passagemath-gap-pkg-semigroups 10.6.30__cp312-abi3-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1158 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,71 @@
1
+ #
2
+ # Semigroups GAP package
3
+ #
4
+ # This file is part of the build system of a GAP kernel extension.
5
+ # Requires GNU autoconf, GNU automake and GNU libtool.
6
+ #
7
+
8
+ dnl ##
9
+ dnl ## Setup autoconf
10
+ dnl ##
11
+ AC_PREREQ([2.68])
12
+ AC_INIT([semigroups], [GAP package])
13
+ AC_CONFIG_SRCDIR([src/pkg.cpp])
14
+ AC_CONFIG_HEADERS([gen/pkgconfig.h:src/pkgconfig.h.in])
15
+ AC_CONFIG_MACRO_DIR([m4])
16
+
17
+ AX_PREFIX_CONFIG_H([src/semigroups-config.hpp],[semigroups],[gen/pkgconfig.h])
18
+
19
+ dnl ## abs_top_builddir seems to hold the top build dir for the subpackage
20
+ dnl ## libsemigroups which is why this contains ../
21
+ AC_PREFIX_DEFAULT('${abs_top_builddir}/../bin/')
22
+
23
+ dnl ##
24
+ dnl ## Set the language
25
+ dnl ##
26
+ AC_PROG_CXX
27
+ AC_LANG([C++])
28
+
29
+ AX_CXX_COMPILE_STDCXX_14(,[mandatory])
30
+
31
+ dnl ##
32
+ dnl ## Locate the GAP root dir
33
+ dnl ##
34
+ FIND_GAP
35
+
36
+ dnl ##
37
+ dnl ## Check for pthread, this seems to be required to compile with GCC
38
+ dnl ##
39
+ AX_PTHREAD(,[AC_MSG_ERROR([pthread is required])])
40
+ AC_CHECK_LIB([pthread], [pthread_create])
41
+
42
+ dnl ##
43
+ dnl ## Detect Windows resp. Cygwin
44
+ dnl ##
45
+ case $host_os in
46
+ *cygwin* ) AC_SUBST(SYS_IS_CYGWIN, yes);;
47
+ esac
48
+
49
+
50
+ dnl ## Check for libsemigroups
51
+ AX_CHECK_LIBSEMIGROUPS
52
+
53
+ dnl ## User setting: Debug mode (off by default)
54
+ AC_ARG_ENABLE([debug],
55
+ [AS_HELP_STRING([--enable-debug], [enable debug mode])],
56
+ [AC_DEFINE([KERNEL_DEBUG], [1], [define if building in debug mode])],
57
+ [enable_debug=no]
58
+ )
59
+ AC_MSG_CHECKING([whether to enable debug mode])
60
+ AC_MSG_RESULT([$enable_debug])
61
+ KERNEL_DEBUG=$enable_debug
62
+ AC_SUBST(KERNEL_DEBUG)
63
+
64
+ # Check if HPCombi is enable, and available
65
+ AX_CHECK_HPCOMBI
66
+
67
+ dnl ##
68
+ dnl ## Output everything
69
+ dnl ##
70
+ AC_CONFIG_FILES([GNUmakefile])
71
+ AC_OUTPUT
@@ -0,0 +1 @@
1
+ MLIS2PPERILIS27AINTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG18INTG19INTG1AINTG1BINTG1CINTG1DINTG1EINTG1FINTG210INTG211INTG212INTG213INTG215INTG216INTG217INTG218INTG219INTG21AINTG21BINTG21CINTG21DINTG21EINTG21FINTG220INTG221INTG222INTG223INTG224INTG225INTG226INTG227INTG229INTG22AINTG22BINTG22CINTG22DINTG22EINTG22FINTG230INTG231INTG232INTG233INTG234INTG235INTG236INTG237INTG238INTG239INTG23AINTG23BINTG23CINTG23DINTG23EINTG23FINTG240INTG241INTG242INTG243INTG244INTG245INTG246INTG247INTG248INTG249INTG24AINTG24BINTG24CINTG24DINTG24EINTG24FINTG250INTG251INTG252INTG253INTG254INTG255INTG256INTG257INTG258INTG259INTG25AINTG25BINTG25CINTG25DINTG25EINTG260INTG261INTG262INTG263INTG264INTG265INTG266INTG267INTG268INTG269INTG26AINTG26BINTG26CINTG26DINTG26FINTG270INTG271INTG272INTG273INTG274INTG275INTG276INTG278INTG279INTG27AINTG27BINTG27CINTG27DINTG27EINTG27FINTG281INTG282INTG283INTG284INTG285INTG286INTG287INTG288INTG289INTG28BINTG28CINTG28FINTG290INTG292INTG293INTG294INTG296INTG297INTG298INTG299INTG29AINTG29BINTG29CINTG29DINTG29EINTG29FINTG2A0INTG2A2INTG2A3INTG2A5INTG2A7INTG2A8INTG2A9INTG2AAINTG2ABINTG2ACINTG2ADINTG2AEINTG2AFINTG2B0INTG2B2INTG2B3INTG2B4INTG2B5INTG2B6INTG2B7INTG2B8INTG2B9INTG2BAINTG2BBINTG2BCINTG2BDINTG2BFINTG2C1INTG2C2INTG2C3INTG2C4INTG2C5INTG2C6INTG2C7INTG2C8INTG2C9INTG2CBINTG2CCINTG2CEINTG2CFINTG2D1INTG2D3INTG2D4INTG2D5INTG2D6INTG2D7INTG2D8INTG2D9INTG2DBINTG2DCINTG2DDINTG2DEINTG2DFINTG2E0INTG2E1INTG2E2INTG2E3INTG2E6INTG2E7INTG2E8INTG2E9INTG2EAINTG2EBINTG2ECINTG2EDINTG2EEINTG2EFINTG2F0INTG2F1INTG2F2INTG2F3INTG2F4INTG2F5INTG2F6INTG2F7INTG2F9INTG2FAINTG2FBINTG2FDINTG2FEINTG2FFINTG3100INTG3101INTG3102INTG3103INTG3105INTG3106INTG3107INTG3108INTG3109INTG310AINTG310BINTG310CINTG310EINTG310FINTG3110INTG3112INTG3113INTG3115INTG3116INTG3118INTG311BINTG311CINTG311EINTG311FINTG3121INTG3122INTG3123INTG3124INTG3125INTG3126INTG3127INTG3128INTG3129INTG312AINTG312BINTG312CINTG312EINTG312FINTG3131INTG3132INTG3133INTG3136INTG3138INTG3139INTG313BINTG313EINTG313FINTG3140INTG3142INTG3143INTG3144INTG3145INTG3146INTG3147INTG3148INTG3149INTG314AINTG314BINTG314DINTG314FINTG3152INTG3154INTG3155INTG3156INTG3158INTG3159INTG315AINTG315BINTG315DINTG3160INTG3162INTG3164INTG3165INTG3166INTG3167INTG3169INTG316AINTG316BINTG316CINTG316DINTG316EINTG316FINTG3172INTG3175INTG3177INTG3178INTG3179INTG317BINTG317CINTG317FINTG3180INTG3181INTG3183INTG3184INTG3187INTG3188INTG318BINTG318CINTG318DINTG318EINTG3191INTG3194INTG3195INTG3196INTG3197INTG3199INTG319AINTG319CINTG319DINTG319EINTG31A0INTG31A2INTG31A4INTG31A5INTG31A6INTG31A7INTG31A8INTG31A9INTG31AAINTG31ABINTG31ACINTG31ADINTG31AEINTG31AFINTG31B0INTG31B1INTG31B3INTG31B4INTG31B5INTG31B8INTG31B9INTG31BBINTG31BCINTG31BEINTG31C0INTG31C2INTG31C5INTG31C6INTG31C8INTG31C9INTG31CAINTG31CBINTG31CCINTG31CDINTG31D1INTG31D3INTG31D4INTG31D6INTG31D7INTG31D8INTG31D9INTG31DBINTG31DCINTG31DDINTG31DEINTG31E0INTG31E4INTG31E5INTG31E7INTG31E9INTG31EAINTG31EBINTG31EEINTG31F0INTG31F1INTG31F2INTG31F4INTG31F5INTG31F6INTG31F8INTG31F9INTG31FAINTG31FBINTG31FCINTG31FDINTG3203INTG3204INTG3205INTG3206INTG3208INTG3209INTG320AINTG320BINTG320FINTG3210INTG3211INTG3212INTG3213INTG3214INTG3215INTG3218INTG321BINTG3223INTG3224INTG3226INTG3227INTG3228INTG322AINTG322BINTG322CINTG322DINTG322EINTG322FINTG3230INTG3231INTG3234INTG3235INTG3237INTG323AINTG323EINTG3243INTG3245INTG3248INTG3249INTG324AINTG324BINTG324EINTG3250INTG3252INTG3253INTG3255INTG3256INTG3258INTG3259INTG325AINTG325CINTG325EINTG325FINTG3260INTG3261INTG3262INTG3263INTG3266INTG3267INTG3269INTG326DINTG3270INTG3271INTG3274INTG3275INTG3276INTG3277INTG327BINTG327CINTG327DINTG3281INTG3282INTG3283INTG3284INTG3286INTG3287INTG3288INTG328AINTG328BINTG328DINTG3291INTG3292INTG3293INTG3298INTG329DINTG32A0INTG32A1INTG32A4INTG32A6INTG32A7INTG32AAINTG32ABINTG32ADINTG32AEINTG32AFINTG32B2INTG32B4INTG32B7INTG32B8INTG32B9INTG32BBINTG32BCINTG32BDINTG32BEINTG32BFINTG32C1INTG32C2INTG32C5INTG32C6INTG32C7INTG32C9INTG32CAINTG32CBINTG32CCINTG32CFINTG32D6INTG32D7INTG32DAINTG32DCINTG32DFINTG32E0INTG32E4INTG32E6INTG32E8INTG32EAINTG32EBINTG32ECINTG32EFINTG32F1INTG32F5INTG32F6INTG32FCINTG3300INTG3303INTG3305INTG3308INTG330CINTG330DINTG330EINTG330FINTG3310INTG3311INTG3312INTG3313INTG3315INTG3316INTG3317INTG3318INTG331AINTG331BINTG331CINTG331DINTG331FINTG3320INTG3321INTG3323INTG3324INTG3325INTG3327INTG332DINTG332FINTG3330INTG3332INTG3334INTG3335INTG3339INTG333AINTG333FINTG3340INTG3342INTG3344INTG3345INTG3348INTG334CINTG334DINTG334EINTG334FINTG3351INTG3354INTG335DINTG335EINTG335FINTG3360INTG3362INTG3363INTG3365INTG3368INTG336AINTG3373INTG3374INTG3375INTG3377INTG3378INTG3379INTG337BINTG3380INTG3381INTG3383INTG3385INTG338AINTG338FINTG3393INTG3397INTG339CINTG33A0INTG33A4INTG33A9INTG33ADINTG33B9INTG33BAINTG33BBINTG33BDINTG33C0INTG33C1INTG33C4INTG33C5INTG33C6INTG33C7INTG33CAINTG33CEINTG33D3INTG33D4INTG33D5INTG33DAINTG33DCINTG33DFINTG33E2INTG33E5INTG33E7INTG33E8MLIS27AINTG3276INTG3203INTG31FFINTG31ADINTG3161INTG3180INTG2F3INTG32B5INTG3302INTG316FINTG33E8INTG2FDINTG2F6INTG3269INTG3128INTG31EAINTG31E3INTG316DINTG31FEINTG259INTG219INTG3251INTG299INTG3224INTG3221INTG33B2INTG314DINTG32EAINTG3282INTG32C2INTG23EINTG317CINTG3361INTG311BINTG3114INTG33E2INTG32FFINTG3314INTG2D4INTG331CINTG3334INTG32B8INTG31CEINTG3113INTG3156INTG311EINTG31BEINTG336BINTG264INTG31CCINTG32EFINTG33DEINTG32B1INTG33D5INTG32DDINTG3202INTG3375INTG319BINTG313BINTG270INTG3232INTG3131INTG317DINTG329AINTG263INTG214INTG3301INTG31ACINTG32ACINTG3117INTG33B3INTG322EINTG2AAINTG3337INTG3384INTG3264INTG31D3INTG3135INTG33D4INTG315CINTG29AINTG3280INTG316AINTG32A3INTG3243INTG3257INTG335CINTG3110INTG318CINTG3292INTG33C5INTG3198INTG2C2INTG31A4INTG331DINTG3331INTG3250INTG317EINTG2C4INTG331FINTG330DINTG28AINTG3118INTG2A8INTG21EINTG2B7INTG3341INTG33BDINTG320BINTG321AINTG3273INTG32E4INTG3383INTG31B7INTG3380INTG2BFINTG245INTG215INTG3210INTG3266INTG311DINTG33B5INTG1DINTG32F5INTG33BCINTG3328INTG33A8INTG288INTG31F9INTG287INTG314CINTG2E6INTG319CINTG3103INTG33C3INTG32CEINTG329BINTG31E2INTG31A0INTG32EEINTG328DINTG3220INTG257INTG3190INTG31ABINTG326FINTG3297INTG27CINTG3381INTG323DINTG337EINTG31DAINTG3396INTG339DINTG3189INTG312EINTG31E8INTG327EINTG211INTG293INTG32DBINTG25BINTG3165INTG3378INTG32E7INTG3126INTG31A9INTG3205INTG3313INTG3185INTG3217INTG2EEINTG318FINTG3321INTG290INTG28DINTG2CCINTG21CINTG32B2INTG3136INTG3300INTG325CINTG33CBINTG3143INTG3395INTG3249INTG33B8INTG3367INTG3355INTG32D0INTG322CINTG22BINTG3388INTG33CEINTG3364INTG239INTG2DFINTG3371INTG31A2INTG24AINTG2FEINTG32FEINTG337BINTG3309INTG3207INTG31BDINTG3120INTG32FCINTG33D7INTG3151INTG320AINTG326AINTG235INTG31B6INTG3316INTG26BINTG33C4INTG3215INTG3247INTG280INTG2BBINTG213INTG13INTG3267INTG32B0INTG3225INTG33D6INTG3197INTG3387INTG3226INTG3315INTG317AINTG335FINTG2A9INTG3195INTG18INTG32E2INTG33C0INTG332FINTG227INTG3170INTG32DAINTG292INTG3343INTG3240INTG33C8INTG32D4INTG3127INTG24CINTG31F6INTG2A1INTG275INTG332EINTG28EINTG3184INTG335AINTG327AINTG2E0INTG3394INTG268INTG3277INTG3295INTG3322INTG3177INTG3368INTG3218INTG316BINTG32BDINTG325EINTG2A6INTG2D9INTG31BAINTG33DCINTG312FINTG335DINTG3370INTG31FAINTG32F9INTG31BBINTG332DINTG33DDINTG313AINTG320EINTG33BAINTG27EINTG31EBINTG283INTG33B0INTG32ECINTG3398INTG32E9INTG3392INTG3213INTG3391INTG31C4INTG3246INTG31E9INTG32A1INTG31C1INTG31BCINTG32C1INTG3330INTG2D2INTG3270INTG3312INTG289INTG3193INTG3354INTG314BINTG297INTG3201INTG3112INTG32D1INTG3133INTG3369INTG243INTG328EINTG31DEINTG317FINTG313CINTG339AINTG255INTG2DCINTG3275INTG33ABINTG311FINTG2AEINTG3258INTG269INTG16INTG3182INTG31D9INTG17INTG312CINTG2E2INTG32E0INTG322BINTG274INTG31A6INTG32E3INTG3183INTG312AINTG3285INTG3196INTG32C7INTG3144INTG223INTG31C5INTG3111INTG33DAINTG33E6INTG232INTG282INTG3389INTG323BINTG228INTG32F2INTG251INTG2B2INTG14INTG335EINTG3244INTG322AINTG2E9INTG222INTG333AINTG311AINTG32CCINTG315BINTG3142INTG3233INTG3125INTG3179INTG324AINTG335BINTG3308INTG3350INTG31ECINTG2E8INTG28FINTG33C9INTG32B9INTG2D5INTG3154INTG3289INTG310EINTG334AINTG31C6INTG3105INTG3290INTG2EFINTG33E3INTG3342INTG225INTG3214INTG3164INTG32F4INTG32CAINTG23DINTG31FCINTG32BBINTG250INTG33D0INTG331BINTG28CINTG334EINTG247INTG325DINTG3106INTG2E3INTG32CFINTG15INTG336EINTG3109INTG25AINTG31C7INTG328BINTG31F0INTG3372INTG3317INTG3253INTG32D6INTG3116INTG32D7INTG3386INTG3115INTG324CINTG32D3INTG32F0INTG338CINTG273INTG19INTG336DINTG3356INTG314AINTG33A5INTG31B2INTG2CDINTG3163INTG3141INTG3162INTG3166INTG3181INTG3318INTG31CBINTG33D1INTG31CAINTG2E7INTG333DINTG325AINTG324EINTG3121INTG3304INTG31D2INTG31B0INTG2A4INTG315FINTG3152INTG294INTG33D2INTG337AINTG2CBINTG339FINTG1CINTG330BINTG3186INTG3236INTG3256INTG231INTG31E0INTG31B4INTG3212INTG3362INTG3169INTG2DAINTG339CINTG31D1INTG3229INTG3187INTG237INTG333FINTG234INTG310CINTG2CEINTG31F8INTG254INTG28BINTG3167INTG31AFINTG3283INTG323FINTG3360INTG327BINTG2B5INTG2BEINTG3288INTG3347INTG3200INTG3259INTG319DINTG252INTG316CINTG3319INTG216INTG33C2INTG3353INTG244INTG33BEINTG31E4INTG248INTG2D8INTG2FBINTG3137INTG32AEINTG2BDINTG3188INTG2DBINTG339EINTG33C1INTG32AAINTG3227INTG3393INTG33A7INTG3296INTG2C6INTG2B0INTG327CINTG31E6INTG32EDINTG32C5INTG2C1INTG2FAINTG33DBINTG326EINTG1EINTG3228INTG2ADINTG326CINTG320CINTG3345INTG32C8INTG33AFINTG2B4INTG262INTG272INTG3153INTG31EDINTG324BINTG23BINTG31B8INTG3262INTG3108INTG238INTG210INTG3242INTG31D5INTG249INTG318EINTG321CINTG3222INTG312BINTG3123INTG324FINTG253INTG3338INTG3132INTG24EINTG3238INTG31CFINTG31C3INTG330EINTG3208INTG3348INTG31C8INTG3168INTG2F5INTG26CINTG27AINTG333BINTG32CDINTG321DINTG2C9INTG3320INTG32A0INTG338DINTG33B7INTG311CINTG3178INTG2F4INTG3352INTG315EINTG31FDINTG31C9INTG33B4INTG2C7INTG2F9INTG295INTG3239INTG32D5INTG32A5INTG334FINTG3237INTG3294INTG3160INTG32C6INTG25DINTG314EINTG33CFINTG337DINTG260INTG331EINTG284INTG310AINTG332BINTG2BAINTG21DINTG256INTG33A2INTG265INTG327FINTG2D7INTG31A3INTG313FINTG2FFINTG279INTG334BINTG3286INTG329DINTG3377INTG31F1INTG31FBINTG31E7INTG12INTG3357PPERILIS27FINTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG18INTG19INTG1AINTG1BINTG1CINTG1DINTG1EINTG1FINTG210INTG211INTG212INTG213INTG214INTG215INTG216INTG217INTG218INTG219INTG21AINTG21BINTG21CINTG21DINTG21EINTG21FINTG220INTG221INTG222INTG223INTG224INTG225INTG226INTG227INTG228INTG229INTG22AINTG22BINTG22DINTG22EINTG22FINTG230INTG231INTG232INTG233INTG234INTG235INTG236INTG237INTG238INTG239INTG23AINTG23BINTG23CINTG23DINTG23EINTG23FINTG241INTG242INTG243INTG244INTG245INTG246INTG247INTG248INTG249INTG24AINTG24BINTG24CINTG24EINTG24FINTG250INTG251INTG252INTG254INTG255INTG256INTG257INTG258INTG259INTG25AINTG25BINTG25DINTG25EINTG25FINTG260INTG261INTG262INTG263INTG264INTG265INTG266INTG267INTG268INTG269INTG26AINTG26BINTG26CINTG26DINTG26EINTG26FINTG270INTG271INTG272INTG273INTG274INTG275INTG277INTG278INTG279INTG27AINTG27BINTG27CINTG27DINTG27EINTG27FINTG280INTG281INTG282INTG284INTG285INTG286INTG288INTG289INTG28AINTG28BINTG28CINTG28DINTG28EINTG28FINTG290INTG291INTG292INTG293INTG294INTG295INTG296INTG297INTG299INTG29AINTG29BINTG29DINTG29FINTG2A0INTG2A1INTG2A2INTG2A3INTG2A4INTG2A5INTG2A6INTG2A7INTG2A8INTG2A9INTG2AAINTG2ABINTG2ACINTG2ADINTG2AEINTG2AFINTG2B0INTG2B1INTG2B3INTG2B4INTG2B5INTG2B6INTG2B8INTG2BBINTG2BCINTG2BDINTG2BEINTG2BFINTG2C0INTG2C1INTG2C2INTG2C3INTG2C4INTG2C5INTG2C6INTG2C7INTG2C8INTG2C9INTG2CAINTG2CBINTG2CCINTG2CEINTG2CFINTG2D0INTG2D1INTG2D2INTG2D3INTG2D6INTG2D7INTG2D8INTG2D9INTG2DAINTG2DBINTG2DCINTG2DEINTG2DFINTG2E0INTG2E1INTG2E2INTG2E4INTG2E6INTG2E7INTG2E9INTG2EDINTG2EFINTG2F0INTG2F1INTG2F2INTG2F4INTG2F8INTG2F9INTG2FAINTG2FBINTG2FCINTG2FDINTG2FFINTG3102INTG3104INTG3105INTG3108INTG310AINTG310BINTG310CINTG310EINTG310FINTG3110INTG3112INTG3113INTG3115INTG3117INTG3118INTG3119INTG311AINTG311BINTG311CINTG311DINTG311EINTG311FINTG3120INTG3121INTG3122INTG3123INTG3124INTG3125INTG3126INTG3127INTG3129INTG312AINTG312BINTG312CINTG312DINTG312EINTG3131INTG3132INTG3133INTG3134INTG3135INTG3137INTG3139INTG313AINTG313BINTG313CINTG313DINTG313FINTG3140INTG3141INTG3142INTG3143INTG3144INTG3145INTG3146INTG3147INTG3149INTG314AINTG314DINTG314EINTG3150INTG3151INTG3152INTG3154INTG3155INTG3157INTG3158INTG315BINTG315CINTG315DINTG315EINTG315FINTG3161INTG3162INTG3163INTG3164INTG3165INTG3166INTG3167INTG3168INTG3169INTG316AINTG316BINTG316CINTG316EINTG316FINTG3170INTG3171INTG3172INTG3173INTG3174INTG3175INTG3176INTG3177INTG3178INTG3179INTG317AINTG317BINTG317DINTG317EINTG317FINTG3181INTG3182INTG3185INTG3186INTG3187INTG3188INTG3189INTG318BINTG318DINTG318FINTG3190INTG3192INTG3193INTG3194INTG3196INTG3197INTG3199INTG319CINTG319FINTG31A0INTG31A1INTG31A2INTG31A3INTG31A4INTG31A6INTG31A7INTG31A8INTG31A9INTG31ABINTG31ACINTG31B1INTG31B3INTG31B4INTG31BAINTG31BBINTG31BEINTG31BFINTG31C0INTG31C2INTG31C4INTG31C5INTG31C7INTG31CBINTG31CCINTG31CEINTG31CFINTG31D0INTG31D4INTG31D5INTG31D6INTG31D7INTG31D8INTG31D9INTG31DAINTG31DBINTG31DCINTG31DDINTG31DEINTG31DFINTG31E1INTG31E3INTG31E4INTG31E5INTG31E6INTG31E7INTG31E8INTG31EAINTG31ECINTG31EFINTG31F0INTG31F1INTG31F2INTG31F3INTG31F6INTG31F7INTG31F8INTG31F9INTG31FAINTG31FBINTG31FDINTG3201INTG3202INTG3203INTG3204INTG3205INTG3206INTG320DINTG320EINTG3210INTG3214INTG3215INTG3216INTG3217INTG3218INTG321BINTG321DINTG321EINTG321FINTG3220INTG3221INTG3223INTG3225INTG3226INTG3227INTG322BINTG322FINTG3230INTG3231INTG3233INTG3239INTG323AINTG323BINTG323DINTG3240INTG3242INTG3244INTG3246INTG3247INTG3248INTG324DINTG324FINTG3250INTG3251INTG3253INTG3254INTG3255INTG3256INTG3259INTG325CINTG325DINTG325FINTG3261INTG3262INTG3263INTG3264INTG3267INTG3268INTG3269INTG326CINTG326DINTG326EINTG326FINTG3276INTG3277INTG327AINTG327BINTG327DINTG327FINTG3281INTG3284INTG3287INTG3288INTG3289INTG328AINTG328EINTG328FINTG3290INTG3291INTG3292INTG3296INTG3298INTG329AINTG329BINTG329CINTG329DINTG32A4INTG32A8INTG32AAINTG32ABINTG32ACINTG32ADINTG32AFINTG32B1INTG32B5INTG32B6INTG32BCINTG32BDINTG32C2INTG32C3INTG32C6INTG32C7INTG32C8INTG32C9INTG32CAINTG32CBINTG32CCINTG32CDINTG32CEINTG32D1INTG32D2INTG32D6INTG32D8INTG32D9INTG32DDINTG32DEINTG32DFINTG32E1INTG32E2INTG32E3INTG32E4INTG32E5INTG32E7INTG32EFINTG32F3INTG32FAINTG32FBINTG32FCINTG3301INTG3302INTG3303INTG3305INTG3306INTG3307INTG3308INTG3309INTG330AINTG3310INTG3311INTG3313INTG3314INTG3316INTG3318INTG3319INTG331AINTG331CINTG331DINTG3322INTG3324INTG3325INTG3328INTG3329INTG332BINTG332DINTG3330INTG3332INTG3334INTG333BINTG333EINTG333FINTG3341INTG3342INTG3345INTG3349INTG334AINTG334EINTG3353INTG3355INTG3357INTG3359INTG335AINTG335FINTG3361INTG3364INTG3366INTG3367INTG3368INTG3369INTG336BINTG336CINTG336DINTG3372INTG3373INTG3376INTG337BINTG337DINTG337EINTG3380INTG3382INTG3384INTG3387INTG338CINTG338DINTG3390INTG3391INTG3394INTG3395INTG339DINTG339EINTG339FINTG33A0INTG33A3INTG33A4INTG33A6INTG33A7INTG33A8INTG33ABINTG33AFINTG33B0INTG33B3INTG33B4INTG33B7INTG33BCINTG33BDINTG33BFINTG33C3INTG33C6INTG33C7INTG33C8INTG33C9INTG33CAINTG33CBINTG33CCINTG33CFINTG33D0INTG33D1INTG33D3INTG33D4INTG33D7INTG33D8INTG33DAINTG33DBINTG33DEINTG33E3INTG33E6MLIS27FINTG24FINTG21BINTG2E9INTG3170INTG3393INTG32A5INTG28FINTG32F8INTG3135INTG337BINTG254INTG33ADINTG15INTG320EINTG2E1INTG3326INTG3351INTG241INTG31E9INTG333DINTG3169INTG3173INTG3146INTG330FINTG3340INTG2AAINTG31D5INTG257INTG317CINTG293INTG2D7INTG3232INTG25AINTG3217INTG328BINTG32AFINTG31B8INTG3172INTG329AINTG331DINTG3249INTG32C8INTG312CINTG2B9INTG323BINTG3245INTG319BINTG299INTG31A8INTG26DINTG2ADINTG3288INTG3104INTG319DINTG32B2INTG33CCINTG3255INTG31C5INTG3281INTG3366INTG3307INTG32C4INTG32ECINTG2DAINTG3247INTG31C1INTG3392INTG33CEINTG33D4INTG3201INTG323AINTG324EINTG326EINTG3364INTG310AINTG32ADINTG3385INTG3362INTG14INTG329CINTG327FINTG3240INTG332EINTG2D0INTG2EEINTG323CINTG2FCINTG322CINTG31CCINTG3317INTG3228INTG326FINTG3234INTG32B3INTG223INTG249INTG3269INTG323DINTG33BBINTG327CINTG339CINTG326BINTG3262INTG338CINTG2C1INTG3283INTG3360INTG2D3INTG32A1INTG31C8INTG275INTG3302INTG3236INTG31EDINTG2C7INTG219INTG2A8INTG33DDINTG32EFINTG327AINTG2E3INTG3274INTG3142INTG31FAINTG3110INTG2A1INTG32D9INTG2B4INTG31BBINTG3162INTG3354INTG2F0INTG3343INTG3126INTG25BINTG329DINTG320BINTG2EAINTG3318INTG3272INTG3282INTG3339INTG33D9INTG333EINTG31D3INTG312AINTG3216INTG245INTG31A0INTG33AEINTG316AINTG338BINTG32EDINTG3141INTG3336INTG3138INTG3230INTG334EINTG32D5INTG31A3INTG24DINTG332DINTG252INTG310EINTG31B7INTG31E4INTG221INTG329EINTG2C3INTG33C5INTG32B9INTG216INTG33DBINTG260INTG253INTG3181INTG290INTG330CINTG328CINTG3209INTG336EINTG331CINTG332BINTG17INTG25EINTG316BINTG32A9INTG3179INTG2F5INTG21CINTG262INTG3225INTG31A5INTG317AINTG3375INTG3200INTG31A6INTG2C0INTG3395INTG3134INTG31F5INTG233INTG2A7INTG327EINTG317EINTG32DAINTG32BBINTG298INTG319EINTG32E5INTG214INTG31E8INTG276INTG31C9INTG3114INTG3334INTG2FAINTG332AINTG2EDINTG322AINTG3313INTG31B6INTG218INTG287INTG3165INTG3355INTG32D2INTG319AINTG259INTG337FINTG32F3INTG2FFINTG25DINTG33B0INTG3267INTG32C0INTG32DFINTG3186INTG32CCINTG31EEINTG32D3INTG337AINTG336DINTG324AINTG28AINTG31EBINTG2BFINTG3175INTG3194INTG2A5INTG23FINTG2AEINTG2E5INTG3147INTG3295INTG3377INTG31BDINTG3193INTG2F9INTG338FINTG33DEINTG3197INTG311EINTG239INTG21FINTG336BINTG333AINTG31FCINTG321EINTG227INTG313EINTG31C3INTG320CINTG33A3INTG313BINTG3149INTG3152INTG33A5INTG24EINTG3231INTG278INTG33A9INTG3270INTG318AINTG31D8INTG224INTG31C4INTG32B1INTG23BINTG33D1INTG32FFINTG322EINTG3381INTG3298INTG2CDINTG3368INTG27AINTG3398INTG338EINTG2DFINTG3322INTG3111INTG3286INTG2DBINTG2C4INTG33DCINTG33CFINTG316EINTG3226INTG3324INTG3100INTG250INTG31E7INTG28CINTG261INTG31E1INTG322FINTG2ECINTG2D6INTG244INTG31E0INTG33DFINTG31E5INTG33B1INTG247INTG3309INTG3259INTG3315INTG33B6INTG331EINTG1EINTG31C0INTG319CINTG33A8INTG3198INTG3207INTG2B6INTG1FINTG29DINTG33B2INTG32D8INTG3330INTG3266INTG313AINTG333BINTG31DDINTG273INTG24CINTG33E5INTG2C8INTG270INTG26CINTG321BINTG3102INTG235INTG322DINTG3387INTG3229INTG2CCINTG31ECINTG311BINTG3389INTG32A4INTG274INTG3166INTG3273INTG31EAINTG3143INTG339FINTG3227INTG3382INTG329BINTG3174INTG31F3INTG324DINTG28DINTG27DINTG3101INTG27BINTG2B1INTG3136INTG24BINTG33C6INTG314CINTG29EINTG33D8INTG33A2INTG324BINTG32F0INTG3210INTG3219INTG2B3INTG3233INTG33A4INTG13INTG32E4INTG2C6INTG22DINTG3248INTG236INTG288INTG3254INTG3306INTG3358INTG1BINTG311CINTG321CINTG3129INTG32E2INTG316CINTG33BDINTG32D1INTG3127INTG315FINTG3312INTG328FINTG324FINTG3303INTG2EBINTG321FINTG32F7INTG23DINTG335BINTG32F4INTG2F3INTG1CINTG33AAINTG31EFINTG271INTG3239INTG314BINTG2B5INTG3140INTG3214INTG26AINTG2E0INTG32D7INTG33C8INTG3107INTG326CINTG32C1INTG264INTG3191INTG316DINTG32CEINTG315DINTG33C2INTG31D0INTG31F9INTG314AINTG12INTG3264INTG327DINTG332FINTG3365INTG31CAINTG2B8INTG3341INTG281INTG3352INTG32EBINTG334AINTG3196INTG339BINTG322BINTG32B4INTG33D6INTG27EINTG3112INTG32E6INTG31B5INTG3349INTG315BINTG337DINTG2F6INTG318EINTG32ABINTG3103INTG3158INTG31F0INTG3331INTG31D4INTG3287INTG320FINTG3205INTG26BINTG3370INTG336FINTG29CINTG3348INTG11INTG3202INTG310BINTG3357INTG325BINTG3124INTG32BAINTG315CINTG323FINTG3342INTG3301INTG3139INTG3320INTG2B2INTG317DINTG3123INTG3164INTG32FCINTG3119INTG32F9INTG32E1INTG330DINTG3218INTG33B5INTG22BINTG3383INTG318CINTG3224INTG312FINTG2A2INTG3310INTG263INTG2D2INTG2FEINTG3133INTG32B6INTG335DINTG317BINTG3363INTG32A0INTG32E8INTG32CFINTG337CINTG335CINTG32EEINTG3192INTG3168INTG32FBINTG3113INTG32C5INTG3376INTG31DBINTG324CINTG321DINTG3390INTG294INTG33A7INTG32FDINTG3335INTG323EINTG255INTG22FINTG33DAINTG3176INTG31BFINTG31CBINTG3246INTG3258INTG248INTG331BINTG32BFINTG3184INTG3252INTG3180INTG31E3INTG3144INTG2F4INTG3316INTG282INTG3290INTG32A8INTG32E9INTG266INTG313DINTG3394INTG31FEINTG3128INTG2F2INTG33B3INTG285INTG332CINTG31F7INTG31A4INTG251INTG3289INTG21EINTG33E4INTG32E3INTG31AEINTG3171INTG32A3INTG3157INTG3344INTG2BAINTG3253INTG2D8INTG32C3INTG31DEINTG3109INTG2EFINTG22CINTG3399INTG3131INTG2D9INTG27CINTG280INTG24AINTG2A3INTG3151INTG3117INTG3311INTG32FAINTG289INTG2DEINTG3183INTG267INTG312EINTG31CFINTG32B0INTG3263INTG2E7INTG31D6INTG31B1INTG3372INTG31C6INTG3222INTG318BINTG3105INTG2F1INTG3182INTG3211INTG256INTG328EINTG3319INTG3204INTG277INTG325DINTG339AINTG328A
@@ -0,0 +1,10 @@
1
+ b18111111111811111112
2
+ b18111111111811111122
3
+ b18111111111811111123
4
+ b18111111111811111222
5
+ b18111111111811111223
6
+ b18111111111811111234
7
+ b18111111111811112222
8
+ b18111111111811112223
9
+ b18111111111811112233
10
+ b18111111111811112234
@@ -0,0 +1 @@
1
+ p210 2 6 7 0 0 9 0 1 0 5
Binary file
@@ -0,0 +1 @@
1
+ MLIS2PPERILIS3INTG11INTG12INTG13MLIS3INTG11INTG12INTG13PPERILIS2INTG11INTG13MLIS2INTG11INTG13MLIS2PPERILIS3INTG11INTG13INTG14MLIS3INTG11INTG13INTG14PPERILIS3INTG11INTG13INTG14MLIS3INTG12INTG13INTG14MLIS3PPERILIS4INTG11INTG12INTG13INTG14MLIS4INTG11INTG12INTG13INTG14PPERILIS3INTG11INTG12INTG14MLIS3INTG11INTG12INTG14PPERILIS2INTG11INTG14MLIS2INTG11INTG14MLIS2PPERILIS3INTG13INTG14INTG15MLIS3INTG11INTG14INTG15PPERILIS3INTG13INTG14INTG15MLIS3INTG12INTG14INTG15MLIS2PPERILIS4INTG12INTG13INTG14INTG15MLIS4INTG12INTG13INTG14INTG15PPERILIS3INTG11INTG14INTG15MLIS3INTG12INTG14INTG15MLIS2PPERILIS5INTG11INTG12INTG13INTG14INTG15MLIS5INTG12INTG11INTG13INTG14INTG15PPERILIS3INTG12INTG14INTG15MLIS3INTG12INTG14INTG15MLIS3PPERILIS4INTG11INTG12INTG14INTG15MLIS4INTG11INTG12INTG14INTG15PPERILIS4INTG11INTG13INTG14INTG15MLIS4INTG11INTG12INTG14INTG15PPERILIS2INTG11INTG15MLIS2INTG11INTG15MLIS4PPERILIS5INTG11INTG12INTG13INTG14INTG15MLIS5INTG11INTG12INTG13INTG14INTG15PPERILIS4INTG11INTG12INTG13INTG15MLIS4INTG11INTG12INTG13INTG15PPERILIS3INTG11INTG12INTG15MLIS3INTG11INTG12INTG15PPERILIS2INTG11INTG15MLIS2INTG11INTG15MLIS4PPERILIS3INTG14INTG15INTG16MLIS3INTG14INTG15INTG16PPERILIS3INTG12INTG15INTG16MLIS3INTG13INTG15INTG16PPERILIS3INTG14INTG15INTG16MLIS3INTG11INTG15INTG16PPERILIS3INTG13INTG15INTG16MLIS3INTG11INTG15INTG16MLIS3PPERILIS4INTG13INTG14INTG15INTG16MLIS4INTG13INTG14INTG15INTG16PPERILIS3INTG11INTG15INTG16MLIS3INTG12INTG15INTG16PPERILIS3INTG13INTG15INTG16MLIS3INTG12INTG15INTG16MLIS2PPERILIS5INTG12INTG13INTG14INTG15INTG16MLIS5INTG13INTG12INTG14INTG15INTG16PPERILIS3INTG11INTG15INTG16MLIS3INTG12INTG15INTG16MLIS2PPERILIS4INTG12INTG14INTG15INTG16MLIS4INTG13INTG14INTG15INTG16PPERILIS3INTG14INTG15INTG16MLIS3INTG14INTG11INTG16MLIS3PPERILIS5INTG12INTG13INTG14INTG15INTG16MLIS5INTG12INTG13INTG14INTG15INTG16PPERILIS4INTG12INTG13INTG15INTG16MLIS4INTG12INTG13INTG15INTG16PPERILIS3INTG11INTG15INTG16MLIS3INTG12INTG15INTG16
@@ -0,0 +1 @@
1
+ MLIS8PPERILIS9INTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG18INTG19MLIS9INTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG18INTG19PPERILIS8INTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG19MLIS8INTG11INTG12INTG13INTG14INTG15INTG16INTG17INTG19PPERILIS7INTG11INTG12INTG13INTG14INTG15INTG16INTG19MLIS7INTG11INTG12INTG13INTG14INTG15INTG16INTG19PPERILIS6INTG11INTG12INTG13INTG14INTG15INTG19MLIS6INTG11INTG12INTG13INTG14INTG15INTG19PPERILIS5INTG11INTG12INTG13INTG14INTG19MLIS5INTG11INTG12INTG13INTG14INTG19PPERILIS4INTG11INTG12INTG13INTG19MLIS4INTG11INTG12INTG13INTG19PPERILIS3INTG11INTG12INTG19MLIS3INTG11INTG12INTG19PPERILIS2INTG11INTG19MLIS2INTG11INTG19
@@ -0,0 +1,7 @@
1
+ t13111
2
+ t13112
3
+ t1211
4
+ t10
5
+ t13132
6
+ t13211
7
+ t13231
@@ -0,0 +1,7 @@
1
+ t13111
2
+ t13112
3
+ t1211
4
+ t10
5
+ t13132
6
+ t13211
7
+ t13231
@@ -0,0 +1,7 @@
1
+ name: libsemigroups
2
+
3
+ channels:
4
+ - conda-forge
5
+
6
+ dependencies:
7
+ - libsemigroups
@@ -0,0 +1,15 @@
1
+ #############################################################################
2
+ ##
3
+ ## attributes/acting.gd
4
+ ## Copyright (C) 2015-2022 James D. Mitchell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ # This file contains declarations relating to attributes which only apply to
12
+ # acting semigroups.
13
+
14
+ DeclareAttribute("StructureDescriptionSchutzenbergerGroups",
15
+ IsSemigroup and IsFinite);
@@ -0,0 +1,297 @@
1
+ #############################################################################
2
+ ##
3
+ ## attributes/acting.gi
4
+ ## Copyright (C) 2013-2022 James D. Mitchell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ # This file contains methods for finding various attributes of acting
12
+ # semigroups, sometimes there is no better method than that given in
13
+ # attr.gi.
14
+
15
+ # same method for ideals
16
+
17
+ InstallMethod(IsMultiplicativeZero,
18
+ "for an acting semigroup and element",
19
+ [IsActingSemigroup, IsMultiplicativeElement],
20
+ {S, x} -> MultiplicativeZero(S) <> fail and x = MultiplicativeZero(S));
21
+
22
+ # same method for ideals
23
+
24
+ InstallMethod(IsGreensDGreaterThanFunc, "for an acting semigroup",
25
+ [IsActingSemigroup],
26
+ function(S)
27
+ local D, data;
28
+
29
+ D := PartialOrderOfDClasses(S);
30
+ data := SemigroupData(S);
31
+
32
+ return
33
+ function(x, y)
34
+ local u, v;
35
+ if x = y then
36
+ return false;
37
+ fi;
38
+ x := ConvertToInternalElement(S, x);
39
+ y := ConvertToInternalElement(S, y);
40
+ u := OrbSCCLookup(data)[Position(data, x)] - 1;
41
+ v := OrbSCCLookup(data)[Position(data, y)] - 1;
42
+ return u <> v and IsReachable(D, u, v);
43
+ end;
44
+ end);
45
+
46
+ # same method for ideals
47
+
48
+ InstallMethod(StructureDescriptionSchutzenbergerGroups,
49
+ "for an acting semigroup", [IsActingSemigroup],
50
+ function(S)
51
+ local o, scc, out, m;
52
+
53
+ o := LambdaOrb(S);
54
+ Enumerate(o, infinity);
55
+ scc := OrbSCC(o);
56
+ out := [];
57
+
58
+ for m in [2 .. Length(scc)] do
59
+ AddSet(out, StructureDescription(LambdaOrbSchutzGp(o, m)));
60
+ od;
61
+
62
+ return out;
63
+ end);
64
+
65
+ # different method for ideals
66
+
67
+ InstallMethod(InversesOfSemigroupElementNC,
68
+ "for an acting semigroup and multiplicative element",
69
+ [IsActingSemigroup and HasGeneratorsOfSemigroup, IsMultiplicativeElement],
70
+ function(S, x)
71
+ local regular, lambda, rank, rhorank, tester, j, o, rhos, opts, gens, grades,
72
+ rho_x, lambdarank, creator, inv, out, k, y, i, name, rho;
73
+
74
+ regular := IsRegularSemigroup(S);
75
+ if not (regular or IsRegularSemigroupElementNC(S, x)) then
76
+ return [];
77
+ fi;
78
+
79
+ x := ConvertToInternalElement(S, x);
80
+ lambda := LambdaFunc(S)(x);
81
+ rank := LambdaRank(S)(LambdaFunc(S)(x));
82
+ rhorank := RhoRank(S);
83
+ tester := IdempotentTester(S);
84
+ j := 0;
85
+
86
+ # can't use GradedRhoOrb here since there may be inverses not D-related to f
87
+ if HasRhoOrb(S) and IsClosedOrbit(RhoOrb(S)) then
88
+ o := RhoOrb(S);
89
+ rhos := EmptyPlist(Length(o));
90
+ for i in [2 .. Length(o)] do
91
+ if rhorank(o[i]) = rank and tester(lambda, o[i]) then
92
+ j := j + 1;
93
+ rhos[j] := o[i];
94
+ fi;
95
+ od;
96
+ else
97
+ opts := rec(treehashsize := SEMIGROUPS.OptionsRec(S).hashlen,
98
+ gradingfunc := {o, x} -> rhorank(x),
99
+ onlygrades := {x, y} -> x >= rank,
100
+ onlygradesdata := fail);
101
+
102
+ for name in RecNames(LambdaOrbOpts(S)) do
103
+ opts.(name) := LambdaOrbOpts(S).(name);
104
+ od;
105
+ gens := List(GeneratorsOfSemigroup(S),
106
+ x -> ConvertToInternalElement(S, x));
107
+
108
+ o := Enumerate(Orb(gens, RhoOrbSeed(S), RhoAct(S), opts));
109
+
110
+ grades := Grades(o);
111
+ rhos := EmptyPlist(Length(o));
112
+ for i in [2 .. Length(o)] do
113
+ if grades[i] = rank and tester(lambda, o[i]) then
114
+ j := j + 1;
115
+ rhos[j] := o[i];
116
+ fi;
117
+ od;
118
+ fi;
119
+ ShrinkAllocationPlist(rhos);
120
+
121
+ rho_x := RhoFunc(S)(x);
122
+ lambdarank := LambdaRank(S);
123
+ creator := IdempotentCreator(S);
124
+ inv := LambdaInverse(S);
125
+
126
+ out := [];
127
+ k := 0;
128
+
129
+ # Notes: it seems that LambdaOrb(S) is always closed at this point
130
+ o := LambdaOrb(S);
131
+ Enumerate(o); # just in case
132
+ for i in [2 .. Length(o)] do
133
+ if lambdarank(o[i]) = rank and tester(o[i], rho_x) then
134
+ for rho in rhos do
135
+ y := creator(lambda, rho) * inv(o[i], x);
136
+ if regular or y in S then
137
+ k := k + 1;
138
+ out[k] := ConvertToExternalElement(S, y);
139
+ fi;
140
+ od;
141
+ fi;
142
+ od;
143
+ return out;
144
+ end);
145
+
146
+ # same method for ideals
147
+
148
+ InstallMethod(MultiplicativeNeutralElement, "for an acting semigroup",
149
+ [IsActingSemigroup],
150
+ function(S)
151
+ local gens, rank, lambda, max, rep, r, e, lo, ro, lact, ract, ie;
152
+
153
+ gens := Generators(S);
154
+ rank := LambdaRank(S);
155
+ lambda := LambdaFunc(S);
156
+ max := 0;
157
+ rep := gens[1];
158
+
159
+ for e in gens do
160
+ r := rank(lambda(e));
161
+ if r > max then
162
+ max := r;
163
+ rep := e;
164
+ fi;
165
+ od;
166
+
167
+ if max = ActionDegree(S)
168
+ and (IsMultiplicativeElementWithOneCollection(S)
169
+ or IsFFECollCollColl(S)) then
170
+ return One(S);
171
+ fi;
172
+
173
+ r := GreensRClassOfElementNC(S, rep);
174
+
175
+ if NrIdempotents(r) <> 1 or NrHClasses(r) <> 1 or
176
+ NrHClasses(GreensLClassOfElementNC(S, rep)) <> 1 then
177
+ Info(InfoSemigroups, 2, "the D-class of the first maximum rank generator ",
178
+ "is not a group");
179
+ return fail;
180
+ fi;
181
+
182
+ e := Idempotents(r)[1];
183
+
184
+ if HasGeneratorsOfSemigroup(S) then
185
+ if ForAll(GeneratorsOfSemigroup(S), x -> x * e = x and e * x = x) then
186
+ return e;
187
+ fi;
188
+ return fail;
189
+ fi;
190
+
191
+ lo := LambdaOrb(S);
192
+ ro := RhoOrb(S);
193
+ lact := LambdaAct(S);
194
+ ract := RhoAct(S);
195
+ ie := ConvertToInternalElement(S, e);
196
+
197
+ # S is an ideal without GeneratorsOfSemigroup
198
+ if ForAll(gens, x -> x * e = x and e * x = x)
199
+ and ForAll([2 .. Length(Enumerate(lo))], i -> lact(lo[i], ie) = lo[i])
200
+ and ForAll([2 .. Length(Enumerate(ro))], i -> ract(ro[i], ie) = ro[i])
201
+ then
202
+ return e;
203
+ fi;
204
+ return fail;
205
+ end);
206
+
207
+ InstallMethod(RepresentativeOfMinimalIdealNC,
208
+ "for an acting semigroup with generators",
209
+ [IsActingSemigroup and HasGeneratorsOfSemigroup],
210
+ function(S)
211
+ local rank, o, pos, min, len, m, result, i;
212
+
213
+ rank := LambdaRank(S);
214
+ o := LambdaOrb(S);
215
+ pos := LookForInOrb(o, {o, x} -> rank(x) = MinActionRank(S), 2);
216
+
217
+ if pos = false then
218
+ min := rank(o[2]);
219
+ pos := 2;
220
+ len := Length(o);
221
+ for i in [3 .. len] do
222
+ m := rank(o[i]);
223
+ if m < min then
224
+ pos := i;
225
+ min := m;
226
+ fi;
227
+ od;
228
+ fi;
229
+
230
+ result := EvaluateWord(o, TraceSchreierTreeForward(o, pos));
231
+ return ConvertToExternalElement(S, result);
232
+ end);
233
+
234
+ InstallMethod(RightIdentity,
235
+ "for an acting semigroup with generators + mult. elt.",
236
+ [IsActingSemigroup and HasGeneratorsOfSemigroup, IsMultiplicativeElement],
237
+ function(S, x)
238
+ local o, l, m, scc, f, p;
239
+
240
+ if not x in S then
241
+ ErrorNoReturn("the 2nd argument (a mult. elt.) does not belong to ",
242
+ "the 1st argument (a semigroup)");
243
+ elif IsMonoid(S) then
244
+ return One(S);
245
+ elif IsMonoidAsSemigroup(S) then
246
+ return MultiplicativeNeutralElement(S);
247
+ elif IsIdempotent(x) then
248
+ return x;
249
+ fi;
250
+
251
+ x := ConvertToInternalElement(S, x);
252
+ o := Enumerate(LambdaOrb(S));
253
+ l := Position(o, LambdaFunc(S)(x));
254
+ m := OrbSCCLookup(o)[l];
255
+ scc := OrbSCC(o)[m];
256
+
257
+ if l <> scc[1] then
258
+ f := LambdaOrbMult(o, m, l);
259
+ return ConvertToExternalElement(S, f[2] * f[1]);
260
+ else
261
+ p := Factorization(o, m, LambdaIdentity(S)(true));
262
+ if p = fail then
263
+ return fail;
264
+ else
265
+ return ConvertToExternalElement(S, EvaluateWord(o!.gens, p));
266
+ fi;
267
+ fi;
268
+ end);
269
+
270
+ InstallMethod(LeftIdentity,
271
+ "for an acting semigroup with generators + mult. elt.",
272
+ [IsActingSemigroup and HasGeneratorsOfSemigroup, IsMultiplicativeElement],
273
+ function(S, x)
274
+ local l, D, p, result;
275
+
276
+ if not x in S then
277
+ ErrorNoReturn("the 2nd argument (a mult. elt.) does not belong to ",
278
+ "the 1st argument (a semigroup)");
279
+ elif IsMonoid(S) then
280
+ return One(S);
281
+ elif IsMonoidAsSemigroup(S) then
282
+ return MultiplicativeNeutralElement(S);
283
+ elif IsIdempotent(x) then
284
+ return x;
285
+ fi;
286
+
287
+ x := ConvertToInternalElement(S, x);
288
+ l := Position(Enumerate(RhoOrb(S)), RhoFunc(S)(x));
289
+ D := Digraph(OrbitGraph(RhoOrb(S)));
290
+ p := DigraphPath(D, l, l);
291
+ if p = fail then
292
+ return fail;
293
+ fi;
294
+ result := EvaluateWord(RhoOrb(S)!.gens, Reversed(p[2]));
295
+ result := ConvertToExternalElement(S, result);
296
+ return result ^ SmallestIdempotentPower(result);
297
+ end);
@@ -0,0 +1,91 @@
1
+ #############################################################################
2
+ ##
3
+ ## attributes/attr.gd
4
+ ## Copyright (C) 2013-2022 James D. Mitchell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ # This file contains declarations for attributes of semigroups.
12
+
13
+ DeclareOperation("IrredundantGeneratingSubset",
14
+ [IsMultiplicativeElementCollection]);
15
+
16
+ DeclareAttribute("GroupOfUnits", IsSemigroup);
17
+ DeclareAttribute("IdempotentGeneratedSubsemigroup", IsSemigroup);
18
+ DeclareAttribute("InjectionPrincipalFactor", IsGreensDClass);
19
+ DeclareAttribute("InjectionNormalizedPrincipalFactor", IsGreensDClass);
20
+ DeclareAttribute("RepresentativeOfMinimalIdeal", IsSemigroup);
21
+ DeclareOperation("RepresentativeOfMinimalIdealNC", [IsSemigroup]);
22
+ DeclareSynonymAttr("RepresentativeOfMinimalDClass",
23
+ RepresentativeOfMinimalIdeal);
24
+ DeclareAttribute("MinimalIdeal", IsSemigroup);
25
+ DeclareAttribute("PrincipalFactor", IsGreensDClass);
26
+ DeclareAttribute("NormalizedPrincipalFactor", IsGreensDClass);
27
+ DeclareAttribute("MultiplicativeZero", IsSemigroup);
28
+ DeclareAttribute("LengthOfLongestDClassChain", IsSemigroup);
29
+
30
+ # We use IsListOrCollection here because some collections of semigroup
31
+ # generators (such as elements/congruence classes in a quotient semigroup) do
32
+ # not satisfy IsMultiplicativeElementCollection (although the classes
33
+ # themselves do satisfy IsMultiplicativeElement).
34
+ DeclareAttribute("SmallSemigroupGeneratingSet",
35
+ IsListOrCollection);
36
+ DeclareAttribute("SmallMonoidGeneratingSet",
37
+ IsMultiplicativeElementWithOneCollection);
38
+ DeclareAttribute("SmallInverseSemigroupGeneratingSet",
39
+ IsMultiplicativeElementCollection);
40
+ DeclareAttribute("SmallInverseMonoidGeneratingSet",
41
+ IsMultiplicativeElementWithOneCollection);
42
+
43
+ DeclareAttribute("MinimalSemigroupGeneratingSet",
44
+ IsSemigroup);
45
+ DeclareAttribute("MinimalMonoidGeneratingSet",
46
+ IsMonoid);
47
+ DeclareAttribute("MinimalInverseSemigroupGeneratingSet",
48
+ IsSemigroup);
49
+ DeclareAttribute("MinimalInverseMonoidGeneratingSet",
50
+ IsMonoid);
51
+
52
+ DeclareAttribute("SmallestElementSemigroup", IsSemigroup);
53
+ DeclareAttribute("LargestElementSemigroup", IsSemigroup);
54
+
55
+ DeclareAttribute("StructureDescription", IsBrandtSemigroup);
56
+ DeclareAttribute("StructureDescription", IsGroupAsSemigroup);
57
+ DeclareAttribute("StructureDescriptionMaximalSubgroups",
58
+ IsSemigroup);
59
+ DeclareAttribute("MaximalDClasses", IsSemigroup);
60
+ DeclareAttribute("MaximalLClasses", IsSemigroup);
61
+ DeclareAttribute("MaximalRClasses", IsSemigroup);
62
+ DeclareAttribute("MinimalDClass", IsSemigroup);
63
+ DeclareAttribute("IsGreensDGreaterThanFunc", IsSemigroup);
64
+
65
+ DeclareAttribute("UnderlyingSemigroupOfSemigroupWithAdjoinedZero",
66
+ IsSemigroup);
67
+
68
+ DeclareOperation("InversesOfSemigroupElementNC",
69
+ [IsSemigroup, IsMultiplicativeElement]);
70
+ DeclareOperation("OneInverseOfSemigroupElementNC",
71
+ [IsSemigroup, IsMultiplicativeElement]);
72
+ DeclareOperation("OneInverseOfSemigroupElement",
73
+ [IsSemigroup, IsMultiplicativeElement]);
74
+
75
+ DeclareAttribute("IndecomposableElements", IsSemigroup);
76
+ DeclareAttribute("NambooripadLeqRegularSemigroup", IsSemigroup);
77
+ DeclareAttribute("NambooripadPartialOrder", IsSemigroup);
78
+
79
+ DeclareOperation("LeftIdentity", [IsSemigroup, IsMultiplicativeElement]);
80
+ DeclareOperation("RightIdentity", [IsSemigroup, IsMultiplicativeElement]);
81
+
82
+ DeclareAttribute("MultiplicationTableWithCanonicalPositions",
83
+ IsSemigroup and CanUseFroidurePin);
84
+ DeclareAttribute("TransposedMultiplicationTableWithCanonicalPositions",
85
+ IsSemigroup and CanUseFroidurePin);
86
+
87
+ DeclareAttribute("MinimalFaithfulTransformationDegree", IsSemigroup);
88
+ DeclareAttribute("SmallerDegreeTransformationRepresentation", IsSemigroup);
89
+
90
+ # TODO(later)
91
+ # DeclareAttribute("MinimalFaithfulTransformationRepresentation", IsSemigroup);