passagemath-gap-pkg-semigroups 10.6.30__cp312-abi3-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1158 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,858 @@
1
+ #############################################################################
2
+ ##
3
+ #W extreme/ideals.tst
4
+ #Y Copyright (C) 2013-15 James D. Mitchell
5
+ ## Julius Jonusas
6
+ ## Wilf A. Wilson
7
+ ##
8
+ ## Licensing information can be found in the README file of this package.
9
+ ##
10
+ #############################################################################
11
+ ##
12
+
13
+ #@local A, B, C, I, J, K, L, M, R, S, T, U, a, acting, an, data, gens, gensI
14
+ #@local gensJ, gensK, gensL, ideals, idems, o, s, x
15
+ gap> START_TEST("Semigroups package: extreme/ideals.tst");
16
+ gap> LoadPackage("semigroups", false);;
17
+
18
+ #
19
+ gap> SEMIGROUPS.StartTest();
20
+ gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
21
+
22
+ # IdealsTest1
23
+ gap> gens := [Transformation([2, 6, 1, 7, 5, 3, 4]),
24
+ > Transformation([5, 3, 7, 2, 1, 6, 4]),
25
+ > Transformation([2, 5, 5, 3, 4, 2, 3]),
26
+ > Transformation([1, 5, 1, 6, 1, 5, 6]),
27
+ > Transformation([6, 2, 2, 2, 5, 1, 2]),
28
+ > Transformation([7, 5, 4, 4, 4, 5, 5]),
29
+ > Transformation([5, 1, 6, 1, 1, 5, 1]),
30
+ > Transformation([3, 5, 2, 3, 2, 2, 3])];;
31
+ gap> S := Semigroup(gens);;
32
+ gap> I := SemigroupIdeal(S, S.8);;
33
+ gap> x := S.8 * S.1 * S.4 * S.3;;
34
+ gap> R := RClass(I, x);;
35
+ gap> x in R;
36
+ true
37
+ gap> I := MinimalIdeal(I);
38
+ <simple transformation semigroup ideal of degree 7 with 1 generator>
39
+ gap> IsRegularSemigroup(I);
40
+ true
41
+ gap> Idempotents(I, 0);
42
+ [ ]
43
+ gap> idems := ShallowCopy(Idempotents(I));;
44
+ gap> Sort(idems);
45
+ gap> idems;
46
+ [ Transformation( [ 1, 1, 1, 1, 1, 1, 1 ] ),
47
+ Transformation( [ 2, 2, 2, 2, 2, 2, 2 ] ),
48
+ Transformation( [ 3, 3, 3, 3, 3, 3, 3 ] ),
49
+ Transformation( [ 4, 4, 4, 4, 4, 4, 4 ] ),
50
+ Transformation( [ 5, 5, 5, 5, 5, 5, 5 ] ),
51
+ Transformation( [ 6, 6, 6, 6, 6, 6, 6 ] ),
52
+ Transformation( [ 7, 7, 7, 7, 7, 7, 7 ] ) ]
53
+ gap> Idempotents(I, 2);
54
+ [ ]
55
+ gap> x in R;
56
+ true
57
+ gap> I := MinimalIdeal(I);
58
+ <simple transformation semigroup ideal of degree 7 with 1 generator>
59
+ gap> IsRegularSemigroup(I);;
60
+ gap> Idempotents(I, 0);
61
+ [ ]
62
+ gap> idems := ShallowCopy(Idempotents(I));;
63
+ gap> Sort(idems);
64
+ gap> idems;
65
+ [ Transformation( [ 1, 1, 1, 1, 1, 1, 1 ] ),
66
+ Transformation( [ 2, 2, 2, 2, 2, 2, 2 ] ),
67
+ Transformation( [ 3, 3, 3, 3, 3, 3, 3 ] ),
68
+ Transformation( [ 4, 4, 4, 4, 4, 4, 4 ] ),
69
+ Transformation( [ 5, 5, 5, 5, 5, 5, 5 ] ),
70
+ Transformation( [ 6, 6, 6, 6, 6, 6, 6 ] ),
71
+ Transformation( [ 7, 7, 7, 7, 7, 7, 7 ] ) ]
72
+ gap> Idempotents(I, 2);
73
+ [ ]
74
+ gap> S := Semigroup([Transformation([1, 3, 4, 1, 3, 5]),
75
+ > Transformation([1, 5, 3, 5, 5, 5]),
76
+ > Transformation([2, 4, 6, 1, 6, 5]),
77
+ > Transformation([3, 2, 4, 2, 3, 3]),
78
+ > Transformation([4, 1, 2, 6, 2, 1]),
79
+ > Transformation([4, 6, 4, 3, 3, 3]),
80
+ > Transformation([4, 6, 5, 5, 2, 6]),
81
+ > Transformation([5, 1, 6, 1, 6, 3]),
82
+ > Transformation([5, 2, 5, 3, 5, 3]),
83
+ > Transformation([6, 4, 5, 5, 1, 6])]);
84
+ <transformation semigroup of degree 6 with 10 generators>
85
+ gap> I := SemigroupIdeal(S, Representative(DClasses(S)[3]));
86
+ <non-regular transformation semigroup ideal of degree 6 with 1 generator>
87
+ gap> S := JonesMonoid(6);
88
+ <regular bipartition *-monoid of degree 6 with 5 generators>
89
+ gap> a := Bipartition([[1, -1], [2, 3], [4, -2], [5, -5], [6, -6],
90
+ > [-3, -4]]);;
91
+ gap> I := SemigroupIdeal(S, a);
92
+ <regular bipartition *-semigroup ideal of degree 6 with 1 generator>
93
+ gap> a := Bipartition([[1, 4], [2, 3], [5, 6], [-1, -2],
94
+ > [-3, -6], [-4, -5]]);;
95
+ gap> InversesOfSemigroupElement(I, a);
96
+ [ <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ -1, -2 ], [ -3, -4 ],
97
+ [ -5, -6 ]>, <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, 6 ], [ -1, -2 ],
98
+ [ -3, -4 ], [ -5, -6 ]>,
99
+ <bipartition: [ 1, 2 ], [ 3, 6 ], [ 4, 5 ], [ -1, -2 ], [ -3, -4 ],
100
+ [ -5, -6 ]>, <bipartition: [ 1, 6 ], [ 2, 3 ], [ 4, 5 ], [ -1, -2 ],
101
+ [ -3, -4 ], [ -5, -6 ]>,
102
+ <bipartition: [ 1, 6 ], [ 2, 5 ], [ 3, 4 ], [ -1, -2 ], [ -3, -4 ],
103
+ [ -5, -6 ]>, <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ -1, -4 ],
104
+ [ -2, -3 ], [ -5, -6 ]>,
105
+ <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, 6 ], [ -1, -4 ], [ -2, -3 ],
106
+ [ -5, -6 ]>, <bipartition: [ 1, 2 ], [ 3, 6 ], [ 4, 5 ], [ -1, -4 ],
107
+ [ -2, -3 ], [ -5, -6 ]>,
108
+ <bipartition: [ 1, 6 ], [ 2, 3 ], [ 4, 5 ], [ -1, -4 ], [ -2, -3 ],
109
+ [ -5, -6 ]>, <bipartition: [ 1, 6 ], [ 2, 5 ], [ 3, 4 ], [ -1, -4 ],
110
+ [ -2, -3 ], [ -5, -6 ]>,
111
+ <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ -1, -2 ], [ -3, -6 ],
112
+ [ -4, -5 ]>, <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, 6 ], [ -1, -2 ],
113
+ [ -3, -6 ], [ -4, -5 ]>,
114
+ <bipartition: [ 1, 2 ], [ 3, 6 ], [ 4, 5 ], [ -1, -2 ], [ -3, -6 ],
115
+ [ -4, -5 ]>, <bipartition: [ 1, 6 ], [ 2, 3 ], [ 4, 5 ], [ -1, -2 ],
116
+ [ -3, -6 ], [ -4, -5 ]>,
117
+ <bipartition: [ 1, 6 ], [ 2, 5 ], [ 3, 4 ], [ -1, -2 ], [ -3, -6 ],
118
+ [ -4, -5 ]>, <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ -1, -6 ],
119
+ [ -2, -3 ], [ -4, -5 ]>,
120
+ <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, 6 ], [ -1, -6 ], [ -2, -3 ],
121
+ [ -4, -5 ]>, <bipartition: [ 1, 2 ], [ 3, 6 ], [ 4, 5 ], [ -1, -6 ],
122
+ [ -2, -3 ], [ -4, -5 ]>,
123
+ <bipartition: [ 1, 6 ], [ 2, 3 ], [ 4, 5 ], [ -1, -6 ], [ -2, -3 ],
124
+ [ -4, -5 ]>, <bipartition: [ 1, 6 ], [ 2, 5 ], [ 3, 4 ], [ -1, -6 ],
125
+ [ -2, -3 ], [ -4, -5 ]>,
126
+ <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ -1, -6 ], [ -2, -5 ],
127
+ [ -3, -4 ]>, <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, 6 ], [ -1, -6 ],
128
+ [ -2, -5 ], [ -3, -4 ]>,
129
+ <bipartition: [ 1, 2 ], [ 3, 6 ], [ 4, 5 ], [ -1, -6 ], [ -2, -5 ],
130
+ [ -3, -4 ]>, <bipartition: [ 1, 6 ], [ 2, 3 ], [ 4, 5 ], [ -1, -6 ],
131
+ [ -2, -5 ], [ -3, -4 ]>,
132
+ <bipartition: [ 1, 6 ], [ 2, 5 ], [ 3, 4 ], [ -1, -6 ], [ -2, -5 ],
133
+ [ -3, -4 ]> ]
134
+ gap> a := Bipartition([[1, 2], [3, 4], [5, -1], [6, -6], [-2, -3],
135
+ > [-4, -5]]);;
136
+ gap> InversesOfSemigroupElement(I, a);
137
+ [ <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, -5 ], [ 6, -6 ], [ -1, -2 ],
138
+ [ -3, -4 ]>, <bipartition: [ 1, 2 ], [ 3, -5 ], [ 4, 5 ], [ 6, -6 ],
139
+ [ -1, -2 ], [ -3, -4 ]>,
140
+ <bipartition: [ 1, 2 ], [ 3, -5 ], [ 4, -6 ], [ 5, 6 ], [ -1, -2 ],
141
+ [ -3, -4 ]>, <bipartition: [ 1, -5 ], [ 2, 3 ], [ 4, 5 ], [ 6, -6 ],
142
+ [ -1, -2 ], [ -3, -4 ]>,
143
+ <bipartition: [ 1, -5 ], [ 2, 3 ], [ 4, -6 ], [ 5, 6 ], [ -1, -2 ],
144
+ [ -3, -4 ]>, <bipartition: [ 1, -5 ], [ 2, -6 ], [ 3, 4 ], [ 5, 6 ],
145
+ [ -1, -2 ], [ -3, -4 ]>,
146
+ <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, -5 ], [ 6, -6 ], [ -1, -2 ],
147
+ [ -3, -4 ]>, <bipartition: [ 1, -5 ], [ 2, 5 ], [ 3, 4 ], [ 6, -6 ],
148
+ [ -1, -2 ], [ -3, -4 ]>,
149
+ <bipartition: [ 1, -5 ], [ 2, -6 ], [ 3, 6 ], [ 4, 5 ], [ -1, -2 ],
150
+ [ -3, -4 ]>, <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, -3 ], [ 6, -6 ],
151
+ [ -1, -2 ], [ -4, -5 ]>,
152
+ <bipartition: [ 1, 2 ], [ 3, -3 ], [ 4, 5 ], [ 6, -6 ], [ -1, -2 ],
153
+ [ -4, -5 ]>, <bipartition: [ 1, 2 ], [ 3, -3 ], [ 4, -6 ], [ 5, 6 ],
154
+ [ -1, -2 ], [ -4, -5 ]>,
155
+ <bipartition: [ 1, -3 ], [ 2, 3 ], [ 4, 5 ], [ 6, -6 ], [ -1, -2 ],
156
+ [ -4, -5 ]>, <bipartition: [ 1, -3 ], [ 2, 3 ], [ 4, -6 ], [ 5, 6 ],
157
+ [ -1, -2 ], [ -4, -5 ]>,
158
+ <bipartition: [ 1, -3 ], [ 2, -6 ], [ 3, 4 ], [ 5, 6 ], [ -1, -2 ],
159
+ [ -4, -5 ]>, <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, -3 ], [ 6, -6 ],
160
+ [ -1, -2 ], [ -4, -5 ]>,
161
+ <bipartition: [ 1, -3 ], [ 2, 5 ], [ 3, 4 ], [ 6, -6 ], [ -1, -2 ],
162
+ [ -4, -5 ]>, <bipartition: [ 1, -3 ], [ 2, -6 ], [ 3, 6 ], [ 4, 5 ],
163
+ [ -1, -2 ], [ -4, -5 ]>,
164
+ <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, -1 ], [ 6, -6 ], [ -2, -3 ],
165
+ [ -4, -5 ]>, <bipartition: [ 1, 2 ], [ 3, -1 ], [ 4, 5 ], [ 6, -6 ],
166
+ [ -2, -3 ], [ -4, -5 ]>,
167
+ <bipartition: [ 1, 2 ], [ 3, -1 ], [ 4, -6 ], [ 5, 6 ], [ -2, -3 ],
168
+ [ -4, -5 ]>, <bipartition: [ 1, -1 ], [ 2, 3 ], [ 4, 5 ], [ 6, -6 ],
169
+ [ -2, -3 ], [ -4, -5 ]>,
170
+ <bipartition: [ 1, -1 ], [ 2, 3 ], [ 4, -6 ], [ 5, 6 ], [ -2, -3 ],
171
+ [ -4, -5 ]>, <bipartition: [ 1, -1 ], [ 2, -6 ], [ 3, 4 ], [ 5, 6 ],
172
+ [ -2, -3 ], [ -4, -5 ]>,
173
+ <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, -1 ], [ 6, -6 ], [ -2, -3 ],
174
+ [ -4, -5 ]>, <bipartition: [ 1, -1 ], [ 2, 5 ], [ 3, 4 ], [ 6, -6 ],
175
+ [ -2, -3 ], [ -4, -5 ]>,
176
+ <bipartition: [ 1, -1 ], [ 2, -6 ], [ 3, 6 ], [ 4, 5 ], [ -2, -3 ],
177
+ [ -4, -5 ]>, <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, -5 ], [ 6, -6 ],
178
+ [ -1, -4 ], [ -2, -3 ]>,
179
+ <bipartition: [ 1, 2 ], [ 3, -5 ], [ 4, 5 ], [ 6, -6 ], [ -1, -4 ],
180
+ [ -2, -3 ]>, <bipartition: [ 1, 2 ], [ 3, -5 ], [ 4, -6 ], [ 5, 6 ],
181
+ [ -1, -4 ], [ -2, -3 ]>,
182
+ <bipartition: [ 1, -5 ], [ 2, 3 ], [ 4, 5 ], [ 6, -6 ], [ -1, -4 ],
183
+ [ -2, -3 ]>, <bipartition: [ 1, -5 ], [ 2, 3 ], [ 4, -6 ], [ 5, 6 ],
184
+ [ -1, -4 ], [ -2, -3 ]>,
185
+ <bipartition: [ 1, -5 ], [ 2, -6 ], [ 3, 4 ], [ 5, 6 ], [ -1, -4 ],
186
+ [ -2, -3 ]>, <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, -5 ], [ 6, -6 ],
187
+ [ -1, -4 ], [ -2, -3 ]>,
188
+ <bipartition: [ 1, -5 ], [ 2, 5 ], [ 3, 4 ], [ 6, -6 ], [ -1, -4 ],
189
+ [ -2, -3 ]>, <bipartition: [ 1, -5 ], [ 2, -6 ], [ 3, 6 ], [ 4, 5 ],
190
+ [ -1, -4 ], [ -2, -3 ]>,
191
+ <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, -1 ], [ 6, -6 ], [ -2, -5 ],
192
+ [ -3, -4 ]>, <bipartition: [ 1, 2 ], [ 3, -1 ], [ 4, 5 ], [ 6, -6 ],
193
+ [ -2, -5 ], [ -3, -4 ]>,
194
+ <bipartition: [ 1, 2 ], [ 3, -1 ], [ 4, -6 ], [ 5, 6 ], [ -2, -5 ],
195
+ [ -3, -4 ]>, <bipartition: [ 1, -1 ], [ 2, 3 ], [ 4, 5 ], [ 6, -6 ],
196
+ [ -2, -5 ], [ -3, -4 ]>,
197
+ <bipartition: [ 1, -1 ], [ 2, 3 ], [ 4, -6 ], [ 5, 6 ], [ -2, -5 ],
198
+ [ -3, -4 ]>, <bipartition: [ 1, -1 ], [ 2, -6 ], [ 3, 4 ], [ 5, 6 ],
199
+ [ -2, -5 ], [ -3, -4 ]>,
200
+ <bipartition: [ 1, 4 ], [ 2, 3 ], [ 5, -1 ], [ 6, -6 ], [ -2, -5 ],
201
+ [ -3, -4 ]>, <bipartition: [ 1, -1 ], [ 2, 5 ], [ 3, 4 ], [ 6, -6 ],
202
+ [ -2, -5 ], [ -3, -4 ]>,
203
+ <bipartition: [ 1, -1 ], [ 2, -6 ], [ 3, 6 ], [ 4, 5 ], [ -2, -5 ],
204
+ [ -3, -4 ]> ]
205
+ gap> S := SymmetricInverseMonoid(8);;
206
+ gap> x := PartialPerm([1]);;
207
+ gap> I := SemigroupIdeal(S, x);
208
+ <inverse partial perm semigroup ideal of rank 8 with 1 generator>
209
+ gap> IsZeroSimpleSemigroup(I);
210
+ true
211
+
212
+ # IdealsTest2
213
+ gap> gens := [Transformation([3, 4, 1, 2, 1]),
214
+ > Transformation([4, 2, 1, 5, 5]),
215
+ > Transformation([4, 2, 2, 2, 4])];;
216
+ gap> s := Semigroup(gens);;
217
+ gap> I := SemigroupIdeal(s, gens);
218
+ <regular transformation semigroup ideal of degree 5 with 3 generators>
219
+ gap> data := SemigroupData(I);
220
+ <closed semigroup ideal data with 26 reps, 23 lambda-values, 26 rho-values>
221
+ gap> Size(I);
222
+ 731
223
+ gap> NrDClasses(I);
224
+ 4
225
+ gap> GreensDClasses(I);
226
+ [ <Green's D-class: Transformation( [ 3, 4, 1, 2, 1 ] )>,
227
+ <Green's D-class: Transformation( [ 4, 2, 2, 2, 4 ] )>,
228
+ <Green's D-class: Transformation( [ 4, 5, 2, 4, 4 ] )>,
229
+ <Green's D-class: Transformation( [ 2, 2, 2, 2, 2 ] )> ]
230
+
231
+ # IdealsTest3
232
+ gap> gens := [Transformation([1, 3, 4, 1]),
233
+ > Transformation([2, 4, 1, 2]),
234
+ > Transformation([3, 1, 1, 3]),
235
+ > Transformation([3, 3, 4, 1])];;
236
+ gap> s := Semigroup(gens);;
237
+ gap> I := SemigroupIdeal(s, gens{[1, 2]});
238
+ <non-regular transformation semigroup ideal of degree 4 with 2 generators>
239
+ gap> o := LambdaOrb(I);
240
+ <closed ideal lambda orbit with 11 points in 2 components>
241
+
242
+ # IdealsTest4
243
+ gap> gens := [Transformation([1, 3, 2, 3]),
244
+ > Transformation([1, 4, 1, 2]),
245
+ > Transformation([2, 4, 1, 1]),
246
+ > Transformation([3, 4, 2, 2])];;
247
+ gap> s := Semigroup(gens);;
248
+ gap> I := SemigroupIdeal(s, [gens[2] * gens[1], gens[3] ^ 3]);
249
+ <non-regular transformation semigroup ideal of degree 4 with 2 generators>
250
+ gap> o := RhoOrb(I);
251
+ <closed ideal rho orbit with 10 points in 2 components>
252
+
253
+ # IdealsTest5
254
+ gap> gens := [
255
+ > PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 6, 7, 3, 8, 2, 9, 5]),
256
+ > PartialPerm([1, 2, 7, 9], [5, 6, 4, 3]),
257
+ > PartialPerm([1, 2, 6, 7, 8], [5, 1, 6, 2, 3])];;
258
+ gap> s := Semigroup(gens);
259
+ <partial perm semigroup of rank 10 with 3 generators>
260
+ gap> I := SemigroupIdeal(s, [gens[1] ^ 2, gens[2]]);
261
+ <non-regular partial perm semigroup ideal of rank 10 with 2 generators>
262
+ gap> R := GreensRClassOfElement(I, gens[1] ^ 2);
263
+ <Green's R-class: [1,3,9][4,7][10,8](2)(6)>
264
+ gap> DClassOfRClass(R);
265
+ <Green's D-class: [1,3,9][4,7][10,8](2)(6)>
266
+ gap> L := GreensLClassOfElement(I, gens[1] ^ 2);
267
+ <Green's L-class: [1,3,9][4,7][10,8](2)(6)>
268
+ gap> DClassOfLClass(L);
269
+ <Green's D-class: [1,3,9][4,7][10,8](2)(6)>
270
+
271
+ # IdealsTest6: \in for an inverse op semigroup ideal
272
+ gap> S := InverseSemigroup(
273
+ > PartialPerm([1, 2, 3, 5, 6, 7, 8], [5, 9, 10, 6, 3, 8, 4]),
274
+ > PartialPerm([1, 2, 3, 4, 5, 6, 8], [6, 2, 8, 4, 7, 5, 3]),
275
+ > PartialPerm([1, 2, 4, 6, 8, 9], [7, 10, 1, 9, 4, 2]),
276
+ > PartialPerm([1, 2, 4, 7, 8, 9], [10, 7, 8, 5, 9, 1]),
277
+ > PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
278
+ > PartialPerm([1, 2, 3, 4, 5, 8, 10], [3, 1, 4, 2, 5, 6, 7]),
279
+ > PartialPerm([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6]),
280
+ > PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 7, 6, 9, 10, 1, 3, 2]),
281
+ > PartialPerm([1, 2, 4, 5, 8, 10], [6, 2, 7, 8, 10, 4]),
282
+ > PartialPerm([1, 2, 3, 4, 5, 8, 10], [7, 1, 4, 3, 2, 6, 5]));;
283
+ gap> I := SemigroupIdeal(S,
284
+ > [PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 7, 6, 9, 10, 1, 3, 2]),
285
+ > PartialPerm([4], [3]), PartialPerm([6, 7], [5, 8])]);;
286
+ gap> Size(I);
287
+ 4626941
288
+
289
+ # IdealsTest7: attributes.gi
290
+ gap> S := Semigroup([Transformation([1, 3, 4, 1, 3, 5]),
291
+ > Transformation([1, 5, 3, 5, 5, 5]),
292
+ > Transformation([2, 4, 6, 1, 6, 5]),
293
+ > Transformation([3, 2, 4, 2, 3, 3]),
294
+ > Transformation([4, 1, 2, 6, 2, 1]),
295
+ > Transformation([4, 6, 4, 3, 3, 3]),
296
+ > Transformation([4, 6, 5, 5, 2, 6]),
297
+ > Transformation([5, 1, 6, 1, 6, 3]),
298
+ > Transformation([5, 2, 5, 3, 5, 3]),
299
+ > Transformation([6, 4, 5, 5, 1, 6])]);;
300
+ gap> I := SemigroupIdeal(S, Transformation([1, 3, 4, 1, 3, 5]));;
301
+ gap> J := SemigroupIdeal(S, Transformation([1, 5, 3, 5, 5, 5]));;
302
+ gap> IsGreensDGreaterThanFunc(I); IsGreensDGreaterThanFunc(J);
303
+ function( x, y ) ... end
304
+ function( x, y ) ... end
305
+ gap> Length(MaximalDClasses(I));
306
+ 265
307
+ gap> MaximalDClasses(J);
308
+ [ <Green's D-class: Transformation( [ 1, 5, 3, 5, 5, 5 ] )> ]
309
+ gap> StructureDescriptionSchutzenbergerGroups(I);
310
+ [ "1", "C2", "S3" ]
311
+ gap> StructureDescriptionSchutzenbergerGroups(J);
312
+ [ "1", "C2", "S3" ]
313
+ gap> StructureDescriptionMaximalSubgroups(J);
314
+ [ "1", "C2", "S3" ]
315
+ gap> StructureDescriptionMaximalSubgroups(I);
316
+ [ "1", "C2", "S3" ]
317
+ gap> GroupOfUnits(I);
318
+ fail
319
+ gap> GroupOfUnits(J);
320
+ fail
321
+ gap> IdempotentGeneratedSubsemigroup(I);;
322
+ gap> IdempotentGeneratedSubsemigroup(J);;
323
+ gap> last = last2;
324
+ true
325
+ gap> x := Transformation([5, 5, 1, 4, 1, 1]);;
326
+ gap> x in I;
327
+ true
328
+ gap> x in J;
329
+ true
330
+ gap> Length(InversesOfSemigroupElement(I, x)) = 84;
331
+ true
332
+ gap> Set(InversesOfSemigroupElement(J, x)) =
333
+ > Set(InversesOfSemigroupElement(I, x));
334
+ true
335
+ gap> MultiplicativeNeutralElement(I);
336
+ fail
337
+ gap> MultiplicativeNeutralElement(J);
338
+ fail
339
+ gap> MultiplicativeNeutralElement(I);
340
+ fail
341
+ gap> MultiplicativeNeutralElement(J);
342
+ fail
343
+ gap> MultiplicativeZero(I);
344
+ fail
345
+ gap> MultiplicativeZero(J);
346
+ fail
347
+ gap> MinimalIdeal(I);
348
+ <simple transformation semigroup ideal of degree 6 with 1 generator>
349
+ gap> MinimalIdeal(J);
350
+ <simple transformation semigroup ideal of degree 6 with 1 generator>
351
+ gap> last = last2;
352
+ true
353
+ gap> MinimalDClass(I);
354
+ <Green's D-class: Transformation( [ 5, 5, 5, 5, 5, 5 ] )>
355
+ gap> MinimalDClass(J);
356
+ <Green's D-class: Transformation( [ 5, 5, 5, 5, 5, 5 ] )>
357
+
358
+ # IdealsTest8: attributes
359
+ gap> S := InverseSemigroup(
360
+ > PartialPerm([1, 2, 3, 5, 6, 7, 8], [5, 9, 10, 6, 3, 8, 4]),
361
+ > PartialPerm([1, 2, 3, 4, 5, 6, 8], [6, 2, 8, 4, 7, 5, 3]),
362
+ > PartialPerm([1, 2, 4, 6, 8, 9], [7, 10, 1, 9, 4, 2]),
363
+ > PartialPerm([1, 2, 4, 7, 8, 9], [10, 7, 8, 5, 9, 1]),
364
+ > PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
365
+ > PartialPerm([1, 2, 3, 4, 5, 8, 10], [3, 1, 4, 2, 5, 6, 7]),
366
+ > PartialPerm([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6]),
367
+ > PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 7, 6, 9, 10, 1, 3, 2]),
368
+ > PartialPerm([1, 2, 4, 5, 8, 10], [6, 2, 7, 8, 10, 4]),
369
+ > PartialPerm([1, 2, 3, 4, 5, 8, 10], [7, 1, 4, 3, 2, 6, 5]));;
370
+ gap> K := SemigroupIdeal(S, S.1 * S.2 ^ 2 * S.8);
371
+ <inverse partial perm semigroup ideal of rank 10 with 1 generator>
372
+ gap> MaximalDClasses(K);
373
+ [ <Green's D-class: <identity partial perm on [ 3, 6, 9 ]>> ]
374
+ gap> StructureDescriptionMaximalSubgroups(K);
375
+ [ "1", "C2", "S3" ]
376
+ gap> StructureDescriptionSchutzenbergerGroups(K);
377
+ [ "1", "C2", "S3" ]
378
+ gap> GroupOfUnits(K);
379
+ fail
380
+ gap> Size(IdempotentGeneratedSubsemigroup(K));
381
+ 176
382
+ gap> x := PartialPerm([2, 4, 6, 8, 9], [10, 1, 9, 4, 2]);;
383
+ gap> x in K;
384
+ false
385
+ gap> x := PartialPerm([9], [9]);;
386
+ gap> x in K;
387
+ true
388
+ gap> InversesOfSemigroupElement(K, x);
389
+ [ <identity partial perm on [ 9 ]> ]
390
+ gap> MultiplicativeZero(K);
391
+ <empty partial perm>
392
+ gap> MultiplicativeNeutralElement(K);
393
+ fail
394
+ gap> MinimalIdeal(K);
395
+ <partial perm group of rank 0>
396
+ gap> MinimalDClass(K);
397
+ <Green's D-class: <empty partial perm>>
398
+ gap> I := MinimalIdeal(K);
399
+ <partial perm group of rank 0>
400
+ gap> x := IsomorphismPermGroup(I);;
401
+ gap> IsTrivial(Range(x));
402
+ true
403
+
404
+ # IdealsTest9: attributes.gi
405
+ gap> S := Monoid(Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
406
+ > Transformation([3, 8, 1, 4, 5, 6, 7, 1]),
407
+ > Transformation([4, 3, 2, 7, 7, 6, 6, 5]),
408
+ > Transformation([7, 1, 7, 4, 2, 5, 6, 3]));;
409
+ gap> L := SemigroupIdeal(S, GeneratorsOfSemigroup(S));
410
+ <non-regular transformation semigroup ideal of degree 8 with 5 generators>
411
+ gap> Length(MaximalDClasses(L));
412
+ 1
413
+ gap> L = S;
414
+ true
415
+ gap> MaximalDClasses(L);
416
+ [ <Green's D-class: IdentityTransformation> ]
417
+ gap> StructureDescriptionSchutzenbergerGroups(L);
418
+ [ "1", "C2", "C4", "C5", "S3", "S4" ]
419
+ gap> StructureDescriptionMaximalSubgroups(L);
420
+ [ "1", "C2", "C4", "C5", "S3", "S4" ]
421
+ gap> GroupOfUnits(L);
422
+ <trivial transformation group of degree 0 with 1 generator>
423
+ gap> IdempotentGeneratedSubsemigroup(L);;
424
+ gap> x := Transformation([1, 4, 4, 5, 5, 3, 3, 1]);;
425
+ gap> InversesOfSemigroupElement(L, x);
426
+ [ ]
427
+ gap> InversesOfSemigroupElement(S, x);
428
+ [ ]
429
+ gap> MultiplicativeNeutralElement(L);
430
+ IdentityTransformation
431
+ gap> MultiplicativeZero(L);
432
+ fail
433
+ gap> MinimalIdeal(L);
434
+ <simple transformation semigroup ideal of degree 8 with 1 generator>
435
+ gap> L := SemigroupIdeal(S, GeneratorsOfSemigroup(S));
436
+ <non-regular transformation semigroup ideal of degree 8 with 5 generators>
437
+ gap> MinimalIdeal(J);
438
+ <simple transformation semigroup ideal of size 6, degree 6 with 1 generator>
439
+ gap> MinimalIdeal(L);
440
+ <simple transformation semigroup ideal of degree 8 with 1 generator>
441
+ gap> MinimalDClass(L);
442
+ <Green's D-class: Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1 ] )>
443
+ gap> MinimalDClass(S);
444
+ <Green's D-class: Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1 ] )>
445
+
446
+ # IdealsTest10
447
+ gap> R := Semigroup([
448
+ > Bipartition([[1, 2, 3, 5, -3], [4, 6, 7, -5], [-1], [-2, -4, -7],
449
+ > [-6]]),
450
+ > Bipartition([[1, 2, 6, -5], [3], [4, 5, -2], [7, -1, -3, -4, -7],
451
+ > [-6]]),
452
+ > Bipartition([[1, 3, 4, 5, -2, -3, -5], [2, 6, -1, -6, -7], [7],
453
+ > [-4]]),
454
+ > Bipartition([[1, 3, 4, 6, -7], [2, 5, -1, -5], [7, -2, -3, -4],
455
+ > [-6]]),
456
+ > Bipartition([[1, 3], [2, 5, 6, -1, -2, -3], [4, 7, -4, -7], [-5],
457
+ > [-6]]),
458
+ > Bipartition([[1, 4, 5, -1, -2, -4, -6], [2, 3, 7, -3, -5, -7], [6]]),
459
+ > Bipartition([[1, -1, -4], [2, 3, 4, 5, 6, 7, -2, -6], [-3, -5, -7]]),
460
+ > Bipartition([[1, 7, -6], [2, 3, 4, 5, -1, -2, -4], [6, -3, -5],
461
+ > [-7]]),
462
+ > Bipartition([[1, 5, -2, -7], [2, 3, 6, -4], [4, -1, -5, -6], [7],
463
+ > [-3]]),
464
+ > Bipartition([[1, -3, -4], [2], [3, 7, -1, -7], [4, 5, -6],
465
+ > [6, -5], [-2]])]);;
466
+ gap> gens := [
467
+ > Bipartition([[1, 2, 3, 5, -3], [4, 6, 7, -5], [-1],
468
+ > [-2, -4, -7], [-6]]),
469
+ > Bipartition([[1, 2, 6, -5], [3], [4, 5, -2], [7, -1, -3, -4, -7],
470
+ > [-6]]),
471
+ > Bipartition([[1, 3], [2, 5, 6, -1, -2, -3], [4, 7, -4, -7], [-5],
472
+ > [-6]]),
473
+ > Bipartition([[1, -3, -4], [2], [3, 7, -1, -7], [4, 5, -6],
474
+ > [6, -5], [-2]])];;
475
+ gap> M := SemigroupIdeal(R, gens);
476
+ <non-regular bipartition semigroup ideal of degree 7 with 4 generators>
477
+ gap> Length(MaximalDClasses(M));
478
+ 10
479
+ gap> Length(GeneratorsOfSemigroup(M)) < 100;
480
+ true
481
+ gap> StructureDescriptionSchutzenbergerGroups(M);
482
+ [ "1" ]
483
+ gap> StructureDescriptionMaximalSubgroups(M);
484
+ [ "1" ]
485
+ gap> Size(IdempotentGeneratedSubsemigroup(M));
486
+ 1441
487
+ gap> GroupOfUnits(M);
488
+ fail
489
+ gap> x := Bipartition([[1, 2, 3, 4, 5, 6, 7, -3, -5], [-1],
490
+ > [-2, -4, -7], [-6]]);;
491
+ gap> x in M;
492
+ true
493
+ gap> Length(InversesOfSemigroupElement(M, x));
494
+ 875
495
+ gap> ForAll(InversesOfSemigroupElement(M, x), y -> y in M);
496
+ true
497
+ gap> MultiplicativeNeutralElement(M);
498
+ fail
499
+ gap> MultiplicativeZero(M);
500
+ fail
501
+ gap> MinimalIdeal(M);
502
+ <simple bipartition semigroup ideal of degree 7 with 1 generator>
503
+ gap> MinimalDClass(M) = DClass(M, Bipartition([[1, 2, 3, 4, 5, 6, 7], [-1],
504
+ > [-2, -4, -7], [-3, -5], [-6]]));
505
+ true
506
+ gap> MinimalDClass(R);
507
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, 6, 7 ],
508
+ [ -1, -2, -3, -4, -5, -7 ], [ -6 ]>>
509
+
510
+ # IdealsTest11: greens.gi for ideals
511
+ gap> S := Semigroup([Transformation([1, 2, 6, 6, 5, 5]),
512
+ > Transformation([2, 3, 1, 3, 6, 5]),
513
+ > Transformation([3, 4, 6, 3, 2, 1]),
514
+ > Transformation([3, 6, 6, 4, 5, 6]),
515
+ > Transformation([4, 5, 2, 1, 6, 5]),
516
+ > Transformation([4, 6, 4, 2, 5, 2]),
517
+ > Transformation([5, 3, 2, 1, 2, 1]),
518
+ > Transformation([6, 5, 2, 4, 4, 1])]);
519
+ <transformation semigroup of degree 6 with 8 generators>
520
+ gap> gensI := [Transformation([4, 5, 2, 1, 6, 5]),
521
+ > Transformation([5, 2, 6, 2, 1, 4]),
522
+ > Transformation([3, 4, 6, 3, 2, 1])];;
523
+ gap> gensJ := [Transformation([1, 2, 6, 6, 5, 5])];;
524
+ gap> I := SemigroupIdeal(S, gensI);
525
+ <non-regular transformation semigroup ideal of degree 6 with 3 generators>
526
+ gap> J := SemigroupIdeal(S, gensJ);
527
+ <regular transformation semigroup ideal of degree 6 with 1 generator>
528
+ gap> T := Semigroup([PartialPerm([1, 2, 3, 4, 5], [1, 2, 6, 4, 5]),
529
+ > PartialPerm([2, 3, 4, 5, 6], [2, 1, 6, 4, 5]),
530
+ > PartialPerm([1, 2, 3, 4, 5], [3, 5, 4, 6, 2]),
531
+ > PartialPerm([1, 2, 4, 5, 6], [6, 2, 3, 1, 5]),
532
+ > PartialPerm([1, 3, 4, 5, 6], [2, 1, 4, 3, 5]),
533
+ > PartialPerm([1, 2, 5, 6], [4, 5, 2, 1]),
534
+ > PartialPerm([2, 4, 5, 6], [4, 6, 3, 2]),
535
+ > PartialPerm([2, 3, 4, 5], [6, 3, 4, 5]),
536
+ > PartialPerm([2, 3, 4, 6], [5, 3, 2, 4])]);
537
+ <partial perm semigroup of rank 6 with 9 generators>
538
+ gap> gensK := [
539
+ > PartialPerm([2, 5, 6], [6, 4, 5]),
540
+ > PartialPerm([1, 2, 4, 6], [2, 3, 6, 1]),
541
+ > PartialPerm([1, 2, 3, 5], [4, 5, 1, 2]),
542
+ > PartialPerm([1, 2, 5, 6], [5, 2, 6, 1])];;
543
+ gap> K := SemigroupIdeal(T, gensK);
544
+ <non-regular partial perm semigroup ideal of rank 6 with 4 generators>
545
+ gap> R := Semigroup([Bipartition([[1, 2, 3, 5, -3], [4, 6, 7, -5], [-1],
546
+ > [-2, -4, -7], [-6]]),
547
+ > Bipartition([[1, 2, 6, -5], [3], [4, 5, -2], [7, -1, -3, -4, -7],
548
+ > [-6]]),
549
+ > Bipartition([[1, 3, 4, 5, -2, -3, -5], [2, 6, -1, -6, -7], [7],
550
+ > [-4]]),
551
+ > Bipartition([[1, 3, 4, 6, -7], [2, 5, -1, -5], [7, -2, -3, -4],
552
+ > [-6]]),
553
+ > Bipartition([[1, 3], [2, 5, 6, -1, -2, -3], [4, 7, -4, -7], [-5],
554
+ > [-6]]), Bipartition([[1, 4, 5, -1, -2, -4, -6],
555
+ > [2, 3, 7, -3, -5, -7], [6]]),
556
+ > Bipartition([[1, -1, -4], [2, 3, 4, 5, 6, 7, -2, -6],
557
+ > [-3, -5, -7]]),
558
+ > Bipartition([[1, 7, -6], [2, 3, 4, 5, -1, -2, -4], [6, -3, -5],
559
+ > [-7]]),
560
+ > Bipartition([[1, 5, -2, -7], [2, 3, 6, -4], [4, -1, -5, -6], [7],
561
+ > [-3]]),
562
+ > Bipartition([[1, -3, -4], [2], [3, 7, -1, -7], [4, 5, -6], [6, -5],
563
+ > [-2]])]);
564
+ <bipartition semigroup of degree 7 with 10 generators>
565
+ gap> gensL :=
566
+ > [Bipartition([[1, 2, 3, 5, -3], [4, 6, 7, -5], [-1], [-2, -4, -7],
567
+ > [-6]]),
568
+ > Bipartition([[1, 2, 6, -5], [3], [4, 5, -2], [7, -1, -3, -4, -7],
569
+ > [-6]]),
570
+ > Bipartition([[1, 3], [2, 5, 6, -1, -2, -3], [4, 7, -4, -7], [-5],
571
+ > [-6]]),
572
+ > Bipartition([[1, -3, -4], [2], [3, 7, -1, -7], [4, 5, -6], [6, -5], [-2]])];;
573
+ gap> L := SemigroupIdeal(R, gensL);
574
+ <non-regular bipartition semigroup ideal of degree 7 with 4 generators>
575
+ gap> U := Semigroup([Transformation([1, 3, 2, 2, 4, 5]),
576
+ > Transformation([1, 5, 6, 6, 2, 5]),
577
+ > Transformation([1, 6, 4, 6, 3, 1]),
578
+ > Transformation([2, 1, 3, 3, 5, 2]),
579
+ > Transformation([2, 1, 5, 1, 2, 3]),
580
+ > Transformation([3, 3, 1, 5, 1, 1]),
581
+ > Transformation([4, 4, 4, 3, 3, 5]),
582
+ > Transformation([4, 4, 6, 3, 5, 6]),
583
+ > Transformation([5, 3, 3, 6, 2, 4]),
584
+ > Transformation([6, 4, 4, 6, 3, 2])]);
585
+ <transformation semigroup of degree 6 with 10 generators>
586
+ gap> A := SemigroupIdeal(U, Transformation([5, 3, 3, 6, 2, 4]));
587
+ <non-regular transformation semigroup ideal of degree 6 with 1 generator>
588
+ gap> B := SemigroupIdeal(U, Transformation([6, 4, 4, 6, 3, 2]));
589
+ <non-regular transformation semigroup ideal of degree 6 with 1 generator>
590
+ gap> C := SemigroupIdeal(U, Transformation([3, 3, 1, 5, 1, 1]));
591
+ <regular transformation semigroup ideal of degree 6 with 1 generator>
592
+ gap> ideals := [A, B, C, I, J, K, L];;
593
+
594
+ # IdealsTest12: GreensXClasses
595
+ gap> GreensDClasses(I);
596
+ [ <Green's D-class: Transformation( [ 4, 5, 2, 1, 6, 5 ] )>,
597
+ <Green's D-class: Transformation( [ 5, 2, 6, 2, 1, 4 ] )>,
598
+ <Green's D-class: Transformation( [ 3, 4, 6, 3, 2, 1 ] )>,
599
+ <Green's D-class: Transformation( [ 1, 6, 5, 4, 5, 6 ] )>,
600
+ <Green's D-class: Transformation( [ 5, 5, 1, 5, 5, 2 ] )>,
601
+ <Green's D-class: Transformation( [ 2, 2, 2, 2, 6, 2 ] )>,
602
+ <Green's D-class: Transformation( [ 5, 5, 5, 5, 5, 5 ] )>,
603
+ <Green's D-class: Transformation( [ 6, 5, 2, 5, 4, 1 ] )>,
604
+ <Green's D-class: Transformation( [ 2, 6, 5, 6, 1, 4 ] )>,
605
+ <Green's D-class: Transformation( [ 6, 5, 2, 5, 1, 4 ] )>,
606
+ <Green's D-class: Transformation( [ 2, 6, 5, 6, 4, 1 ] )>,
607
+ <Green's D-class: Transformation( [ 5, 2, 6, 2, 4, 1 ] )>,
608
+ <Green's D-class: Transformation( [ 3, 4, 6, 4, 2, 1 ] )>,
609
+ <Green's D-class: Transformation( [ 4, 6, 3, 6, 1, 2 ] )>,
610
+ <Green's D-class: Transformation( [ 3, 4, 6, 4, 1, 2 ] )>,
611
+ <Green's D-class: Transformation( [ 4, 6, 3, 6, 2, 1 ] )>,
612
+ <Green's D-class: Transformation( [ 6, 3, 4, 3, 1, 2 ] )>,
613
+ <Green's D-class: Transformation( [ 6, 3, 4, 3, 2, 1 ] )>,
614
+ <Green's D-class: Transformation( [ 2, 4, 1, 2 ] )>,
615
+ <Green's D-class: Transformation( [ 2, 4, 1, 4, 6, 5 ] )>,
616
+ <Green's D-class: Transformation( [ 2, 4, 1, 4 ] )>,
617
+ <Green's D-class: Transformation( [ 4, 1, 2, 1 ] )>,
618
+ <Green's D-class: Transformation( [ 4, 1, 2, 1, 6, 5 ] )>,
619
+ <Green's D-class: Transformation( [ 1, 2, 4, 2 ] )>,
620
+ <Green's D-class: Transformation( [ 1, 2, 4, 2, 6, 5 ] )> ]
621
+ gap> Number(GreensDClasses(I), IsRegularGreensClass);
622
+ 4
623
+ gap> I := SemigroupIdeal(S, gensI);;
624
+ gap> NrRegularDClasses(I);
625
+ 4
626
+ gap> GreensDClasses(J);
627
+ [ <Green's D-class: Transformation( [ 1, 2, 6, 6, 5, 5 ] )>,
628
+ <Green's D-class: Transformation( [ 1, 2, 5, 5, 5, 5 ] )>,
629
+ <Green's D-class: Transformation( [ 6, 5, 5, 5, 5, 5 ] )>,
630
+ <Green's D-class: Transformation( [ 6, 6, 6, 6, 6, 6 ] )> ]
631
+ gap> Number(GreensDClasses(J), IsRegularGreensClass);
632
+ 4
633
+ gap> J := SemigroupIdeal(S, gensJ);;
634
+ gap> NrRegularDClasses(J);
635
+ 4
636
+ gap> Size(GreensDClasses(K));
637
+ 735
638
+ gap> Number(GreensDClasses(K), IsRegularGreensClass);
639
+ 5
640
+ gap> K := SemigroupIdeal(T, gensK);;
641
+ gap> NrRegularDClasses(K);
642
+ 5
643
+ gap> Size(GreensHClasses(I));
644
+ 2347
645
+ gap> Size(GreensLClasses(I));
646
+ 75
647
+ gap> GreensLClasses(I){[51 .. 60]};
648
+ [ <Green's L-class: Transformation( [ 3, 3, 5, 3, 3, 3 ] )>,
649
+ <Green's L-class: Transformation( [ 5, 5, 5, 5, 5, 5 ] )>,
650
+ <Green's L-class: Transformation( [ 6, 6, 6, 6, 6, 6 ] )>,
651
+ <Green's L-class: Transformation( [ 1, 1, 1, 1, 1, 1 ] )>,
652
+ <Green's L-class: Transformation( [ 2, 2, 2, 2, 2, 2 ] )>,
653
+ <Green's L-class: Transformation( [ 3, 3, 3, 3, 3, 3 ] )>,
654
+ <Green's L-class: Transformation( [ 4, 4, 4, 4, 4, 4 ] )>,
655
+ <Green's L-class: Transformation( [ 6, 5, 2, 5, 1, 4 ] )>,
656
+ <Green's L-class: Transformation( [ 2, 6, 5, 6, 1, 4 ] )>,
657
+ <Green's L-class: Transformation( [ 5, 2, 6, 2, 4, 1 ] )> ]
658
+ gap> Size(GreensRClasses(I));
659
+ 156
660
+ gap> Size(GreensHClasses(J));
661
+ 2326
662
+ gap> Size(GreensLClasses(J));
663
+ 54
664
+ gap> Size(GreensRClasses(J));
665
+ 135
666
+ gap> GreensRClasses(J){[97 .. 103]};
667
+ [ <Green's R-class: Transformation( [ 5, 1, 2, 2, 2, 5 ] )>,
668
+ <Green's R-class: Transformation( [ 5, 2, 1, 5, 5, 5 ] )>,
669
+ <Green's R-class: Transformation( [ 1, 2, 5, 2, 5, 5 ] )>,
670
+ <Green's R-class: Transformation( [ 2, 5, 1, 5, 2, 5 ] )>,
671
+ <Green's R-class: Transformation( [ 2, 1, 2, 5, 2, 1 ] )>,
672
+ <Green's R-class: Transformation( [ 1, 2, 5, 1, 1, 5 ] )>,
673
+ <Green's R-class: Transformation( [ 5, 2, 5, 2, 1, 5 ] )> ]
674
+ gap> Size(GreensHClasses(K));
675
+ 1555
676
+ gap> GreensHClasses(K){[1337 .. 1342]};
677
+ [ <Green's H-class: [3,1](2)(4)(5)>, <Green's H-class: [3,2](1,4)(5)>,
678
+ <Green's H-class: [6,2](1,5,4)>, <Green's H-class: [3,4,5,1][6,2]>,
679
+ <Green's H-class: [3,4][6,2](1)(5)>, <Green's H-class: [3,4,5][6,1](2)> ]
680
+ gap> Size(GreensLClasses(K));
681
+ 917
682
+ gap> Size(GreensRClasses(K));
683
+ 791
684
+
685
+ # IdealsTest13: XClassReps
686
+ gap> DClassReps(J);
687
+ [ Transformation( [ 1, 2, 6, 6, 5, 5 ] ),
688
+ Transformation( [ 1, 2, 5, 5, 5, 5 ] ),
689
+ Transformation( [ 6, 5, 5, 5, 5, 5 ] ),
690
+ Transformation( [ 6, 6, 6, 6, 6, 6 ] ) ]
691
+ gap> LClassReps(L){[10 .. 20]};
692
+ [ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -2, -7 ], [ -1, -4, -5, -6 ], [ -3 ]>,
693
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -1, -7 ], [ -2 ], [ -3, -4, -5, -6 ]>,
694
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -1, -4, -5, -6 ], [ -2, -7 ], [ -3 ]>,
695
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -3, -4, -5, -6 ], [ -1, -7 ], [ -2 ]>,
696
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -1, -5 ], [ -2, -3, -4, -7 ], [ -6 ]>,
697
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -2, -4, -7 ], [ -1, -5, -6 ], [ -3 ]>,
698
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -2, -3, -5 ], [ -1, -6, -7 ], [ -4 ]>,
699
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -2, -6 ], [ -1, -4 ], [ -3, -5, -7 ]>,
700
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -5 ], [ -1, -3, -4, -6, -7 ], [ -2 ]>,
701
+ <block bijection: [ 1, 2, 3, 4, 5, 6, 7, -1, -2, -3, -4, -5, -6, -7 ]>,
702
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -1, -6, -7 ], [ -2, -3, -5 ], [ -4 ]> ]
703
+
704
+ # IdealsTest14: GreensXClassOfElement
705
+ gap> GreensDClassOfElement(I, Transformation([2, 2, 6, 2, 5, 5]));
706
+ <Green's D-class: Transformation( [ 2, 2, 6, 2, 5, 5 ] )>
707
+ gap> Transformation([5, 5, 2, 5, 5, 1]) in last;
708
+ true
709
+ gap> GreensDClassOfElement(J, Transformation([6, 6, 4, 2, 4, 2]));
710
+ <Green's D-class: Transformation( [ 6, 6, 4, 2, 4, 2 ] )>
711
+ gap> Transformation([2, 1, 5, 5, 5, 5]) in last;
712
+ true
713
+ gap> GreensDClassOfElement(K, PartialPerm([1, 4, 5, 6], [6, 2, 1, 3]));
714
+ <Green's D-class: [4,2][5,1,6,3]>
715
+ gap> GreensHClassOfElement(L, Bipartition([[1, 3, 4, 6, -3],
716
+ > [2, 5, 7], [-1], [-2, -4, -7], [-5], [-6]]));
717
+ <Green's H-class: <bipartition: [ 1, 3, 4, 6, -3 ], [ 2, 5, 7 ], [ -1 ],
718
+ [ -2, -4, -7 ], [ -5 ], [ -6 ]>>
719
+ gap> GreensLClassOfElement(A, Transformation([6, 3, 4, 4, 3, 2]));
720
+ <Green's L-class: Transformation( [ 6, 3, 4, 4, 3, 2 ] )>
721
+ gap> GreensRClassOfElement(B, Transformation([3, 4, 6, 6, 4, 2]));
722
+ <Green's R-class: Transformation( [ 3, 4, 6, 6, 4, 2 ] )>
723
+ gap> GreensHClassOfElement(C, Transformation([2, 2, 5, 2, 2, 1]));
724
+ <Green's H-class: Transformation( [ 2, 2, 5, 2, 2, 1 ] )>
725
+
726
+ # IdealsTest15: NrXClasses (Recreate objects)
727
+ gap> I := SemigroupIdeal(S, gensI);;
728
+ gap> J := SemigroupIdeal(S, gensJ);;
729
+ gap> K := SemigroupIdeal(T, gensK);;
730
+ gap> L := SemigroupIdeal(R, gensL);;
731
+ gap> A := SemigroupIdeal(U, Transformation([5, 3, 3, 6, 2, 4]));;
732
+ gap> B := SemigroupIdeal(U, Transformation([6, 4, 4, 6, 3, 2]));;
733
+ gap> C := SemigroupIdeal(U, Transformation([3, 3, 1, 5, 1, 1]));;
734
+ gap> ideals := [A, B, C, I, J, K, L];;
735
+ gap> List(ideals, NrDClasses);
736
+ [ 58, 269, 3, 25, 4, 735, 63 ]
737
+ gap> List(ideals, NrRClasses);
738
+ [ 623, 347, 81, 156, 135, 791, 120 ]
739
+ gap> List(ideals, NrLClasses);
740
+ [ 269, 307, 41, 75, 54, 917, 165 ]
741
+ gap> List(ideals, NrHClasses);
742
+ [ 2225, 1722, 1456, 2347, 2326, 1555, 1568 ]
743
+
744
+ # IdealsTest16: NrRegularDClasses
745
+ gap> List(ideals, NrRegularDClasses);
746
+ [ 4, 3, 3, 4, 4, 5, 4 ]
747
+
748
+ # IdealsTest17: Idempotents, (and with integer)
749
+ gap> L := SemigroupIdeal(R, gensL);;
750
+ gap> Idempotents(A){[444 .. 450]};
751
+ [ Transformation( [ 4, 4, 3, 4, 3, 3 ] ),
752
+ Transformation( [ 2, 2, 6, 2, 6, 6 ] ),
753
+ Transformation( [ 2, 2, 5, 2, 5, 5 ] ),
754
+ Transformation( [ 2, 2, 3, 2, 3, 3 ] ),
755
+ Transformation( [ 1, 1, 6, 1, 6, 6 ] ),
756
+ Transformation( [ 4, 4, 5, 4, 5, 5 ] ),
757
+ Transformation( [ 1, 1, 3, 1, 3, 3 ] ) ]
758
+ gap> Idempotents(B){[444 .. 450]};
759
+ [ Transformation( [ 1, 2, 6, 6, 6, 6 ] ),
760
+ Transformation( [ 1, 2, 5, 5, 5, 5 ] ),
761
+ Transformation( [ 1, 2, 3, 3, 3, 3 ] ),
762
+ Transformation( [ 1, 4, 4, 4, 6, 6 ] ),
763
+ Transformation( [ 1, 3, 3, 3, 6, 6 ] ),
764
+ Transformation( [ 1, 4, 4, 4, 5, 5 ] ),
765
+ Transformation( [ 1, 3, 3, 3, 5, 5 ] ) ]
766
+ gap> Idempotents(C){[444 .. 450]};
767
+ [ Transformation( [ 1, 6, 3, 6, 1, 6 ] ), Transformation( [ 1, 3, 3, 1, 3 ] ),
768
+ Transformation( [ 1, 3, 3, 1, 6, 6 ] ), Transformation( [ 1, 3, 3, 3, 1 ] ),
769
+ Transformation( [ 1, 3, 3, 3, 6, 6 ] ),
770
+ Transformation( [ 1, 3, 3, 6, 6, 6 ] ), Transformation( [ 1, 1, 3, 3, 3 ] )
771
+ ]
772
+ gap> Idempotents(C, 1);
773
+ [ Transformation( [ 4, 4, 4, 4, 4, 4 ] ),
774
+ Transformation( [ 2, 2, 2, 2, 2, 2 ] ),
775
+ Transformation( [ 6, 6, 6, 6, 6, 6 ] ),
776
+ Transformation( [ 3, 3, 3, 3, 3, 3 ] ),
777
+ Transformation( [ 1, 1, 1, 1, 1, 1 ] ),
778
+ Transformation( [ 5, 5, 5, 5, 5, 5 ] ) ]
779
+ gap> Idempotents(L, 2);
780
+ [ <bipartition: [ 1, 3 ], [ 2, 5, 6, -1, -2, -3 ], [ 4, 7, -4, -7 ], [ -5 ],
781
+ [ -6 ]>,
782
+ <bipartition: [ 1, 7, -1, -7 ], [ 2, 3, 4, 5, 6, -3, -4, -5, -6 ], [ -2 ]>,
783
+ <bipartition: [ 1, 4, 5, 6, -1, -4, -5, -6 ], [ 2 ], [ 3, 7, -2, -7 ],
784
+ [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -2, -3, -4, -5 ], [ 2 ],
785
+ [ 6, -6 ], [ -7 ]>,
786
+ <bipartition: [ 1, 3, 4, 6 ], [ 2, 5, -5 ], [ 7, -1, -3, -4, -6, -7 ],
787
+ [ -2 ]>, <bipartition: [ 1, 5, -1, -5 ], [ 2, 3, 4, 6, -2, -3, -4, -7 ],
788
+ [ 7 ], [ -6 ]> ]
789
+
790
+ # IdealsTest18: NrIdempotents
791
+ gap> List(ideals, NrIdempotents);
792
+ [ 547, 528, 528, 774, 774, 43, 1406 ]
793
+ gap> List(ideals, i -> Size(Idempotents(i)));
794
+ [ 547, 528, 528, 774, 774, 43, 1406 ]
795
+
796
+ # IdealsTest19: PartialOrderOfDClasses
797
+ gap> PartialOrderOfDClasses(K);
798
+ <immutable digraph with 735 vertices, 6707 edges>
799
+ gap> PartialOrderOfDClasses(I);
800
+ <immutable digraph with 25 vertices, 69 edges>
801
+ gap> PartialOrderOfDClasses(J);
802
+ <immutable digraph with 4 vertices, 5 edges>
803
+ gap> PartialOrderOfDClasses(A);
804
+ <immutable digraph with 58 vertices, 216 edges>
805
+ gap> PartialOrderOfDClasses(B);
806
+ <immutable digraph with 269 vertices, 801 edges>
807
+ gap> PartialOrderOfDClasses(C);
808
+ <immutable digraph with 3 vertices, 3 edges>
809
+
810
+ # IdealsTest20: Check that sizes were correct
811
+ gap> List(ideals, Size);
812
+ [ 9285, 7172, 6906, 19167, 19146, 3782, 1568 ]
813
+
814
+ # IdealsTest21
815
+ # this example caused a seg fault before changeset 34d25659aa72
816
+ gap> S := InverseSemigroup([
817
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
818
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
819
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
820
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
821
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);
822
+ <inverse partial perm semigroup of rank 7 with 5 generators>
823
+ gap> I := SemigroupIdeal(S, PartialPerm([1, 3, 4, 5, 7], [1, 3, 4, 5, 7]));
824
+ <inverse partial perm semigroup ideal of rank 7 with 1 generator>
825
+ gap> GeneratorsOfSemigroup(I);;
826
+
827
+ # IdealsTest22
828
+ # test for \in method from idealact.gi (only applies to ideals that know
829
+ # apriori that they are regular) which partially enumerates the semigroup ideal
830
+ # data
831
+ gap> S := RegularSemigroup(FullTransformationMonoid(6));;
832
+ gap> x := Transformation([6, 5, 1, 5, 1, 2]);;
833
+ gap> I := SemigroupIdeal(S, x);
834
+ <regular transformation semigroup ideal of degree 6 with 1 generator>
835
+ gap> x := Transformation([2, 2, 4, 4, 2, 2]);;
836
+ gap> x in I;
837
+ true
838
+ gap> IsClosedData(SemigroupData(I));
839
+ false
840
+ gap> Size(I);
841
+ 35136
842
+ gap> Size(SemigroupIdeal(S, I));
843
+ 35136
844
+
845
+ # IdealsTest23: IsomorphismPermGroup
846
+ # for an ideal which happens to be a group...
847
+ gap> S := FullTransformationSemigroup(6);;
848
+ gap> S := Semigroup(GroupOfUnits(S));;
849
+ gap> I := SemigroupIdeal(S, S);;
850
+ gap> x := IsomorphismPermGroup(I);;
851
+ gap> Source(x) = I;
852
+ true
853
+ gap> Range(x);
854
+ Group([ (1,2,3,4,5,6), (1,2) ])
855
+
856
+ #
857
+ gap> SEMIGROUPS.StopTest();
858
+ gap> STOP_TEST("Semigroups package: extreme/ideals.tst");