631
|
+
gap> S := Semigroup(S, rec(acting := false));
|
|
632
|
+
<transformation monoid of degree 5 with 5 generators>
|
|
633
|
+
gap> RClasses(S);
|
|
634
|
+
[ <Green's R-class: Transformation( [ 1, 1, 1, 1, 1 ] )>,
|
|
635
|
+
<Green's R-class: Transformation( [ 1, 1, 1, 1, 2 ] )>,
|
|
636
|
+
<Green's R-class: Transformation( [ 1, 1, 1, 3, 3 ] )>,
|
|
637
|
+
<Green's R-class: Transformation( [ 1, 1, 1, 2, 3 ] )>,
|
|
638
|
+
<Green's R-class: Transformation( [ 1, 1, 3, 3, 3 ] )>,
|
|
639
|
+
<Green's R-class: Transformation( [ 1, 1, 3, 3, 4 ] )>,
|
|
640
|
+
<Green's R-class: Transformation( [ 1, 1, 2, 4, 4 ] )>,
|
|
641
|
+
<Green's R-class: Transformation( [ 1, 1, 2, 3, 4 ] )>,
|
|
642
|
+
<Green's R-class: Transformation( [ 1, 3, 3, 3, 3 ] )>,
|
|
643
|
+
<Green's R-class: Transformation( [ 1, 3, 3, 3, 4 ] )>,
|
|
644
|
+
<Green's R-class: Transformation( [ 1, 2, 2, 4, 4 ] )>,
|
|
645
|
+
<Green's R-class: Transformation( [ 1, 3, 3 ] )>,
|
|
646
|
+
<Green's R-class: Transformation( [ 1, 2, 4, 4, 4 ] )>,
|
|
647
|
+
<Green's R-class: Transformation( [ 1, 2, 4, 4 ] )>,
|
|
648
|
+
<Green's R-class: Transformation( [ 1, 2, 3, 5, 5 ] )>,
|
|
649
|
+
<Green's R-class: IdentityTransformation> ]
|
|
650
|
+
gap> RClassReps(S);
|
|
651
|
+
[ Transformation( [ 1, 1, 1, 1, 1 ] ), Transformation( [ 1, 1, 1, 1, 2 ] ),
|
|
652
|
+
Transformation( [ 1, 1, 1, 3, 3 ] ), Transformation( [ 1, 1, 1, 2, 3 ] ),
|
|
653
|
+
Transformation( [ 1, 1, 3, 3, 3 ] ), Transformation( [ 1, 1, 3, 3, 4 ] ),
|
|
654
|
+
Transformation( [ 1, 1, 2, 4, 4 ] ), Transformation( [ 1, 1, 2, 3, 4 ] ),
|
|
655
|
+
Transformation( [ 1, 3, 3, 3, 3 ] ), Transformation( [ 1, 3, 3, 3, 4 ] ),
|
|
656
|
+
Transformation( [ 1, 2, 2, 4, 4 ] ), Transformation( [ 1, 3, 3 ] ),
|
|
657
|
+
Transformation( [ 1, 2, 4, 4, 4 ] ), Transformation( [ 1, 2, 4, 4 ] ),
|
|
658
|
+
Transformation( [ 1, 2, 3, 5, 5 ] ), IdentityTransformation ]
|
|
659
|
+
|
|
660
|
+
# Test R-reps, 1/1
|
|
661
|
+
gap> S := OrderEndomorphisms(5);;
|
|
662
|
+
gap> S := Semigroup(S, rec(acting := false));;
|
|
663
|
+
gap> D := DClass(S, S.2 * S.1);
|
|
664
|
+
<Green's D-class: Transformation( [ 1, 1, 2, 3, 4 ] )>
|
|
665
|
+
gap> RClassReps(D);
|
|
666
|
+
[ Transformation( [ 1, 1, 2, 3, 4 ] ), Transformation( [ 1, 2, 2, 3, 4 ] ),
|
|
667
|
+
Transformation( [ 1, 2, 3, 3, 4 ] ), Transformation( [ 1, 2, 3, 4, 4 ] ) ]
|
|
668
|
+
gap> LClassReps(D);
|
|
669
|
+
[ Transformation( [ 1, 1, 2, 3, 4 ] ), Transformation( [ 1, 2, 3, 5, 5 ] ),
|
|
670
|
+
Transformation( [ 1, 2, 4, 4 ] ), Transformation( [ 1, 3, 3 ] ),
|
|
671
|
+
Transformation( [ 2, 2 ] ) ]
|
|
672
|
+
|
|
673
|
+
# Test H-classes/reps, 1/3
|
|
674
|
+
gap> S := Monoid(
|
|
675
|
+
> [Transformation([2, 2, 2, 2, 2, 2, 2, 2, 2, 4]),
|
|
676
|
+
> Transformation([2, 2, 2, 2, 2, 2, 2, 4, 2, 4]),
|
|
677
|
+
> Transformation([2, 2, 2, 2, 2, 2, 2, 4, 4, 2]),
|
|
678
|
+
> Transformation([2, 2, 2, 2, 2, 2, 2, 4, 4, 4]),
|
|
679
|
+
> Transformation([2, 2, 2, 2, 2, 2, 4, 4, 2, 2]),
|
|
680
|
+
> Transformation([2, 2, 2, 2, 2, 2, 4, 4, 4, 2]),
|
|
681
|
+
> Transformation([2, 2, 2, 2, 2, 4, 2, 2, 2, 4]),
|
|
682
|
+
> Transformation([2, 2, 2, 2, 2, 4, 2, 2, 4, 4]),
|
|
683
|
+
> Transformation([2, 2, 2, 2, 2, 4, 4, 2, 4, 2]),
|
|
684
|
+
> Transformation([2, 2, 2, 4, 2, 2, 2, 4, 2, 2]),
|
|
685
|
+
> Transformation([2, 2, 2, 4, 2, 2, 7, 4, 2, 4]),
|
|
686
|
+
> Transformation([2, 2, 3, 4, 2, 4, 7, 2, 9, 4]),
|
|
687
|
+
> Transformation([2, 2, 3, 4, 2, 6, 2, 2, 9, 2]),
|
|
688
|
+
> Transformation([2, 2, 3, 4, 2, 6, 7, 2, 2, 4]),
|
|
689
|
+
> Transformation([2, 2, 3, 4, 2, 6, 7, 2, 9, 4]),
|
|
690
|
+
> Transformation([2, 2, 4, 2, 2, 2, 2, 2, 2, 4]),
|
|
691
|
+
> Transformation([2, 2, 4, 2, 2, 2, 2, 4, 2, 2]),
|
|
692
|
+
> Transformation([2, 2, 4, 2, 2, 2, 2, 4, 2, 4]),
|
|
693
|
+
> Transformation([2, 2, 4, 2, 2, 2, 4, 4, 2, 2]),
|
|
694
|
+
> Transformation([2, 2, 9, 4, 2, 4, 7, 2, 2, 4]),
|
|
695
|
+
> Transformation([3, 2, 2, 2, 2, 2, 2, 9, 4, 2]),
|
|
696
|
+
> Transformation([3, 2, 2, 2, 2, 2, 2, 9, 4, 4]),
|
|
697
|
+
> Transformation([3, 2, 2, 2, 2, 2, 4, 9, 4, 2]),
|
|
698
|
+
> Transformation([4, 2, 2, 2, 2, 2, 2, 3, 2, 2]),
|
|
699
|
+
> Transformation([4, 2, 2, 2, 2, 2, 2, 3, 2, 4]),
|
|
700
|
+
> Transformation([4, 2, 2, 2, 2, 2, 4, 3, 2, 2]),
|
|
701
|
+
> Transformation([4, 2, 4, 2, 2, 2, 2, 3, 2, 2]),
|
|
702
|
+
> Transformation([4, 2, 4, 2, 2, 2, 2, 3, 2, 4]),
|
|
703
|
+
> Transformation([4, 2, 4, 2, 2, 2, 4, 3, 2, 2]),
|
|
704
|
+
> Transformation([5, 5, 5, 5, 5, 5, 5, 5, 5, 5])],
|
|
705
|
+
> rec(acting := false));;
|
|
706
|
+
gap> HClassReps(S);
|
|
707
|
+
[ Transformation( [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ),
|
|
708
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] ),
|
|
709
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ] ),
|
|
710
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2, 4, 2, 4 ] ),
|
|
711
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2, 4, 4, 2 ] ),
|
|
712
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2, 4, 4, 4 ] ),
|
|
713
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 4, 4, 2, 2 ] ),
|
|
714
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 4, 4, 4, 2 ] ),
|
|
715
|
+
Transformation( [ 2, 2, 2, 2, 2, 4, 2, 2, 2, 4 ] ),
|
|
716
|
+
Transformation( [ 2, 2, 2, 2, 2, 4, 2, 2, 4, 4 ] ),
|
|
717
|
+
Transformation( [ 2, 2, 2, 2, 2, 4, 4, 2, 4, 2 ] ),
|
|
718
|
+
Transformation( [ 2, 2, 2, 4, 2, 2, 2, 4, 2, 2 ] ),
|
|
719
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 4, 2, 2, 2 ] ),
|
|
720
|
+
Transformation( [ 2, 2, 2, 4, 2, 2, 2, 4, 2, 4 ] ),
|
|
721
|
+
Transformation( [ 2, 2, 2, 4, 2, 2, 7, 4, 2, 4 ] ),
|
|
722
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 4, 2 ] ),
|
|
723
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 4, 2, 4, 2 ] ),
|
|
724
|
+
Transformation( [ 2, 2, 2, 4, 2, 4, 2, 2, 2, 4 ] ),
|
|
725
|
+
Transformation( [ 2, 2, 2, 4, 2, 4, 7, 2, 2, 4 ] ),
|
|
726
|
+
Transformation( [ 2, 2, 4, 2, 2, 2, 2, 2, 2, 2 ] ),
|
|
727
|
+
Transformation( [ 2, 2, 9, 4, 2, 4, 2, 2, 2, 4 ] ),
|
|
728
|
+
Transformation( [ 2, 2, 3, 4, 2, 4, 2, 2, 2, 4 ] ),
|
|
729
|
+
Transformation( [ 2, 2, 3, 4, 2, 4, 2, 2, 9, 4 ] ),
|
|
730
|
+
Transformation( [ 2, 2, 4, 2, 2, 2, 4, 2, 2, 2 ] ),
|
|
731
|
+
Transformation( [ 2, 2, 9, 4, 2, 4, 7, 2, 2, 4 ] ),
|
|
732
|
+
Transformation( [ 2, 2, 3, 4, 2, 4, 7, 2, 2, 4 ] ),
|
|
733
|
+
Transformation( [ 2, 2, 3, 4, 2, 4, 7, 2, 9, 4 ] ),
|
|
734
|
+
Transformation( [ 2, 2, 2, 2, 2, 4, 2, 2, 2, 2 ] ),
|
|
735
|
+
Transformation( [ 2, 2, 2, 2, 2, 4, 2, 2, 4, 2 ] ),
|
|
736
|
+
Transformation( [ 2, 2, 2, 4, 2, 2, 2, 2, 2, 2 ] ),
|
|
737
|
+
Transformation( [ 2, 2, 2, 4, 2, 4, 2, 2, 2, 2 ] ),
|
|
738
|
+
Transformation( [ 2, 2, 9, 4, 2, 4, 2, 2, 2, 2 ] ),
|
|
739
|
+
Transformation( [ 2, 2, 3, 4, 2, 4, 2, 2, 2, 2 ] ),
|
|
740
|
+
Transformation( [ 2, 2, 3, 4, 2, 4, 2, 2, 9, 2 ] ),
|
|
741
|
+
Transformation( [ 2, 2, 3, 4, 2, 6, 2, 2, 2, 2 ] ),
|
|
742
|
+
Transformation( [ 2, 2, 3, 4, 2, 6, 2, 2, 9, 2 ] ),
|
|
743
|
+
Transformation( [ 2, 2, 2, 2, 2, 4, 4, 2, 2, 2 ] ),
|
|
744
|
+
Transformation( [ 2, 2, 2, 4, 2, 2, 2, 2, 2, 4 ] ),
|
|
745
|
+
Transformation( [ 2, 2, 2, 4, 2, 2, 7, 2, 2, 4 ] ),
|
|
746
|
+
Transformation( [ 2, 2, 3, 4, 2, 6, 2, 2, 2, 4 ] ),
|
|
747
|
+
Transformation( [ 2, 2, 3, 4, 2, 6, 7, 2, 2, 4 ] ),
|
|
748
|
+
Transformation( [ 2, 2, 3, 4, 2, 6, 2, 2, 9, 4 ] ),
|
|
749
|
+
Transformation( [ 2, 2, 3, 4, 2, 6, 7, 2, 9, 4 ] ),
|
|
750
|
+
Transformation( [ 2, 2, 4, 2, 2, 2, 2, 2, 2, 4 ] ),
|
|
751
|
+
Transformation( [ 2, 2, 4, 2, 2, 2, 2, 4, 2, 2 ] ),
|
|
752
|
+
Transformation( [ 2, 2, 4, 2, 2, 2, 2, 4, 2, 4 ] ),
|
|
753
|
+
Transformation( [ 2, 2, 4, 2, 2, 2, 4, 4, 2, 2 ] ),
|
|
754
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2, 4, 2, 2 ] ),
|
|
755
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] ),
|
|
756
|
+
Transformation( [ 9, 2, 2, 2, 2, 2, 2, 2, 4, 2 ] ),
|
|
757
|
+
Transformation( [ 3, 2, 2, 2, 2, 2, 2, 2, 4, 2 ] ),
|
|
758
|
+
Transformation( [ 3, 2, 2, 2, 2, 2, 2, 9, 4, 2 ] ),
|
|
759
|
+
Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 4, 4 ] ),
|
|
760
|
+
Transformation( [ 9, 2, 2, 2, 2, 2, 2, 2, 4, 4 ] ),
|
|
761
|
+
Transformation( [ 3, 2, 2, 2, 2, 2, 2, 2, 4, 4 ] ),
|
|
762
|
+
Transformation( [ 3, 2, 2, 2, 2, 2, 2, 9, 4, 4 ] ),
|
|
763
|
+
Transformation( [ 9, 2, 2, 2, 2, 2, 4, 2, 4, 2 ] ),
|
|
764
|
+
Transformation( [ 3, 2, 2, 2, 2, 2, 4, 2, 4, 2 ] ),
|
|
765
|
+
Transformation( [ 3, 2, 2, 2, 2, 2, 4, 9, 4, 2 ] ),
|
|
766
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 2, 9, 2, 2 ] ),
|
|
767
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 2, 3, 2, 2 ] ),
|
|
768
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 2, 2, 2, 4 ] ),
|
|
769
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 2, 9, 2, 4 ] ),
|
|
770
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 2, 3, 2, 4 ] ),
|
|
771
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 4, 2, 2, 2 ] ),
|
|
772
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 4, 9, 2, 2 ] ),
|
|
773
|
+
Transformation( [ 4, 2, 2, 2, 2, 2, 4, 3, 2, 2 ] ),
|
|
774
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 2, 2, 2, 2 ] ),
|
|
775
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 2, 9, 2, 2 ] ),
|
|
776
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 2, 3, 2, 2 ] ),
|
|
777
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 2, 2, 2, 4 ] ),
|
|
778
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 2, 9, 2, 4 ] ),
|
|
779
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 2, 3, 2, 4 ] ),
|
|
780
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 4, 2, 2, 2 ] ),
|
|
781
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 4, 9, 2, 2 ] ),
|
|
782
|
+
Transformation( [ 4, 2, 4, 2, 2, 2, 4, 3, 2, 2 ] ), IdentityTransformation ]
|
|
783
|
+
gap> HClasses(S);
|
|
784
|
+
[ <Green's H-class: Transformation( [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] )>,
|
|
785
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] )>,
|
|
786
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ] )>,
|
|
787
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 4, 2, 4 ] )>,
|
|
788
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 4, 4, 2 ] )>,
|
|
789
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 4, 4, 4 ] )>,
|
|
790
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 4, 4, 2, 2 ] )>,
|
|
791
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 4, 4, 4, 2 ] )>,
|
|
792
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 4, 2, 2, 2, 4 ] )>,
|
|
793
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 4, 2, 2, 4, 4 ] )>,
|
|
794
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 4, 4, 2, 4, 2 ] )>,
|
|
795
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 2, 2, 4, 2, 2 ] )>,
|
|
796
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 4, 2, 2, 2 ] )>,
|
|
797
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 2, 2, 4, 2, 4 ] )>,
|
|
798
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 2, 7, 4, 2, 4 ] )>,
|
|
799
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 4, 2 ] )>,
|
|
800
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 4, 2, 4, 2 ] )>,
|
|
801
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 4, 2, 2, 2, 4 ] )>,
|
|
802
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 4, 7, 2, 2, 4 ] )>,
|
|
803
|
+
<Green's H-class: Transformation( [ 2, 2, 4, 2, 2, 2, 2, 2, 2, 2 ] )>,
|
|
804
|
+
<Green's H-class: Transformation( [ 2, 2, 9, 4, 2, 4, 2, 2, 2, 4 ] )>,
|
|
805
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 4, 2, 2, 2, 4 ] )>,
|
|
806
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 4, 2, 2, 9, 4 ] )>,
|
|
807
|
+
<Green's H-class: Transformation( [ 2, 2, 4, 2, 2, 2, 4, 2, 2, 2 ] )>,
|
|
808
|
+
<Green's H-class: Transformation( [ 2, 2, 9, 4, 2, 4, 7, 2, 2, 4 ] )>,
|
|
809
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 4, 7, 2, 2, 4 ] )>,
|
|
810
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 4, 7, 2, 9, 4 ] )>,
|
|
811
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 4, 2, 2, 2, 2 ] )>,
|
|
812
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 4, 2, 2, 4, 2 ] )>,
|
|
813
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 2, 2, 2, 2, 2 ] )>,
|
|
814
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 4, 2, 2, 2, 2 ] )>,
|
|
815
|
+
<Green's H-class: Transformation( [ 2, 2, 9, 4, 2, 4, 2, 2, 2, 2 ] )>,
|
|
816
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 4, 2, 2, 2, 2 ] )>,
|
|
817
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 4, 2, 2, 9, 2 ] )>,
|
|
818
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 6, 2, 2, 2, 2 ] )>,
|
|
819
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 6, 2, 2, 9, 2 ] )>,
|
|
820
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 4, 4, 2, 2, 2 ] )>,
|
|
821
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 2, 2, 2, 2, 4 ] )>,
|
|
822
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 4, 2, 2, 7, 2, 2, 4 ] )>,
|
|
823
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 6, 2, 2, 2, 4 ] )>,
|
|
824
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 6, 7, 2, 2, 4 ] )>,
|
|
825
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 6, 2, 2, 9, 4 ] )>,
|
|
826
|
+
<Green's H-class: Transformation( [ 2, 2, 3, 4, 2, 6, 7, 2, 9, 4 ] )>,
|
|
827
|
+
<Green's H-class: Transformation( [ 2, 2, 4, 2, 2, 2, 2, 2, 2, 4 ] )>,
|
|
828
|
+
<Green's H-class: Transformation( [ 2, 2, 4, 2, 2, 2, 2, 4, 2, 2 ] )>,
|
|
829
|
+
<Green's H-class: Transformation( [ 2, 2, 4, 2, 2, 2, 2, 4, 2, 4 ] )>,
|
|
830
|
+
<Green's H-class: Transformation( [ 2, 2, 4, 2, 2, 2, 4, 4, 2, 2 ] )>,
|
|
831
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 4, 2, 2 ] )>,
|
|
832
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] )>,
|
|
833
|
+
<Green's H-class: Transformation( [ 9, 2, 2, 2, 2, 2, 2, 2, 4, 2 ] )>,
|
|
834
|
+
<Green's H-class: Transformation( [ 3, 2, 2, 2, 2, 2, 2, 2, 4, 2 ] )>,
|
|
835
|
+
<Green's H-class: Transformation( [ 3, 2, 2, 2, 2, 2, 2, 9, 4, 2 ] )>,
|
|
836
|
+
<Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 4, 4 ] )>,
|
|
837
|
+
<Green's H-class: Transformation( [ 9, 2, 2, 2, 2, 2, 2, 2, 4, 4 ] )>,
|
|
838
|
+
<Green's H-class: Transformation( [ 3, 2, 2, 2, 2, 2, 2, 2, 4, 4 ] )>,
|
|
839
|
+
<Green's H-class: Transformation( [ 3, 2, 2, 2, 2, 2, 2, 9, 4, 4 ] )>,
|
|
840
|
+
<Green's H-class: Transformation( [ 9, 2, 2, 2, 2, 2, 4, 2, 4, 2 ] )>,
|
|
841
|
+
<Green's H-class: Transformation( [ 3, 2, 2, 2, 2, 2, 4, 2, 4, 2 ] )>,
|
|
842
|
+
<Green's H-class: Transformation( [ 3, 2, 2, 2, 2, 2, 4, 9, 4, 2 ] )>,
|
|
843
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 2, 9, 2, 2 ] )>,
|
|
844
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 2, 3, 2, 2 ] )>,
|
|
845
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 2, 2, 2, 4 ] )>,
|
|
846
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 2, 9, 2, 4 ] )>,
|
|
847
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 2, 3, 2, 4 ] )>,
|
|
848
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 4, 2, 2, 2 ] )>,
|
|
849
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 4, 9, 2, 2 ] )>,
|
|
850
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 2, 2, 2, 4, 3, 2, 2 ] )>,
|
|
851
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 2, 2, 2, 2 ] )>,
|
|
852
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 2, 9, 2, 2 ] )>,
|
|
853
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 2, 3, 2, 2 ] )>,
|
|
854
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 2, 2, 2, 4 ] )>,
|
|
855
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 2, 9, 2, 4 ] )>,
|
|
856
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 2, 3, 2, 4 ] )>,
|
|
857
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 4, 2, 2, 2 ] )>,
|
|
858
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 4, 9, 2, 2 ] )>,
|
|
859
|
+
<Green's H-class: Transformation( [ 4, 2, 4, 2, 2, 2, 4, 3, 2, 2 ] )>,
|
|
860
|
+
<Green's H-class: IdentityTransformation> ]
|
|
861
|
+
gap> D := DClass(S, S.1);;
|
|
862
|
+
gap> HClassReps(D);
|
|
863
|
+
[ Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ] ) ]
|
|
864
|
+
gap> HClasses(D);
|
|
865
|
+
[ <Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ] )> ]
|
|
866
|
+
gap> L := LClass(S, S.1);;
|
|
867
|
+
gap> HClassReps(L);
|
|
868
|
+
[ Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ] ) ]
|
|
869
|
+
gap> HClasses(L);
|
|
870
|
+
[ <Green's H-class: Transformation( [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ] )> ]
|
|
871
|
+
|
|
872
|
+
# Test H-classes/reps, 2/3
|
|
873
|
+
gap> S := Semigroup(FullTransformationMonoid(5), rec(acting := false));;
|
|
874
|
+
gap> x := Transformation([1, 1, 2, 3, 4]);;
|
|
875
|
+
gap> L := LClass(S, x);;
|
|
876
|
+
gap> GreensHClasses(L);
|
|
877
|
+
[ <Green's H-class: Transformation( [ 2, 1, 3, 4, 2 ] )>,
|
|
878
|
+
<Green's H-class: Transformation( [ 1, 3, 4, 2, 2 ] )>,
|
|
879
|
+
<Green's H-class: Transformation( [ 3, 4, 2, 2, 1 ] )>,
|
|
880
|
+
<Green's H-class: Transformation( [ 4, 2, 2, 1, 3 ] )>,
|
|
881
|
+
<Green's H-class: Transformation( [ 2, 2, 1, 3, 4 ] )>,
|
|
882
|
+
<Green's H-class: Transformation( [ 2, 4, 2, 1, 3 ] )>,
|
|
883
|
+
<Green's H-class: Transformation( [ 4, 2, 1, 3, 2 ] )>,
|
|
884
|
+
<Green's H-class: Transformation( [ 2, 1, 3, 2, 4 ] )>,
|
|
885
|
+
<Green's H-class: Transformation( [ 1, 3, 2, 4, 2 ] )>,
|
|
886
|
+
<Green's H-class: Transformation( [ 3, 2, 4, 2, 1 ] )> ]
|
|
887
|
+
|
|
888
|
+
# Test NrXClasses, 1/1
|
|
889
|
+
gap> S := Semigroup(SymmetricInverseMonoid(5));;
|
|
890
|
+
gap> NrRClasses(S);
|
|
891
|
+
32
|
|
892
|
+
gap> NrDClasses(S);
|
|
893
|
+
6
|
|
894
|
+
gap> NrLClasses(S);
|
|
895
|
+
32
|
|
896
|
+
gap> NrHClasses(S);
|
|
897
|
+
252
|
|
898
|
+
|
|
899
|
+
# Test NrXClasses for a D-class, 1/1
|
|
900
|
+
gap> S := Semigroup(SymmetricInverseMonoid(5));;
|
|
901
|
+
gap> D := DClass(S, S.2);;
|
|
902
|
+
gap> NrRClasses(D);
|
|
903
|
+
1
|
|
904
|
+
gap> NrLClasses(D);
|
|
905
|
+
1
|
|
906
|
+
gap> R := RClass(S, S.2);;
|
|
907
|
+
gap> NrHClasses(R);
|
|
908
|
+
1
|
|
909
|
+
gap> L := LClass(S, S.2);;
|
|
910
|
+
gap> NrHClasses(L);
|
|
911
|
+
1
|
|
912
|
+
|
|
913
|
+
# Test GreensXClasses, for an infinite semigroup, 1/1
|
|
914
|
+
gap> S := FreeSemigroup(2);;
|
|
915
|
+
gap> GreensLClasses(S);
|
|
916
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
917
|
+
Error, no 2nd choice method found for `CayleyGraphDualSemigroup' on 1 argument\
|
|
918
|
+
s
|
|
919
|
+
gap> GreensRClasses(S);
|
|
920
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
921
|
+
Error, no 2nd choice method found for `CayleyGraphSemigroup' on 1 arguments
|
|
922
|
+
gap> GreensHClasses(S);
|
|
923
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
924
|
+
Error, no 2nd choice method found for `CayleyGraphDualSemigroup' on 1 argument\
|
|
925
|
+
s
|
|
926
|
+
gap> GreensDClasses(S);
|
|
927
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
928
|
+
Error, no 2nd choice method found for `CayleyGraphDualSemigroup' on 1 argument\
|
|
929
|
+
s
|
|
930
|
+
|
|
931
|
+
# Test GreensHClasses, fail, 1/1
|
|
932
|
+
gap> S := Semigroup(SymmetricInverseMonoid(3));;
|
|
933
|
+
gap> H := HClass(S, S.2);;
|
|
934
|
+
gap> GreensHClasses(H);
|
|
935
|
+
Error, the argument is not a Green's R-, L-, or D-class
|
|
936
|
+
|
|
937
|
+
# Test PartialOrderOfDClasses, 1/2
|
|
938
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, FullBooleanMatMonoid(3));;
|
|
939
|
+
gap> S := Semigroup(S, rec(acting := false));;
|
|
940
|
+
gap> PartialOrderOfDClasses(S);
|
|
941
|
+
<immutable digraph with 11 vertices, 25 edges>
|
|
942
|
+
|
|
943
|
+
# Test Idempotents, 1/?
|
|
944
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, FullPBRMonoid(1));;
|
|
945
|
+
gap> S := Semigroup(S, rec(acting := false));;
|
|
946
|
+
gap> Idempotents(S);
|
|
947
|
+
[ Transformation( [ 1, 8, 6, 1, 1, 6, 1, 8, 13, 8, 6, 6, 13, 8, 13, 13 ] ),
|
|
948
|
+
Transformation( [ 1, 2, 3, 2, 10, 6, 7, 8, 9, 10 ] ),
|
|
949
|
+
Transformation( [ 6, 9, 3, 3, 3, 6, 6, 13, 9, 9, 3, 6, 13, 13, 9, 13 ] ),
|
|
950
|
+
IdentityTransformation, Transformation( [ 7, 10, 11, 5, 5, 12, 7, 14, 15,
|
|
951
|
+
10, 11, 12, 16, 14, 15, 16 ] ),
|
|
952
|
+
Transformation( [ 6, 13, 6, 6, 6, 6, 6, 13, 13, 13, 6, 6, 13, 13, 13, 13 ] )
|
|
953
|
+
, Transformation( [ 7, 14, 12, 7, 7, 12, 7, 14, 16, 14, 12, 12, 16, 14,
|
|
954
|
+
16, 16 ] ), Transformation( [ 1, 8, 6, 8, 8, 6, 1, 8, 13, 8, 6, 6, 13,
|
|
955
|
+
8, 13, 13 ] ), Transformation( [ 6, 9, 3, 9, 9, 6, 6, 13, 9, 9, 3, 6,
|
|
956
|
+
13, 13, 9, 13 ] ), Transformation( [ 7, 10, 11, 10, 10, 12, 7, 14, 15,
|
|
957
|
+
10, 11, 12, 16, 14, 15, 16 ] ),
|
|
958
|
+
Transformation( [ 12, 15, 11, 11, 11, 12, 12, 16, 15, 15, 11, 12, 16, 16,
|
|
959
|
+
15, 16 ] ), Transformation( [ 12, 16, 12, 12, 12, 12, 12, 16, 16, 16,
|
|
960
|
+
12, 12, 16, 16, 16, 16 ] ),
|
|
961
|
+
Transformation( [ 6, 13, 6, 13, 13, 6, 6, 13, 13, 13, 6, 6, 13, 13, 13,
|
|
962
|
+
13 ] ), Transformation( [ 7, 14, 12, 14, 14, 12, 7, 14, 16, 14, 12, 12,
|
|
963
|
+
16, 14, 16, 16 ] ), Transformation( [ 12, 15, 11, 15, 15, 12, 12, 16,
|
|
964
|
+
15, 15, 11, 12, 16, 16, 15, 16 ] ),
|
|
965
|
+
Transformation( [ 12, 16, 12, 16, 16, 12, 12, 16, 16, 16, 12, 12, 16, 16,
|
|
966
|
+
16, 16 ] ) ]
|
|
967
|
+
|
|
968
|
+
# Test Idempotents, 2/2
|
|
969
|
+
gap> S := Semigroup(FullTransformationMonoid(3),
|
|
970
|
+
> rec(acting := false));;
|
|
971
|
+
gap> RClasses(S);;
|
|
972
|
+
gap> Idempotents(S);
|
|
973
|
+
[ IdentityTransformation, Transformation( [ 1, 2, 1 ] ),
|
|
974
|
+
Transformation( [ 1, 2, 2 ] ), Transformation( [ 3, 2, 3 ] ),
|
|
975
|
+
Transformation( [ 2, 2 ] ), Transformation( [ 1, 3, 3 ] ),
|
|
976
|
+
Transformation( [ 1, 1, 1 ] ), Transformation( [ 1, 1 ] ),
|
|
977
|
+
Transformation( [ 2, 2, 2 ] ), Transformation( [ 3, 3, 3 ] ) ]
|
|
978
|
+
|
|
979
|
+
# Test Idempotents, for a D-class, 1/2
|
|
980
|
+
gap> S := Semigroup([Transformation([2, 3, 4, 5, 1, 5, 6, 7, 8])]);;
|
|
981
|
+
gap> D := DClass(S, S.1);
|
|
982
|
+
<Green's D-class: Transformation( [ 2, 3, 4, 5, 1, 5, 6, 7, 8 ] )>
|
|
983
|
+
gap> IsRegularDClass(D);
|
|
984
|
+
false
|
|
985
|
+
gap> Idempotents(D);
|
|
986
|
+
[ ]
|
|
987
|
+
gap> S := Semigroup([Transformation([2, 3, 4, 5, 1, 5, 6, 7, 8])]);;
|
|
988
|
+
gap> D := DClass(S, S.1);
|
|
989
|
+
<Green's D-class: Transformation( [ 2, 3, 4, 5, 1, 5, 6, 7, 8 ] )>
|
|
990
|
+
gap> Idempotents(S);;
|
|
991
|
+
gap> Idempotents(D);
|
|
992
|
+
[ ]
|
|
993
|
+
|
|
994
|
+
# Test Idempotents, for a D-class, 2/2
|
|
995
|
+
gap> S := Semigroup([Transformation([2, 3, 4, 5, 1, 5, 6, 7, 8])]);;
|
|
996
|
+
gap> D := DClass(S, S.1);
|
|
997
|
+
<Green's D-class: Transformation( [ 2, 3, 4, 5, 1, 5, 6, 7, 8 ] )>
|
|
998
|
+
gap> Idempotents(D);
|
|
999
|
+
[ ]
|
|
1000
|
+
|
|
1001
|
+
# Test Idempotents, for a L-class, 1/3
|
|
1002
|
+
gap> S := Semigroup(FullTransformationMonoid(5), rec(acting := false));;
|
|
1003
|
+
gap> x := Transformation([1, 1, 2, 3, 4]);;
|
|
1004
|
+
gap> L := LClass(S, x);;
|
|
1005
|
+
gap> Idempotents(L);
|
|
1006
|
+
[ Transformation( [ 1, 2, 3, 4, 2 ] ), Transformation( [ 1, 2, 3, 4, 1 ] ),
|
|
1007
|
+
Transformation( [ 1, 2, 3, 4, 4 ] ), Transformation( [ 1, 2, 3, 4, 3 ] ) ]
|
|
1008
|
+
|
|
1009
|
+
# Test Idempotents, for a L-class, 2/3
|
|
1010
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, FullBooleanMatMonoid(3));
|
|
1011
|
+
<transformation monoid of degree 8 with 5 generators>
|
|
1012
|
+
gap> L := LClass(S, Transformation([1, 1, 1, 2, 1, 3, 5]));;
|
|
1013
|
+
gap> IsRegularGreensClass(L);
|
|
1014
|
+
false
|
|
1015
|
+
gap> Idempotents(L);
|
|
1016
|
+
[ ]
|
|
1017
|
+
|
|
1018
|
+
# Test Idempotents, for a L-class, 3/3
|
|
1019
|
+
gap> S := PartitionMonoid(3);;
|
|
1020
|
+
gap> L := LClass(S, One(S));;
|
|
1021
|
+
gap> Idempotents(L);
|
|
1022
|
+
[ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]> ]
|
|
1023
|
+
|
|
1024
|
+
# Test Idempotents, for a H-class, 1/2
|
|
1025
|
+
gap> S := SingularTransformationSemigroup(4);;
|
|
1026
|
+
gap> H := HClass(S, S.1);
|
|
1027
|
+
<Green's H-class: Transformation( [ 1, 2, 3, 3 ] )>
|
|
1028
|
+
gap> Idempotents(H);
|
|
1029
|
+
[ Transformation( [ 1, 2, 3, 3 ] ) ]
|
|
1030
|
+
|
|
1031
|
+
# Test Idempotents, for a H-class, 1/2
|
|
1032
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, FullBooleanMatMonoid(3));
|
|
1033
|
+
<transformation monoid of degree 8 with 5 generators>
|
|
1034
|
+
gap> H := HClass(S, Transformation([1, 1, 1, 2, 1, 3, 5]));;
|
|
1035
|
+
gap> IsGroupHClass(H);
|
|
1036
|
+
false
|
|
1037
|
+
gap> Idempotents(H);
|
|
1038
|
+
[ ]
|
|
1039
|
+
|
|
1040
|
+
# Test NrIdempotents, for a semigroup, 1/2
|
|
1041
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
1042
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
1043
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
1044
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
1045
|
+
gap> NrIdempotents(S);
|
|
1046
|
+
24
|
|
1047
|
+
|
|
1048
|
+
# Test NrIdempotents, for a semigroup, 2/2
|
|
1049
|
+
gap> S := Semigroup([PartialPerm([1, 3, 4, 5, 6], [3, 1, 5, 7, 6]),
|
|
1050
|
+
> PartialPerm([1, 2, 3, 4, 6, 7], [2, 5, 3, 7, 4, 1]),
|
|
1051
|
+
> PartialPerm([1, 2, 4, 5, 6, 7], [3, 5, 7, 1, 6, 2]),
|
|
1052
|
+
> PartialPerm([1, 2, 4, 7], [3, 7, 6, 5])]);;
|
|
1053
|
+
gap> Idempotents(S);;
|
|
1054
|
+
gap> NrIdempotents(S);
|
|
1055
|
+
24
|
|
1056
|
+
|
|
1057
|
+
# Test NrIdempotents, for a D-class, 1/2
|
|
1058
|
+
gap> S := Semigroup([Transformation([2, 3, 4, 5, 1, 5, 6, 7, 8])]);;
|
|
1059
|
+
gap> D := DClass(S, S.1);
|
|
1060
|
+
<Green's D-class: Transformation( [ 2, 3, 4, 5, 1, 5, 6, 7, 8 ] )>
|
|
1061
|
+
gap> IsRegularDClass(D);
|
|
1062
|
+
false
|
|
1063
|
+
gap> NrIdempotents(D);
|
|
1064
|
+
0
|
|
1065
|
+
|
|
1066
|
+
# Test NrIdempotents, for a D-class, 2/2
|
|
1067
|
+
gap> S := Semigroup([Transformation([2, 3, 4, 5, 1, 5, 6, 7, 8])]);;
|
|
1068
|
+
gap> D := DClass(S, S.1);
|
|
1069
|
+
<Green's D-class: Transformation( [ 2, 3, 4, 5, 1, 5, 6, 7, 8 ] )>
|
|
1070
|
+
gap> NrIdempotents(D);
|
|
1071
|
+
0
|
|
1072
|
+
|
|
1073
|
+
# Test NrIdempotents, for a L-class, 1/3
|
|
1074
|
+
gap> S := Semigroup(FullTransformationMonoid(5), rec(acting := false));;
|
|
1075
|
+
gap> x := Transformation([1, 1, 2, 3, 4]);;
|
|
1076
|
+
gap> L := LClass(S, x);;
|
|
1077
|
+
gap> NrIdempotents(L);
|
|
1078
|
+
4
|
|
1079
|
+
|
|
1080
|
+
# Test NrIdempotents, for a L-class, 2/3
|
|
1081
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, FullBooleanMatMonoid(3));
|
|
1082
|
+
<transformation monoid of degree 8 with 5 generators>
|
|
1083
|
+
gap> L := LClass(S, Transformation([1, 1, 1, 2, 1, 3, 5]));;
|
|
1084
|
+
gap> IsRegularGreensClass(L);
|
|
1085
|
+
false
|
|
1086
|
+
gap> NrIdempotents(L);
|
|
1087
|
+
0
|
|
1088
|
+
|
|
1089
|
+
# Test NrIdempotents, for a L-class, 3/3
|
|
1090
|
+
gap> S := PartitionMonoid(3);;
|
|
1091
|
+
gap> L := LClass(S, One(S));;
|
|
1092
|
+
gap> NrIdempotents(L);
|
|
1093
|
+
1
|
|
1094
|
+
|
|
1095
|
+
# Test NrIdempotents, for a H-class, 1/2
|
|
1096
|
+
gap> S := SingularTransformationSemigroup(4);;
|
|
1097
|
+
gap> H := HClass(S, S.1);
|
|
1098
|
+
<Green's H-class: Transformation( [ 1, 2, 3, 3 ] )>
|
|
1099
|
+
gap> NrIdempotents(H);
|
|
1100
|
+
1
|
|
1101
|
+
|
|
1102
|
+
# Test NrIdempotents, for a H-class, 1/2
|
|
1103
|
+
gap> S := AsSemigroup(IsTransformationSemigroup, FullBooleanMatMonoid(3));
|
|
1104
|
+
<transformation monoid of degree 8 with 5 generators>
|
|
1105
|
+
gap> H := HClass(S, Transformation([1, 1, 1, 2, 1, 3, 5]));;
|
|
1106
|
+
gap> IsGroupHClass(H);
|
|
1107
|
+
false
|
|
1108
|
+
gap> NrIdempotents(H);
|
|
1109
|
+
0
|
|
1110
|
+
|
|
1111
|
+
# Test NrIdempotents, for an R-class, 1/2
|
|
1112
|
+
gap> S := Semigroup(Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]),
|
|
1113
|
+
> Transformation([3, 8, 1, 9, 9, 4, 10, 5, 10, 6]));;
|
|
1114
|
+
gap> R := First(RClasses(S),
|
|
1115
|
+
> x -> Transformation([9, 10, 4, 9, 10, 4, 4, 3, 3, 6]) in x);;
|
|
1116
|
+
gap> NrIdempotents(R);
|
|
1117
|
+
0
|
|
1118
|
+
gap> IsRegularGreensClass(R);
|
|
1119
|
+
false
|
|
1120
|
+
|
|
1121
|
+
# Test NrIdempotents, for an R-class, 3/3
|
|
1122
|
+
gap> S := Semigroup(Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]),
|
|
1123
|
+
> Transformation([3, 8, 1, 9, 9, 4, 10, 5, 10, 6]));;
|
|
1124
|
+
gap> R := RClass(S, Transformation([6, 9, 9, 6, 9, 1, 1, 2, 2, 6]));;
|
|
1125
|
+
gap> IsRegularGreensClass(R);
|
|
1126
|
+
true
|
|
1127
|
+
gap> NrIdempotents(R);
|
|
1128
|
+
7
|
|
1129
|
+
|
|
1130
|
+
# Test IsRegularGreensClass, for an R-class, 1/1
|
|
1131
|
+
gap> S := Semigroup(Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]),
|
|
1132
|
+
> Transformation([3, 8, 1, 9, 9, 4, 10, 5, 10, 6]));;
|
|
1133
|
+
gap> R := First(RClasses(S),
|
|
1134
|
+
> x -> Transformation([9, 10, 4, 9, 10, 4, 4, 3, 3, 6]) in x);;
|
|
1135
|
+
gap> IsRegularGreensClass(R);
|
|
1136
|
+
false
|
|
1137
|
+
|
|
1138
|
+
# Test IsRegularGreensClass, for an R-class in group of units, 1/1
|
|
1139
|
+
gap> S := Monoid(Transformation([2, 6, 7, 2, 6, 9, 9, 1, 1, 5]),
|
|
1140
|
+
> Transformation([3, 8, 1, 9, 9, 4, 10, 5, 10, 6]));;
|
|
1141
|
+
gap> S := AsSemigroup(IsBipartitionSemigroup, S);;
|
|
1142
|
+
gap> R := RClass(S, IdentityBipartition(10));;
|
|
1143
|
+
gap> IsRegularGreensClass(R);
|
|
1144
|
+
true
|
|
1145
|
+
|
|
1146
|
+
# Test NrRegularDClasses, 1/1
|
|
1147
|
+
gap> S := Semigroup([Transformation([2, 2, 1, 2, 4, 4]),
|
|
1148
|
+
> Transformation([2, 6, 6, 5, 1, 4]), Transformation([3, 2, 5, 5, 6, 4]),
|
|
1149
|
+
> Transformation([3, 5, 3, 4, 1]), Transformation([4, 2, 3, 1, 4, 2]),
|
|
1150
|
+
> Transformation([4, 4, 2, 6, 6, 3]), Transformation([5, 5, 5, 6, 5, 4]),
|
|
1151
|
+
> Transformation([6, 3, 1, 3, 1, 6])], rec(acting := false));;
|
|
1152
|
+
gap> NrRegularDClasses(S);
|
|
1153
|
+
6
|
|
1154
|
+
|
|
1155
|
+
# Test ViewString, PrintString, for Green's relations, 1/1
|
|
1156
|
+
gap> S := FullTransformationMonoid(3);
|
|
1157
|
+
<full transformation monoid of degree 3>
|
|
1158
|
+
gap> GreensRRelation(S);
|
|
1159
|
+
<Green's R-relation of <full transformation monoid of degree 3>>
|
|
1160
|
+
gap> GreensLRelation(S);
|
|
1161
|
+
<Green's L-relation of <full transformation monoid of degree 3>>
|
|
1162
|
+
gap> GreensHRelation(S);
|
|
1163
|
+
<Green's H-relation of <full transformation monoid of degree 3>>
|
|
1164
|
+
gap> GreensDRelation(S);
|
|
1165
|
+
<Green's D-relation of <full transformation monoid of degree 3>>
|
|
1166
|
+
gap> GreensJRelation(S);
|
|
1167
|
+
<Green's D-relation of <full transformation monoid of degree 3>>
|
|
1168
|
+
gap> PrintString((GreensRRelation(S)));
|
|
1169
|
+
"\>\>\>GreensRRelation\<(\>\nMonoid( \>[ Transformation( [ 2, 3, 1 ] ), Transf\
|
|
1170
|
+
ormation( [ 2, 1 ] ), Transformation( [ 1, 2, 1 ] ) ]\<\> )\<\<)\<\<"
|
|
1171
|
+
gap> PrintString((GreensLRelation(S)));
|
|
1172
|
+
"\>\>\>GreensLRelation\<(\>\nMonoid( \>[ Transformation( [ 2, 3, 1 ] ), Transf\
|
|
1173
|
+
ormation( [ 2, 1 ] ), Transformation( [ 1, 2, 1 ] ) ]\<\> )\<\<)\<\<"
|
|
1174
|
+
gap> PrintString((GreensHRelation(S)));
|
|
1175
|
+
"\>\>\>GreensHRelation\<(\>\nMonoid( \>[ Transformation( [ 2, 3, 1 ] ), Transf\
|
|
1176
|
+
ormation( [ 2, 1 ] ), Transformation( [ 1, 2, 1 ] ) ]\<\> )\<\<)\<\<"
|
|
1177
|
+
gap> PrintString((GreensDRelation(S)));
|
|
1178
|
+
"\>\>\>GreensDRelation\<(\>\nMonoid( \>[ Transformation( [ 2, 3, 1 ] ), Transf\
|
|
1179
|
+
ormation( [ 2, 1 ] ), Transformation( [ 1, 2, 1 ] ) ]\<\> )\<\<)\<\<"
|
|
1180
|
+
gap> PrintObj(GreensDRelation(S)); "This string allows us to test PrintObj";
|
|
1181
|
+
GreensDRelation(
|
|
1182
|
+
Monoid(
|
|
1183
|
+
[ Transformation( [ 2, 3, 1 ] ), Transformation( [ 2, 1 ] ), Transformation\
|
|
1184
|
+
( [ 1, 2, 1 ] ) ] ))"This string allows us to test PrintObj"
|
|
1185
|
+
|
|
1186
|
+
# Test ViewString, PrintString, for Green's classes, 1/1
|
|
1187
|
+
gap> S := FullBooleanMatMonoid(3);;
|
|
1188
|
+
gap> PrintString(RClass(S, S.2));
|
|
1189
|
+
"\>\>\>GreensRClassOfElement\<(\>Monoid( \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\
|
|
1190
|
+
\>\>[0, 1, 0]\<, \<\>\>[1, 0, 0]\<, \<\>\>[0, 0, 1]\<\<]\<)\<\>\>\>Matrix(\<\>\
|
|
1191
|
+
IsBooleanMat\<, \>[\>\>[0, 1, 0]\<, \<\>\>[0, 0, 1]\<, \<\>\>[1, 0, 0]\<\<]\<)\
|
|
1192
|
+
\<\<, \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[1, 0, 0]\<, \<\>\>[0, 1, 0]\<, \
|
|
1193
|
+
\<\>\>[1, 0, 1]\<\<]\<)\<\<, \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[1, 0, 0]\
|
|
1194
|
+
\<, \<\>\>[0, 1, 0]\<, \<\>\>[0, 0, 0]\<\<]\<)\<\<, \>\>\>Matrix(\<\>IsBoolean\
|
|
1195
|
+
Mat\<, \>[\>\>[1, 1, 0]\<, \<\>\>[1, 0, 1]\<, \<\>\>[0, 1, 1]\<\<]\<)\<\<\<\> \
|
|
1196
|
+
)\<,\< \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[0, 1, 0]\<, \<\>\>[0, 0, 1]\<,\
|
|
1197
|
+
\<\>\>[1, 0, 0]\<\<]\<)\<\<)\<\<"
|
|
1198
|
+
gap> PrintString(LClass(S, S.2));
|
|
1199
|
+
"\>\>\>GreensLClassOfElement\<(\>Monoid( \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\
|
|
1200
|
+
\>\>[0, 1, 0]\<, \<\>\>[1, 0, 0]\<, \<\>\>[0, 0, 1]\<\<]\<)\<\>\>\>Matrix(\<\>\
|
|
1201
|
+
IsBooleanMat\<, \>[\>\>[0, 1, 0]\<, \<\>\>[0, 0, 1]\<, \<\>\>[1, 0, 0]\<\<]\<)\
|
|
1202
|
+
\<\<, \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[1, 0, 0]\<, \<\>\>[0, 1, 0]\<, \
|
|
1203
|
+
\<\>\>[1, 0, 1]\<\<]\<)\<\<, \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[1, 0, 0]\
|
|
1204
|
+
\<, \<\>\>[0, 1, 0]\<, \<\>\>[0, 0, 0]\<\<]\<)\<\<, \>\>\>Matrix(\<\>IsBoolean\
|
|
1205
|
+
Mat\<, \>[\>\>[1, 1, 0]\<, \<\>\>[1, 0, 1]\<, \<\>\>[0, 1, 1]\<\<]\<)\<\<\<\> \
|
|
1206
|
+
)\<,\< \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[0, 1, 0]\<, \<\>\>[0, 0, 1]\<,\
|
|
1207
|
+
\<\>\>[1, 0, 0]\<\<]\<)\<\<)\<\<"
|
|
1208
|
+
gap> PrintString(HClass(S, S.2));
|
|
1209
|
+
"\>\>\>GreensHClassOfElement\<(\>Monoid( \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\
|
|
1210
|
+
\>\>[0, 1, 0]\<, \<\>\>[1, 0, 0]\<, \<\>\>[0, 0, 1]\<\<]\<)\<\>\>\>Matrix(\<\>\
|
|
1211
|
+
IsBooleanMat\<, \>[\>\>[0, 1, 0]\<, \<\>\>[0, 0, 1]\<, \<\>\>[1, 0, 0]\<\<]\<)\
|
|
1212
|
+
\<\<, \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[1, 0, 0]\<, \<\>\>[0, 1, 0]\<, \
|
|
1213
|
+
\<\>\>[1, 0, 1]\<\<]\<)\<\<, \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[1, 0, 0]\
|
|
1214
|
+
\<, \<\>\>[0, 1, 0]\<, \<\>\>[0, 0, 0]\<\<]\<)\<\<, \>\>\>Matrix(\<\>IsBoolean\
|
|
1215
|
+
Mat\<, \>[\>\>[1, 1, 0]\<, \<\>\>[1, 0, 1]\<, \<\>\>[0, 1, 1]\<\<]\<)\<\<\<\> \
|
|
1216
|
+
)\<,\< \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[0, 1, 0]\<, \<\>\>[0, 0, 1]\<,\
|
|
1217
|
+
\<\>\>[1, 0, 0]\<\<]\<)\<\<)\<\<"
|
|
1218
|
+
gap> PrintString(DClass(S, S.2));
|
|
1219
|
+
"\>\>\>GreensDClassOfElement\<(\>Monoid( \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\
|
|
1220
|
+
\>\>[0, 1, 0]\<, \<\>\>[1, 0, 0]\<, \<\>\>[0, 0, 1]\<\<]\<)\<\>\>\>Matrix(\<\>\
|
|
1221
|
+
IsBooleanMat\<, \>[\>\>[0, 1, 0]\<, \<\>\>[0, 0, 1]\<, \<\>\>[1, 0, 0]\<\<]\<)\
|
|
1222
|
+
\<\<, \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[1, 0, 0]\<, \<\>\>[0, 1, 0]\<, \
|
|
1223
|
+
\<\>\>[1, 0, 1]\<\<]\<)\<\<, \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[1, 0, 0]\
|
|
1224
|
+
\<, \<\>\>[0, 1, 0]\<, \<\>\>[0, 0, 0]\<\<]\<)\<\<, \>\>\>Matrix(\<\>IsBoolean\
|
|
1225
|
+
Mat\<, \>[\>\>[1, 1, 0]\<, \<\>\>[1, 0, 1]\<, \<\>\>[0, 1, 1]\<\<]\<)\<\<\<\> \
|
|
1226
|
+
)\<,\< \>\>\>Matrix(\<\>IsBooleanMat\<, \>[\>\>[0, 1, 0]\<, \<\>\>[0, 0, 1]\<,\
|
|
1227
|
+
\<\>\>[1, 0, 0]\<\<]\<)\<\<)\<\<"
|
|
1228
|
+
gap> PrintObj(DClass(S, S.2)); "This string allows us to test PrintObj";
|
|
1229
|
+
GreensDClassOfElement(
|
|
1230
|
+
Monoid( Matrix(IsBooleanMat, [[0, 1, 0], [1, 0, 0], [0, 0, 1]])
|
|
1231
|
+
Matrix(IsBooleanMat, [[0, 1, 0], [0, 0, 1], [1, 0, 0]]),
|
|
1232
|
+
Matrix(IsBooleanMat, [[1, 0, 0], [0, 1, 0], [1, 0, 1]]),
|
|
1233
|
+
Matrix(IsBooleanMat, [[1, 0, 0], [0, 1, 0], [0, 0, 0]]),
|
|
1234
|
+
Matrix(IsBooleanMat, [[1, 1, 0], [1, 0, 1], [0, 1, 1]]) ),
|
|
1235
|
+
Matrix(IsBooleanMat, [[0, 1, 0], [0, 0, 1], [1, 0, 0]]))
|
|
1236
|
+
"This string allows us to test PrintObj"
|
|
1237
|
+
|
|
1238
|
+
# Test IsomorphismPermGroup (for an H-class)
|
|
1239
|
+
gap> S := RegularBooleanMatMonoid(3);
|
|
1240
|
+
<monoid of 3x3 boolean matrices with 4 generators>
|
|
1241
|
+
gap> S := AsSemigroup(IsIntegerMatrixSemigroup, S);
|
|
1242
|
+
<semigroup of 8x8 integer matrices with 5 generators>
|
|
1243
|
+
gap> D := DClass(S, S.2);;
|
|
1244
|
+
gap> IsRegularDClass(D);
|
|
1245
|
+
true
|
|
1246
|
+
gap> H := GroupHClass(D);;
|
|
1247
|
+
gap> x := IsomorphismPermGroup(H);;
|
|
1248
|
+
gap> Source(x) = H;
|
|
1249
|
+
true
|
|
1250
|
+
gap> Range(x);
|
|
1251
|
+
Group([ (1,2)(3,5)(4,6), (1,3,6)(2,4,5) ])
|
|
1252
|
+
gap> Representative(H) ^ x;
|
|
1253
|
+
()
|
|
1254
|
+
gap> y := InverseGeneralMapping(x);;
|
|
1255
|
+
gap> () ^ y;
|
|
1256
|
+
<immutable 8x8-matrix over Integers>
|
|
1257
|
+
gap> () ^ y = Representative(H);
|
|
1258
|
+
true
|
|
1259
|
+
gap> Matrix(Integers, [[0, 0, -1, -1, 3, 3, 1, -1],
|
|
1260
|
+
> [1, -1, 0, 2, 7, 5, 0, -1],
|
|
1261
|
+
> [-3, 4, 0, 2, 0, -1, 0, 0],
|
|
1262
|
+
> [4, 0, 0, 0, 1, 2, 2, 0],
|
|
1263
|
+
> [-2, 2, 0, -1, 0, 0, 0, 3],
|
|
1264
|
+
> [0, 2, 0, -1, -2, -2, 1, 2],
|
|
1265
|
+
> [0, 0, 0, -2, -3, 0, 0, -1],
|
|
1266
|
+
> [0, 0, 2, 0, 0, 0, 1, 2]]) ^ x;
|
|
1267
|
+
Error, the argument does not belong to the domain of the function
|
|
1268
|
+
gap> (1, 10) ^ y;
|
|
1269
|
+
Error, the argument does not belong to the domain of the function
|
|
1270
|
+
gap> H := HClass(S, Matrix(Integers,
|
|
1271
|
+
> [[1, 0, 0, 0, 0, 0, 0, 0],
|
|
1272
|
+
> [1, 0, 0, 0, 0, 0, 0, 0],
|
|
1273
|
+
> [0, 1, 0, 0, 0, 0, 0, 0],
|
|
1274
|
+
> [0, 0, 0, 0, 0, 1, 0, 0],
|
|
1275
|
+
> [1, 0, 0, 0, 0, 0, 0, 0],
|
|
1276
|
+
> [0, 0, 1, 0, 0, 0, 0, 0],
|
|
1277
|
+
> [0, 1, 0, 0, 0, 0, 0, 0],
|
|
1278
|
+
> [0, 0, 0, 0, 0, 0, 0, 1]]));;
|
|
1279
|
+
gap> IsomorphismPermGroup(H);
|
|
1280
|
+
Error, the argument (a Green's H-class) is not a group
|
|
1281
|
+
|
|
1282
|
+
# Test GreensRClassOfElement for infinite semigroup
|
|
1283
|
+
gap> S := FreeInverseSemigroup(2);;
|
|
1284
|
+
gap> GreensRClassOfElement(S, S.1);
|
|
1285
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1286
|
+
Error, no 2nd choice method found for `GreensRClassOfElement' on 2 arguments
|
|
1287
|
+
gap> GreensLClassOfElement(S, S.1);
|
|
1288
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1289
|
+
Error, no 2nd choice method found for `GreensLClassOfElement' on 2 arguments
|
|
1290
|
+
gap> GreensHClassOfElement(S, S.1);
|
|
1291
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1292
|
+
Error, no 2nd choice method found for `GreensHClassOfElement' on 2 arguments
|
|
1293
|
+
gap> GreensDClassOfElement(S, S.1);
|
|
1294
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
1295
|
+
Error, no 2nd choice method found for `GreensDClassOfElement' on 2 arguments
|
|
1296
|
+
|
|
1297
|
+
# Test NrL/RClasses for a D-class
|
|
1298
|
+
gap> S := Semigroup(FullTransformationMonoid(4), rec(acting := false));;
|
|
1299
|
+
gap> D := DClass(S, S.3);;
|
|
1300
|
+
gap> NrLClasses(D);
|
|
1301
|
+
4
|
|
1302
|
+
gap> NrRClasses(D);
|
|
1303
|
+
6
|
|
1304
|
+
|
|
1305
|
+
# Test NrXClasses for a non-CanUseFroidurePin semigroup
|
|
1306
|
+
gap> S := Semigroup(SEMIGROUPS.UniversalFakeOne);;
|
|
1307
|
+
gap> CanUseFroidurePin(S);
|
|
1308
|
+
false
|
|
1309
|
+
gap> NrDClasses(S);
|
|
1310
|
+
1
|
|
1311
|
+
gap> NrLClasses(S);
|
|
1312
|
+
1
|
|
1313
|
+
gap> NrRClasses(S);
|
|
1314
|
+
1
|
|
1315
|
+
gap> NrHClasses(S);
|
|
1316
|
+
1
|
|
1317
|
+
|
|
1318
|
+
# Test NrXClassReps for a non-CanUseFroidurePin semigroup
|
|
1319
|
+
gap> S := Semigroup(SEMIGROUPS.UniversalFakeOne);;
|
|
1320
|
+
gap> CanUseFroidurePin(S);
|
|
1321
|
+
false
|
|
1322
|
+
gap> DClassReps(S);
|
|
1323
|
+
[ <universal fake one> ]
|
|
1324
|
+
gap> RClassReps(S);
|
|
1325
|
+
[ <universal fake one> ]
|
|
1326
|
+
gap> LClassReps(S);
|
|
1327
|
+
[ <universal fake one> ]
|
|
1328
|
+
gap> HClassReps(S);
|
|
1329
|
+
[ <universal fake one> ]
|
|
1330
|
+
|
|
1331
|
+
# Test NrXClassReps for a D-class of a non-CanUseFroidurePin semigroup
|
|
1332
|
+
gap> S := Semigroup(SEMIGROUPS.UniversalFakeOne);;
|
|
1333
|
+
gap> CanUseFroidurePin(S);
|
|
1334
|
+
false
|
|
1335
|
+
gap> D := DClasses(S)[1];;
|
|
1336
|
+
gap> RClassReps(D);
|
|
1337
|
+
[ <universal fake one> ]
|
|
1338
|
+
gap> LClassReps(D);
|
|
1339
|
+
[ <universal fake one> ]
|
|
1340
|
+
gap> HClassReps(D);
|
|
1341
|
+
[ <universal fake one> ]
|
|
1342
|
+
gap> NrIdempotents(D);
|
|
1343
|
+
1
|
|
1344
|
+
gap> Idempotents(D);
|
|
1345
|
+
[ <universal fake one> ]
|
|
1346
|
+
|
|
1347
|
+
# Test IteratorOfXClasses for a non-CanUseFroidurePin semigroup
|
|
1348
|
+
gap> S := Semigroup(SEMIGROUPS.UniversalFakeOne);;
|
|
1349
|
+
gap> CanUseFroidurePin(S);
|
|
1350
|
+
false
|
|
1351
|
+
gap> IsFinite(S);
|
|
1352
|
+
true
|
|
1353
|
+
gap> iter := IteratorOfDClasses(S);
|
|
1354
|
+
<iterator>
|
|
1355
|
+
gap> IsDoneIterator(iter);
|
|
1356
|
+
false
|
|
1357
|
+
gap> NextIterator(iter);
|
|
1358
|
+
<Green's D-class: <object>>
|
|
1359
|
+
gap> IsDoneIterator(iter);
|
|
1360
|
+
true
|
|
1361
|
+
gap> iter := IteratorOfRClasses(S);
|
|
1362
|
+
<iterator>
|
|
1363
|
+
gap> IsDoneIterator(iter);
|
|
1364
|
+
false
|
|
1365
|
+
gap> NextIterator(iter);
|
|
1366
|
+
<Green's R-class: <object>>
|
|
1367
|
+
gap> IsDoneIterator(iter);
|
|
1368
|
+
true
|
|
1369
|
+
|
|
1370
|
+
# Test GreensXClassOfElementNC for a non-CanUseFroidurePin semigroup
|
|
1371
|
+
gap> S := Semigroup(SEMIGROUPS.UniversalFakeOne);;
|
|
1372
|
+
gap> IsFinite(S);
|
|
1373
|
+
true
|
|
1374
|
+
gap> CanUseFroidurePin(S);
|
|
1375
|
+
false
|
|
1376
|
+
gap> GreensRClassOfElementNC(S, S.1);
|
|
1377
|
+
<Green's R-class: <object>>
|
|
1378
|
+
gap> GreensLClassOfElementNC(S, S.1);
|
|
1379
|
+
<Green's L-class: <object>>
|
|
1380
|
+
gap> GreensDClassOfElementNC(S, S.1);
|
|
1381
|
+
<Green's D-class: <object>>
|
|
1382
|
+
gap> GreensHClassOfElementNC(S, S.1);
|
|
1383
|
+
<Green's H-class: <object>>
|
|
1384
|
+
|
|
1385
|
+
# Test XClassOfYClass for a non-CanUseFroidurePin semigroup
|
|
1386
|
+
gap> S := Semigroup(SEMIGROUPS.UniversalFakeOne);;
|
|
1387
|
+
gap> IsFinite(S);
|
|
1388
|
+
true
|
|
1389
|
+
gap> DClassOfRClass(GreensRClassOfElementNC(S, S.1));
|
|
1390
|
+
<Green's D-class: <object>>
|
|
1391
|
+
gap> DClassOfLClass(GreensLClassOfElementNC(S, S.1));
|
|
1392
|
+
<Green's D-class: <object>>
|
|
1393
|
+
gap> DClassOfHClass(GreensHClassOfElementNC(S, S.1));
|
|
1394
|
+
<Green's D-class: <object>>
|
|
1395
|
+
gap> RClassOfHClass(GreensHClassOfElementNC(S, S.1));
|
|
1396
|
+
<Green's R-class: <object>>
|
|
1397
|
+
gap> LClassOfHClass(GreensHClassOfElementNC(S, S.1));
|
|
1398
|
+
<Green's L-class: <object>>
|
|
1399
|
+
|
|
1400
|
+
# Test PartialOrderOfDClasses for a finite non-CanUseFroidurePin,
|
|
1401
|
+
# non-acting semigroup
|
|
1402
|
+
gap> S := SemigroupByMultiplicationTable([[1, 1, 1, 1, 1],
|
|
1403
|
+
> [1, 1, 1, 1, 1],
|
|
1404
|
+
> [1, 1, 1, 1, 2],
|
|
1405
|
+
> [1, 1, 2, 1, 1],
|
|
1406
|
+
> [1, 1, 1, 2, 1]]);;
|
|
1407
|
+
gap> IsActingSemigroup(S);
|
|
1408
|
+
false
|
|
1409
|
+
gap> CanUseFroidurePin(S);
|
|
1410
|
+
true
|
|
1411
|
+
gap> PartialOrderOfDClasses(S);
|
|
1412
|
+
<immutable digraph with 5 vertices, 7 edges>
|
|
1413
|
+
|
|
1414
|
+
# Test PartialOrderOfDClasses for a finite non-CanUseFroidurePin,
|
|
1415
|
+
# non-acting semigroup
|
|
1416
|
+
gap> D := Digraph([[2, 3], [2], []]);;
|
|
1417
|
+
gap> S1 := FullTransformationMonoid(2);;
|
|
1418
|
+
gap> id := IdentityMapping(S1);;
|
|
1419
|
+
gap> m1 := SemigroupHomomorphismByFunction(S1, S1, x -> Transformation([1, 1]));;
|
|
1420
|
+
gap> m2 := SemigroupHomomorphismByFunction(S1, S1, x -> Transformation([2, 2]));;
|
|
1421
|
+
gap> L := [S1, S1, S1];;
|
|
1422
|
+
gap> H := [[m1, m2], [id], []];;
|
|
1423
|
+
gap> S := StrongSemilatticeOfSemigroups(D, L, H);
|
|
1424
|
+
<strong semilattice of 3 semigroups>
|
|
1425
|
+
gap> IsFinite(S);
|
|
1426
|
+
true
|
|
1427
|
+
gap> IsActingSemigroup(S);
|
|
1428
|
+
false
|
|
1429
|
+
gap> CanUseFroidurePin(S);
|
|
1430
|
+
false
|
|
1431
|
+
gap> PartialOrderOfDClasses(S);
|
|
1432
|
+
<immutable digraph with 6 vertices, 7 edges>
|
|
1433
|
+
|
|
1434
|
+
#
|
|
1435
|
+
gap> SEMIGROUPS.StopTest();
|
|
1436
|
+
gap> STOP_TEST("Semigroups package: standard/greens/generic.tst");
|