passagemath-gap-pkg-semigroups 10.6.30__cp312-abi3-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1158 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,2837 @@
1
+ #############################################################################
2
+ ##
3
+ #W extreme/semibipart.tst
4
+ #Y Copyright (C) 2014-15 Attila Egri-Nagy
5
+ ## James D. Mitchell
6
+ ##
7
+ ## Licensing information can be found in the README file of this package.
8
+ ##
9
+ #############################################################################
10
+ ##
11
+
12
+ #@local D, DD, G, H, HH, L, LL, R, S, T, acting, an, f, g, gens, inv, iso, s, x
13
+ gap> START_TEST("Semigroups package: extreme/semibipart.tst");
14
+ gap> LoadPackage("semigroups", false);;
15
+
16
+ #
17
+ gap> SEMIGROUPS.StartTest();
18
+ gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
19
+
20
+ # BipartitionTest1: IsomorphismTransformationMonoid, IsomorphismTransformationSemigroup
21
+ gap> S := DualSymmetricInverseMonoid(4);
22
+ <inverse block bijection monoid of degree 4 with 3 generators>
23
+ gap> IsomorphismTransformationMonoid(S);
24
+ <inverse block bijection monoid of size 339, degree 4 with 3 generators> ->
25
+ <transformation monoid of size 339, degree 339 with 3 generators>
26
+ gap> S := Semigroup(Bipartition([[1, 2, 3, 4, -2, -3], [-1], [-4]]),
27
+ > Bipartition([[1, 2, -1, -3], [3, 4, -2, -4]]),
28
+ > Bipartition([[1, 3, -1], [2, 4, -2, -3], [-4]]),
29
+ > Bipartition([[1, -4], [2], [3, -2], [4, -1], [-3]]));;
30
+ gap> IsomorphismTransformationSemigroup(S);
31
+ <bipartition semigroup of size 284, degree 4 with 4 generators> ->
32
+ <transformation semigroup of size 284, degree 285 with 4 generators>
33
+ gap> S := Monoid(Bipartition([[1, 2, -2], [3], [4, -3, -4], [-1]]),
34
+ > Bipartition([[1, 3, -3, -4], [2, 4, -1, -2]]),
35
+ > Bipartition([[1, -1, -2], [2, 3, -3, -4], [4]]),
36
+ > Bipartition([[1, 4, -4], [2, -1], [3, -2, -3]]));;
37
+ gap> IsomorphismTransformationMonoid(S);
38
+ <bipartition monoid of size 41, degree 4 with 4 generators> ->
39
+ <transformation monoid of size 41, degree 41 with 4 generators>
40
+
41
+ # IsomorphismBipartitionSemigroup for a CanUseFroidurePin semigroup
42
+ gap> S := Semigroup(
43
+ > Bipartition([[1, 2, 3, -3], [4, -4, -5], [5, -1], [-2]]),
44
+ > Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]),
45
+ > Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2], [-4]]),
46
+ > Bipartition([[1], [2], [3, 5, -1, -2], [4, -3], [-4, -5]]),
47
+ > Bipartition([[1], [2], [3], [4, -1, -4], [5], [-2, -3],
48
+ > [-5]]));;
49
+ gap> D := DClass(S, Bipartition([[1], [2], [3], [4, -1, -4],
50
+ > [5], [-2, -3], [-5]]));;
51
+ gap> IsRegularDClass(D);
52
+ true
53
+ gap> R := PrincipalFactor(D);
54
+ <Rees 0-matrix semigroup 12x15 over Group(())>
55
+ gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, R);
56
+ <Rees 0-matrix semigroup 12x15 over Group(())> ->
57
+ <bipartition semigroup of size 181, degree 182 with 26 generators>
58
+ gap> g := InverseGeneralMapping(f);;
59
+ gap> ForAll(R, x -> (x ^ f) ^ g = x);
60
+ true
61
+ gap> x := RMSElement(R, 12, (), 8);;
62
+ gap> ForAll(R, y -> (x ^ f) * (y ^ f) = (x * y) ^ f);
63
+ true
64
+
65
+ # BipartitionTest14: IsomorphismBipartitionSemigroup
66
+ # for a transformation semigroup
67
+ gap> gens := [Transformation([3, 4, 1, 2, 1]),
68
+ > Transformation([4, 2, 1, 5, 5]),
69
+ > Transformation([4, 2, 2, 2, 4])];;
70
+ gap> s := Semigroup(gens);;
71
+ gap> S := Range(IsomorphismSemigroup(IsBipartitionSemigroup, s));
72
+ <bipartition semigroup of degree 5 with 3 generators>
73
+ gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, s);
74
+ <transformation semigroup of degree 5 with 3 generators> ->
75
+ <bipartition semigroup of degree 5 with 3 generators>
76
+ gap> g := InverseGeneralMapping(f);;
77
+ gap> ForAll(s, x -> (x ^ f) ^ g = x);
78
+ true
79
+ gap> ForAll(S, x -> (x ^ g) ^ f = x);
80
+ true
81
+ gap> Size(s);
82
+ 731
83
+ gap> Size(S);
84
+ 731
85
+ gap> x := Transformation([3, 1, 3, 3, 3]);;
86
+ gap> ForAll(s, y -> (x ^ f) * (y ^ f) = (x * y) ^ f);
87
+ true
88
+
89
+ # BipartitionTest15: IsomorphismTransformationSemigroup for a bipartition
90
+ # semigroup consisting of IsTransBipartition
91
+ gap> S := Semigroup(Transformation([1, 3, 4, 1, 3]),
92
+ > Transformation([2, 4, 1, 5, 5]),
93
+ > Transformation([2, 5, 3, 5, 3]),
94
+ > Transformation([4, 1, 2, 2, 1]),
95
+ > Transformation([5, 5, 1, 1, 3]));;
96
+ gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
97
+ <bipartition semigroup of degree 5 with 5 generators>
98
+ gap> f := IsomorphismTransformationSemigroup(T);
99
+ <bipartition semigroup of degree 5 with 5 generators> ->
100
+ <transformation semigroup of degree 5 with 5 generators>
101
+ gap> g := InverseGeneralMapping(f);;
102
+ gap> ForAll(T, x -> (x ^ f) ^ g = x);
103
+ true
104
+ gap> ForAll(S, x -> (x ^ g) ^ f = x);
105
+ true
106
+ gap> Size(T);
107
+ 602
108
+ gap> Size(S);
109
+ 602
110
+ gap> Size(Range(f));
111
+ 602
112
+
113
+ # BipartitionTest16: IsomorphismBipartitionSemigroup
114
+ # for a partial perm semigroup
115
+ gap> S := Semigroup(
116
+ > [PartialPerm([1, 2, 3], [1, 3, 4]),
117
+ > PartialPerm([1, 2, 3], [2, 5, 3]),
118
+ > PartialPerm([1, 2, 3], [4, 1, 2]),
119
+ > PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
120
+ > PartialPerm([1, 3, 5], [5, 1, 3])]);;
121
+ gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
122
+ <bipartition semigroup of degree 5 with 5 generators>
123
+ gap> Generators(S);
124
+ [ [2,3,4](1), [1,2,5](3), [3,2,1,4], [3,1,2,4,5], (1,5,3) ]
125
+ gap> Generators(T);
126
+ [ <bipartition: [ 1, -1 ], [ 2, -3 ], [ 3, -4 ], [ 4 ], [ 5 ], [ -2 ], [ -5 ]>
127
+ , <bipartition: [ 1, -2 ], [ 2, -5 ], [ 3, -3 ], [ 4 ], [ 5 ], [ -1 ],
128
+ [ -4 ]>, <bipartition: [ 1, -4 ], [ 2, -1 ], [ 3, -2 ], [ 4 ], [ 5 ],
129
+ [ -3 ], [ -5 ]>,
130
+ <bipartition: [ 1, -2 ], [ 2, -4 ], [ 3, -1 ], [ 4, -5 ], [ 5 ], [ -3 ]>,
131
+ <bipartition: [ 1, -5 ], [ 2 ], [ 3, -1 ], [ 4 ], [ 5, -3 ], [ -2 ], [ -4 ]>
132
+ ]
133
+ gap> Size(S);
134
+ 156
135
+ gap> Size(T);
136
+ 156
137
+ gap> IsInverseSemigroup(S);
138
+ false
139
+ gap> IsInverseSemigroup(T);
140
+ false
141
+ gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
142
+ gap> g := InverseGeneralMapping(f);;
143
+ gap> ForAll(S, x -> (x ^ f) ^ g = x);
144
+ true
145
+ gap> ForAll(T, x -> (x ^ g) ^ f = x);
146
+ true
147
+ gap> Size(S);
148
+ 156
149
+ gap> ForAll(S, x -> ForAll(S, y -> (x * y) ^ f = (x ^ f) * (y ^ f)));
150
+ true
151
+
152
+ # BipartitionTest17: IsomorphismPartialPermSemigroup
153
+ # for a semigroup of bipartitions consisting of IsPartialPermBipartition
154
+ gap> f := IsomorphismPartialPermSemigroup(T);;
155
+ gap> g := InverseGeneralMapping(f);;
156
+ gap> ForAll(T, x -> ForAll(T, y -> (x * y) ^ f = (x ^ f) * (y ^ f)));
157
+ true
158
+ gap> Size(S); Size(T);
159
+ 156
160
+ 156
161
+ gap> ForAll(T, x -> (x ^ f) ^ g = x);
162
+ true
163
+ gap> ForAll(S, x -> (x ^ g) ^ f = x);
164
+ true
165
+
166
+ # BipartitionTest18
167
+ # Testing the cases to which the new methods for
168
+ # IsomorphismPartialPermSemigroup and IsomorphismTransformationSemigroup
169
+ # don't apply
170
+ gap> S := Semigroup(
171
+ > Bipartition([[1, 2, 3, 4, -1, -2, -5], [5], [-3, -4]]),
172
+ > Bipartition([[1, 2, 3], [4, -2, -4], [5, -1, -5], [-3]]),
173
+ > Bipartition([[1, 3, 5], [2, 4, -1, -2, -5], [-3], [-4]]),
174
+ > Bipartition([[1, -5], [2, 3, 4, 5], [-1], [-2], [-3, -4]]),
175
+ > Bipartition([[1, -4], [2], [3, -2], [4, 5, -1], [-3, -5]]));;
176
+ gap> IsomorphismPartialPermSemigroup(S);
177
+ Error, the argument must be an inverse semigroup
178
+ gap> Range(IsomorphismTransformationSemigroup(S));
179
+ <transformation semigroup of size 207, degree 208 with 5 generators>
180
+
181
+ # BipartitionTest19: IsomorphismBipartitionSemigroup for a perm group
182
+ gap> G := DihedralGroup(IsPermGroup, 10);;
183
+ gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, G);;
184
+ gap> g := InverseGeneralMapping(f);;
185
+ gap> ForAll(G, x -> (x ^ f) ^ g = x);
186
+ true
187
+ gap> ForAll(G, x -> ForAll(G, y -> (x * y) ^ f = x ^ f * y ^ f));
188
+ true
189
+ gap> ForAll(Range(f), x -> (x ^ g) ^ f = x);
190
+ true
191
+
192
+ # BipartitionTest20: IsomorphismPermGroup
193
+ gap> G := GroupOfUnits(PartitionMonoid(5));
194
+ <block bijection group of degree 5 with 2 generators>
195
+ gap> IsomorphismPermGroup(G);;
196
+ gap> f := last;; g := InverseGeneralMapping(f);;
197
+ gap> ForAll(G, x -> ForAll(G, y -> (x * y) ^ f = x ^ f * y ^ f));
198
+ true
199
+ gap> ForAll(G, x -> (x ^ f) ^ g = x);
200
+ true
201
+ gap> ForAll(Range(f), x -> (x ^ g) ^ f = x);
202
+ true
203
+ gap> S := PartitionMonoid(5);;
204
+ gap> D := DClass(S,
205
+ > Bipartition([[1], [2, -3], [3, -4], [4, -5], [5], [-1], [-2]]));;
206
+ gap> G := GroupHClass(D);;
207
+ gap> G = HClass(S, Bipartition([[1], [2, -1, -2], [3, -3],
208
+ > [4, -4, -5], [5]]));
209
+ true
210
+ gap> IsomorphismPermGroup(G);;
211
+
212
+ # BipartitionTest21: IsomorphismBipartitionSemigroup
213
+ # for an inverse semigroup of partial perms
214
+ gap> S := InverseSemigroup(
215
+ > PartialPerm([1, 3, 5, 7, 9], [7, 6, 5, 10, 1]),
216
+ > PartialPerm([1, 2, 3, 4, 6, 10], [9, 10, 4, 2, 5, 6]));;
217
+ gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
218
+ <inverse bipartition semigroup of degree 10 with 2 generators>
219
+ gap> Size(S);
220
+ 281
221
+ gap> Size(T);
222
+ 281
223
+ gap> IsomorphismPartialPermSemigroup(T);
224
+ <inverse bipartition semigroup of size 281, degree 10 with 2 generators> ->
225
+ <inverse partial perm semigroup of size 281, rank 9 with 2 generators>
226
+ gap> Size(Range(last));
227
+ 281
228
+ gap> f := last2;; g := InverseGeneralMapping(f);;
229
+ gap> ForAll(T, x -> (x ^ f) ^ g = x);
230
+ true
231
+
232
+ # BipartitionTest22: AsBlockBijection and
233
+ # IsomorphismSemigroup(IsBlockBijectionSemigroup for an inverse semigroup of
234
+ # partial perms
235
+ gap> S := InverseSemigroup(
236
+ > PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
237
+ > PartialPerm([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6]));;
238
+ gap> T := Range(IsomorphismSemigroup(IsBlockBijectionSemigroup, S));
239
+ <inverse block bijection semigroup of degree 11 with 2 generators>
240
+ gap> f := IsomorphismSemigroup(IsBlockBijectionSemigroup, S);;
241
+ gap> g := InverseGeneralMapping(f);;
242
+ gap> ForAll(S, x -> (x ^ f) ^ g = x);
243
+ true
244
+ gap> ForAll(T, x -> (x ^ g) ^ f = x);
245
+ true
246
+ gap> Size(S);
247
+ 2657
248
+ gap> Size(T);
249
+ 2657
250
+ gap> x := PartialPerm([1, 2, 3, 8], [8, 4, 10, 3]);;
251
+ gap> ForAll(S, y -> x ^ f * y ^ f = (x * y) ^ f);
252
+ true
253
+
254
+ # BipartitionTest23: Same as last for non-inverse partial perm semigroup
255
+ gap> S := Semigroup(
256
+ > PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
257
+ > PartialPerm([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6]));;
258
+ gap> Size(S);
259
+ 90
260
+ gap> IsInverseSemigroup(S);
261
+ false
262
+ gap> T := Range(IsomorphismSemigroup(IsBlockBijectionSemigroup, S));
263
+ <block bijection semigroup of size 90, degree 11 with 2 generators>
264
+ gap> Size(T);
265
+ 90
266
+ gap> IsInverseSemigroup(T);
267
+ false
268
+ gap> f := IsomorphismSemigroup(IsBlockBijectionSemigroup, S);;
269
+ gap> g := InverseGeneralMapping(f);;
270
+ gap> ForAll(S, x -> (x ^ f) ^ g = x);
271
+ true
272
+ gap> ForAll(T, x -> (x ^ g) ^ f = x);
273
+ true
274
+ gap> x := PartialPerm([1, 3], [3, 1]);;
275
+ gap> ForAll(S, y -> x ^ f * y ^ f = (x * y) ^ f);
276
+ true
277
+
278
+ # BipartitionTest26:
279
+ # Tests of things in greens-generic.xml in the order they appear in that file.
280
+ gap> S := Semigroup(
281
+ > Bipartition([[1, -1], [2, -2], [3, -3], [4, -4], [5, -8],
282
+ > [6, -9], [7, -10], [8, -11], [9, -12], [10, -13], [11, -5],
283
+ > [12, -6], [13, -7]]),
284
+ > Bipartition([[1, -2], [2, -5], [3, -8], [4, -11], [5, -1],
285
+ > [6, -4], [7, -3], [8, -7], [9, -10], [10, -13], [11, -6],
286
+ > [12, -12], [13, -9]]),
287
+ > Bipartition([[1, 7, -10, -12], [2, 3, 4, 6, 10, 13, -13],
288
+ > [5, 12, -1], [8, 9, 11], [-2, -9], [-3, -7, -8], [-4],
289
+ > [-5], [-6, -11]]), rec(acting := true));
290
+ <bipartition semigroup of degree 13 with 3 generators>
291
+ gap> f := Bipartition([[1, 2, 3, 4, 7, 8, 11, 13], [5, 9], [6, 10, 12],
292
+ > [-1, -2, -6], [-3], [-4, -8], [-5, -11], [-7, -10, -13], [-9],
293
+ > [-12]]);;
294
+ gap> H := HClassNC(S, f);
295
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
296
+ [ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
297
+ [ -7, -10, -13 ], [ -9 ], [ -12 ]>>
298
+ gap> IsGreensClassNC(H);
299
+ true
300
+ gap> MultiplicativeNeutralElement(H);
301
+ <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ], [ 6, 10, 12 ],
302
+ [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ], [ -7, -10, -13 ], [ -9 ],
303
+ [ -12 ]>
304
+ gap> StructureDescription(H);
305
+ "1"
306
+ gap> H := HClassNC(S, f);
307
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
308
+ [ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
309
+ [ -7, -10, -13 ], [ -9 ], [ -12 ]>>
310
+ gap> f := Bipartition([[1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13],
311
+ > [3, 4, 13], [-2, -9], [-3, -7, -8], [-4], [-5], [-6, -11]]);;
312
+ gap> HH := HClassNC(S, f);
313
+ <Green's H-class:
314
+ <bipartition: [ 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13 ],
315
+ [ 3, 4, 13 ], [ -2, -9 ], [ -3, -7, -8 ], [ -4 ], [ -5 ], [ -6, -11 ]>>
316
+ gap> HH < H;
317
+ false
318
+ gap> H < HH;
319
+ true
320
+ gap> H = HH;
321
+ false
322
+ gap> D := DClass(H);
323
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
324
+ [ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
325
+ [ -7, -10, -13 ], [ -9 ], [ -12 ]>>
326
+ gap> DD := DClass(HH);
327
+ <Green's D-class:
328
+ <bipartition: [ 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13 ],
329
+ [ 3, 4, 13 ], [ -2, -9 ], [ -3, -7, -8 ], [ -4 ], [ -5 ], [ -6, -11 ]>>
330
+ gap> DD < D;
331
+ true
332
+ gap> D < DD;
333
+ false
334
+ gap> D = DD;
335
+ false
336
+ gap> S := Semigroup(
337
+ > [Bipartition([[1, 2, 3, 4, 5], [-1, -2, -4, -5], [-3]]),
338
+ > Bipartition([[1, 2, 3, 4, -2, -3, -4], [5], [-1, -5]]),
339
+ > Bipartition([[1, 2, 3, -3, -5], [4, -1], [5, -2, -4]]),
340
+ > Bipartition([[1, 5, -1, -3], [2, 3], [4, -2], [-4, -5]]),
341
+ > Bipartition([[1, 4, -3], [2], [3], [5, -1, -2, -5], [-4]])]);;
342
+ gap> IsGreensLessThanOrEqual(DClass(S, S.1), DClass(S, S.2));
343
+ true
344
+ gap> IsGreensLessThanOrEqual(DClass(S, S.2), DClass(S, S.1));
345
+ false
346
+ gap> f := S.1 * S.2 * S.3;
347
+ <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -2, -3, -4, -5 ]>
348
+ gap> f := S.1 * S.2;
349
+ <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
350
+ gap> H := HClass(S, f);
351
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
352
+ >
353
+ gap> Bipartition([[1, 2, 3, 4, 5], [-1, -5], [-2, -3, -4]]) in last;
354
+ true
355
+ gap> LClass(H);
356
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
357
+ >
358
+ gap> Bipartition([[1, 2, 3, 4, 5], [-1, -5], [-2, -3, -4]]) in last;
359
+ true
360
+ gap> RClass(H);
361
+ <Green's R-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
362
+ >
363
+ gap> Bipartition([[1, 2, 3, 4, 5], [-1, -2, -4, -5], [-3]]) in last;
364
+ true
365
+ gap> DClass(RClass(H));
366
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -2, -4, -5 ], [ -3 ]>
367
+ >
368
+ gap> Bipartition([[1, 2, 3, 4, 5], [-1, -2, -4, -5], [-3]]) in last;
369
+ true
370
+ gap> DClass(LClass(H));
371
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
372
+ >
373
+ gap> Bipartition([[1, 2, 3, 4, 5], [-1, -2, -4, -5], [-3]]) in last;
374
+ true
375
+ gap> DClass(H);
376
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
377
+ >
378
+ gap> Bipartition([[1, 2, 3, 4, 5], [-1, -2, -4, -5], [-3]]) in last;
379
+ true
380
+ gap> f := Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]);
381
+ <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
382
+ gap> H := HClassNC(S, f);
383
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
384
+ >
385
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
386
+ true
387
+ gap> LClass(H);
388
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
389
+ >
390
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
391
+ true
392
+ gap> RClass(H);
393
+ <Green's R-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
394
+ >
395
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
396
+ true
397
+ gap> DClass(RClass(H));
398
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
399
+ >
400
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
401
+ true
402
+ gap> DClass(LClass(H));
403
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
404
+ >
405
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
406
+ true
407
+ gap> DClass(H);
408
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
409
+ >
410
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
411
+ true
412
+ gap> DClasses(S);
413
+ [ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -2, -4, -5 ],
414
+ [ -3 ]>>,
415
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, -2, -3, -4 ], [ 5 ],
416
+ [ -1, -5 ]>>,
417
+ <Green's D-class: <block bijection: [ 1, 2, 3, -3, -5 ], [ 4, -1 ],
418
+ [ 5, -2, -4 ]>>,
419
+ <Green's D-class: <bipartition: [ 1, 5, -1, -3 ], [ 2, 3 ], [ 4, -2 ],
420
+ [ -4, -5 ]>>,
421
+ <Green's D-class: <bipartition: [ 1, 4, -3 ], [ 2 ], [ 3 ],
422
+ [ 5, -1, -2, -5 ], [ -4 ]>>,
423
+ <Green's D-class: <bipartition: [ 1, 2, 3, -1, -2, -5 ], [ 4, 5, -3 ],
424
+ [ -4 ]>> ]
425
+ gap> H := HClassNC(S, f);
426
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
427
+ >
428
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
429
+ true
430
+ gap> RClasses(DClass(H));
431
+ [ <Green's R-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ],
432
+ [ -4, -5 ]>>,
433
+ <Green's R-class: <bipartition: [ 1, 2, 3, 4, -2 ], [ 5 ], [ -1, -3 ],
434
+ [ -4, -5 ]>>,
435
+ <Green's R-class: <bipartition: [ 1, 4, 5, -2 ], [ 2, 3 ], [ -1, -3 ],
436
+ [ -4, -5 ]>>,
437
+ <Green's R-class: <bipartition: [ 1, 4, 5, -2 ], [ 2 ], [ 3 ], [ -1, -3 ],
438
+ [ -4, -5 ]>>,
439
+ <Green's R-class: <bipartition: [ 1, 5, -2 ], [ 2, 3 ], [ 4 ], [ -1, -3 ],
440
+ [ -4, -5 ]>>,
441
+ <Green's R-class: <bipartition: [ 1, 4 ], [ 2 ], [ 3 ], [ 5, -2 ],
442
+ [ -1, -3 ], [ -4, -5 ]>>,
443
+ <Green's R-class: <bipartition: [ 1, 2, 3, -2 ], [ 4, 5 ], [ -1, -3 ],
444
+ [ -4, -5 ]>> ]
445
+ gap> LClasses(DClass(H));
446
+ [ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ],
447
+ [ -4, -5 ]>>,
448
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4 ], [ -1, -5 ]>>,
449
+ <Green's L-class: <block bijection: [ 1, 2, 3, 4, 5, -1, -2, -3, -4, -5 ]>>,
450
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -3 ], [ -4, -5 ]>>,
451
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -3, -5 ], [ -1, -2, -4 ]>>,
452
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -5 ], [ -3 ],
453
+ [ -4 ]>>,
454
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -3, -5 ], [ -4 ]>>,
455
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4, -5 ], [ -1 ]>>,
456
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -3 ], [ -2 ],
457
+ [ -4, -5 ]>> ]
458
+ gap> HClasses(LClass(H));
459
+ [ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ],
460
+ [ -4, -5 ]>>,
461
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, -2 ], [ 5 ], [ -1, -3 ],
462
+ [ -4, -5 ]>>,
463
+ <Green's H-class: <bipartition: [ 1, 4, 5, -2 ], [ 2, 3 ], [ -1, -3 ],
464
+ [ -4, -5 ]>>,
465
+ <Green's H-class: <bipartition: [ 1, 4, 5, -2 ], [ 2 ], [ 3 ], [ -1, -3 ],
466
+ [ -4, -5 ]>>,
467
+ <Green's H-class: <bipartition: [ 1, 5, -2 ], [ 2, 3 ], [ 4 ], [ -1, -3 ],
468
+ [ -4, -5 ]>>,
469
+ <Green's H-class: <bipartition: [ 1, 4 ], [ 2 ], [ 3 ], [ 5, -2 ],
470
+ [ -1, -3 ], [ -4, -5 ]>>,
471
+ <Green's H-class: <bipartition: [ 1, 2, 3, -2 ], [ 4, 5 ], [ -1, -3 ],
472
+ [ -4, -5 ]>> ]
473
+ gap> HClasses(RClass(H));
474
+ [ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ],
475
+ [ -4, -5 ]>>,
476
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4 ], [ -1, -5 ]>>,
477
+ <Green's H-class: <block bijection: [ 1, 2, 3, 4, 5, -1, -2, -3, -4, -5 ]>>,
478
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -3 ], [ -4, -5 ]>>,
479
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -3, -5 ], [ -1, -2, -4 ]>>,
480
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -5 ], [ -3 ],
481
+ [ -4 ]>>,
482
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -3, -5 ], [ -4 ]>>,
483
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4, -5 ], [ -1 ]>>,
484
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -3 ], [ -2 ],
485
+ [ -4, -5 ]>> ]
486
+ gap> JClasses(S);
487
+ [ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -2, -4, -5 ],
488
+ [ -3 ]>>,
489
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, -2, -3, -4 ], [ 5 ],
490
+ [ -1, -5 ]>>,
491
+ <Green's D-class: <block bijection: [ 1, 2, 3, -3, -5 ], [ 4, -1 ],
492
+ [ 5, -2, -4 ]>>,
493
+ <Green's D-class: <bipartition: [ 1, 5, -1, -3 ], [ 2, 3 ], [ 4, -2 ],
494
+ [ -4, -5 ]>>,
495
+ <Green's D-class: <bipartition: [ 1, 4, -3 ], [ 2 ], [ 3 ],
496
+ [ 5, -1, -2, -5 ], [ -4 ]>>,
497
+ <Green's D-class: <bipartition: [ 1, 2, 3, -1, -2, -5 ], [ 4, 5, -3 ],
498
+ [ -4 ]>> ]
499
+ gap> S := Semigroup(S);
500
+ <bipartition semigroup of degree 5 with 5 generators>
501
+ gap> D := DClassNC(S, f);
502
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
503
+ >
504
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
505
+ true
506
+ gap> D := [D];
507
+ [ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ],
508
+ [ -4, -5 ]>> ]
509
+ gap> D[2] := DClass(S, f);
510
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
511
+ >
512
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
513
+ true
514
+ gap> D[3] := DClass(RClass(S, f));
515
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4 ], [ -1, -5 ]>>
516
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
517
+ true
518
+ gap> D[4] := DClass(RClass(S, f));
519
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4 ], [ -1, -5 ]>>
520
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
521
+ true
522
+ gap> D[5] := DClass(LClass(S, f));
523
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
524
+ >
525
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
526
+ true
527
+ gap> D[6] := DClass(HClass(S, f));
528
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
529
+ >
530
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
531
+ true
532
+ gap> D[7] := DClass(LClass(HClass(S, f)));
533
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
534
+ >
535
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
536
+ true
537
+ gap> D[8] := DClass(RClass(HClass(S, f)));
538
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4 ], [ -1, -5 ]>>
539
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
540
+ true
541
+ gap> ForAll(Combinations([1 .. 8], 2), x -> D[x[1]] = D[x[2]]);
542
+ true
543
+ gap> List(D, IsGreensClassNC);
544
+ [ true, false, false, false, false, false, false, false ]
545
+ gap> D[7] := DClass(LClass(HClassNC(S, f)));
546
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
547
+ >
548
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
549
+ true
550
+ gap> D[6] := DClass(RClass(HClassNC(S, f)));
551
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
552
+ >
553
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
554
+ true
555
+ gap> D[5] := DClass(HClassNC(S, f));
556
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
557
+ >
558
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
559
+ true
560
+ gap> D[4] := DClass(LClassNC(S, f));
561
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
562
+ >
563
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
564
+ true
565
+ gap> ForAll(Combinations([1 .. 8], 2), x -> D[x[1]] = D[x[2]]);
566
+ true
567
+ gap> List(D, IsGreensClassNC);
568
+ [ true, false, false, true, true, true, true, false ]
569
+ gap> S := Semigroup(S);
570
+ <bipartition semigroup of degree 5 with 5 generators>
571
+ gap> D := DClassNC(S, f);
572
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
573
+ >
574
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
575
+ true
576
+ gap> L := LClassNC(D, f);
577
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
578
+ >
579
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
580
+ true
581
+ gap> Size(L);
582
+ 7
583
+ gap> Size(LClass(S, f));
584
+ 7
585
+ gap> LClass(S, f) = LClassNC(D, f);
586
+ true
587
+ gap> LClass(D, f) = LClassNC(S, f);
588
+ true
589
+ gap> LClassNC(D, f) = LClassNC(S, f);
590
+ true
591
+ gap> LClassNC(D, f) = LClass(S, f);
592
+ true
593
+ gap> S := Semigroup(S);
594
+ <bipartition semigroup of degree 5 with 5 generators>
595
+ gap> D := DClass(S, f);
596
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
597
+ >
598
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
599
+ true
600
+ gap> L := LClassNC(D, f);
601
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
602
+ >
603
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
604
+ true
605
+ gap> Size(L);
606
+ 7
607
+ gap> Size(LClass(S, f));
608
+ 7
609
+ gap> LClass(S, f) = LClassNC(D, f);
610
+ true
611
+ gap> LClass(D, f) = LClassNC(S, f);
612
+ true
613
+ gap> LClassNC(D, f) = LClassNC(S, f);
614
+ true
615
+ gap> LClassNC(D, f) = LClass(S, f);
616
+ true
617
+ gap> S := Semigroup(S);
618
+ <bipartition semigroup of degree 5 with 5 generators>
619
+ gap> D := DClass(S, f);
620
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
621
+ >
622
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
623
+ true
624
+ gap> R := RClassNC(D, f);
625
+ <Green's R-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
626
+ >
627
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
628
+ true
629
+ gap> Size(R);
630
+ 9
631
+ gap> Size(RClass(S, f));
632
+ 9
633
+ gap> RClass(S, f) = RClassNC(D, f);
634
+ true
635
+ gap> RClass(D, f) = RClassNC(S, f);
636
+ true
637
+ gap> RClassNC(D, f) = RClassNC(S, f);
638
+ true
639
+ gap> RClassNC(D, f) = RClass(S, f);
640
+ true
641
+ gap> S := Semigroup(S);
642
+ <bipartition semigroup of degree 5 with 5 generators>
643
+ gap> D := DClassNC(S, f);
644
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
645
+ >
646
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
647
+ true
648
+ gap> R := RClassNC(D, f);
649
+ <Green's R-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
650
+ >
651
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
652
+ true
653
+ gap> Size(R);
654
+ 9
655
+ gap> Size(RClass(S, f));
656
+ 9
657
+ gap> RClass(S, f) = RClassNC(D, f);
658
+ true
659
+ gap> RClass(D, f) = RClassNC(S, f);
660
+ true
661
+ gap> RClassNC(D, f) = RClassNC(S, f);
662
+ true
663
+ gap> RClassNC(D, f) = RClass(S, f);
664
+ true
665
+ gap> S := Semigroup(S);
666
+ <bipartition semigroup of degree 5 with 5 generators>
667
+ gap> D := DClass(S, f);
668
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
669
+ >
670
+ gap> Bipartition([[1, 2, 3, 4, 5, -2, -3, -4], [-1, -5]]) in last;
671
+ true
672
+ gap> H := HClassNC(D, f);
673
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
674
+ >
675
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
676
+ true
677
+ gap> Size(H);
678
+ 1
679
+ gap> Size(HClass(S, f));
680
+ 1
681
+ gap> HClass(S, f) = HClassNC(D, f);
682
+ true
683
+ gap> HClass(D, f) = HClassNC(S, f);
684
+ true
685
+ gap> HClassNC(D, f) = HClassNC(S, f);
686
+ true
687
+ gap> HClassNC(D, f) = HClass(S, f);
688
+ true
689
+ gap> S := Semigroup(S);
690
+ <bipartition semigroup of degree 5 with 5 generators>
691
+ gap> D := DClassNC(S, f);
692
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
693
+ >
694
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
695
+ true
696
+ gap> H := HClassNC(D, f);
697
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
698
+ >
699
+ gap> Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]) in last;
700
+ true
701
+ gap> Size(H);
702
+ 1
703
+ gap> Size(HClass(S, f));
704
+ 1
705
+ gap> HClass(S, f) = HClassNC(D, f);
706
+ true
707
+ gap> HClass(D, f) = HClassNC(S, f);
708
+ true
709
+ gap> HClassNC(D, f) = HClassNC(S, f);
710
+ true
711
+ gap> HClassNC(D, f) = HClass(S, f);
712
+ true
713
+ gap> S := Semigroup([
714
+ > Bipartition([[1, 2, 3, 4, 5, -2, -4], [6, 7], [8, -1, -6],
715
+ > [-3, -5, -7], [-8]]),
716
+ > Bipartition([[1, 2, 3, 4, -1, -2], [5, 6, -5], [7, 8, -4, -6],
717
+ > [-3, -7], [-8]]),
718
+ > Bipartition([[1, 2, 3, 7, -7], [4, 5, 6, 8], [-1, -2],
719
+ > [-3, -6, -8], [-4], [-5]]),
720
+ > Bipartition([[1, 2, 4, 7, -1, -2, -4], [3, -7], [5, -5], [6, 8],
721
+ > [-3], [-6, -8]]),
722
+ > Bipartition([[1, 2, 8, -2], [3, 4, 5, -5], [6, 7, -4], [-1, -7],
723
+ > [-3, -6, -8]]),
724
+ > Bipartition([[1, 2, 5, 6, 7, -4], [3, 8, -5], [4],
725
+ > [-1, -2, -3, -6], [-7], [-8]]),
726
+ > Bipartition([[1, 3, 4, 5, 6, 8, -1, -5], [2, -4], [7, -3, -8],
727
+ > [-2, -6, -7]]),
728
+ > Bipartition([[1, 3, 4, 5, -1, -7], [2, -6], [6], [7, -3],
729
+ > [8, -4], [-2, -5, -8]]),
730
+ > Bipartition([[1, 3, 4, 6, 7, -1, -7, -8], [2, 5, 8, -6], [-2, -4],
731
+ > [-3, -5]]),
732
+ > Bipartition([[1, 3, 4, -8], [2, 6, 8, -1], [5, 7, -2, -3, -4, -7],
733
+ > [-5], [-6]]),
734
+ > Bipartition([[1, 4, 8, -4, -6, -8], [2, 3, 6, -3, -5], [5, -1, -7],
735
+ > [7], [-2]]),
736
+ > Bipartition([[1, 5, -1, -2], [2, 3, 4, 6, 7], [8, -4], [-3, -5],
737
+ > [-6], [-7], [-8]]),
738
+ > Bipartition([[1, -6], [2, 3, 4, -2, -8], [5, 6, 7, -1, -3], [8],
739
+ > [-4, -7], [-5]]),
740
+ > Bipartition([[1, 7, 8, -1, -3, -4, -6], [2, 3, 4], [5, -2, -5],
741
+ > [6], [-7, -8]]),
742
+ > Bipartition([[1, 8, -3, -5, -6], [2, 3, 4, -1], [5, -2], [6, 7],
743
+ > [-4, -7], [-8]]),
744
+ > Bipartition([[1, 7, 8, -5], [2, 3, 5, -6], [4], [6, -1, -3],
745
+ > [-2], [-4, -7, -8]]),
746
+ > Bipartition([[1, 4, -1, -3, -4], [2, 7, 8, -2, -6], [3, 5, 6, -8],
747
+ > [-5, -7]]),
748
+ > Bipartition([[1, 5, 8], [2, 4, 7, -2], [3, 6], [-1, -3],
749
+ > [-4, -5], [-6], [-7], [-8]]),
750
+ > Bipartition([[1], [2, 4], [3, 6, -5], [5, 7, -3, -4, -6],
751
+ > [8, -2], [-1, -7], [-8]]),
752
+ > Bipartition([[1, 5, -8], [2, -4], [3, 6, 8, -1, -6],
753
+ > [4, 7, -2, -3, -5], [-7]])]);;
754
+ gap> DClassReps(S);
755
+ [ <bipartition: [ 1, 2, 3, 4, 5, -2, -4 ], [ 6, 7 ], [ 8, -1, -6 ],
756
+ [ -3, -5, -7 ], [ -8 ]>,
757
+ <bipartition: [ 1, 2, 3, 4, -1, -2 ], [ 5, 6, -5 ], [ 7, 8, -4, -6 ],
758
+ [ -3, -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
759
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
760
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -4 ], [ 3, -7 ], [ 5, -5 ], [ 6, 8 ],
761
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 8, -2 ], [ 3, 4, 5, -5 ],
762
+ [ 6, 7, -4 ], [ -1, -7 ], [ -3, -6, -8 ]>,
763
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -5 ], [ 4 ], [ -1, -2, -3, -6 ]
764
+ , [ -7 ], [ -8 ]>,
765
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -5 ], [ 2, -4 ], [ 7, -3, -8 ],
766
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, -1, -7 ], [ 2, -6 ], [ 6 ],
767
+ [ 7, -3 ], [ 8, -4 ], [ -2, -5, -8 ]>,
768
+ <bipartition: [ 1, 3, 4, -8 ], [ 2, 6, 8, -1 ], [ 5, 7, -2, -3, -4, -7 ],
769
+ [ -5 ], [ -6 ]>,
770
+ <bipartition: [ 1, 4, 8, -4, -6, -8 ], [ 2, 3, 6, -3, -5 ], [ 5, -1, -7 ],
771
+ [ 7 ], [ -2 ]>,
772
+ <bipartition: [ 1, -6 ], [ 2, 3, 4, -2, -8 ], [ 5, 6, 7, -1, -3 ], [ 8 ],
773
+ [ -4, -7 ], [ -5 ]>,
774
+ <bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 4 ], [ 5, -2, -5 ],
775
+ [ 6 ], [ -7, -8 ]>, <bipartition: [ 1, 8, -3, -5, -6 ], [ 2, 3, 4, -1 ],
776
+ [ 5, -2 ], [ 6, 7 ], [ -4, -7 ], [ -8 ]>,
777
+ <bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, -6 ], [ 4 ], [ 6, -1, -3 ],
778
+ [ -2 ], [ -4, -7, -8 ]>,
779
+ <bipartition: [ 1, 4, -1, -3, -4 ], [ 2, 7, 8, -2, -6 ], [ 3, 5, 6, -8 ],
780
+ [ -5, -7 ]>,
781
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, -3, -4, -6 ],
782
+ [ 8, -2 ], [ -1, -7 ], [ -8 ]>,
783
+ <bipartition: [ 1, 5, -8 ], [ 2, -4 ], [ 3, 6, 8, -1, -6 ],
784
+ [ 4, 7, -2, -3, -5 ], [ -7 ]>,
785
+ <bipartition: [ 1, 2, 4, 5, 7, -2, -4 ], [ 3, -1, -6 ], [ 6, 8 ],
786
+ [ -3, -5, -7 ], [ -8 ]>,
787
+ <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 5, 6, 7, 8, -2, -4 ],
788
+ [ -3, -5, -7 ], [ -8 ]>,
789
+ <bipartition: [ 1, 2, 4, 7, 8, -2, -4 ], [ 3, 5, 6, -1, -6 ],
790
+ [ -3, -5, -7 ], [ -8 ]>,
791
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -4, -7 ], [ 3, 5, -5 ], [ 6, 8 ],
792
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -4, -7 ],
793
+ [ 3, 8, -5 ], [ 4 ], [ -3 ], [ -6, -8 ]>,
794
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ], [ 6 ], [ 7, -3 ],
795
+ [ -2, -5, -8 ], [ -4 ]>,
796
+ <bipartition: [ 1, 4, 5, 8, -5 ], [ 2, 3, 6, -1, -2, -4, -7 ], [ 7 ],
797
+ [ -3 ], [ -6, -8 ]>,
798
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
799
+ , [ -7 ], [ -8 ]>,
800
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -4, -5 ], [ 3, -3, -8 ], [ 6, 8 ],
801
+ [ -2, -6, -7 ]>,
802
+ <bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -8 ],
803
+ [ -2, -6, -7 ]>,
804
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 5, 6, 7, 8, -1, -3, -6, -7 ],
805
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 4, -1, -3, -7 ], [ 2, 7, 8, -6 ],
806
+ [ 3, 5, 6, -4 ], [ -2, -5, -8 ]>,
807
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6, -7 ],
808
+ [ -2, -5, -8 ], [ -3 ]>,
809
+ <bipartition: [ 1, 5, 6, 7, -5 ], [ 2, 3, 4, -1, -2, -4, -7 ], [ 8 ],
810
+ [ -3 ], [ -6, -8 ]>,
811
+ <bipartition: [ 1, 4, -8 ], [ 2, 3, 5, 6, 7, 8, -1 ], [ -2, -3, -4, -7 ],
812
+ [ -5 ], [ -6 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -3, -4, -5, -6, -8 ],
813
+ [ 5, 6, -1, -7 ], [ -2 ]>,
814
+ <bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3 ], [ 5, -1, -7 ],
815
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 5, 6, 7, -3, -4, -5, -6, -8 ],
816
+ [ 3, 8, -1, -7 ], [ 4 ], [ -2 ]>,
817
+ <bipartition: [ 1, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
818
+ [ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ],
819
+ [ 2, 7, -5 ], [ -3 ], [ -6, -8 ]>,
820
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -4, -6 ], [ 5, 6, -2, -5 ],
821
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -4, -6 ],
822
+ [ 3, 8, -2, -5 ], [ 4 ], [ -7, -8 ]>,
823
+ <bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5 ], [ 4 ], [ 6, -1, -3, -4, -6 ]
824
+ , [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -4, -7 ],
825
+ [ 2, 7, -5 ], [ 6 ], [ -3 ], [ -6, -8 ]>,
826
+ <bipartition: [ 1, 5, 8 ], [ 2, 3, 4, 6, 7 ], [ -1, -2, -3, -6 ],
827
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
828
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4, -8 ], [ 7, 8, -1, -2, -3, -5, -6 ],
829
+ [ -7 ]>, <bipartition: [ 1, 4, -1, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -4 ],
830
+ [ -3, -5, -7 ], [ -8 ]>,
831
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2, 7, -2, -4 ],
832
+ [ -3, -5, -7 ], [ -8 ]>,
833
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2 ], [ 7, -5 ],
834
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -5 ],
835
+ [ 6, 8 ], [ -1, -2, -3, -6 ], [ -7 ], [ -8 ]>,
836
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -8 ], [ 3, 8, -4 ], [ 4 ],
837
+ [ -2, -6, -7 ]>,
838
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -6, -7 ],
839
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -6, -7 ],
840
+ [ 2, 5, 8, -4 ], [ -2, -5, -8 ]>,
841
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -6, -7 ],
842
+ [ -2, -5, -8 ], [ -3 ]>,
843
+ <bipartition: [ 1, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 6, -1, -7 ],
844
+ [ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ],
845
+ [ 2 ], [ 7, -1, -7 ], [ -2 ]>,
846
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -7 ], [ 3, 8, -3, -4, -5, -6, -8 ],
847
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -3, -4, -5, -6, -8 ],
848
+ [ 2, 7, -1, -7 ], [ 6 ], [ -2 ]>,
849
+ <bipartition: [ 1, 5, 6, 7, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
850
+ [ 8 ], [ -2 ]>,
851
+ <bipartition: [ 1, 4, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -4, -7 ], [ -3 ],
852
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ],
853
+ [ 7, -2, -5 ], [ -7, -8 ]>,
854
+ <bipartition: [ 1, 4, -5 ], [ 2, 7, 8, -1, -2, -4, -7 ], [ 3, 5, 6 ],
855
+ [ -3 ], [ -6, -8 ]>,
856
+ <bipartition: [ 1, 5, 6, 7, -2, -4 ], [ 2, 3, 4, -1, -6 ], [ 8 ],
857
+ [ -3, -5, -7 ], [ -8 ]>,
858
+ <bipartition: [ 1, 4, -2, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6 ],
859
+ [ -3, -5, -7 ], [ -8 ]>,
860
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -4, -7 ], [ 3, -5 ], [ 6, 8 ],
861
+ [ -3 ], [ -6, -8 ]>,
862
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ],
863
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
864
+ [ 2 ], [ 7, -4 ], [ -2, -6, -7 ]>,
865
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -5, -8 ], [ 4 ],
866
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -8 ],
867
+ [ 2, 7, -4 ], [ 6 ], [ -2, -6, -7 ]>,
868
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 8 ],
869
+ [ -2, -6, -7 ]>,
870
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
871
+ [ -2, -5, -8 ]>,
872
+ <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
873
+ [ -2, -5, -8 ], [ -3 ]>,
874
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2, 7, -1, -7 ],
875
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -3, -4, -5, -6, -8 ],
876
+ [ 3, -1, -7 ], [ 6, 8 ], [ -2 ]>,
877
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -7 ], [ 3, 8, -4, -6, -8 ],
878
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2 ],
879
+ [ 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
880
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
881
+ [ 6 ], [ -2 ]>, <bipartition: [ 1, 5, 6, 7, -3, -4, -5, -6, -8 ],
882
+ [ 2, 3, 4, -1, -7 ], [ 8 ], [ -2 ]>,
883
+ <bipartition: [ 1, 2, 5, 6, 7, -2, -5 ], [ 3, 8, -1, -3, -4, -6 ], [ 4 ],
884
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -4, -6 ],
885
+ [ 2, 7, -2, -5 ], [ 6 ], [ -7, -8 ]>,
886
+ <bipartition: [ 1, 5, 6, 7, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 8 ],
887
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ],
888
+ [ 2, 7, -2, -5 ], [ -7, -8 ]>,
889
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -4, -6 ], [ 3, -2, -5 ], [ 6, 8 ],
890
+ [ -7, -8 ]>,
891
+ <bipartition: [ 1, 4, -2, -5 ], [ 2, 7, 8, -1, -3, -4, -6 ], [ 3, 5, 6 ],
892
+ [ -7, -8 ]>,
893
+ <bipartition: [ 1, 4, 5, 8, -2, -5 ], [ 2, 3, 6, -1, -3, -4, -6 ], [ 7 ],
894
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ],
895
+ [ 2, 7, -4, -8 ], [ -7 ]>,
896
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -6 ], [ 3, 8, -2, -4 ], [ 4 ],
897
+ [ -3, -5, -7 ], [ -8 ]>,
898
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -5, -8 ], [ 7 ],
899
+ [ -2, -6, -7 ]>,
900
+ <bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 3, 5, 6, 7, 8, -4 ],
901
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
902
+ [ 2, 7, -4 ], [ -2, -6, -7 ]>,
903
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -8 ], [ 3, -4 ], [ 6, 8 ],
904
+ [ -2, -6, -7 ]>,
905
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -5, -8 ],
906
+ [ -2, -6, -7 ]>,
907
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ], [ 6 ],
908
+ [ -2, -6, -7 ]>,
909
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 8 ],
910
+ [ -2, -6, -7 ]>,
911
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -6, -7 ], [ 4 ],
912
+ [ -2, -5, -8 ]>,
913
+ <bipartition: [ 1, 4, -1, -7 ], [ 2, 7, 8, -3, -4, -5, -6, -8 ],
914
+ [ 3, 5, 6 ], [ -2 ]>,
915
+ <bipartition: [ 1, 4, 5, 8, -1, -7 ], [ 2, 3, 6, -3, -4, -5, -6, -8 ],
916
+ [ 7 ], [ -2 ]>,
917
+ <bipartition: [ 1, 4, -1, -7 ], [ 2, 3, 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
918
+ [ -2 ]>,
919
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
920
+ [ -2 ]>,
921
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 6, -4, -6, -8 ],
922
+ [ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
923
+ [ 2 ], [ 7, -4, -6, -8 ], [ -2 ]>,
924
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -7 ], [ 3, -3, -4, -5, -6, -8 ],
925
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2 ],
926
+ [ 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
927
+ <bipartition: [ 1, 3, 4, 5, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ], [ 6 ],
928
+ [ -7, -8 ]>,
929
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 8 ],
930
+ [ -7, -8 ]>,
931
+ <bipartition: [ 1, 4, -2, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -4, -6 ],
932
+ [ -7, -8 ]>,
933
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ],
934
+ [ -7, -8 ]>,
935
+ <bipartition: [ 1, 4, -4, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
936
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2 ],
937
+ [ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
938
+ <bipartition: [ 1, 2, 5, 6, 7, -2, -4 ], [ 3, 8, -1, -6 ], [ 4 ],
939
+ [ -3, -5, -7 ], [ -8 ]>,
940
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -6 ], [ 2, 7, -2, -4 ], [ 6 ],
941
+ [ -3, -5, -7 ], [ -8 ]>,
942
+ <bipartition: [ 1, 4, 5, 8, -1, -6 ], [ 2, 3, 6, -2, -4 ], [ 7 ],
943
+ [ -3, -5, -7 ], [ -8 ]>,
944
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -8 ],
945
+ [ -2, -6, -7 ]>,
946
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 6, -4 ], [ 7 ],
947
+ [ -2, -6, -7 ]>,
948
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -5, -8 ], [ 3, 5, 6 ],
949
+ [ -2, -6, -7 ]>,
950
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -5, -8 ], [ 6, 8 ],
951
+ [ -2, -6, -7 ]>,
952
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -6, -7 ],
953
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -6, -7 ],
954
+ [ 3, 8, -4 ], [ 4 ], [ -2, -5, -8 ]>,
955
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ], [ 6 ],
956
+ [ -2, -5, -8 ]>,
957
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -6, -7 ], [ 7 ],
958
+ [ -2, -5, -8 ]>,
959
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -6, -7 ], [ 7 ],
960
+ [ -2, -5, -8 ], [ -3 ]>,
961
+ <bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -7 ],
962
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -7 ],
963
+ [ 3, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
964
+ <bipartition: [ 1, 2, 4, 5, 7, -2, -5 ], [ 3, -1, -3, -4, -6 ], [ 6, 8 ],
965
+ [ -7, -8 ]>,
966
+ <bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -5 ],
967
+ [ -7, -8 ]>,
968
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 6, -2, -5 ], [ 7 ],
969
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -6 ], [ 3, -2, -4 ],
970
+ [ 6, 8 ], [ -3, -5, -7 ], [ -8 ]>,
971
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2 ], [ 7, -1, -6 ],
972
+ [ -3, -5, -7 ], [ -8 ]>,
973
+ <bipartition: [ 1, 3, 4, 5, 8, -2, -4 ], [ 2, 7, -1, -6 ], [ 6 ],
974
+ [ -3, -5, -7 ], [ -8 ]>,
975
+ <bipartition: [ 1, 5, 6, 7, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 8 ],
976
+ [ -3, -5, -7 ], [ -8 ]>,
977
+ <bipartition: [ 1, 4, 5, 8, -2, -4 ], [ 2, 3, 6, -1, -6 ], [ 7 ],
978
+ [ -3, -5, -7 ], [ -8 ]>,
979
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -6, -7 ], [ 6, 8 ],
980
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
981
+ [ 2 ], [ 7, -4 ], [ -2, -5, -8 ]>,
982
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
983
+ [ -2, -5, -8 ]>,
984
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 8 ],
985
+ [ -2, -5, -8 ]>,
986
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
987
+ [ -2, -5, -8 ]>,
988
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -6, -7 ], [ 4 ],
989
+ [ -2, -5, -8 ], [ -3 ]>,
990
+ <bipartition: [ 1, 2, 5, 6, 7, -4, -6, -8 ], [ 3, 8, -1, -3, -5, -7 ],
991
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -7 ],
992
+ [ 2, 7, -4, -6, -8 ], [ 6 ], [ -2 ]>,
993
+ <bipartition: [ 1, 5, 6, 7, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
994
+ [ 8 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
995
+ [ 2, 7, -4, -6, -8 ], [ -2 ]>,
996
+ <bipartition: [ 1, 4, 5, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 6, -4, -8 ],
997
+ [ 7 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -6, -7 ],
998
+ [ 3, -4 ], [ 6, 8 ], [ -2, -5, -8 ]>,
999
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ],
1000
+ [ -2, -5, -8 ]>,
1001
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -6, -7 ],
1002
+ [ -2, -5, -8 ], [ -3 ]>,
1003
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -6, -7 ], [ 3, 8, -4 ], [ 4 ],
1004
+ [ -2, -5, -8 ], [ -3 ]>,
1005
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -6, -7 ], [ 6 ],
1006
+ [ -2, -5, -8 ], [ -3 ]>,
1007
+ <bipartition: [ 1, 5, 6, 7, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
1008
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
1009
+ [ 2 ], [ 7, -1, -3, -5, -7 ], [ -2 ]>,
1010
+ <bipartition: [ 1, 3, 4, 5, 8, -4, -6, -8 ], [ 2, 7, -1, -3, -5, -7 ],
1011
+ [ 6 ], [ -2 ]>,
1012
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
1013
+ [ 8 ], [ -2 ]>,
1014
+ <bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -7 ],
1015
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
1016
+ [ 2, 7, -1, -3, -5, -7 ], [ -2 ]>,
1017
+ <bipartition: [ 1, 4, 5, 8, -4, -6, -8 ], [ 2, 3, 6, -1, -3, -5, -7 ],
1018
+ [ 7 ], [ -2 ]>,
1019
+ <bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 7, 8, -2, -5 ], [ 3, 5, 6 ],
1020
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -3, -5, -6 ],
1021
+ [ 3, 8, -4, -8 ], [ 4 ], [ -7 ]>,
1022
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2, 7, -1, -6 ],
1023
+ [ -3, -5, -7 ], [ -8 ]>,
1024
+ <bipartition: [ 1, 4, -2, -4 ], [ 2, 7, 8, -1, -6 ], [ 3, 5, 6 ],
1025
+ [ -3, -5, -7 ], [ -8 ]>,
1026
+ <bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
1027
+ [ -2, -6, -7 ]>,
1028
+ <bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
1029
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
1030
+ [ 2, 7, -4 ], [ -2, -5, -8 ]>,
1031
+ <bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
1032
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -6, -7 ],
1033
+ [ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
1034
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 7, -4 ],
1035
+ [ -2, -5, -8 ], [ -3 ]>,
1036
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
1037
+ [ -2, -5, -8 ], [ -3 ]>,
1038
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 8 ],
1039
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ],
1040
+ [ 2, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
1041
+ <bipartition: [ 1, 4, 5, 8, -1, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
1042
+ [ -2, -5, -8 ], [ -3 ]>,
1043
+ <bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 7, 8, -1, -7 ],
1044
+ [ 3, 5, 6 ], [ -2 ]>,
1045
+ <bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 7, 8, -1, -3, -5, -7 ],
1046
+ [ 3, 5, 6 ], [ -2 ]>,
1047
+ <bipartition: [ 1, 2, 4, 5, 7, -4, -6, -8 ], [ 3, -1, -3, -5, -7 ],
1048
+ [ 6, 8 ], [ -2 ]>,
1049
+ <bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 3, 5, 6, 7, 8, -4, -6, -8 ],
1050
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ],
1051
+ [ 7, -4, -8 ], [ -7 ]>,
1052
+ <bipartition: [ 1, 2, 5, 6, 7, -4, -8 ], [ 3, 8, -1, -2, -3, -5, -6 ],
1053
+ [ 4 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -3, -5, -6 ],
1054
+ [ 2, 7, -4, -8 ], [ 6 ], [ -7 ]>,
1055
+ <bipartition: [ 1, 5, 6, 7, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
1056
+ [ 8 ], [ -7 ]>, <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 7, 8, -4 ],
1057
+ [ 3, 5, 6 ], [ -2, -5, -8 ], [ -3 ]>,
1058
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -4 ], [ 6, 8 ],
1059
+ [ -2, -5, -8 ], [ -3 ]>,
1060
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6, -7 ],
1061
+ [ -2, -5, -8 ], [ -3 ]>,
1062
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -3, -5, -6 ], [ 3, -4, -8 ],
1063
+ [ 6, 8 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2 ],
1064
+ [ 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
1065
+ <bipartition: [ 1, 3, 4, 5, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
1066
+ [ 6 ], [ -7 ]>, <bipartition: [ 1, 5, 6, 7, -1, -2, -3, -5, -6 ],
1067
+ [ 2, 3, 4, -4, -8 ], [ 8 ], [ -7 ]>,
1068
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
1069
+ [ -7 ]>,
1070
+ <bipartition: [ 1, 4, 5, 8, -4, -8 ], [ 2, 3, 6, -1, -2, -3, -5, -6 ],
1071
+ [ 7 ], [ -7 ]>, <bipartition: [ 1, 4, -1, -6 ], [ 2, 7, 8, -2, -4 ],
1072
+ [ 3, 5, 6 ], [ -3, -5, -7 ], [ -8 ]>,
1073
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -6, -7 ], [ 3, 5, 6 ],
1074
+ [ -2, -5, -8 ]>,
1075
+ <bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 7, 8, -4, -6, -8 ],
1076
+ [ 3, 5, 6 ], [ -2 ]>,
1077
+ <bipartition: [ 1, 4, -4, -8 ], [ 2, 7, 8, -1, -2, -3, -5, -6 ],
1078
+ [ 3, 5, 6 ], [ -7 ]>,
1079
+ <bipartition: [ 1, 2, 4, 5, 7, -4, -8 ], [ 3, -1, -2, -3, -5, -6 ],
1080
+ [ 6, 8 ], [ -7 ]>,
1081
+ <bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, 7, 8, -4, -8 ],
1082
+ [ -7 ]>, <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -6, -7 ],
1083
+ [ 3, 5, 6 ], [ -2, -5, -8 ], [ -3 ]>,
1084
+ <bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 7, 8, -4, -8 ],
1085
+ [ 3, 5, 6 ], [ -7 ]> ]
1086
+ gap> RClassReps(S);
1087
+ [ <bipartition: [ 1, 2, 3, 4, 5, -2, -4 ], [ 6, 7 ], [ 8, -1, -6 ],
1088
+ [ -3, -5, -7 ], [ -8 ]>,
1089
+ <bipartition: [ 1, 2, 3, 4, -1, -2 ], [ 5, 6, -5 ], [ 7, 8, -4, -6 ],
1090
+ [ -3, -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
1091
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1092
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -4 ], [ 3, -7 ], [ 5, -5 ], [ 6, 8 ],
1093
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 8, -2 ], [ 3, 4, 5, -5 ],
1094
+ [ 6, 7, -4 ], [ -1, -7 ], [ -3, -6, -8 ]>,
1095
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -5 ], [ 4 ], [ -1, -2, -3, -6 ]
1096
+ , [ -7 ], [ -8 ]>,
1097
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -5 ], [ 2, -4 ], [ 7, -3, -8 ],
1098
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, -1, -7 ], [ 2, -6 ], [ 6 ],
1099
+ [ 7, -3 ], [ 8, -4 ], [ -2, -5, -8 ]>,
1100
+ <bipartition: [ 1, 3, 4, 6, 7, -5 ], [ 2, 5, 8, -1, -2, -4, -7 ], [ -3 ],
1101
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, -8 ], [ 2, 6, 8, -1 ],
1102
+ [ 5, 7, -2, -3, -4, -7 ], [ -5 ], [ -6 ]>,
1103
+ <bipartition: [ 1, 4, 8, -4, -6, -8 ], [ 2, 3, 6, -3, -5 ], [ 5, -1, -7 ],
1104
+ [ 7 ], [ -2 ]>,
1105
+ <bipartition: [ 1, 5, -1, -2, -4, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -5 ],
1106
+ [ -3 ], [ -6, -8 ]>,
1107
+ <bipartition: [ 1, -6 ], [ 2, 3, 4, -2, -8 ], [ 5, 6, 7, -1, -3 ], [ 8 ],
1108
+ [ -4, -7 ], [ -5 ]>,
1109
+ <bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 4 ], [ 5, -2, -5 ],
1110
+ [ 6 ], [ -7, -8 ]>, <bipartition: [ 1, 8, -3, -5, -6 ], [ 2, 3, 4, -1 ],
1111
+ [ 5, -2 ], [ 6, 7 ], [ -4, -7 ], [ -8 ]>,
1112
+ <bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, -6 ], [ 4 ], [ 6, -1, -3 ],
1113
+ [ -2 ], [ -4, -7, -8 ]>,
1114
+ <bipartition: [ 1, 4, -1, -3, -4 ], [ 2, 7, 8, -2, -6 ], [ 3, 5, 6, -8 ],
1115
+ [ -5, -7 ]>, <bipartition: [ 1, 5, 8 ], [ 2, 4, 7, -7 ], [ 3, 6 ],
1116
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1117
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, -3, -4, -6 ],
1118
+ [ 8, -2 ], [ -1, -7 ], [ -8 ]>,
1119
+ <bipartition: [ 1, 5, -8 ], [ 2, -4 ], [ 3, 6, 8, -1, -6 ],
1120
+ [ 4, 7, -2, -3, -5 ], [ -7 ]>,
1121
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -7 ], [ 6, 7 ], [ -1, -2 ],
1122
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1123
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, 8, -7 ], [ -1, -2 ], [ -3, -6, -8 ],
1124
+ [ -4 ], [ -5 ]>, <bipartition: [ 1, 2, 4, 5, 7, -2, -4 ], [ 3, -1, -6 ],
1125
+ [ 6, 8 ], [ -3, -5, -7 ], [ -8 ]>,
1126
+ <bipartition: [ 1, 2, 3, 5, 6, 7, 8, -7 ], [ 4 ], [ -1, -2 ],
1127
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1128
+ <bipartition: [ 1, 2, 3, 4, 5, 7, 8, -7 ], [ 6 ], [ -1, -2 ],
1129
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1130
+ <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 5, 6, 7, 8, -2, -4 ],
1131
+ [ -3, -5, -7 ], [ -8 ]>,
1132
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 8, -7 ], [ 7 ], [ -1, -2 ],
1133
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1134
+ <bipartition: [ 1, 5, 8, -7 ], [ 2, 3, 4, 6, 7 ], [ -1, -2 ],
1135
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1136
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
1137
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1138
+ <bipartition: [ 1, 5, 7, 8, -7 ], [ 2, 3, 4 ], [ 6 ], [ -1, -2 ],
1139
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1140
+ <bipartition: [ 1, 2, 4, 7, 8, -2, -4 ], [ 3, 5, 6, -1, -6 ],
1141
+ [ -3, -5, -7 ], [ -8 ]>,
1142
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, 8, -7 ], [ -1, -2 ],
1143
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1144
+ <bipartition: [ 1, 5, -1, -6 ], [ 2, 3, 4, 6, 7, 8, -2, -4 ],
1145
+ [ -3, -5, -7 ], [ -8 ]>,
1146
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -4, -7 ], [ 3, 5, -5 ], [ 6, 8 ],
1147
+ [ -3 ], [ -6, -8 ]>,
1148
+ <bipartition: [ 1, -5 ], [ 2, 3, 4, 5, 6, 7, -1, -2, -4, -7 ], [ 8 ],
1149
+ [ -3 ], [ -6, -8 ]>,
1150
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -5 ], [ 4 ], [ 6, -1, -2, -4, -7 ],
1151
+ [ -3 ], [ -6, -8 ]>,
1152
+ <bipartition: [ 1, 5, -1, -2, -4, -7 ], [ 2, 3, 4, 6, 7, 8, -5 ], [ -3 ],
1153
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, -7 ], [ 5, 6, 7, 8 ],
1154
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1155
+ <bipartition: [ 1, 2, 3, 4, 5, 7, -7 ], [ 6, 8 ], [ -1, -2 ],
1156
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1157
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -2, -4, -7 ], [ 5, 6, -5 ], [ -3 ],
1158
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -5 ], [ 5, -1, -2, -4, -7 ],
1159
+ [ 6, 8 ], [ -3 ], [ -6, -8 ]>,
1160
+ <bipartition: [ 1, 2, 6, 7, 8, -5 ], [ 3, 4, 5, -1, -2, -4, -7 ], [ -3 ],
1161
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -4, -7 ],
1162
+ [ 3, 8, -5 ], [ 4 ], [ -3 ], [ -6, -8 ]>,
1163
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ], [ 6 ], [ 7, -3 ],
1164
+ [ -2, -5, -8 ], [ -4 ]>,
1165
+ <bipartition: [ 1, 3, 4 ], [ 2, 5, 6, 7, 8, -7 ], [ -1, -2 ],
1166
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1167
+ <bipartition: [ 1, 4, 5, 8, -5 ], [ 2, 3, 6, -1, -2, -4, -7 ], [ 7 ],
1168
+ [ -3 ], [ -6, -8 ]>,
1169
+ <bipartition: [ 1, 8, -1, -2, -4, -7 ], [ 2, 3, 4, 5, -5 ], [ 6, 7 ],
1170
+ [ -3 ], [ -6, -8 ]>,
1171
+ <bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, 6, -1, -2, -4, -7 ], [ 4 ],
1172
+ [ -3 ], [ -6, -8 ]>,
1173
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, 8, -1, -2, -4, -7 ],
1174
+ [ -3 ], [ -6, -8 ]>,
1175
+ <bipartition: [ 1, 2, 3, 4, -1, -2, -4, -7 ], [ 5, 6, 7, 8, -5 ], [ -3 ],
1176
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7 ], [ 3, 8, -7 ], [ 4 ],
1177
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1178
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
1179
+ , [ -7 ], [ -8 ]>,
1180
+ <bipartition: [ 1, 2, 3, 4, 5, 7, -7 ], [ 6 ], [ 8 ], [ -1, -2 ],
1181
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1182
+ <bipartition: [ 1, 5, -7 ], [ 2, 3, 4, 6, 7 ], [ 8 ], [ -1, -2 ],
1183
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1184
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -7 ], [ 2 ], [ -1, -2 ],
1185
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1186
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -4, -5 ], [ 3, -3, -8 ], [ 6, 8 ],
1187
+ [ -2, -6, -7 ]>,
1188
+ <bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -8 ],
1189
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -5, -8 ],
1190
+ [ 5, -4 ], [ 6, 7 ], [ -2, -6, -7 ]>,
1191
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -5, -8 ], [ 8, -4 ],
1192
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -3 ],
1193
+ [ 6, 8 ], [ -2, -5, -8 ], [ -4 ]>,
1194
+ <bipartition: [ 1, 2, 8, -1, -2, -4, -7 ], [ 3, 4, 5, 6, 7, -5 ], [ -3 ],
1195
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, 8, -7 ], [ 2 ], [ 6 ],
1196
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1197
+ <bipartition: [ 1, 3, 4, 6, 7, -7 ], [ 2, 5, 8 ], [ -1, -2 ],
1198
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1199
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 5, 6, 7, 8, -1, -3, -6, -7 ],
1200
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -2, -4, -7 ],
1201
+ [ 5, 6, 7, -5 ], [ 8 ], [ -3 ], [ -6, -8 ]>,
1202
+ <bipartition: [ 1, 2, 3, 4, 8, -5 ], [ 5, -1, -2, -4, -7 ], [ 6, 7 ],
1203
+ [ -3 ], [ -6, -8 ]>,
1204
+ <bipartition: [ 1, 6, 7, 8, -7 ], [ 2, 3, 5 ], [ 4 ], [ -1, -2 ],
1205
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1206
+ <bipartition: [ 1, 4, -1, -3, -7 ], [ 2, 7, 8, -6 ], [ 3, 5, 6, -4 ],
1207
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -5 ],
1208
+ [ 8, -1, -2, -4, -7 ], [ -3 ], [ -6, -8 ]>,
1209
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6, -7 ],
1210
+ [ -2, -5, -8 ], [ -3 ]>,
1211
+ <bipartition: [ 1, 5, 6, 7, -5 ], [ 2, 3, 4, -1, -2, -4, -7 ], [ 8 ],
1212
+ [ -3 ], [ -6, -8 ]>,
1213
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -2, -4, -7 ], [ 5, 7, -5 ],
1214
+ [ -3 ], [ -6, -8 ]>,
1215
+ <bipartition: [ 1, 2, 3, 4, -5 ], [ 5, 6, 7, -1, -2, -4, -7 ], [ 8 ],
1216
+ [ -3 ], [ -6, -8 ]>,
1217
+ <bipartition: [ 1, 4, -8 ], [ 2, 3, 5, 6, 7, 8, -1 ], [ -2, -3, -4, -7 ],
1218
+ [ -5 ], [ -6 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -3, -4, -5, -6, -8 ],
1219
+ [ 5, 6, -1, -7 ], [ -2 ]>,
1220
+ <bipartition: [ 1, 2, 3, 7 ], [ 4, 5, 6, 8 ], [ -1, -2, -3, -6 ],
1221
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1222
+ <bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3 ], [ 5, -1, -7 ],
1223
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 6, 7, 8, -3, -4, -5, -6, -8 ],
1224
+ [ 3, 4, 5, -1, -7 ], [ -2 ]>,
1225
+ <bipartition: [ 1, 2, 5, 6, 7, -3, -4, -5, -6, -8 ], [ 3, 8, -1, -7 ],
1226
+ [ 4 ], [ -2 ]>,
1227
+ <bipartition: [ 1, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
1228
+ [ 6, 7 ], [ -2 ]>,
1229
+ <bipartition: [ 1, 7, 8, -1, -7 ], [ 2, 3, 5, 6, -3, -4, -5, -6, -8 ],
1230
+ [ 4 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -7 ],
1231
+ [ 5, 7, 8, -3, -4, -5, -6, -8 ], [ -2 ]>,
1232
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2, 7, -5 ], [ -3 ],
1233
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, -5 ], [ 2, 6, 8, -1, -2, -4, -7 ],
1234
+ [ 5, 7 ], [ -3 ], [ -6, -8 ]>,
1235
+ <bipartition: [ 1, 2, 4, 7, 8, -1, -2, -4, -7 ], [ 3, 5, 6, -5 ], [ -3 ],
1236
+ [ -6, -8 ]>,
1237
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -5 ], [ 5, 7, -1, -2, -4, -7 ],
1238
+ [ -3 ], [ -6, -8 ]>,
1239
+ <bipartition: [ 1, 5, 8, -1, -2, -4, -7 ], [ 2, 3, 4, -5 ], [ 6, 7 ],
1240
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -7 ], [ 3, 5, 6 ],
1241
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1242
+ <bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7, 8, -7 ], [ -1, -2 ],
1243
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1244
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -4, -6 ], [ 5, 6, -2, -5 ],
1245
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -4, -6 ],
1246
+ [ 5, -2, -5 ], [ 6, 8 ], [ -7, -8 ]>,
1247
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -4, -6 ], [ 3, 4, 5, -2, -5 ],
1248
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -4, -6 ],
1249
+ [ 3, 8, -2, -5 ], [ 4 ], [ -7, -8 ]>,
1250
+ <bipartition: [ 1 ], [ 2, 3, 4, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
1251
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1252
+ <bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5 ], [ 4 ], [ 6, -1, -3, -4, -6 ]
1253
+ , [ -7, -8 ]>,
1254
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -7 ], [ 5, 7, 8 ], [ -1, -2 ],
1255
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1256
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -4, -6 ], [ 2, 4, 7, -2, -5 ],
1257
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -2, -4, -7 ],
1258
+ [ 5, 7, -5 ], [ -3 ], [ -6, -8 ]>,
1259
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -2, -4, -7 ], [ 2, 4, 7, -5 ], [ -3 ],
1260
+ [ -6, -8 ]>,
1261
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -5 ], [ 7, 8, -1, -2, -4, -7 ], [ -3 ],
1262
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -5 ], [ 2, -1, -2, -4, -7 ],
1263
+ [ 6 ], [ 8 ], [ -3 ], [ -6, -8 ]>,
1264
+ <bipartition: [ 1, 6, 7, 8, -5 ], [ 2, 3, 5, -1, -2, -4, -7 ], [ 4 ],
1265
+ [ -3 ], [ -6, -8 ]>,
1266
+ <bipartition: [ 1, 3, 5, 6, 8, -5 ], [ 2 ], [ 4, 7, -1, -2, -4, -7 ],
1267
+ [ -3 ], [ -6, -8 ]>,
1268
+ <bipartition: [ 1, 3, 4, 5, 8, -7 ], [ 2, 7 ], [ 6 ], [ -1, -2 ],
1269
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1270
+ <bipartition: [ 1, 2, 3, 4, 6, 8 ], [ 5, 7, -7 ], [ -1, -2 ],
1271
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1272
+ <bipartition: [ 1, 2, 3, 4, 8 ], [ 5, -7 ], [ 6, 7 ], [ -1, -2 ],
1273
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1274
+ <bipartition: [ 1, 2, 3, 4, 5 ], [ 6, 7 ], [ 8, -7 ], [ -1, -2 ],
1275
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1276
+ <bipartition: [ 1, 2, 4, 7 ], [ 3, 5, -7 ], [ 6, 8 ], [ -1, -2 ],
1277
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1278
+ <bipartition: [ 1, 2, 6, 7, 8 ], [ 3, 4, 5, -7 ], [ -1, -2 ],
1279
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1280
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -4, -7 ], [ 2, 7, -5 ], [ 6 ],
1281
+ [ -3 ], [ -6, -8 ]>,
1282
+ <bipartition: [ 1, 3, 4, -1, -2, -4, -7 ], [ 2, 6, 8 ], [ 5, 7, -5 ],
1283
+ [ -3 ], [ -6, -8 ]>,
1284
+ <bipartition: [ 1, 5, 8 ], [ 2, 3, 4, 6, 7 ], [ -1, -2, -3, -6 ],
1285
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1286
+ <bipartition: [ 1, 5, 8, -7 ], [ 2, 3, 4 ], [ 6, 7 ], [ -1, -2 ],
1287
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1288
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4, -8 ], [ 7, 8, -1, -2, -3, -5, -6 ],
1289
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -5 ], [ 2, 6, 8, -1, -2, -4, -7 ]
1290
+ , [ -3 ], [ -6, -8 ]>,
1291
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -5 ], [ 2, -1, -2, -4, -7 ], [ -3 ],
1292
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -2, -4 ], [ 6 ],
1293
+ [ 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
1294
+ <bipartition: [ 1, 4, -1, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -4 ],
1295
+ [ -3, -5, -7 ], [ -8 ]>,
1296
+ <bipartition: [ 1, 2, 4, 5, 7, -7 ], [ 3 ], [ 6, 8 ], [ -1, -2 ],
1297
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1298
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -7 ], [ 5, 7 ], [ -1, -2 ],
1299
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1300
+ <bipartition: [ 1, 3, 4, 6, 7, -2, -4 ], [ 2, 5, 8, -1, -6 ],
1301
+ [ -3, -5, -7 ], [ -8 ]>,
1302
+ <bipartition: [ 1, 8, -1, -6 ], [ 2, 3, 4, 5, -2, -4 ], [ 6, 7 ],
1303
+ [ -3, -5, -7 ], [ -8 ]>,
1304
+ <bipartition: [ 1, 3, 4, 5, 7, -7 ], [ 2, 6, 8 ], [ -1, -2 ],
1305
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1306
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2, 7, -2, -4 ],
1307
+ [ -3, -5, -7 ], [ -8 ]>,
1308
+ <bipartition: [ 1, 3, 4, 5, 7, -2, -4 ], [ 2, 6, 8, -1, -6 ],
1309
+ [ -3, -5, -7 ], [ -8 ]>,
1310
+ <bipartition: [ 1, 2, 4, 7, -7 ], [ 3, 5 ], [ 6, 8 ], [ -1, -2 ],
1311
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1312
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2 ], [ 7, -5 ],
1313
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 4 ], [ 2, 3, 5, 6, 7, 8, -7 ],
1314
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1315
+ <bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2 ], [ 7, -7 ], [ -1, -2 ],
1316
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1317
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -5 ], [ 6, 8 ], [ -1, -2, -3, -6 ]
1318
+ , [ -7 ], [ -8 ]>, <bipartition: [ 1, 2, 8 ], [ 3, 4, 5, 6, 7, -7 ],
1319
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1320
+ <bipartition: [ 1, 2, 3, 4, 8, -7 ], [ 5 ], [ 6, 7 ], [ -1, -2 ],
1321
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1322
+ <bipartition: [ 1, 5, 8 ], [ 2, 4, 7 ], [ 3, 6 ], [ -1, -2, -3, -6 ],
1323
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1324
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
1325
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1326
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -7 ], [ 2, 7 ], [ -1, -2 ],
1327
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1328
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -7 ], [ 5, 7 ], [ -1, -2 ],
1329
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1330
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -4, -5 ], [ 6 ], [ 7, -3, -8 ],
1331
+ [ -2, -6, -7 ]>,
1332
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -3, -5, -8 ],
1333
+ [ -2, -6, -7 ]>,
1334
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -3, -5, -8 ],
1335
+ [ -2, -6, -7 ]>,
1336
+ <bipartition: [ 1, 8, -1, -3, -5, -8 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
1337
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -5, -8 ],
1338
+ [ 5, 6, -4 ], [ -2, -6, -7 ]>,
1339
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -5, -8 ], [ 5, -4 ], [ 6, 8 ],
1340
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -5, -8 ],
1341
+ [ 3, 4, 5, -4 ], [ -2, -6, -7 ]>,
1342
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -8 ], [ 3, 8, -4 ], [ 4 ],
1343
+ [ -2, -6, -7 ]>,
1344
+ <bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -3, -5, -8 ], [ 4 ],
1345
+ [ -2, -6, -7 ]>,
1346
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -3, -5, -8 ],
1347
+ [ -2, -6, -7 ]>,
1348
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -3, -5, -8 ],
1349
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -5, -8 ],
1350
+ [ 3, 5, 6, -4 ], [ -2, -6, -7 ]>,
1351
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -5, -8 ],
1352
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, -7 ], [ 2, 7, 8 ],
1353
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1354
+ <bipartition: [ 1, 5, 6, 7, -7 ], [ 2, 3, 4 ], [ 8 ], [ -1, -2 ],
1355
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1356
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8 ], [ 5, 7, -7 ], [ -1, -2 ],
1357
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1358
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -6, -7 ],
1359
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8 ], [ 5, 7, -7 ],
1360
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1361
+ <bipartition: [ 1, 4, 5, 8, -7 ], [ 2, 3, 6 ], [ 7 ], [ -1, -2 ],
1362
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1363
+ <bipartition: [ 1, 3, 5, 6, 8, -7 ], [ 2 ], [ 4, 7 ], [ -1, -2 ],
1364
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1365
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -6, -7 ], [ 2, 5, 8, -4 ],
1366
+ [ -2, -5, -8 ]>,
1367
+ <bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -3, -6, -7 ], [ 6, 7 ],
1368
+ [ -2, -5, -8 ]>,
1369
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -6, -7 ],
1370
+ [ -2, -5, -8 ], [ -3 ]>,
1371
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -6, -7 ], [ 2, 6, 8, -4 ],
1372
+ [ -2, -5, -8 ], [ -3 ]>,
1373
+ <bipartition: [ 1, -1, -7 ], [ 2, 3, 4, 5, 6, 7, -3, -4, -5, -6, -8 ],
1374
+ [ 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -7 ], [ 4 ],
1375
+ [ 6, -3, -4, -5, -6, -8 ], [ -2 ]>,
1376
+ <bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
1377
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1378
+ <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1379
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1380
+ <bipartition: [ 1, 2, 3, 4, 5, 7 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
1381
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1382
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ], [ -4, -5 ],
1383
+ [ -7 ], [ -8 ]>,
1384
+ <bipartition: [ 1, 2, 3, 5, 6, 7, 8 ], [ 4 ], [ -1, -2, -3, -6 ],
1385
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1386
+ <bipartition: [ 1, 2, 3, 4, 5, 7, 8 ], [ 6 ], [ -1, -2, -3, -6 ],
1387
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1388
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 8 ], [ 7 ], [ -1, -2, -3, -6 ],
1389
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1390
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1391
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1392
+ <bipartition: [ 1, 5, 7, 8 ], [ 2, 3, 4 ], [ 6 ], [ -1, -2, -3, -6 ],
1393
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1394
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1395
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1396
+ <bipartition: [ 1, 2, 3, 4, 7, -3, -4, -5, -6, -8 ], [ 5, -1, -7 ],
1397
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -7 ], [ 6 ], [ 7 ],
1398
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1399
+ <bipartition: [ 1, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 6, -1, -7 ],
1400
+ [ 7 ], [ -2 ]>,
1401
+ <bipartition: [ 1, 8, -1, -7 ], [ 2, 3, 4, 5, -3, -4, -5, -6, -8 ],
1402
+ [ 6, 7 ], [ -2 ]>,
1403
+ <bipartition: [ 1, 5, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 6, 7 ],
1404
+ [ 8, -1, -7 ], [ -2 ]>,
1405
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2 ],
1406
+ [ 7, -1, -7 ], [ -2 ]>,
1407
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -5, -7 ], [ 5, 7, -4, -6, -8 ],
1408
+ [ -2 ]>,
1409
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -7 ], [ 2, 5, 8, -3, -4, -5, -6, -8 ],
1410
+ [ -2 ]>,
1411
+ <bipartition: [ 1, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 4, -1, -7 ],
1412
+ [ 6, 7 ], [ -2 ]>,
1413
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -7 ], [ 3, 8, -3, -4, -5, -6, -8 ],
1414
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -3, -4, -5, -6, -8 ],
1415
+ [ 2, 7, -1, -7 ], [ 6 ], [ -2 ]>,
1416
+ <bipartition: [ 1, 5, 6, 7, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
1417
+ [ 8 ], [ -2 ]>,
1418
+ <bipartition: [ 1, 7, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, -1, -7 ],
1419
+ [ 4 ], [ -2 ]>,
1420
+ <bipartition: [ 1, 2, 4, 7, 8, -1, -7 ], [ 3, 5, 6, -3, -4, -5, -6, -8 ],
1421
+ [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -3, -4, -5, -6, -8 ],
1422
+ [ 5, 7, 8, -1, -7 ], [ -2 ]>,
1423
+ <bipartition: [ 1, 2, 5, 6, 7, -7 ], [ 3, 8 ], [ 4 ], [ -1, -2 ],
1424
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1425
+ <bipartition: [ 1, 4, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -4, -7 ], [ -3 ],
1426
+ [ -6, -8 ]>, <bipartition: [ 1, 8 ], [ 2, 3, 4, 5, -7 ], [ 6, 7 ],
1427
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1428
+ <bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2, 7, -7 ], [ -1, -2 ],
1429
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1430
+ <bipartition: [ 1, -2, -5 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -4, -6 ], [ 8 ],
1431
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -2, -5 ], [ 4 ],
1432
+ [ 6, -1, -3, -4, -6 ], [ -7, -8 ]>,
1433
+ <bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5, 6, -1, -3, -4, -6 ], [ 4 ],
1434
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -2, -5 ],
1435
+ [ 5, 7, 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
1436
+ <bipartition: [ 1, 5, -1, -3, -4, -6 ], [ 2, 3, 4, 6, 7 ], [ 8, -2, -5 ],
1437
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ],
1438
+ [ 7, -2, -5 ], [ -7, -8 ]>,
1439
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -2, -5 ], [ 7, 8, -1, -3, -4, -6 ],
1440
+ [ -7, -8 ]>,
1441
+ <bipartition: [ 1, 3, 4, 5, 7, -2, -5 ], [ 2, -1, -3, -4, -6 ], [ 6 ],
1442
+ [ 8 ], [ -7, -8 ]>,
1443
+ <bipartition: [ 1, 3, 4, 6, 7, -2, -5 ], [ 2, 5, 8, -1, -3, -4, -6 ],
1444
+ [ -7, -8 ]>,
1445
+ <bipartition: [ 1, -1, -3, -4, -6 ], [ 2, 3, 4, 5, 6, 7, -2, -5 ], [ 8 ],
1446
+ [ -7, -8 ]>,
1447
+ <bipartition: [ 1, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 6, 7 ],
1448
+ [ -7, -8 ]>,
1449
+ <bipartition: [ 1, 6, 7, 8, -2, -5 ], [ 2, 3, 5, -1, -3, -4, -6 ], [ 4 ],
1450
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8 ], [ 2, 7, -7 ], [ 6 ],
1451
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1452
+ <bipartition: [ 1, 7, 8 ], [ 2, 3, 5, 6, -7 ], [ 4 ], [ -1, -2 ],
1453
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1454
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6 ], [ 5, 7, 8, -7 ], [ -1, -2 ],
1455
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1456
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -4, -6 ], [ 5, -2, -5 ], [ 6, 7 ],
1457
+ [ -7, -8 ]>, <bipartition: [ 1, 4, -5 ], [ 2, 7, 8, -1, -2, -4, -7 ],
1458
+ [ 3, 5, 6 ], [ -3 ], [ -6, -8 ]>,
1459
+ <bipartition: [ 1, 2, 3, 4, 7, 8 ], [ 5, 6, -7 ], [ -1, -2 ],
1460
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1461
+ <bipartition: [ 1, 2, 3, 4, 7 ], [ 5, -7 ], [ 6, 8 ], [ -1, -2 ],
1462
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1463
+ <bipartition: [ 1, 7, 8, -7 ], [ 2, 3, 5, 6 ], [ 4 ], [ -1, -2 ],
1464
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1465
+ <bipartition: [ 1, 2, 4, 5, 7 ], [ 3, -7 ], [ 6, 8 ], [ -1, -2 ],
1466
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1467
+ <bipartition: [ 1, 3, 4, -7 ], [ 2, 5, 6, 7, 8 ], [ -1, -2 ],
1468
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1469
+ <bipartition: [ 1, 2, 4, 7, 8 ], [ 3, 5, 6, -7 ], [ -1, -2 ],
1470
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1471
+ <bipartition: [ 1, 5, -7 ], [ 2, 3, 4, 6, 7, 8 ], [ -1, -2 ],
1472
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1473
+ <bipartition: [ 1, 4, 5, 8 ], [ 2, 3, 6, -7 ], [ 7 ], [ -1, -2 ],
1474
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1475
+ <bipartition: [ 1, 8, -7 ], [ 2, 3, 4, 5 ], [ 6, 7 ], [ -1, -2 ],
1476
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1477
+ <bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7 ], [ 8, -7 ], [ -1, -2 ],
1478
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1479
+ <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
1480
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1481
+ <bipartition: [ 1, 4, -7 ], [ 2, 3, 5, 6, 7, 8 ], [ -1, -2 ],
1482
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1483
+ <bipartition: [ 1, 2, 3, 4, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
1484
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1485
+ <bipartition: [ 1, 5, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 6, 7, 8, -4, -8 ],
1486
+ [ -7 ]>, <bipartition: [ 1, 5, 6, 7, -2, -4 ], [ 2, 3, 4, -1, -6 ],
1487
+ [ 8 ], [ -3, -5, -7 ], [ -8 ]>,
1488
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -6 ], [ 5, 7, -2, -4 ],
1489
+ [ -3, -5, -7 ], [ -8 ]>,
1490
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -6 ], [ 5, 7, -2, -4 ],
1491
+ [ -3, -5, -7 ], [ -8 ]>,
1492
+ <bipartition: [ 1, 5, 8, -2, -4 ], [ 2, 3, 4, -1, -6 ], [ 6, 7 ],
1493
+ [ -3, -5, -7 ], [ -8 ]>,
1494
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -6 ], [ 2, 4, 7, -2, -4 ],
1495
+ [ -3, -5, -7 ], [ -8 ]>,
1496
+ <bipartition: [ 1, 2, 3, 4, -1, -6 ], [ 5, 6, 7, -2, -4 ], [ 8 ],
1497
+ [ -3, -5, -7 ], [ -8 ]>,
1498
+ <bipartition: [ 1, 4, -2, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6 ],
1499
+ [ -3, -5, -7 ], [ -8 ]>,
1500
+ <bipartition: [ 1, 2, 3, 4, 7, -7 ], [ 5 ], [ 6, 8 ], [ -1, -2 ],
1501
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1502
+ <bipartition: [ 1, 2, 6, 7, 8, -7 ], [ 3, 4, 5 ], [ -1, -2 ],
1503
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1504
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -4, -7 ], [ 3, -5 ], [ 6, 8 ],
1505
+ [ -3 ], [ -6, -8 ]>,
1506
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
1507
+ , [ -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, 8, -7 ],
1508
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1509
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -7 ], [ 5, 6 ], [ -1, -2 ],
1510
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1511
+ <bipartition: [ 1, 3, 4, 5, 8 ], [ 2, 7 ], [ 6 ], [ -1, -2, -3, -6 ],
1512
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1513
+ <bipartition: [ 1, 2, 3, 4, 8 ], [ 5 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
1514
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1515
+ <bipartition: [ 1, 2, 3, 4, -7 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2 ],
1516
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1517
+ <bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -3, -5, -8 ], [ 6, 8 ],
1518
+ [ -2, -6, -7 ]>,
1519
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ],
1520
+ [ -2, -6, -7 ]>,
1521
+ <bipartition: [ 1, 3, 4, -1, -3, -5, -8 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
1522
+ [ -2, -6, -7 ]>,
1523
+ <bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -3, -5, -8 ],
1524
+ [ -2, -6, -7 ]>,
1525
+ <bipartition: [ 1, 5, -1, -3, -5, -8 ], [ 2, 3, 4, 6, 7, 8, -4 ],
1526
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -5, -8 ],
1527
+ [ 5, 7, -4 ], [ -2, -6, -7 ]>,
1528
+ <bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 6, 7 ],
1529
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -8 ],
1530
+ [ 2, 4, 7, -4 ], [ -2, -6, -7 ]>,
1531
+ <bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
1532
+ [ -2, -6, -7 ]>,
1533
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -3, -5, -8 ],
1534
+ [ -2, -6, -7 ]>,
1535
+ <bipartition: [ 1, 5, -1, -3, -5, -8 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
1536
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
1537
+ [ 2 ], [ 7, -4 ], [ -2, -6, -7 ]>,
1538
+ <bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -3, -5, -8 ],
1539
+ [ -2, -6, -7 ]>,
1540
+ <bipartition: [ 1, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
1541
+ [ -2, -6, -7 ]>,
1542
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -5, -8 ], [ 4 ],
1543
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -8 ],
1544
+ [ 2, 7, -4 ], [ 6 ], [ -2, -6, -7 ]>,
1545
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 8 ],
1546
+ [ -2, -6, -7 ]>,
1547
+ <bipartition: [ 1, 7, 8, -1, -3, -5, -8 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
1548
+ [ -2, -6, -7 ]>,
1549
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -5, -8 ], [ 5, 7, 8, -4 ],
1550
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -5, -8 ],
1551
+ [ 2, 5, 8, -4 ], [ -2, -6, -7 ]>,
1552
+ <bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -3, -5, -8 ], [ 6, 7 ],
1553
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -8 ],
1554
+ [ 2, 6, 8, -4 ], [ -2, -6, -7 ]>,
1555
+ <bipartition: [ 1, 4 ], [ 2, 3, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1556
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1557
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
1558
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
1559
+ [ 5, 7, -1, -3, -6, -7 ], [ -2, -5, -8 ]>,
1560
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -3, -6, -7 ],
1561
+ [ -2, -5, -8 ]>,
1562
+ <bipartition: [ 1, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
1563
+ [ -2, -5, -8 ]>,
1564
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -3, -6, -7 ],
1565
+ [ -2, -5, -8 ]>,
1566
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -6, -7 ], [ 8 ],
1567
+ [ -2, -5, -8 ], [ -3 ]>,
1568
+ <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
1569
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -7 ],
1570
+ [ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
1571
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -7 ], [ 7, 8, -3, -4, -5, -6, -8 ],
1572
+ [ -2 ]>,
1573
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -7 ], [ 2, -3, -4, -5, -6, -8 ], [ 6 ],
1574
+ [ 8 ], [ -2 ]>,
1575
+ <bipartition: [ 1, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -7 ],
1576
+ [ 8 ], [ -2 ]>,
1577
+ <bipartition: [ 1, 6, 7, 8, -1, -7 ], [ 2, 3, 5, -3, -4, -5, -6, -8 ],
1578
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7 ], [ 3, 5 ], [ 6, 8 ],
1579
+ [ -1, -2, -3, -6 ], [ -4, -5 ], [ -7 ], [ -8 ]>,
1580
+ <bipartition: [ 1, 3, 4 ], [ 2, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1581
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1582
+ <bipartition: [ 1, 2, 5, 6, 7 ], [ 3, 8 ], [ 4 ], [ -1, -2, -3, -6 ],
1583
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1584
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8 ], [ 2 ], [ -1, -2, -3, -6 ],
1585
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1586
+ <bipartition: [ 1, 2, 3, 4, 5, 7 ], [ 6 ], [ 8 ], [ -1, -2, -3, -6 ],
1587
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1588
+ <bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1589
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1590
+ <bipartition: [ 1, 3, 4, 5, 7, 8 ], [ 2 ], [ 6 ], [ -1, -2, -3, -6 ],
1591
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1592
+ <bipartition: [ 1, 3, 4, 6, 7 ], [ 2, 5, 8 ], [ -1, -2, -3, -6 ],
1593
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1594
+ <bipartition: [ 1 ], [ 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1595
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1596
+ <bipartition: [ 1, 6, 7, 8 ], [ 2, 3, 5 ], [ 4 ], [ -1, -2, -3, -6 ],
1597
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1598
+ <bipartition: [ 1, 2, 4, 5, 7 ], [ 3 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
1599
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1600
+ <bipartition: [ 1, 2, 4, 7, 8 ], [ 3, 5, 6 ], [ -1, -2, -3, -6 ],
1601
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1602
+ <bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1603
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1604
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6 ], [ 5, 7, 8 ], [ -1, -2, -3, -6 ],
1605
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1606
+ <bipartition: [ 1, 2, 3, 4, 5 ], [ 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1607
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1608
+ <bipartition: [ 1, 2, 6, 7, 8 ], [ 3, 4, 5 ], [ -1, -2, -3, -6 ],
1609
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1610
+ <bipartition: [ 1, 3, 4, 5, 7 ], [ 2, 6, 8 ], [ -1, -2, -3, -6 ],
1611
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1612
+ <bipartition: [ 1, 5, 8 ], [ 2, 3, 4 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
1613
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1614
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -7 ], [ 5, 7, -3, -4, -5, -6, -8 ],
1615
+ [ -2 ]>,
1616
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -7 ], [ 2, 4, 7, -3, -4, -5, -6, -8 ],
1617
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ],
1618
+ [ 2, 7, -1, -7 ], [ -2 ]>,
1619
+ <bipartition: [ 1, 3, 4, -1, -7 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ],
1620
+ [ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7, 8, -3, -4, -5, -6, -8 ],
1621
+ [ 3, 5, 6, -1, -7 ], [ -2 ]>,
1622
+ <bipartition: [ 1, 5, -1, -7 ], [ 2, 3, 4, 6, 7, 8, -3, -4, -5, -6, -8 ],
1623
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -3, -4, -5, -6, -8 ],
1624
+ [ 3, -1, -7 ], [ 6, 8 ], [ -2 ]>,
1625
+ <bipartition: [ 1, 2, 4, 7, -1, -3, -5, -7 ], [ 3, 5, -4, -6, -8 ],
1626
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -7 ],
1627
+ [ 3, 8, -4, -6, -8 ], [ 4 ], [ -2 ]>,
1628
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -3, -4, -5, -6, -8 ],
1629
+ [ 5, 7, -1, -7 ], [ -2 ]>,
1630
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -3, -4, -5, -6, -8 ], [ 5, 7, -1, -7 ],
1631
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2 ],
1632
+ [ 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
1633
+ <bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ], [ 2, 5, 8, -1, -7 ],
1634
+ [ -2 ]>,
1635
+ <bipartition: [ 1, 5, 8, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
1636
+ [ 6, 7 ], [ -2 ]>,
1637
+ <bipartition: [ 1, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 5, -1, -7 ],
1638
+ [ 6, 7 ], [ -2 ]>,
1639
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
1640
+ [ 6 ], [ -2 ]>, <bipartition: [ 1, 5, 6, 7, -3, -4, -5, -6, -8 ],
1641
+ [ 2, 3, 4, -1, -7 ], [ 8 ], [ -2 ]>,
1642
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -7 ], [ 2 ], [ 7 ], [ -1, -2 ],
1643
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1644
+ <bipartition: [ 1, 3, 5, 6, 8 ], [ 2, 4, 7, -7 ], [ -1, -2 ],
1645
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1646
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -2, -5 ], [ 5, 7, -1, -3, -4, -6 ],
1647
+ [ -7, -8 ]>,
1648
+ <bipartition: [ 1, 2, 5, 6, 7, -2, -5 ], [ 3, 8, -1, -3, -4, -6 ], [ 4 ],
1649
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -4, -6 ],
1650
+ [ 2, 7, -2, -5 ], [ 6 ], [ -7, -8 ]>,
1651
+ <bipartition: [ 1, 5, 6, 7, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 8 ],
1652
+ [ -7, -8 ]>,
1653
+ <bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 5, 6, -2, -5 ], [ 4 ],
1654
+ [ -7, -8 ]>,
1655
+ <bipartition: [ 1, 2, 4, 7, 8, -2, -5 ], [ 3, 5, 6, -1, -3, -4, -6 ],
1656
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -4, -6 ],
1657
+ [ 5, 7, 8, -2, -5 ], [ -7, -8 ]>,
1658
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2, 7, -2, -5 ],
1659
+ [ -7, -8 ]>,
1660
+ <bipartition: [ 1, 3, 4, -2, -5 ], [ 2, 6, 8, -1, -3, -4, -6 ], [ 5, 7 ],
1661
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -4, -6 ],
1662
+ [ 3, 5, 6, -2, -5 ], [ -7, -8 ]>,
1663
+ <bipartition: [ 1, 5, -2, -5 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -4, -6 ],
1664
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -4, -6 ],
1665
+ [ 3, -2, -5 ], [ 6, 8 ], [ -7, -8 ]>,
1666
+ <bipartition: [ 1, 5, -1, -3, -4, -6 ], [ 2, 3, 4, 6, 7, 8, -2, -5 ],
1667
+ [ -7, -8 ]>,
1668
+ <bipartition: [ 1, 2, 8, -1, -3, -4, -6 ], [ 3, 4, 5, 6, 7, -2, -5 ],
1669
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -4, -6 ],
1670
+ [ 5, 6, 7, -2, -5 ], [ 8 ], [ -7, -8 ]>,
1671
+ <bipartition: [ 1, 2, 3, 4, 8, -2, -5 ], [ 5, -1, -3, -4, -6 ], [ 6, 7 ],
1672
+ [ -7, -8 ]>,
1673
+ <bipartition: [ 1, 4, -2, -5 ], [ 2, 7, 8, -1, -3, -4, -6 ], [ 3, 5, 6 ],
1674
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -2, -5 ],
1675
+ [ 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
1676
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -4, -6 ], [ 5, 7, -2, -5 ]
1677
+ , [ -7, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -4, -6 ],
1678
+ [ 5, 7, -2, -5 ], [ -7, -8 ]>,
1679
+ <bipartition: [ 1, 5, 8, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 6, 7 ],
1680
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -4, -6 ],
1681
+ [ 5, 7, -2, -5 ], [ -7, -8 ]>,
1682
+ <bipartition: [ 1, 4, 5, 8, -2, -5 ], [ 2, 3, 6, -1, -3, -4, -6 ], [ 7 ],
1683
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -2, -5 ], [ 2 ],
1684
+ [ 4, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
1685
+ <bipartition: [ 1, 3, 4, 6, 7 ], [ 2, 5, 8, -7 ], [ -1, -2 ],
1686
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1687
+ <bipartition: [ 1, 5, 6, 7 ], [ 2, 3, 4, -7 ], [ 8 ], [ -1, -2 ],
1688
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1689
+ <bipartition: [ 1, -7 ], [ 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2 ],
1690
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1691
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -7 ], [ 4 ], [ 6 ], [ -1, -2 ],
1692
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1693
+ <bipartition: [ 1, 5, 8 ], [ 2, 3, 4, -7 ], [ 6, 7 ], [ -1, -2 ],
1694
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1695
+ <bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6 ], [ 7, -7 ], [ -1, -2 ],
1696
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1697
+ <bipartition: [ 1, 3, 4, 5, 7 ], [ 2, 6, 8, -7 ], [ -1, -2 ],
1698
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1699
+ <bipartition: [ 1, 3, 5, 6, 8, -7 ], [ 2, 4, 7 ], [ -1, -2 ],
1700
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1701
+ <bipartition: [ 1, 3, 4, -7 ], [ 2, 6, 8 ], [ 5, 7 ], [ -1, -2 ],
1702
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1703
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2, 7, -4, -8 ],
1704
+ [ -7 ]>,
1705
+ <bipartition: [ 1, 3, 4, 5, 7, -4, -8 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ],
1706
+ [ -7 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -6 ], [ 3, 8, -2, -4 ],
1707
+ [ 4 ], [ -3, -5, -7 ], [ -8 ]>,
1708
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -2, -4 ], [ 5, 7, 8, -1, -6 ],
1709
+ [ -3, -5, -7 ], [ -8 ]>,
1710
+ <bipartition: [ 1, 2, 4, 7, -1, -6 ], [ 3, 5, -2, -4 ], [ 6, 8 ],
1711
+ [ -3, -5, -7 ], [ -8 ]>,
1712
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -2, -4 ], [ 5, 7, -1, -6 ],
1713
+ [ -3, -5, -7 ], [ -8 ]>,
1714
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -6 ], [ 5, -2, -4 ], [ 6, 7 ],
1715
+ [ -3, -5, -7 ], [ -8 ]>,
1716
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -2, -4, -7 ], [ 6 ], [ 7, -5 ],
1717
+ [ -3 ], [ -6, -8 ]>,
1718
+ <bipartition: [ 1, 2, 3, 5, 7, 8 ], [ 4 ], [ 6, -7 ], [ -1, -2 ],
1719
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1720
+ <bipartition: [ 1, 2, 3, 4, 7, 8 ], [ 5, 6 ], [ -1, -2, -3, -6 ],
1721
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1722
+ <bipartition: [ 1, 2, 3, 4, 7 ], [ 5 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
1723
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1724
+ <bipartition: [ 1, 7, 8 ], [ 2, 3, 5, 6 ], [ 4 ], [ -1, -2, -3, -6 ],
1725
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1726
+ <bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -3, -5, -8 ], [ 6, 8 ],
1727
+ [ -2, -6, -7 ]>,
1728
+ <bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -3, -5, -8 ],
1729
+ [ -2, -6, -7 ]>,
1730
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -5, -8 ], [ 7 ],
1731
+ [ -2, -6, -7 ]>,
1732
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
1733
+ [ -2, -6, -7 ]>,
1734
+ <bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 3, 5, 6, 7, 8, -4 ],
1735
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
1736
+ [ 2, 7, -4 ], [ -2, -6, -7 ]>,
1737
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -3, -5, -8 ],
1738
+ [ -2, -6, -7 ]>,
1739
+ <bipartition: [ 1, 2, 4, 7, -1, -3, -5, -8 ], [ 3, 5, -4 ], [ 6, 8 ],
1740
+ [ -2, -6, -7 ]>,
1741
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -3, -5, -8 ],
1742
+ [ -2, -6, -7 ]>,
1743
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -3, -5, -8 ],
1744
+ [ -2, -6, -7 ]>,
1745
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -3, -5, -8 ],
1746
+ [ -2, -6, -7 ]>,
1747
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -3, -5, -8 ], [ 6 ], [ 8 ],
1748
+ [ -2, -6, -7 ]>,
1749
+ <bipartition: [ 1, -1, -3, -5, -8 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
1750
+ [ -2, -6, -7 ]>,
1751
+ <bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -3, -5, -8 ], [ 4 ],
1752
+ [ -2, -6, -7 ]>,
1753
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -3, -5, -8 ], [ 5, 7 ],
1754
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -8 ],
1755
+ [ 3, -4 ], [ 6, 8 ], [ -2, -6, -7 ]>,
1756
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -8 ], [ 5, 7, -4 ],
1757
+ [ -2, -6, -7 ]>,
1758
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -5, -8 ],
1759
+ [ -2, -6, -7 ]>,
1760
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ], [ 6 ],
1761
+ [ -2, -6, -7 ]>,
1762
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 8 ],
1763
+ [ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
1764
+ [ 5, 7, -1, -3, -5, -8 ], [ -2, -6, -7 ]>,
1765
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -3, -5, -8 ],
1766
+ [ -2, -6, -7 ]>,
1767
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -6, -7 ], [ 4 ],
1768
+ [ -2, -5, -8 ]>,
1769
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -6, -7 ], [ 5, 7, 8, -4 ],
1770
+ [ -2, -5, -8 ]>,
1771
+ <bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -3, -6, -7 ], [ 6, 8 ],
1772
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -6, -7 ],
1773
+ [ 5, 7, -4 ], [ -2, -5, -8 ]>,
1774
+ <bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -3, -6, -7 ], [ 6, 7 ],
1775
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -6, -7 ],
1776
+ [ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
1777
+ <bipartition: [ 1, 2, 4, 7, -1, -7 ], [ 3, 5, -3, -4, -5, -6, -8 ],
1778
+ [ 6, 8 ], [ -2 ]>,
1779
+ <bipartition: [ 1, 2, 3, 4, -1, -7 ], [ 5, 6, 7, -3, -4, -5, -6, -8 ],
1780
+ [ 8 ], [ -2 ]>,
1781
+ <bipartition: [ 1, 5, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -7 ],
1782
+ [ -2 ]>,
1783
+ <bipartition: [ 1, 2, 8, -3, -4, -5, -6, -8 ], [ 3, 4, 5, 6, 7, -1, -7 ],
1784
+ [ -2 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
1785
+ [ 5, 6, 7, -1, -7 ], [ 8 ], [ -2 ]>,
1786
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -7 ], [ 5, -3, -4, -5, -6, -8 ],
1787
+ [ 6, 7 ], [ -2 ]>,
1788
+ <bipartition: [ 1, 4, -1, -7 ], [ 2, 7, 8, -3, -4, -5, -6, -8 ],
1789
+ [ 3, 5, 6 ], [ -2 ]>,
1790
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -7 ],
1791
+ [ 8, -3, -4, -5, -6, -8 ], [ -2 ]>,
1792
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ], [ 5, 7, -1, -7 ]
1793
+ , [ -2 ]>,
1794
+ <bipartition: [ 1, 4, 5, 8, -1, -7 ], [ 2, 3, 6, -3, -4, -5, -6, -8 ],
1795
+ [ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -7 ], [ 2 ],
1796
+ [ 4, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
1797
+ <bipartition: [ 1, 4, 5, 8 ], [ 2, 3, 6 ], [ 7 ], [ -1, -2, -3, -6 ],
1798
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1799
+ <bipartition: [ 1, 8 ], [ 2, 3, 4, 5 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
1800
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1801
+ <bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2 ], [ 7 ], [ -1, -2, -3, -6 ],
1802
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1803
+ <bipartition: [ 1, 2, 8 ], [ 3, 4, 5, 6, 7 ], [ -1, -2, -3, -6 ],
1804
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1805
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1806
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1807
+ <bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2, 7 ], [ -1, -2, -3, -6 ],
1808
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1809
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
1810
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1811
+ <bipartition: [ 1, 3, 4, 5, 6 ], [ 2, 7, 8 ], [ -1, -2, -3, -6 ],
1812
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1813
+ <bipartition: [ 1, 5, 6, 7 ], [ 2, 3, 4 ], [ 8 ], [ -1, -2, -3, -6 ],
1814
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1815
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
1816
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1817
+ <bipartition: [ 1, 3, 5, 6, 8 ], [ 2 ], [ 4, 7 ], [ -1, -2, -3, -6 ],
1818
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1819
+ <bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6 ], [ 7 ], [ -1, -2, -3, -6 ],
1820
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1821
+ <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1822
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1823
+ <bipartition: [ 1, 2, 3, 4, -3, -4, -5, -6, -8 ], [ 5, 6, 7, -1, -7 ],
1824
+ [ 8 ], [ -2 ]>,
1825
+ <bipartition: [ 1, 4, -1, -7 ], [ 2, 3, 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
1826
+ [ -2 ]>,
1827
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
1828
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 7, -3, -4, -5, -6, -8 ],
1829
+ [ 2, 6, 8, -1, -7 ], [ -2 ]>,
1830
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 6 ],
1831
+ [ 7, -1, -7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -5, -7 ],
1832
+ [ 5, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
1833
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -5, -7 ], [ 3, 4, 5, -4, -6, -8 ],
1834
+ [ -2 ]>,
1835
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 6, -4, -6, -8 ],
1836
+ [ 7 ], [ -2 ]>,
1837
+ <bipartition: [ 1, 8, -4, -6, -8 ], [ 2, 3, 4, 5, -1, -3, -5, -7 ],
1838
+ [ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
1839
+ [ 2 ], [ 7, -4, -6, -8 ], [ -2 ]>,
1840
+ <bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3, 5, -1, -7 ],
1841
+ [ 6, 8 ], [ -2 ]>,
1842
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -7 ], [ 3, -3, -4, -5, -6, -8 ],
1843
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -7 ],
1844
+ [ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
1845
+ <bipartition: [ 1, 3, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2, 4, 7, -1, -7 ],
1846
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 7, -2, -5 ], [ 3, 5, -1, -3, -4, -6 ],
1847
+ [ 6, 8 ], [ -7, -8 ]>,
1848
+ <bipartition: [ 1, 2, 3, 4, -2, -5 ], [ 5, 6, 7, -1, -3, -4, -6 ], [ 8 ],
1849
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2 ],
1850
+ [ 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
1851
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -4, -6 ], [ 2, 5, 8, -2, -5 ],
1852
+ [ -7, -8 ]>,
1853
+ <bipartition: [ 1, 8, -1, -3, -4, -6 ], [ 2, 3, 4, 5, -2, -5 ], [ 6, 7 ],
1854
+ [ -7, -8 ]>,
1855
+ <bipartition: [ 1, 3, 4, 5, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ], [ 6 ],
1856
+ [ -7, -8 ]>,
1857
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 8 ],
1858
+ [ -7, -8 ]>,
1859
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -4, -6 ], [ 5, 6, 7, -2, -5 ], [ 8 ],
1860
+ [ -7, -8 ]>,
1861
+ <bipartition: [ 1, 4, -2, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -4, -6 ],
1862
+ [ -7, -8 ]>,
1863
+ <bipartition: [ 1, 8, -2, -5 ], [ 2, 3, 4, 5, -1, -3, -4, -6 ], [ 6, 7 ],
1864
+ [ -7, -8 ]>,
1865
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ],
1866
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -4, -6 ],
1867
+ [ 2, 6, 8, -2, -5 ], [ -7, -8 ]>,
1868
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -4, -6 ], [ 6 ], [ 7, -2, -5 ],
1869
+ [ -7, -8 ]>,
1870
+ <bipartition: [ 1, 3, 4, 5, 7, -2, -5 ], [ 2, 6, 8, -1, -3, -4, -6 ],
1871
+ [ -7, -8 ]>,
1872
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -4, -6 ], [ 5, 6, 7, 8, -2, -5 ],
1873
+ [ -7, -8 ]>,
1874
+ <bipartition: [ 1, 2, 4, 7, -1, -3, -4, -6 ], [ 3, 5, -2, -5 ], [ 6, 8 ],
1875
+ [ -7, -8 ]>,
1876
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -2, -5 ], [ 5, 6, -1, -3, -4, -6 ],
1877
+ [ -7, -8 ]>,
1878
+ <bipartition: [ 1, 2, 3, 4, 7, -2, -5 ], [ 5, -1, -3, -4, -6 ], [ 6, 8 ],
1879
+ [ -7, -8 ]>,
1880
+ <bipartition: [ 1, 2, 6, 7, 8, -2, -5 ], [ 3, 4, 5, -1, -3, -4, -6 ],
1881
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, -1, -3, -4, -6 ], [ 2, 6, 8 ],
1882
+ [ 5, 7, -2, -5 ], [ -7, -8 ]>,
1883
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -2, -5 ], [ 5, 7, -1, -3, -4, -6 ],
1884
+ [ -7, -8 ]>, <bipartition: [ 1, 5, -2, -5 ], [ 2, 3, 4, 6, 7 ],
1885
+ [ 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
1886
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -2, -5 ], [ 2, -1, -3, -4, -6 ],
1887
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -7 ], [ 5, 7 ],
1888
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1889
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -7 ], [ 7, 8 ], [ -1, -2 ],
1890
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1891
+ <bipartition: [ 1, 3, 4, 5, 7, -7 ], [ 2 ], [ 6 ], [ 8 ], [ -1, -2 ],
1892
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1893
+ <bipartition: [ 1, 2, 3, 4, -1, -2, -3, -5, -6 ], [ 5, 6, 7, -4, -8 ],
1894
+ [ 8 ], [ -7 ]>,
1895
+ <bipartition: [ 1, 4, -4, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
1896
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2 ],
1897
+ [ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
1898
+ <bipartition: [ 1, 2, 5, 6, 7, -2, -4 ], [ 3, 8, -1, -6 ], [ 4 ],
1899
+ [ -3, -5, -7 ], [ -8 ]>,
1900
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -6 ], [ 2, 7, -2, -4 ], [ 6 ],
1901
+ [ -3, -5, -7 ], [ -8 ]>,
1902
+ <bipartition: [ 1, 7, 8, -1, -6 ], [ 2, 3, 5, 6, -2, -4 ], [ 4 ],
1903
+ [ -3, -5, -7 ], [ -8 ]>,
1904
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -6 ], [ 5, 7, 8, -2, -4 ],
1905
+ [ -3, -5, -7 ], [ -8 ]>,
1906
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -6 ], [ 5, -2, -4 ], [ 6, 8 ],
1907
+ [ -3, -5, -7 ], [ -8 ]>,
1908
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -6 ], [ 3, 4, 5, -2, -4 ],
1909
+ [ -3, -5, -7 ], [ -8 ]>,
1910
+ <bipartition: [ 1, 4, 5, 8, -1, -6 ], [ 2, 3, 6, -2, -4 ], [ 7 ],
1911
+ [ -3, -5, -7 ], [ -8 ]>,
1912
+ <bipartition: [ 1, 8, -2, -4 ], [ 2, 3, 4, 5, -1, -6 ], [ 6, 7 ],
1913
+ [ -3, -5, -7 ], [ -8 ]>,
1914
+ <bipartition: [ 1, 2, 4, 7, -2, -4 ], [ 3, 5, -1, -6 ], [ 6, 8 ],
1915
+ [ -3, -5, -7 ], [ -8 ]>,
1916
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -6 ], [ 5, 6, -2, -4 ],
1917
+ [ -3, -5, -7 ], [ -8 ]>,
1918
+ <bipartition: [ 1, 7, 8, -2, -4 ], [ 2, 3, 5, 6, -1, -6 ], [ 4 ],
1919
+ [ -3, -5, -7 ], [ -8 ]>,
1920
+ <bipartition: [ 1, 2, 3, 4, 5, 6 ], [ 7, 8, -7 ], [ -1, -2 ],
1921
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1922
+ <bipartition: [ 1, 3, 4, 5, 7 ], [ 2, -7 ], [ 6 ], [ 8 ], [ -1, -2 ],
1923
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1924
+ <bipartition: [ 1, 6, 7, 8 ], [ 2, 3, 5, -7 ], [ 4 ], [ -1, -2 ],
1925
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1926
+ <bipartition: [ 1, 2, 3, 5, 7, 8 ], [ 4 ], [ 6 ], [ -1, -2, -3, -6 ],
1927
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1928
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -3, -5, -8 ],
1929
+ [ -2, -6, -7 ]>,
1930
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -5, -8 ], [ 5, 6, 7, -4 ], [ 8 ],
1931
+ [ -2, -6, -7 ]>,
1932
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -8 ],
1933
+ [ -2, -6, -7 ]>,
1934
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 6, -4 ], [ 7 ],
1935
+ [ -2, -6, -7 ]>,
1936
+ <bipartition: [ 1, 2, 8, -1, -3, -5, -8 ], [ 3, 4, 5, 6, 7, -4 ],
1937
+ [ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -5, -8 ],
1938
+ [ 5, 6, 7, -4 ], [ 8 ], [ -2, -6, -7 ]>,
1939
+ <bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -3, -5, -8 ], [ 6, 7 ],
1940
+ [ -2, -6, -7 ]>,
1941
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -5, -8 ], [ 3, 5, 6 ],
1942
+ [ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ],
1943
+ [ 8, -1, -3, -5, -8 ], [ -2, -6, -7 ]>,
1944
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -5, -8 ], [ 5, 7, -4 ],
1945
+ [ -2, -6, -7 ]>,
1946
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -3, -5, -8 ],
1947
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -5, -8 ],
1948
+ [ 6 ], [ 7, -4 ], [ -2, -6, -7 ]>,
1949
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -5, -8 ], [ 6, 8 ],
1950
+ [ -2, -6, -7 ]>,
1951
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -6, -7 ],
1952
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -6, -7 ],
1953
+ [ 3, 8, -4 ], [ 4 ], [ -2, -5, -8 ]>,
1954
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ], [ 6 ],
1955
+ [ -2, -5, -8 ]>,
1956
+ <bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -3, -6, -7 ], [ 4 ],
1957
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -6, -7 ],
1958
+ [ 3, 5, 6, -4 ], [ -2, -5, -8 ]>,
1959
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -3, -6, -7 ],
1960
+ [ -2, -5, -8 ]>,
1961
+ <bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -3, -6, -7 ], [ 6, 8 ],
1962
+ [ -2, -5, -8 ]>,
1963
+ <bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -3, -6, -7 ],
1964
+ [ -2, -5, -8 ]>,
1965
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -6, -7 ], [ 7 ],
1966
+ [ -2, -5, -8 ]>,
1967
+ <bipartition: [ 1, 8, -1, -3, -6, -7 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
1968
+ [ -2, -5, -8 ]>,
1969
+ <bipartition: [ 1, 2, 4, 7, -1, -3, -6, -7 ], [ 3, 5, -4 ], [ 6, 8 ],
1970
+ [ -2, -5, -8 ]>,
1971
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -3, -6, -7 ],
1972
+ [ -2, -5, -8 ]>,
1973
+ <bipartition: [ 1, 7, 8, -1, -3, -6, -7 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
1974
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -6, -7 ],
1975
+ [ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
1976
+ <bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -6, -7 ],
1977
+ [ -2, -5, -8 ], [ -3 ]>,
1978
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -6, -7 ], [ 7 ],
1979
+ [ -2, -5, -8 ], [ -3 ]>,
1980
+ <bipartition: [ 1, 8, -1, -6, -7 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
1981
+ [ -2, -5, -8 ], [ -3 ]>,
1982
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -7 ], [ 5, -3, -4, -5, -6, -8 ],
1983
+ [ 6, 8 ], [ -2 ]>,
1984
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -7 ], [ 3, 4, 5, -3, -4, -5, -6, -8 ],
1985
+ [ -2 ]>,
1986
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -7 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ],
1987
+ [ -2 ]>, <bipartition: [ 1, 2, 3, 4, -3, -4, -5, -6, -8 ],
1988
+ [ 5, 6, 7, 8, -1, -7 ], [ -2 ]>,
1989
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -7 ], [ 5, 6, -3, -4, -5, -6, -8 ],
1990
+ [ -2 ]>, <bipartition: [ 1, 3, 4, -3, -4, -5, -6, -8 ], [ 2, 6, 8 ],
1991
+ [ 5, 7, -1, -7 ], [ -2 ]>,
1992
+ <bipartition: [ 1, 5, -1, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -3, -4, -5, -6, -8 ]
1993
+ , [ -2 ]>,
1994
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -7 ], [ 2, -3, -4, -5, -6, -8 ],
1995
+ [ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8 ], [ 2, 4, 7 ], [ -1, -2, -3, -6 ]
1996
+ , [ -4, -5 ], [ -7 ], [ -8 ]>,
1997
+ <bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -7 ],
1998
+ [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -5, -7 ],
1999
+ [ 5, 6, -4, -6, -8 ], [ -2 ]>,
2000
+ <bipartition: [ 1, 7, 8, -4, -6, -8 ], [ 2, 3, 5, 6, -1, -3, -5, -7 ],
2001
+ [ 4 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4, -6, -8 ],
2002
+ [ 5, 7, 8, -1, -3, -5, -7 ], [ -2 ]>,
2003
+ <bipartition: [ 1, 5, -1, -3, -5, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4, -6, -8 ]
2004
+ , [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -4, -6, -8 ],
2005
+ [ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
2006
+ <bipartition: [ 1, 3, 5, 6, 8, -4, -6, -8 ], [ 2, 4, 7, -1, -3, -5, -7 ],
2007
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -7 ],
2008
+ [ 3, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
2009
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -7 ], [ 6 ], [ 7, -3, -4, -5, -6, -8 ]
2010
+ , [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 8, -3, -4, -5, -6, -8 ],
2011
+ [ 5, -1, -7 ], [ 6, 7 ], [ -2 ]>,
2012
+ <bipartition: [ 1, 2, 4, 5, 7, -2, -5 ], [ 3, -1, -3, -4, -6 ], [ 6, 8 ],
2013
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -2, -5 ],
2014
+ [ 5, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
2015
+ <bipartition: [ 1, 3, 5, 6, 8, -2, -5 ], [ 2, 4, 7, -1, -3, -4, -6 ],
2016
+ [ -7, -8 ]>,
2017
+ <bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -5 ],
2018
+ [ -7, -8 ]>,
2019
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 6, -2, -5 ], [ 7 ],
2020
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -4, -6 ], [ 4 ],
2021
+ [ 6, -2, -5 ], [ -7, -8 ]>,
2022
+ <bipartition: [ 1, 3, 4, -1, -3, -4, -6 ], [ 2, 6, 8, -2, -5 ], [ 5, 7 ],
2023
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4 ], [ 5, 6, 7, -7 ], [ 8 ],
2024
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2025
+ <bipartition: [ 1, 4, -7 ], [ 2, 7, 8 ], [ 3, 5, 6 ], [ -1, -2 ],
2026
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2027
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -3, -5, -6 ], [ 3, 5, -4, -8 ],
2028
+ [ 6, 8 ], [ -7 ]>,
2029
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -6 ], [ 3, -2, -4 ], [ 6, 8 ],
2030
+ [ -3, -5, -7 ], [ -8 ]>,
2031
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2 ], [ 7, -1, -6 ],
2032
+ [ -3, -5, -7 ], [ -8 ]>,
2033
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -6 ], [ 2, 5, 8, -2, -4 ],
2034
+ [ -3, -5, -7 ], [ -8 ]>,
2035
+ <bipartition: [ 1, 3, 4, 5, 8, -2, -4 ], [ 2, 7, -1, -6 ], [ 6 ],
2036
+ [ -3, -5, -7 ], [ -8 ]>,
2037
+ <bipartition: [ 1, 5, 6, 7, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 8 ],
2038
+ [ -3, -5, -7 ], [ -8 ]>,
2039
+ <bipartition: [ 1, 2, 4, 7, 8, -1, -6 ], [ 3, 5, 6, -2, -4 ],
2040
+ [ -3, -5, -7 ], [ -8 ]>,
2041
+ <bipartition: [ 1, 5, -1, -6 ], [ 2, 3, 4, 6, 7 ], [ 8, -2, -4 ],
2042
+ [ -3, -5, -7 ], [ -8 ]>,
2043
+ <bipartition: [ 1, 5, 8, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 6, 7 ],
2044
+ [ -3, -5, -7 ], [ -8 ]>,
2045
+ <bipartition: [ 1, 3, 5, 6, 8, -2, -4 ], [ 2, 4, 7, -1, -6 ],
2046
+ [ -3, -5, -7 ], [ -8 ]>,
2047
+ <bipartition: [ 1, 2, 3, 4, 7, -2, -4 ], [ 5, -1, -6 ], [ 6, 8 ],
2048
+ [ -3, -5, -7 ], [ -8 ]>,
2049
+ <bipartition: [ 1, 2, 6, 7, 8, -2, -4 ], [ 3, 4, 5, -1, -6 ],
2050
+ [ -3, -5, -7 ], [ -8 ]>,
2051
+ <bipartition: [ 1, 4, 5, 8, -2, -4 ], [ 2, 3, 6, -1, -6 ], [ 7 ],
2052
+ [ -3, -5, -7 ], [ -8 ]>,
2053
+ <bipartition: [ 1, -2, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -6 ], [ 8 ],
2054
+ [ -3, -5, -7 ], [ -8 ]>,
2055
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -2, -4 ], [ 4 ], [ 6, -1, -6 ],
2056
+ [ -3, -5, -7 ], [ -8 ]>,
2057
+ <bipartition: [ 1, 2, 8, -7 ], [ 3, 4, 5, 6, 7 ], [ -1, -2 ],
2058
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2059
+ <bipartition: [ 1 ], [ 2, 3, 4, -7 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2 ],
2060
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2061
+ <bipartition: [ 1, 4 ], [ 2, 7, 8, -7 ], [ 3, 5, 6 ], [ -1, -2 ],
2062
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2063
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7 ], [ 8, -7 ], [ -1, -2 ],
2064
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2065
+ <bipartition: [ 1, 3, 5, 6, 8 ], [ 2 ], [ 4, 7, -7 ], [ -1, -2 ],
2066
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2067
+ <bipartition: [ 1, 2, 3, 4, 5, 6 ], [ 7, 8 ], [ -1, -2, -3, -6 ],
2068
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
2069
+ <bipartition: [ 1, 3, 4, 5, 7 ], [ 2 ], [ 6 ], [ 8 ], [ -1, -2, -3, -6 ],
2070
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
2071
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -5, -8 ], [ 4 ], [ 6, -4 ],
2072
+ [ -2, -6, -7 ]>,
2073
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -5, -8 ], [ 5, 6, 7, 8, -4 ],
2074
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, -1, -3, -5, -8 ], [ 2, 6, 8 ],
2075
+ [ 5, 7, -4 ], [ -2, -6, -7 ]>,
2076
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -3, -5, -8 ],
2077
+ [ -2, -6, -7 ]>,
2078
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -3, -5, -8 ],
2079
+ [ -2, -6, -7 ]>,
2080
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -6, -7 ], [ 6, 8 ],
2081
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
2082
+ [ 2 ], [ 7, -4 ], [ -2, -5, -8 ]>,
2083
+ <bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -3, -6, -7 ],
2084
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -6, -7 ],
2085
+ [ 2, 7, -4 ], [ 6 ], [ -2, -5, -8 ]>,
2086
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 8 ],
2087
+ [ -2, -5, -8 ]>,
2088
+ <bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -3, -6, -7 ],
2089
+ [ -2, -5, -8 ]>,
2090
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -3, -6, -7 ],
2091
+ [ -2, -5, -8 ]>,
2092
+ <bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 6, 7 ],
2093
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -6, -7 ],
2094
+ [ 2, 4, 7, -4 ], [ -2, -5, -8 ]>,
2095
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -6, -7 ], [ 5, -4 ], [ 6, 8 ],
2096
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -6, -7 ],
2097
+ [ 3, 4, 5, -4 ], [ -2, -5, -8 ]>,
2098
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
2099
+ [ -2, -5, -8 ]>,
2100
+ <bipartition: [ 1, -1, -3, -6, -7 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
2101
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -6, -7 ],
2102
+ [ 4 ], [ 6, -4 ], [ -2, -5, -8 ]>,
2103
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -6, -7 ],
2104
+ [ -2, -5, -8 ], [ -3 ]>,
2105
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -6, -7 ], [ 4 ],
2106
+ [ -2, -5, -8 ], [ -3 ]>,
2107
+ <bipartition: [ 1, 7, 8, -1, -6, -7 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
2108
+ [ -2, -5, -8 ], [ -3 ]>,
2109
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -6, -7 ], [ 5, 7, 8, -4 ],
2110
+ [ -2, -5, -8 ], [ -3 ]>,
2111
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -6, -7 ],
2112
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -6, -7 ],
2113
+ [ 5, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2114
+ <bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 6, 7 ],
2115
+ [ -2, -5, -8 ], [ -3 ]>,
2116
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -6, -7 ], [ 2, 4, 7, -4 ],
2117
+ [ -2, -5, -8 ], [ -3 ]>,
2118
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -3, -4, -5, -6, -8 ], [ 4 ],
2119
+ [ 6, -1, -7 ], [ -2 ]>,
2120
+ <bipartition: [ 1, 3, 4, -3, -4, -5, -6, -8 ], [ 2, 6, 8, -1, -7 ],
2121
+ [ 5, 7 ], [ -2 ]>,
2122
+ <bipartition: [ 1, -4, -6, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -5, -7 ],
2123
+ [ 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -4, -6, -8 ], [ 4 ],
2124
+ [ 6, -1, -3, -5, -7 ], [ -2 ]>,
2125
+ <bipartition: [ 1, 3, 4, 6, 7, -4, -6, -8 ], [ 2, 5, 8, -1, -3, -5, -7 ],
2126
+ [ -2 ]>,
2127
+ <bipartition: [ 1, 2, 5, 6, 7, -4, -6, -8 ], [ 3, 8, -1, -3, -5, -7 ],
2128
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -7 ],
2129
+ [ 2, 7, -4, -6, -8 ], [ 6 ], [ -2 ]>,
2130
+ <bipartition: [ 1, 5, 6, 7, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
2131
+ [ 8 ], [ -2 ]>,
2132
+ <bipartition: [ 1, 7, 8, -1, -3, -5, -7 ], [ 2, 3, 5, 6, -4, -6, -8 ],
2133
+ [ 4 ], [ -2 ]>,
2134
+ <bipartition: [ 1, 2, 4, 7, 8, -4, -6, -8 ], [ 3, 5, 6, -1, -3, -5, -7 ],
2135
+ [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -5, -7 ],
2136
+ [ 5, 7, 8, -4, -6, -8 ], [ -2 ]>,
2137
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ], [ 2, 7, -4, -6, -8 ],
2138
+ [ -2 ]>,
2139
+ <bipartition: [ 1, 3, 4, -4, -6, -8 ], [ 2, 6, 8, -1, -3, -5, -7 ],
2140
+ [ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -5, -7 ],
2141
+ [ 3, 5, 6, -4, -6, -8 ], [ -2 ]>,
2142
+ <bipartition: [ 1, 5, -4, -6, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -5, -7 ],
2143
+ [ -2 ]>,
2144
+ <bipartition: [ 1, 2, 4, 7, -4, -6, -8 ], [ 3, 5, -1, -3, -5, -7 ],
2145
+ [ 6, 8 ], [ -2 ]>,
2146
+ <bipartition: [ 1, 2, 3, 4, 8, -4, -6, -8 ], [ 5, -1, -3, -5, -7 ],
2147
+ [ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -5, -7 ],
2148
+ [ 6 ], [ 7, -4, -6, -8 ], [ -2 ]>,
2149
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -2, -5 ], [ 6 ], [ 7, -1, -3, -4, -6 ],
2150
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -4, -6 ],
2151
+ [ 7, 8, -2, -5 ], [ -7, -8 ]>,
2152
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -4, -6 ], [ 2, -2, -5 ], [ 6 ],
2153
+ [ 8 ], [ -7, -8 ]>,
2154
+ <bipartition: [ 1, 6, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 5, -2, -5 ], [ 4 ],
2155
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -2, -3, -5, -6 ],
2156
+ [ 5, -4, -8 ], [ 6, 8 ], [ -7 ]>,
2157
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 3, 4, 5, -4, -8 ],
2158
+ [ -7 ]>, <bipartition: [ 1, 4, 5, 8, -1, -2, -3, -5, -6 ],
2159
+ [ 2, 3, 6, -4, -8 ], [ 7 ], [ -7 ]>,
2160
+ <bipartition: [ 1, 8, -4, -8 ], [ 2, 3, 4, 5, -1, -2, -3, -5, -6 ],
2161
+ [ 6, 7 ], [ -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6 ], [ 6 ],
2162
+ [ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
2163
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -2, -4 ], [ 5, 7, -1, -6 ],
2164
+ [ -3, -5, -7 ], [ -8 ]>,
2165
+ <bipartition: [ 1, 3, 4, -2, -4 ], [ 2, 6, 8, -1, -6 ], [ 5, 7 ],
2166
+ [ -3, -5, -7 ], [ -8 ]>,
2167
+ <bipartition: [ 1, 5, -2, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6 ],
2168
+ [ -3, -5, -7 ], [ -8 ]>,
2169
+ <bipartition: [ 1, 2, 3, 4, 8, -2, -4 ], [ 5, -1, -6 ], [ 6, 7 ],
2170
+ [ -3, -5, -7 ], [ -8 ]>,
2171
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -2, -4 ], [ 5, 6, -1, -6 ],
2172
+ [ -3, -5, -7 ], [ -8 ]>,
2173
+ <bipartition: [ 1, 5, -2, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -6 ],
2174
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -2, -4 ],
2175
+ [ 5, 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
2176
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -2, -4 ], [ 7, 8, -1, -6 ],
2177
+ [ -3, -5, -7 ], [ -8 ]>,
2178
+ <bipartition: [ 1, 3, 4, 5, 7, -2, -4 ], [ 2, -1, -6 ], [ 6 ], [ 8 ],
2179
+ [ -3, -5, -7 ], [ -8 ]>,
2180
+ <bipartition: [ 1, -1, -6 ], [ 2, 3, 4, 5, 6, 7, -2, -4 ], [ 8 ],
2181
+ [ -3, -5, -7 ], [ -8 ]>,
2182
+ <bipartition: [ 1, 6, 7, 8, -2, -4 ], [ 2, 3, 5, -1, -6 ], [ 4 ],
2183
+ [ -3, -5, -7 ], [ -8 ]>,
2184
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8 ], [ 2, -7 ], [ -1, -2 ],
2185
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2186
+ <bipartition: [ 1 ], [ 2, 3, 4 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
2187
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
2188
+ <bipartition: [ 1, 4 ], [ 2, 7, 8 ], [ 3, 5, 6 ], [ -1, -2, -3, -6 ],
2189
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
2190
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -5, -8 ], [ 7, 8, -4 ],
2191
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -8 ],
2192
+ [ 2, -4 ], [ 6 ], [ 8 ], [ -2, -6, -7 ]>,
2193
+ <bipartition: [ 1, 6, 7, 8, -1, -3, -5, -8 ], [ 2, 3, 5, -4 ], [ 4 ],
2194
+ [ -2, -6, -7 ]>,
2195
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -3, -6, -7 ],
2196
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -6, -7 ],
2197
+ [ 3, -4 ], [ 6, 8 ], [ -2, -5, -8 ]>,
2198
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -6, -7 ], [ 5, 7, -4 ],
2199
+ [ -2, -5, -8 ]>,
2200
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ],
2201
+ [ -2, -5, -8 ]>,
2202
+ <bipartition: [ 1, 3, 4, -1, -3, -6, -7 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
2203
+ [ -2, -5, -8 ]>,
2204
+ <bipartition: [ 1, 5, -1, -3, -6, -7 ], [ 2, 3, 4, 6, 7, 8, -4 ],
2205
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -6, -7 ],
2206
+ [ 5, -4 ], [ 6, 7 ], [ -2, -5, -8 ]>,
2207
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -6, -7 ], [ 5, 6, -4 ],
2208
+ [ -2, -5, -8 ]>,
2209
+ <bipartition: [ 1, 5, -1, -3, -6, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
2210
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -6, -7 ],
2211
+ [ 5, 7, -4 ], [ -2, -5, -8 ]>,
2212
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -6, -7 ], [ 7, 8, -4 ],
2213
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -6, -7 ],
2214
+ [ 2, -4 ], [ 6 ], [ 8 ], [ -2, -5, -8 ]>,
2215
+ <bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
2216
+ [ -2, -5, -8 ]>,
2217
+ <bipartition: [ 1, 6, 7, 8, -1, -3, -6, -7 ], [ 2, 3, 5, -4 ], [ 4 ],
2218
+ [ -2, -5, -8 ]>,
2219
+ <bipartition: [ 1, -1, -6, -7 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
2220
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -6, -7 ],
2221
+ [ 4 ], [ 6, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2222
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -6, -7 ],
2223
+ [ -2, -5, -8 ], [ -3 ]>,
2224
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -6, -7 ], [ 2, 5, 8, -4 ],
2225
+ [ -2, -5, -8 ], [ -3 ]>,
2226
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -6, -7 ], [ 3, 8, -4 ], [ 4 ],
2227
+ [ -2, -5, -8 ], [ -3 ]>,
2228
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -6, -7 ], [ 6 ],
2229
+ [ -2, -5, -8 ], [ -3 ]>,
2230
+ <bipartition: [ 1, 5, 6, 7, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
2231
+ [ -2, -5, -8 ], [ -3 ]>,
2232
+ <bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -6, -7 ], [ 4 ],
2233
+ [ -2, -5, -8 ], [ -3 ]>,
2234
+ <bipartition: [ 1, 2, 4, 7, 8, -1, -6, -7 ], [ 3, 5, 6, -4 ],
2235
+ [ -2, -5, -8 ], [ -3 ]>,
2236
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -6, -7 ],
2237
+ [ -2, -5, -8 ], [ -3 ]>,
2238
+ <bipartition: [ 1, 3, 4, -1, -6, -7 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
2239
+ [ -2, -5, -8 ], [ -3 ]>,
2240
+ <bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -6, -7 ],
2241
+ [ -2, -5, -8 ], [ -3 ]>,
2242
+ <bipartition: [ 1, 5, -1, -6, -7 ], [ 2, 3, 4, 6, 7, 8, -4 ],
2243
+ [ -2, -5, -8 ], [ -3 ]>,
2244
+ <bipartition: [ 1, 2, 4, 7, -1, -6, -7 ], [ 3, 5, -4 ], [ 6, 8 ],
2245
+ [ -2, -5, -8 ], [ -3 ]>,
2246
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -6, -7 ],
2247
+ [ -2, -5, -8 ], [ -3 ]>,
2248
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -6, -7 ], [ 5, -4 ], [ 6, 7 ],
2249
+ [ -2, -5, -8 ], [ -3 ]>,
2250
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -3, -4, -5, -6, -8 ], [ 7, 8, -1, -7 ],
2251
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 7, -3, -4, -5, -6, -8 ],
2252
+ [ 2, -1, -7 ], [ 6 ], [ 8 ], [ -2 ]>,
2253
+ <bipartition: [ 1, 6, 7, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 5, -1, -7 ],
2254
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4, -6, -8 ],
2255
+ [ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
2256
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4, -6, -8 ], [ 7, 8, -1, -3, -5, -7 ],
2257
+ [ -2 ]>,
2258
+ <bipartition: [ 1, 3, 4, 5, 7, -4, -6, -8 ], [ 2, -1, -3, -5, -7 ], [ 6 ],
2259
+ [ 8 ], [ -2 ]>,
2260
+ <bipartition: [ 1, -1, -3, -5, -7 ], [ 2, 3, 4, 5, 6, 7, -4, -6, -8 ],
2261
+ [ 8 ], [ -2 ]>,
2262
+ <bipartition: [ 1, 6, 7, 8, -4, -6, -8 ], [ 2, 3, 5, -1, -3, -5, -7 ],
2263
+ [ 4 ], [ -2 ]>,
2264
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
2265
+ [ 5, 7, -4, -6, -8 ], [ -2 ]>,
2266
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ], [ 2 ], [ 7, -1, -3, -5, -7 ]
2267
+ , [ -2 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -5, -7 ],
2268
+ [ 2, 5, 8, -4, -6, -8 ], [ -2 ]>,
2269
+ <bipartition: [ 1, 5, 8, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
2270
+ [ 6, 7 ], [ -2 ]>,
2271
+ <bipartition: [ 1, 8, -1, -3, -5, -7 ], [ 2, 3, 4, 5, -4, -6, -8 ],
2272
+ [ 6, 7 ], [ -2 ]>,
2273
+ <bipartition: [ 1, 3, 4, 5, 8, -4, -6, -8 ], [ 2, 7, -1, -3, -5, -7 ],
2274
+ [ 6 ], [ -2 ]>,
2275
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
2276
+ [ 8 ], [ -2 ]>,
2277
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -5, -7 ], [ 5, 6, 7, -4, -6, -8 ],
2278
+ [ 8 ], [ -2 ]>,
2279
+ <bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -7 ],
2280
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
2281
+ [ 2, 7, -1, -3, -5, -7 ], [ -2 ]>,
2282
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -7 ], [ 2, 6, 8, -4, -6, -8 ],
2283
+ [ -2 ]>,
2284
+ <bipartition: [ 1, 2, 3, 4, 7, -4, -6, -8 ], [ 5, -1, -3, -5, -7 ],
2285
+ [ 6, 8 ], [ -2 ]>,
2286
+ <bipartition: [ 1, 2, 6, 7, 8, -4, -6, -8 ], [ 3, 4, 5, -1, -3, -5, -7 ],
2287
+ [ -2 ]>,
2288
+ <bipartition: [ 1, 4, 5, 8, -4, -6, -8 ], [ 2, 3, 6, -1, -3, -5, -7 ],
2289
+ [ 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -4, -6, -8 ],
2290
+ [ 5, 6, -1, -3, -5, -7 ], [ -2 ]>,
2291
+ <bipartition: [ 1, 2, 8, -2, -5 ], [ 3, 4, 5, 6, 7, -1, -3, -4, -6 ],
2292
+ [ -7, -8 ]>,
2293
+ <bipartition: [ 1 ], [ 2, 3, 4, -2, -5 ], [ 5, 6, 7, -1, -3, -4, -6 ],
2294
+ [ 8 ], [ -7, -8 ]>,
2295
+ <bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 7, 8, -2, -5 ], [ 3, 5, 6 ],
2296
+ [ -7, -8 ]>,
2297
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -4, -6 ],
2298
+ [ 8, -2, -5 ], [ -7, -8 ]>,
2299
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ], [ 4, 7, -2, -5 ],
2300
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -2, -3, -5, -6 ],
2301
+ [ 5, 6, -4, -8 ], [ -7 ]>,
2302
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -3, -5, -6 ], [ 3, 8, -4, -8 ],
2303
+ [ 4 ], [ -7 ]>,
2304
+ <bipartition: [ 1, 7, 8, -4, -8 ], [ 2, 3, 5, 6, -1, -2, -3, -5, -6 ],
2305
+ [ 4 ], [ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4, -8 ],
2306
+ [ 5, 7, 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
2307
+ <bipartition: [ 1, 5, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 6, 7 ],
2308
+ [ 8, -4, -8 ], [ -7 ]>,
2309
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -4, -8 ], [ 5, 7, -1, -2, -3, -5, -6 ],
2310
+ [ -7 ]>,
2311
+ <bipartition: [ 1, 5, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 4, -4, -8 ],
2312
+ [ 6, 7 ], [ -7 ]>,
2313
+ <bipartition: [ 1, 3, 5, 6, 8, -4, -8 ], [ 2, 4, 7, -1, -2, -3, -5, -6 ],
2314
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2, 7, -1, -6 ],
2315
+ [ -3, -5, -7 ], [ -8 ]>,
2316
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -6 ], [ 2, 6, 8, -2, -4 ],
2317
+ [ -3, -5, -7 ], [ -8 ]>,
2318
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -6 ], [ 4 ], [ 6, -2, -4 ],
2319
+ [ -3, -5, -7 ], [ -8 ]>,
2320
+ <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 6, 8, -2, -4 ], [ 5, 7 ],
2321
+ [ -3, -5, -7 ], [ -8 ]>,
2322
+ <bipartition: [ 1, 2, 3, 4, -2, -4 ], [ 5, 6, 7, -1, -6 ], [ 8 ],
2323
+ [ -3, -5, -7 ], [ -8 ]>,
2324
+ <bipartition: [ 1, 2, 8, -1, -6 ], [ 3, 4, 5, 6, 7, -2, -4 ],
2325
+ [ -3, -5, -7 ], [ -8 ]>,
2326
+ <bipartition: [ 1 ], [ 2, 3, 4, -1, -6 ], [ 5, 6, 7, -2, -4 ], [ 8 ],
2327
+ [ -3, -5, -7 ], [ -8 ]>,
2328
+ <bipartition: [ 1, 4, -2, -4 ], [ 2, 7, 8, -1, -6 ], [ 3, 5, 6 ],
2329
+ [ -3, -5, -7 ], [ -8 ]>,
2330
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -2, -4 ], [ 8, -1, -6 ],
2331
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -6 ],
2332
+ [ 5, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
2333
+ <bipartition: [ 1, 3, 5, 6, 8, -2, -4 ], [ 2 ], [ 4, 7, -1, -6 ],
2334
+ [ -3, -5, -7 ], [ -8 ]>,
2335
+ <bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
2336
+ [ -2, -6, -7 ]>,
2337
+ <bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
2338
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -8 ], [ 2 ],
2339
+ [ 4, 7, -4 ], [ -2, -6, -7 ]>,
2340
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -6, -7 ], [ 6 ], [ 7, -4 ],
2341
+ [ -2, -5, -8 ]>,
2342
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
2343
+ [ -2, -5, -8 ]>,
2344
+ <bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
2345
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
2346
+ [ 2, 7, -4 ], [ -2, -5, -8 ]>,
2347
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -3, -6, -7 ],
2348
+ [ -2, -5, -8 ]>,
2349
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -3, -6, -7 ],
2350
+ [ -2, -5, -8 ]>,
2351
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -3, -6, -7 ], [ 5, 7 ],
2352
+ [ -2, -5, -8 ]>,
2353
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -6, -7 ],
2354
+ [ -2, -5, -8 ]>,
2355
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
2356
+ [ -2, -5, -8 ]>,
2357
+ <bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -6, -7 ],
2358
+ [ -2, -5, -8 ]>,
2359
+ <bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
2360
+ [ -2, -5, -8 ]>,
2361
+ <bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
2362
+ [ -2, -5, -8 ]>,
2363
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -6, -7 ], [ 8, -4 ],
2364
+ [ -2, -5, -8 ]>,
2365
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -3, -6, -7 ],
2366
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -6, -7 ], [ 2 ],
2367
+ [ 4, 7, -4 ], [ -2, -5, -8 ]>,
2368
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -6, -7 ], [ 5, 7, -4 ],
2369
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -6, -7 ],
2370
+ [ 7, 8, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2371
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -6, -7 ], [ 2, -4 ], [ 6 ], [ 8 ],
2372
+ [ -2, -5, -8 ], [ -3 ]>,
2373
+ <bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -6, -7 ], [ 8 ],
2374
+ [ -2, -5, -8 ], [ -3 ]>,
2375
+ <bipartition: [ 1, 6, 7, 8, -1, -6, -7 ], [ 2, 3, 5, -4 ], [ 4 ],
2376
+ [ -2, -5, -8 ], [ -3 ]>,
2377
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -6, -7 ], [ 6, 8 ],
2378
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
2379
+ [ 5, 7, -1, -6, -7 ], [ -2, -5, -8 ], [ -3 ]>,
2380
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 7, -4 ],
2381
+ [ -2, -5, -8 ], [ -3 ]>,
2382
+ <bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -6, -7 ],
2383
+ [ -2, -5, -8 ], [ -3 ]>,
2384
+ <bipartition: [ 1, 5, 8, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
2385
+ [ -2, -5, -8 ], [ -3 ]>,
2386
+ <bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -6, -7 ], [ 6, 7 ],
2387
+ [ -2, -5, -8 ], [ -3 ]>,
2388
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
2389
+ [ -2, -5, -8 ], [ -3 ]>,
2390
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 8 ],
2391
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ],
2392
+ [ 2, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2393
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -6, -7 ],
2394
+ [ -2, -5, -8 ], [ -3 ]>,
2395
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -6, -7 ], [ 5, -4 ], [ 6, 8 ],
2396
+ [ -2, -5, -8 ], [ -3 ]>,
2397
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -6, -7 ], [ 3, 4, 5, -4 ],
2398
+ [ -2, -5, -8 ], [ -3 ]>,
2399
+ <bipartition: [ 1, 4, 5, 8, -1, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
2400
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -6, -7 ],
2401
+ [ 5, 6, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2402
+ <bipartition: [ 1, 2, 8, -1, -7 ], [ 3, 4, 5, 6, 7, -3, -4, -5, -6, -8 ],
2403
+ [ -2 ]>,
2404
+ <bipartition: [ 1 ], [ 2, 3, 4, -1, -7 ], [ 5, 6, 7, -3, -4, -5, -6, -8 ],
2405
+ [ 8 ], [ -2 ]>,
2406
+ <bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 7, 8, -1, -7 ],
2407
+ [ 3, 5, 6 ], [ -2 ]>,
2408
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -3, -4, -5, -6, -8 ],
2409
+ [ 8, -1, -7 ], [ -2 ]>,
2410
+ <bipartition: [ 1, 3, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2 ], [ 4, 7, -1, -7 ]
2411
+ , [ -2 ]>,
2412
+ <bipartition: [ 1, 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, -1, -3, -5, -7 ],
2413
+ [ 8 ], [ -2 ]>,
2414
+ <bipartition: [ 1, 5, -1, -3, -5, -7 ], [ 2, 3, 4, 6, 7, 8, -4, -6, -8 ],
2415
+ [ -2 ]>,
2416
+ <bipartition: [ 1, 2, 8, -1, -3, -5, -7 ], [ 3, 4, 5, 6, 7, -4, -6, -8 ],
2417
+ [ -2 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -5, -7 ],
2418
+ [ 5, 6, 7, -4, -6, -8 ], [ 8 ], [ -2 ]>,
2419
+ <bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 7, 8, -1, -3, -5, -7 ],
2420
+ [ 3, 5, 6 ], [ -2 ]>,
2421
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4, -6, -8 ],
2422
+ [ 8, -1, -3, -5, -7 ], [ -2 ]>,
2423
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -5, -7 ], [ 5, 7, -4, -6, -8 ]
2424
+ , [ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8, -4, -6, -8 ], [ 2 ],
2425
+ [ 4, 7, -1, -3, -5, -7 ], [ -2 ]>,
2426
+ <bipartition: [ 1, 2, 4, 5, 7, -4, -6, -8 ], [ 3, -1, -3, -5, -7 ],
2427
+ [ 6, 8 ], [ -2 ]>,
2428
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4, -6, -8 ],
2429
+ [ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
2430
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -7 ], [ 2, 4, 7, -4, -6, -8 ],
2431
+ [ -2 ]>,
2432
+ <bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 3, 5, 6, 7, 8, -4, -6, -8 ],
2433
+ [ -2 ]>, <bipartition: [ 1, 5, -4, -6, -8 ], [ 2, 3, 4, 6, 7 ],
2434
+ [ 8, -1, -3, -5, -7 ], [ -2 ]>,
2435
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -5, -7 ], [ 4 ], [ 6, -4, -6, -8 ]
2436
+ , [ -2 ]>,
2437
+ <bipartition: [ 1, 2, 3, 4, -2, -5 ], [ 5, 6, 7, 8, -1, -3, -4, -6 ],
2438
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, -2, -5 ], [ 2, 6, 8 ],
2439
+ [ 5, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
2440
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -4, -6 ], [ 2, -2, -5 ],
2441
+ [ -7, -8 ]>,
2442
+ <bipartition: [ 1, -4, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -2, -3, -5, -6 ],
2443
+ [ 8 ], [ -7 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -4, -8 ], [ 4 ],
2444
+ [ 6, -1, -2, -3, -5, -6 ], [ -7 ]>,
2445
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ],
2446
+ [ 7, -4, -8 ], [ -7 ]>,
2447
+ <bipartition: [ 1, 3, 4, 6, 7, -4, -8 ], [ 2, 5, 8, -1, -2, -3, -5, -6 ],
2448
+ [ -7 ]>,
2449
+ <bipartition: [ 1, 2, 5, 6, 7, -4, -8 ], [ 3, 8, -1, -2, -3, -5, -6 ],
2450
+ [ 4 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -3, -5, -6 ],
2451
+ [ 2, 7, -4, -8 ], [ 6 ], [ -7 ]>,
2452
+ <bipartition: [ 1, 5, 6, 7, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
2453
+ [ 8 ], [ -7 ]>,
2454
+ <bipartition: [ 1, 7, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, -4, -8 ],
2455
+ [ 4 ], [ -7 ]>,
2456
+ <bipartition: [ 1, 2, 4, 7, 8, -4, -8 ], [ 3, 5, 6, -1, -2, -3, -5, -6 ],
2457
+ [ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -2, -3, -5, -6 ],
2458
+ [ 5, 7, 8, -4, -8 ], [ -7 ]>,
2459
+ <bipartition: [ 1, 3, 4, -4, -8 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ],
2460
+ [ 5, 7 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -2, -3, -5, -6 ],
2461
+ [ 3, 5, 6, -4, -8 ], [ -7 ]>,
2462
+ <bipartition: [ 1, 5, -4, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -2, -3, -5, -6 ],
2463
+ [ -7 ]>,
2464
+ <bipartition: [ 1, 2, 4, 7, -4, -8 ], [ 3, 5, -1, -2, -3, -5, -6 ],
2465
+ [ 6, 8 ], [ -7 ]>,
2466
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -2, -3, -5, -6 ], [ 5, 7, -4, -8 ],
2467
+ [ -7 ]>,
2468
+ <bipartition: [ 1, 2, 3, 4, 8, -4, -8 ], [ 5, -1, -2, -3, -5, -6 ],
2469
+ [ 6, 7 ], [ -7 ]>,
2470
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -6 ], [ 7, 8, -2, -4 ],
2471
+ [ -3, -5, -7 ], [ -8 ]>,
2472
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -6 ], [ 2, -2, -4 ], [ 6 ], [ 8 ],
2473
+ [ -3, -5, -7 ], [ -8 ]>,
2474
+ <bipartition: [ 1, 6, 7, 8, -1, -6 ], [ 2, 3, 5, -2, -4 ], [ 4 ],
2475
+ [ -3, -5, -7 ], [ -8 ]>,
2476
+ <bipartition: [ 1, 2, 3, 4, -1, -6 ], [ 5, 6, 7, 8, -2, -4 ],
2477
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 6, 8 ],
2478
+ [ 5, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
2479
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -2, -4 ], [ 2, -1, -6 ],
2480
+ [ -3, -5, -7 ], [ -8 ]>,
2481
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -5, -8 ], [ 2, -4 ],
2482
+ [ -2, -6, -7 ]>,
2483
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -3, -6, -7 ],
2484
+ [ -2, -5, -8 ]>,
2485
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -3, -6, -7 ], [ 6 ], [ 8 ],
2486
+ [ -2, -5, -8 ]>,
2487
+ <bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -3, -6, -7 ], [ 4 ],
2488
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -6, -7 ],
2489
+ [ 2, 6, 8, -4 ], [ -2, -5, -8 ]>,
2490
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -3, -6, -7 ],
2491
+ [ -2, -5, -8 ]>,
2492
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -3, -6, -7 ],
2493
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -6, -7 ],
2494
+ [ 2, -4 ], [ -2, -5, -8 ]>,
2495
+ <bipartition: [ 1, 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
2496
+ [ -2, -5, -8 ], [ -3 ]>,
2497
+ <bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -6, -7 ],
2498
+ [ -2, -5, -8 ], [ -3 ]>,
2499
+ <bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -6, -7 ], [ 8 ],
2500
+ [ -2, -5, -8 ], [ -3 ]>,
2501
+ <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
2502
+ [ -2, -5, -8 ], [ -3 ]>,
2503
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -6, -7 ], [ 8, -4 ],
2504
+ [ -2, -5, -8 ], [ -3 ]>,
2505
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -6, -7 ],
2506
+ [ -2, -5, -8 ], [ -3 ]>,
2507
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 4, 7, -4 ],
2508
+ [ -2, -5, -8 ], [ -3 ]>,
2509
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -6, -7 ],
2510
+ [ -2, -5, -8 ], [ -3 ]>,
2511
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -4 ], [ 6, 8 ],
2512
+ [ -2, -5, -8 ], [ -3 ]>,
2513
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -6, -7 ], [ 5, 7, -4 ],
2514
+ [ -2, -5, -8 ], [ -3 ]>,
2515
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -6, -7 ],
2516
+ [ -2, -5, -8 ], [ -3 ]>,
2517
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6, -7 ],
2518
+ [ -2, -5, -8 ], [ -3 ]>,
2519
+ <bipartition: [ 1, 5, -1, -6, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
2520
+ [ -2, -5, -8 ], [ -3 ]>,
2521
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -6, -7 ],
2522
+ [ -2, -5, -8 ], [ -3 ]>,
2523
+ <bipartition: [ 1, 2, 3, 4, -1, -7 ], [ 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
2524
+ [ -2 ]>, <bipartition: [ 1, 3, 4, -1, -7 ], [ 2, 6, 8 ],
2525
+ [ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
2526
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -3, -4, -5, -6, -8 ], [ 2, -1, -7 ],
2527
+ [ -2 ]>,
2528
+ <bipartition: [ 1, 3, 4, 5, 7, -4, -6, -8 ], [ 2, 6, 8, -1, -3, -5, -7 ],
2529
+ [ -2 ]>,
2530
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -5, -7 ], [ 5, 6, 7, 8, -4, -6, -8 ],
2531
+ [ -2 ]>, <bipartition: [ 1, 3, 4, -1, -3, -5, -7 ], [ 2, 6, 8 ],
2532
+ [ 5, 7, -4, -6, -8 ], [ -2 ]>,
2533
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4, -6, -8 ], [ 2, -1, -3, -5, -7 ],
2534
+ [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -4, -6, -8 ], [ 6 ],
2535
+ [ 7, -1, -3, -5, -7 ], [ -2 ]>,
2536
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -5, -7 ], [ 5, -4, -6, -8 ],
2537
+ [ 6, 7 ], [ -2 ]>,
2538
+ <bipartition: [ 1, 3, 4, -1, -3, -5, -7 ], [ 2, 6, 8, -4, -6, -8 ],
2539
+ [ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -5, -7 ],
2540
+ [ 7, 8, -4, -6, -8 ], [ -2 ]>,
2541
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -7 ], [ 2, -4, -6, -8 ], [ 6 ],
2542
+ [ 8 ], [ -2 ]>,
2543
+ <bipartition: [ 1, 6, 7, 8, -1, -3, -5, -7 ], [ 2, 3, 5, -4, -6, -8 ],
2544
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4, -8 ],
2545
+ [ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2546
+ <bipartition: [ 1, 3, 4, 5, 7, -4, -8 ], [ 2, -1, -2, -3, -5, -6 ], [ 6 ],
2547
+ [ 8 ], [ -7 ]>,
2548
+ <bipartition: [ 1, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 5, 6, 7, -4, -8 ],
2549
+ [ 8 ], [ -7 ]>,
2550
+ <bipartition: [ 1, 6, 7, 8, -4, -8 ], [ 2, 3, 5, -1, -2, -3, -5, -6 ],
2551
+ [ 4 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -3, -5, -6 ],
2552
+ [ 3, -4, -8 ], [ 6, 8 ], [ -7 ]>,
2553
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -2, -3, -5, -6 ],
2554
+ [ 5, 7, -4, -8 ], [ -7 ]>,
2555
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2 ], [ 7, -1, -2, -3, -5, -6 ]
2556
+ , [ -7 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -2, -3, -5, -6 ],
2557
+ [ 2, 5, 8, -4, -8 ], [ -7 ]>,
2558
+ <bipartition: [ 1, 5, 8, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
2559
+ [ 6, 7 ], [ -7 ]>,
2560
+ <bipartition: [ 1, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 5, -4, -8 ],
2561
+ [ 6, 7 ], [ -7 ]>,
2562
+ <bipartition: [ 1, 3, 4, 5, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
2563
+ [ 6 ], [ -7 ]>, <bipartition: [ 1, 5, 6, 7, -1, -2, -3, -5, -6 ],
2564
+ [ 2, 3, 4, -4, -8 ], [ 8 ], [ -7 ]>,
2565
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
2566
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -2, -3, -5, -6 ],
2567
+ [ 2, 6, 8, -4, -8 ], [ -7 ]>,
2568
+ <bipartition: [ 1, 2, 3, 4, 7, -4, -8 ], [ 5, -1, -2, -3, -5, -6 ],
2569
+ [ 6, 8 ], [ -7 ]>,
2570
+ <bipartition: [ 1, 2, 6, 7, 8, -4, -8 ], [ 3, 4, 5, -1, -2, -3, -5, -6 ],
2571
+ [ -7 ]>,
2572
+ <bipartition: [ 1, 4, 5, 8, -4, -8 ], [ 2, 3, 6, -1, -2, -3, -5, -6 ],
2573
+ [ 7 ], [ -7 ]>,
2574
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -4, -8 ], [ 5, 6, -1, -2, -3, -5, -6 ],
2575
+ [ -7 ]>, <bipartition: [ 1, 2, 8, -2, -4 ], [ 3, 4, 5, 6, 7, -1, -6 ],
2576
+ [ -3, -5, -7 ], [ -8 ]>,
2577
+ <bipartition: [ 1 ], [ 2, 3, 4, -2, -4 ], [ 5, 6, 7, -1, -6 ], [ 8 ],
2578
+ [ -3, -5, -7 ], [ -8 ]>,
2579
+ <bipartition: [ 1, 4, -1, -6 ], [ 2, 7, 8, -2, -4 ], [ 3, 5, 6 ],
2580
+ [ -3, -5, -7 ], [ -8 ]>,
2581
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -6 ], [ 8, -2, -4 ],
2582
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -6 ], [ 2 ],
2583
+ [ 4, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
2584
+ <bipartition: [ 1, 2, 8, -1, -3, -6, -7 ], [ 3, 4, 5, 6, 7, -4 ],
2585
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -6, -7 ],
2586
+ [ 5, 6, 7, -4 ], [ 8 ], [ -2, -5, -8 ]>,
2587
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -6, -7 ], [ 3, 5, 6 ],
2588
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ],
2589
+ [ 8, -1, -3, -6, -7 ], [ -2, -5, -8 ]>,
2590
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -3, -6, -7 ],
2591
+ [ -2, -5, -8 ]>,
2592
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -6, -7 ],
2593
+ [ -2, -5, -8 ], [ -3 ]>,
2594
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -6, -7 ],
2595
+ [ -2, -5, -8 ], [ -3 ]>,
2596
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -6, -7 ], [ 2, -4 ],
2597
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ],
2598
+ [ 6 ], [ 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2599
+ <bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -6, -7 ], [ 6, 7 ],
2600
+ [ -2, -5, -8 ], [ -3 ]>,
2601
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -6, -7 ], [ 5, 7 ],
2602
+ [ -2, -5, -8 ], [ -3 ]>,
2603
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -6, -7 ],
2604
+ [ -2, -5, -8 ], [ -3 ]>,
2605
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -6, -7 ], [ 6 ], [ 8 ],
2606
+ [ -2, -5, -8 ], [ -3 ]>,
2607
+ <bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -6, -7 ], [ 4 ],
2608
+ [ -2, -5, -8 ], [ -3 ]>,
2609
+ <bipartition: [ 1, 2, 8, -4, -6, -8 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -7 ],
2610
+ [ -2 ]>,
2611
+ <bipartition: [ 1 ], [ 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, -1, -3, -5, -7 ],
2612
+ [ 8 ], [ -2 ]>,
2613
+ <bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 7, 8, -4, -6, -8 ],
2614
+ [ 3, 5, 6 ], [ -2 ]>,
2615
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -5, -7 ],
2616
+ [ 8, -4, -6, -8 ], [ -2 ]>,
2617
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -7 ], [ 2 ], [ 4, 7, -4, -6, -8 ]
2618
+ , [ -2 ]>,
2619
+ <bipartition: [ 1, 2, 3, 4, -4, -8 ], [ 5, 6, 7, -1, -2, -3, -5, -6 ],
2620
+ [ 8 ], [ -7 ]>,
2621
+ <bipartition: [ 1, 2, 8, -1, -2, -3, -5, -6 ], [ 3, 4, 5, 6, 7, -4, -8 ],
2622
+ [ -7 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
2623
+ [ 5, 6, 7, -4, -8 ], [ 8 ], [ -7 ]>,
2624
+ <bipartition: [ 1, 4, -4, -8 ], [ 2, 7, 8, -1, -2, -3, -5, -6 ],
2625
+ [ 3, 5, 6 ], [ -7 ]>,
2626
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4, -8 ],
2627
+ [ 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
2628
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ], [ 5, 7, -4, -8 ]
2629
+ , [ -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -4, -8 ], [ 2 ],
2630
+ [ 4, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2631
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -2, -3, -5, -6 ], [ 6 ],
2632
+ [ 7, -4, -8 ], [ -7 ]>,
2633
+ <bipartition: [ 1, 2, 4, 5, 7, -4, -8 ], [ 3, -1, -2, -3, -5, -6 ],
2634
+ [ 6, 8 ], [ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4, -8 ],
2635
+ [ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2636
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2, 4, 7, -4, -8 ],
2637
+ [ -7 ]>,
2638
+ <bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, 7, 8, -4, -8 ],
2639
+ [ -7 ]>, <bipartition: [ 1, 5, -4, -8 ], [ 2, 3, 4, 6, 7 ],
2640
+ [ 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
2641
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -2, -3, -5, -6 ], [ 4 ],
2642
+ [ 6, -4, -8 ], [ -7 ]>,
2643
+ <bipartition: [ 1, 2, 3, 4, -2, -4 ], [ 5, 6, 7, 8, -1, -6 ],
2644
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4, -2, -4 ], [ 2, 6, 8 ],
2645
+ [ 5, 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
2646
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -6 ], [ 2, -2, -4 ],
2647
+ [ -3, -5, -7 ], [ -8 ]>,
2648
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -6, -7 ], [ 5, 6, 7, 8, -4 ],
2649
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, -1, -3, -6, -7 ], [ 2, 6, 8 ],
2650
+ [ 5, 7, -4 ], [ -2, -5, -8 ]>,
2651
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -3, -6, -7 ],
2652
+ [ -2, -5, -8 ]>,
2653
+ <bipartition: [ 1, 2, 8, -1, -6, -7 ], [ 3, 4, 5, 6, 7, -4 ],
2654
+ [ -2, -5, -8 ], [ -3 ]>,
2655
+ <bipartition: [ 1 ], [ 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
2656
+ [ -2, -5, -8 ], [ -3 ]>,
2657
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -6, -7 ], [ 3, 5, 6 ],
2658
+ [ -2, -5, -8 ], [ -3 ]>,
2659
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ], [ 8, -1, -6, -7 ],
2660
+ [ -2, -5, -8 ], [ -3 ]>,
2661
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -6, -7 ],
2662
+ [ -2, -5, -8 ], [ -3 ]>,
2663
+ <bipartition: [ 1, 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, 8, -1, -3, -5, -7 ],
2664
+ [ -2 ]>, <bipartition: [ 1, 3, 4, -4, -6, -8 ], [ 2, 6, 8 ],
2665
+ [ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
2666
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -5, -7 ], [ 2, -4, -6, -8 ],
2667
+ [ -2 ]>, <bipartition: [ 1, 2, 3, 4, -1, -2, -3, -5, -6 ],
2668
+ [ 5, 6, 7, 8, -4, -8 ], [ -7 ]>,
2669
+ <bipartition: [ 1, 3, 4, -1, -2, -3, -5, -6 ], [ 2, 6, 8 ], [ 5, 7, -4, -8 ]
2670
+ , [ -7 ]>,
2671
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4, -8 ], [ 2, -1, -2, -3, -5, -6 ],
2672
+ [ -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -4, -8 ], [ 6 ],
2673
+ [ 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2674
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -2, -3, -5, -6 ], [ 5, -4, -8 ],
2675
+ [ 6, 7 ], [ -7 ]>,
2676
+ <bipartition: [ 1, 3, 4, -1, -2, -3, -5, -6 ], [ 2, 6, 8, -4, -8 ],
2677
+ [ 5, 7 ], [ -7 ]>,
2678
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -2, -3, -5, -6 ], [ 7, 8, -4, -8 ],
2679
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -2, -3, -5, -6 ],
2680
+ [ 2, -4, -8 ], [ 6 ], [ 8 ], [ -7 ]>,
2681
+ <bipartition: [ 1, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 5, -4, -8 ],
2682
+ [ 4 ], [ -7 ]>,
2683
+ <bipartition: [ 1, 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, 8, -4 ],
2684
+ [ -2, -5, -8 ], [ -3 ]>,
2685
+ <bipartition: [ 1, 3, 4, -1, -6, -7 ], [ 2, 6, 8 ], [ 5, 7, -4 ],
2686
+ [ -2, -5, -8 ], [ -3 ]>,
2687
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -6, -7 ],
2688
+ [ -2, -5, -8 ], [ -3 ]>,
2689
+ <bipartition: [ 1, 2, 8, -4, -8 ], [ 3, 4, 5, 6, 7, -1, -2, -3, -5, -6 ],
2690
+ [ -7 ]>,
2691
+ <bipartition: [ 1 ], [ 2, 3, 4, -4, -8 ], [ 5, 6, 7, -1, -2, -3, -5, -6 ],
2692
+ [ 8 ], [ -7 ]>,
2693
+ <bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 7, 8, -4, -8 ],
2694
+ [ 3, 5, 6 ], [ -7 ]>,
2695
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -2, -3, -5, -6 ],
2696
+ [ 8, -4, -8 ], [ -7 ]>,
2697
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ], [ 4, 7, -4, -8 ]
2698
+ , [ -7 ]>,
2699
+ <bipartition: [ 1, 2, 3, 4, -4, -8 ], [ 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
2700
+ [ -7 ]>, <bipartition: [ 1, 3, 4, -4, -8 ], [ 2, 6, 8 ],
2701
+ [ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2702
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 2, -4, -8 ],
2703
+ [ -7 ]> ]
2704
+ gap> LClassReps(D);
2705
+ [ <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>,
2706
+ <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4 ], [ -1, -5 ]>,
2707
+ <block bijection: [ 1, 2, 3, 4, 5, -1, -2, -3, -4, -5 ]>,
2708
+ <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -3 ], [ -4, -5 ]>,
2709
+ <bipartition: [ 1, 2, 3, 4, 5, -3, -5 ], [ -1, -2, -4 ]>,
2710
+ <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -5 ], [ -3 ], [ -4 ]>,
2711
+ <bipartition: [ 1, 2, 3, 4, 5, -1, -2, -3, -5 ], [ -4 ]>,
2712
+ <bipartition: [ 1, 2, 3, 4, 5, -2, -3, -4, -5 ], [ -1 ]>,
2713
+ <bipartition: [ 1, 2, 3, 4, 5, -1, -3 ], [ -2 ], [ -4, -5 ]> ]
2714
+ gap> x := Bipartition([[1, 3, 4, 6, 7, -3, -4, -5, -6, -8],
2715
+ > [2, 5, 8, -1, -7], [-2]]);;
2716
+ gap> D := DClass(S, x);
2717
+ <Green's D-class: <bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ],
2718
+ [ 2, 5, 8, -1, -7 ], [ -2 ]>>
2719
+ gap> Bipartition([[1, 2, 4, 7, 8, -3, -4, -5, -6, -8],
2720
+ > [3, 5, 6, -1, -7], [-2]]) in last;
2721
+ true
2722
+ gap> LClassReps(D);
2723
+ [ <bipartition: [ 1, 2, 4, 7, 8, -3, -4, -5, -6, -8 ], [ 3, 5, 6, -1, -7 ],
2724
+ [ -2 ]> ]
2725
+ gap> L := LClass(S, Bipartition([[1], [2, 4], [3, 6, -3, -4, -5, -6, -8],
2726
+ > [5, 7, 8, -1, -7], [-2]]));
2727
+ <Green's L-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -3, -4, -5, -6, -8 ]
2728
+ , [ 5, 7, 8, -1, -7 ], [ -2 ]>>
2729
+ gap> Bipartition([[1, 2, 4, 7, 8, -3, -4, -5, -6, -8],
2730
+ > [3, 5, 6, -1, -7], [-2]]) in last;
2731
+ true
2732
+ gap> LL := LClassNC(S, Bipartition([[1, 3, 4, 6, 7, -3, -4, -5, -6, -8], [2,
2733
+ > 5, 8, -1, -7], [-2]]));
2734
+ <Green's L-class: <bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ],
2735
+ [ 2, 5, 8, -1, -7 ], [ -2 ]>>
2736
+ gap> Bipartition([[1, 3, 4, 6, 7, -3, -4, -5, -6, -8],
2737
+ > [2, 5, 8, -1, -7], [-2]]) in last;
2738
+ true
2739
+ gap> LL = L;
2740
+ true
2741
+ gap> L = LL;
2742
+ true
2743
+ gap> Size(L);
2744
+ 64
2745
+ gap> Size(LL);
2746
+ 64
2747
+ gap> x := Bipartition([[1], [2, 4], [3, 6, 8, -1, -3, -5, -7],
2748
+ > [5, 7, -4, -6, -8], [-2]]);;
2749
+ gap> D := DClass(RClassNC(S, x));
2750
+ <Green's D-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
2751
+ [ 5, 7, -4, -6, -8 ], [ -2 ]>>
2752
+ gap> Bipartition([[1], [2, 4], [3, 6, 8, -1, -3, -5, -7],
2753
+ > [5, 7, -4, -6, -8], [-2]]) in last;
2754
+ true
2755
+ gap> GroupHClass(D);
2756
+ fail
2757
+ gap> IsRegularDClass(D);
2758
+ false
2759
+ gap> D := DClass(S, x);
2760
+ <Green's D-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
2761
+ [ 5, 7, -4, -6, -8 ], [ -2 ]>>
2762
+ gap> Bipartition([[1, 2, 4, 7, 8, -4, -6, -8],
2763
+ > [3, 5, 6, -1, -3, -5, -7], [-2]]) in last;
2764
+ true
2765
+ gap> IsRegularDClass(D);
2766
+ false
2767
+ gap> x := Bipartition([[1, 7, 8, -2, -5], [2, 3, 5, 6, -1, -3, -4, -6],
2768
+ > [4], [-7, -8]]);;
2769
+ gap> IsRegularDClass(DClass(S, x));
2770
+ false
2771
+ gap> NrRegularDClasses(S);
2772
+ 4
2773
+ gap> D := First(DClasses(S), IsRegularDClass);
2774
+ <Green's D-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
2775
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
2776
+ gap> Bipartition([[1, 2, 3, 7, -7], [4, 5, 6, 8],
2777
+ > [-1, -2], [-3, -6, -8], [-4], [-5]]) in last;
2778
+ true
2779
+ gap> Size(D);
2780
+ 12078
2781
+ gap> H := GroupHClass(D);
2782
+ <Green's H-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
2783
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
2784
+ gap> Bipartition([[1, 2, 3, 7, -7], [4, 5, 6, 8],
2785
+ > [-1, -2], [-3, -6, -8], [-4], [-5]]) in last;
2786
+ true
2787
+ gap> StructureDescription(H);
2788
+ "1"
2789
+ gap> D := First(DClasses(S), IsRegularDClass);
2790
+ <Green's D-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
2791
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
2792
+ gap> Bipartition([[1, 2, 3, 7, -7], [4, 5, 6, 8],
2793
+ > [-1, -2], [-3, -6, -8], [-4], [-5]]) in last;
2794
+ true
2795
+ gap> NrRClasses(D);
2796
+ 99
2797
+ gap> NrLClasses(D);
2798
+ 122
2799
+ gap> R := PrincipalFactor(D);
2800
+ <Rees 0-matrix semigroup 99x122 over 1>
2801
+ gap> Length(Idempotents(S, 1));
2802
+ 11209
2803
+ gap> Length(Idempotents(S, 0));
2804
+ 4218
2805
+ gap> NrIdempotents(S);
2806
+ 15529
2807
+ gap> last2 + last3;
2808
+ 15427
2809
+ gap> Length(Idempotents(S, 2));
2810
+ 102
2811
+ gap> NrRClasses(D);
2812
+ 99
2813
+ gap> NrDClasses(S);
2814
+ 190
2815
+ gap> PartialOrderOfDClasses(S);
2816
+ <immutable digraph with 190 vertices, 642 edges>
2817
+ gap> StructureDescriptionMaximalSubgroups(S);
2818
+ [ "1", "C2" ]
2819
+ gap> StructureDescriptionSchutzenbergerGroups(S);
2820
+ [ "1", "C2" ]
2821
+
2822
+ # BipartitionTest27: IsomorphismPermGroup for a block bijection group
2823
+ gap> S := Semigroup(
2824
+ > Bipartition([[1, 2, -3], [3, -4], [4, -8], [5, -1, -2],
2825
+ > [6, -5], [7, -6], [8, -7]]),
2826
+ > Bipartition([[1, 2, -7], [3, -1, -2], [4, -8], [5, -4],
2827
+ > [6, -5], [7, -3], [8, -6]]), rec(acting := true));;
2828
+ gap> iso := IsomorphismPermGroup(S);;
2829
+ gap> inv := InverseGeneralMapping(iso);;
2830
+ gap> ForAll(S, x -> x ^ iso in Range(iso));
2831
+ true
2832
+ gap> ForAll(S, x -> (x ^ iso) ^ inv = x);
2833
+ true
2834
+
2835
+ #
2836
+ gap> SEMIGROUPS.StopTest();
2837
+ gap> STOP_TEST("Semigroups package: extreme/semibipart.tst");