passagemath-gap-pkg-semigroups 10.6.30__cp312-abi3-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1158 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,311 @@
1
+ #############################################################################
2
+ ##
3
+ #W standard/congruences/congsimple.tst
4
+ #Y Copyright (C) 2014-2022 Michael Young
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local C, S, T, acting, classes, classx, classy, classz, cong, cong1, cong2
12
+ #@local congs, elms, i, j, map, x, y, z
13
+ gap> START_TEST("Semigroups package: standard/congruences/congsimple.tst");
14
+ gap> LoadPackage("semigroups", false);;
15
+
16
+ # Set info levels and user preferences
17
+ gap> SEMIGROUPS.StartTest();
18
+
19
+ # SimpleCongTest2: Find all congruences of a simple semigroup
20
+ gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
21
+ > Transformation([3, 4, 3, 4, 4]),
22
+ > Transformation([3, 4, 3, 4, 3]),
23
+ > Transformation([4, 3, 3, 4, 4])]);;
24
+ gap> congs := CongruencesOfSemigroup(S);;
25
+ gap> cong := SemigroupCongruence(S, [Transformation([2, 1, 1, 2, 1]),
26
+ > Transformation([1, 2, 2, 1, 2])]);;
27
+ gap> i := Positions(congs, cong);;
28
+ gap> Length(i) = 1;
29
+ true
30
+ gap> IsSimpleSemigroupCongruence(congs[i[1]]);
31
+ true
32
+ gap> Size(congs);
33
+ 34
34
+ gap> cong1 := SemigroupCongruence(S, [[Transformation([1, 2, 2, 1, 2]),
35
+ > Transformation([1, 2, 2, 1, 1])],
36
+ > [Transformation([4, 3, 3, 4, 3]),
37
+ > Transformation([4, 3, 3, 4, 4])]]);;
38
+ gap> cong2 := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 2]),
39
+ > Transformation([1, 2, 1, 2, 1])],
40
+ > [Transformation([1, 2, 2, 1, 2]),
41
+ > Transformation([1, 2, 2, 1, 1])]]);;
42
+ gap> i := Positions(congs, cong1);;
43
+ gap> j := Positions(congs, cong2);;
44
+ gap> Length(i) = 1 and Length(j) = 1;
45
+ true
46
+ gap> i := i[1];;
47
+ gap> j := j[1];;
48
+ gap> IsSubrelation(congs[i], congs[j]);
49
+ false
50
+
51
+ # SimpleCongTest3: Construct a congruence by generating pairs
52
+ gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
53
+ > Transformation([3, 4, 3, 4, 4]),
54
+ > Transformation([3, 4, 3, 4, 3]),
55
+ > Transformation([4, 3, 3, 4, 4])]);;
56
+ gap> congs := CongruencesOfSemigroup(S);;
57
+ gap> cong1 := SemigroupCongruence(S,
58
+ > [[Transformation([1, 2, 1, 2, 2]),
59
+ > Transformation([2, 1, 2, 1, 2])],
60
+ > [Transformation([2, 1, 1, 2, 2]),
61
+ > Transformation([1, 2, 2, 1, 2])]]);;
62
+ gap> i := Positions(congs, cong1);;
63
+ gap> Length(i) = 1;
64
+ true
65
+ gap> cong2 := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 2]),
66
+ > Transformation([1, 2, 1, 2, 1])],
67
+ > [Transformation([1, 2, 1, 2, 2]),
68
+ > Transformation([1, 2, 2, 1, 1])]]);;
69
+ gap> j := Positions(congs, cong2);;
70
+ gap> Length(j) = 1;
71
+ true
72
+ gap> i = j;
73
+ false
74
+ gap> congs[i[1]] = congs[j[1]];
75
+ false
76
+ gap> cong1 = cong2;
77
+ false
78
+ gap> EquivalenceRelationCanonicalLookup(cong1);
79
+ [ 1, 2, 2, 3, 1, 3, 3, 4, 4, 1, 4, 2, 4, 2, 1, 3 ]
80
+
81
+ # SimpleCongTest4: Testing membership in a congruence
82
+ gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
83
+ > Transformation([3, 4, 3, 4, 4]),
84
+ > Transformation([3, 4, 3, 4, 3]),
85
+ > Transformation([4, 3, 3, 4, 4])]);;
86
+ gap> IsSimpleSemigroup(S);
87
+ true
88
+ gap> cong := SemigroupCongruence(S,
89
+ > [[Transformation([1, 2, 1, 2, 2]),
90
+ > Transformation([2, 1, 2, 1, 2])],
91
+ > [Transformation([2, 1, 1, 2, 2]),
92
+ > Transformation([1, 2, 2, 1, 2])]]);;
93
+ gap> x := Transformation([1, 2, 2, 1, 1]);;
94
+ gap> y := Transformation([1, 2, 2, 1, 2]);;
95
+ gap> z := Transformation([2, 1, 2, 1, 1]);;
96
+ gap> [x, y] in cong;
97
+ true
98
+ gap> [x, z] in cong;
99
+ false
100
+ gap> [x, y, z] in cong;
101
+ Error, the 1st argument (a list) does not have length 2
102
+ gap> [Transformation([2, 1, 1, 2, 1]), Transformation([5, 2, 1, 2, 2])] in cong;
103
+ Error, the items in the 1st argument (a list) do not all belong to the range o\
104
+ f the 2nd argument (a 2-sided semigroup congruence)
105
+
106
+ # SimpleCongTest5: Congruence classes
107
+ gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
108
+ > Transformation([3, 4, 3, 4, 4]),
109
+ > Transformation([3, 4, 3, 4, 3]),
110
+ > Transformation([4, 3, 3, 4, 4])]);;
111
+ gap> IsSimpleSemigroup(S);
112
+ true
113
+ gap> cong := SemigroupCongruence(S,
114
+ > [[Transformation([1, 2, 1, 2, 2]),
115
+ > Transformation([2, 1, 2, 1, 2])],
116
+ > [Transformation([2, 1, 1, 2, 2]),
117
+ > Transformation([1, 2, 2, 1, 2])]]);;
118
+ gap> classes := EquivalenceClasses(cong);;
119
+ gap> Size(classes[1]);
120
+ 4
121
+ gap> Representative(classes[1]);
122
+ Transformation( [ 1, 2, 2, 1, 2 ] )
123
+ gap> Size(classes) = NrEquivalenceClasses(cong);
124
+ true
125
+ gap> EquivalenceClassOfElement(cong, PartialPerm([2], [3]));
126
+ Error, the 2nd argument (a mult. elt.) does not belong to the range of the 1st\
127
+ argument (a 2-sided congruence)
128
+ gap> classx := EquivalenceClassOfElement(cong, x);;
129
+ gap> classy := EquivalenceClassOfElement(cong, y);;
130
+ gap> classz := EquivalenceClassOfElement(cong, z);
131
+ <2-sided congruence class of Transformation( [ 2, 1, 2, 1, 1 ] )>
132
+ gap> elms := ImagesElm(cong, x);
133
+ [ Transformation( [ 1, 2, 2, 1, 2 ] ), Transformation( [ 2, 1, 1, 2, 1 ] ),
134
+ Transformation( [ 1, 2, 2, 1, 1 ] ), Transformation( [ 2, 1, 1, 2, 2 ] ) ]
135
+ gap> ForAll(elms, elm -> elm in classx);
136
+ true
137
+ gap> Enumerator(classx);
138
+ [ Transformation( [ 1, 2, 2, 1, 2 ] ), Transformation( [ 2, 1, 1, 2, 1 ] ),
139
+ Transformation( [ 1, 2, 2, 1, 1 ] ), Transformation( [ 2, 1, 1, 2, 2 ] ) ]
140
+ gap> classx = classy;
141
+ true
142
+ gap> classz = classx;
143
+ false
144
+ gap> x in classx;
145
+ true
146
+ gap> y in classx;
147
+ true
148
+ gap> x in classz;
149
+ false
150
+ gap> classx = classes[1];
151
+ true
152
+ gap> z * y in classz * classy;
153
+ true
154
+ gap> y * z in classx * classz;
155
+ true
156
+ gap> x * z in classz * classx;
157
+ false
158
+ gap> Size(classx);
159
+ 4
160
+ gap> Representative(classx);
161
+ Transformation( [ 1, 2, 2, 1, 1 ] )
162
+
163
+ # SimpleCongTest6: Join and meet congruences
164
+ gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
165
+ > Transformation([3, 4, 3, 4, 4]),
166
+ > Transformation([3, 4, 3, 4, 3]),
167
+ > Transformation([4, 3, 3, 4, 4])]);;
168
+ gap> IsSimpleSemigroup(S);
169
+ true
170
+ gap> congs := [];;
171
+ gap> congs[1] := SemigroupCongruence(S, []);;
172
+ gap> congs[2] := SemigroupCongruence(S, [Transformation([1, 2, 1, 2, 1]),
173
+ > Transformation([3, 4, 3, 4, 3])]);;
174
+ gap> congs[3] := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 2]),
175
+ > Transformation([1, 2, 1, 2, 1])],
176
+ > [Transformation([1, 2, 1, 2, 2]),
177
+ > Transformation([1, 2, 2, 1, 1])]]);;
178
+ gap> congs[4] := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 1]),
179
+ > Transformation([3, 4, 3, 4, 3])],
180
+ > [Transformation([1, 2, 1, 2, 2]),
181
+ > Transformation([1, 2, 1, 2, 1])],
182
+ > [Transformation([1, 2, 1, 2, 2]),
183
+ > Transformation([1, 2, 2, 1, 1])]]);;
184
+ gap> congs[5] := SemigroupCongruence(S, [Transformation([1, 2, 2, 1, 2]),
185
+ > Transformation([1, 2, 1, 2, 2])]);;
186
+ gap> congs[6] := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 1]),
187
+ > Transformation([1, 2, 2, 1, 1])],
188
+ > [Transformation([1, 2, 1, 2, 1]),
189
+ > Transformation([3, 4, 3, 4, 3])],
190
+ > [Transformation([1, 2, 2, 1, 2]),
191
+ > Transformation([1, 2, 1, 2, 2])]]);;
192
+ gap> congs[7] := UniversalSemigroupCongruence(S);;
193
+ gap> congs[8] := SemigroupCongruence(S, [[Transformation([1, 2, 1, 2, 1]),
194
+ > Transformation([3, 4, 3, 4, 3])],
195
+ > [Transformation([1, 2, 1, 2, 2]),
196
+ > Transformation([1, 2, 1, 2, 1])],
197
+ > [Transformation([1, 2, 2, 1, 2]),
198
+ > Transformation([1, 2, 2, 1, 1])]]);;
199
+ gap> JoinSemigroupCongruences(congs[2], congs[3]) = congs[4];
200
+ true
201
+ gap> JoinSemigroupCongruences(congs[6], congs[3]) = congs[7];
202
+ true
203
+ gap> JoinSemigroupCongruences(congs[6], congs[4]) = congs[7];
204
+ true
205
+ gap> MeetSemigroupCongruences(congs[5], congs[1]) = congs[1];
206
+ true
207
+ gap> IsSubrelation(congs[5], congs[1]);
208
+ true
209
+ gap> MeetSemigroupCongruences(congs[8], congs[8]) = congs[8];
210
+ true
211
+ gap> JoinSemigroupCongruences(congs[8], congs[8]) = congs[8];
212
+ true
213
+
214
+ # SimpleCongTest7: Quotients
215
+ gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
216
+ > Transformation([3, 4, 3, 4, 4]),
217
+ > Transformation([3, 4, 3, 4, 3]),
218
+ > Transformation([4, 3, 3, 4, 4])]);;
219
+ gap> IsSimpleSemigroup(S);
220
+ true
221
+ gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1, 2, 2]),
222
+ > Transformation([1, 2, 2, 1, 1])]);;
223
+ gap> Size(S / cong);
224
+ 6
225
+
226
+ # SimpleCongTest8
227
+ # Convert to and from semigroup congruence by generating pairs
228
+ gap> S := Semigroup([Transformation([2, 1, 1, 2, 1]),
229
+ > Transformation([3, 4, 3, 4, 4]),
230
+ > Transformation([3, 4, 3, 4, 3]),
231
+ > Transformation([4, 3, 3, 4, 4])]);;
232
+ gap> congs := CongruencesOfSemigroup(S);;
233
+ gap> ForAll(congs, cong ->
234
+ > cong = SemigroupCongruence(S, GeneratingPairsOfSemigroupCongruence(cong)));
235
+ true
236
+
237
+ # SimpleCongTest9: The universal congruence
238
+ gap> S := InverseSemigroup(PartialPerm([1], [2]), PartialPerm([2], [1]));
239
+ <inverse partial perm semigroup of rank 2 with 2 generators>
240
+ gap> IsZeroSimpleSemigroup(S);
241
+ true
242
+ gap> C := SemigroupCongruence(S, [S.1, S.1 * S.2]);;
243
+ gap> NrEquivalenceClasses(C);
244
+ 1
245
+
246
+ # Test with a 0-simple semigroup
247
+ gap> S := Semigroup([Transformation([3, 3, 3]), Transformation([4, 1, 1, 4])]);;
248
+ gap> IsRegularSemigroup(S);
249
+ true
250
+ gap> Size(CongruencesOfSemigroup(S));
251
+ 2
252
+
253
+ # Join/Meet: bad input
254
+ gap> S := Semigroup([Transformation([3, 3, 3]), Transformation([4, 1, 1, 4])]);;
255
+ gap> IsZeroSimpleSemigroup(S);
256
+ true
257
+ gap> IsRegularSemigroup(S);
258
+ true
259
+ gap> T := Semigroup([Transformation([2, 1, 1, 2, 1]),
260
+ > Transformation([3, 4, 3, 4, 4]),
261
+ > Transformation([3, 4, 3, 4, 3]),
262
+ > Transformation([4, 3, 3, 4, 4])]);;
263
+ gap> IsSimpleSemigroup(T);
264
+ true
265
+ gap> cong1 := SemigroupCongruence(T,
266
+ > [[Transformation([1, 2, 1, 2, 2]),
267
+ > Transformation([2, 1, 2, 1, 2])],
268
+ > [Transformation([2, 1, 1, 2, 2]),
269
+ > Transformation([1, 2, 2, 1, 2])]]);;
270
+ gap> cong2 := SemigroupCongruence(S, []);;
271
+ gap> MeetSemigroupCongruences(cong1, cong2);
272
+ Error, cannot form the meet of congruences over different semigroups
273
+ gap> JoinSemigroupCongruences(cong1, cong2);
274
+ Error, cannot form the join of congruences over different semigroups
275
+
276
+ # not simple or 0-simple: try next method
277
+ gap> S := OrderEndomorphisms(2);;
278
+ gap> IsSimpleSemigroup(S) or IsZeroSimpleSemigroup(S);
279
+ false
280
+ gap> congs := CongruencesOfSemigroup(S);;
281
+ gap> Size(congs);
282
+ 3
283
+
284
+ # ViewObj for a 0-simple semigroup congruence
285
+ gap> S := Semigroup([Transformation([3, 3, 3]), Transformation([4, 1, 1, 4])],
286
+ > rec(acting := true));;
287
+ gap> IsZeroSimpleSemigroup(S);
288
+ true
289
+ gap> C := SemigroupCongruence(S, [S.1, S.1 ^ 2]);
290
+ <semigroup congruence over <0-simple transformation semigroup of degree 4
291
+ with 2 generators> with linked triple (1,2,2)>
292
+
293
+ # SemigroupCongruenceByGeneratingPairs for free group
294
+ gap> SemigroupCongruenceByGeneratingPairs(FreeGroup(1), []);
295
+ <2-sided semigroup congruence over <free group on the generators [ f1 ]> with
296
+ 0 generating pairs>
297
+
298
+ # CongruenceByIsomorphism, error
299
+ gap> S := Semigroup([Transformation([3, 3, 3]), Transformation([4, 1, 1, 4])],
300
+ > rec(acting := true));;
301
+ gap> map := IsomorphismSemigroup(IsBooleanMatSemigroup, S);;
302
+ gap> C := SemigroupCongruence(S, [S.1, S.2]);
303
+ <universal semigroup congruence over <0-simple transformation semigroup of
304
+ degree 4 with 2 generators>>
305
+ gap> CongruenceByIsomorphism(map, C);
306
+ Error, the range of the 1st argument (a general mapping) is not equal to the r\
307
+ ange of the 2nd argument (a congruence)
308
+
309
+ #
310
+ gap> SEMIGROUPS.StopTest();
311
+ gap> STOP_TEST("Semigroups package: standard/congruences/congsimple.tst");
@@ -0,0 +1,259 @@
1
+ #############################################################################
2
+ ##
3
+ #W standard/congruences/conguniv.tst
4
+ #Y Copyright (C) 2015-2022 Michael Young
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local S, T, badcong, class, classes, cong, congs, otheruni, pairs, part, r
12
+ #@local uni, uniS, uniT
13
+ gap> START_TEST("Semigroups package: standard/congruences/conguniv.tst");
14
+ gap> LoadPackage("semigroups", false);;
15
+
16
+ # Set info levels and user preferences
17
+ gap> SEMIGROUPS.StartTest();
18
+
19
+ # CongUnivTest1: No zero, non-simple
20
+ gap> S := Semigroup([Transformation([1, 3, 4, 1, 3, 7, 5]),
21
+ > Transformation([5, 7, 1, 6, 1, 7, 6])]);;
22
+ gap> uni := UniversalSemigroupCongruence(S);
23
+ <universal semigroup congruence over <transformation semigroup of degree 7
24
+ with 2 generators>>
25
+ gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
26
+ gap> cong := SemigroupCongruence(S, pairs);;
27
+ gap> NrEquivalenceClasses(cong);
28
+ 1
29
+ gap> part := EquivalenceRelationPartition(uni);;
30
+ gap> Size(part);
31
+ 1
32
+ gap> Set(part[1]) = Elements(S);
33
+ true
34
+
35
+ # CongUnivTest2: Has zero, not 0-simple
36
+ gap> S := Semigroup([Transformation([2, 4, 3, 5, 5, 7, 1]),
37
+ > Transformation([6, 2, 3, 3, 1, 5])]);;
38
+ gap> uni := UniversalSemigroupCongruence(S);;
39
+ gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
40
+ gap> cong := SemigroupCongruence(S, pairs);;
41
+ gap> NrEquivalenceClasses(cong);
42
+ 1
43
+
44
+ # CongUnivTest3: Has zero, is 0-simple
45
+ gap> r := ReesZeroMatrixSemigroup(Group([(5, 6)]),
46
+ > [[0, (), 0, 0, 0, 0, 0, 0, 0, (5, 6), 0, 0, (5, 6), (5, 6)],
47
+ > [(), 0, (), 0, (), (5, 6), 0, (5, 6), 0, 0, (5, 6), (5, 6), (5, 6), ()],
48
+ > [0, 0, (), (5, 6), 0, 0, 0, (), 0, (5, 6), 0, 0, 0, (5, 6)],
49
+ > [0, 0, 0, (5, 6), 0, (), (5, 6), (), 0, (5, 6), 0, (), 0, (5, 6)],
50
+ > [0, (), (5, 6), 0, 0, 0, (5, 6), (5, 6), (), 0, (5, 6), (), (5, 6), 0],
51
+ > [0, (), 0, (5, 6), 0, 0, (5, 6), 0, (), (5, 6), (5, 6), (), (5, 6), (5, 6)],
52
+ > [0, (5, 6), 0, (5, 6), 0, (), (5, 6), (), 0, 0, 0, (), (), 0],
53
+ > [(), 0, (), (5, 6), (), 0, (5, 6), 0, 0, (5, 6), (5, 6), 0, (5, 6), 0],
54
+ > [0, (), 0, 0, 0, (5, 6), 0, (5, 6), (), 0, (5, 6), 0, (5, 6), 0],
55
+ > [0, 0, (5, 6), 0, 0, (), (5, 6), 0, 0, 0, 0, (), 0, 0],
56
+ > [0, (5, 6), (), (5, 6), 0, 0, 0, (), 0, 0, 0, 0, (), 0]]);;
57
+ gap> congs := CongruencesOfSemigroup(r);;
58
+ gap> uni := UniversalSemigroupCongruence(r);;
59
+ gap> uni = congs[3];
60
+ false
61
+ gap> congs[5] = uni;
62
+ false
63
+ gap> IsSubrelation(uni, congs[5]);
64
+ true
65
+ gap> IsSubrelation(congs[5], uni);
66
+ false
67
+ gap> otheruni := UniversalSemigroupCongruence(FullTransformationMonoid(5));;
68
+ gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
69
+ gap> IsSubrelation(congs[4], otheruni);
70
+ Error, the 1st and 2nd arguments are congruences over different semigroups
71
+ gap> IsSubrelation(otheruni, congs[4]);
72
+ Error, the 1st and 2nd arguments are congruences over different semigroups
73
+ gap> cong := SemigroupCongruence(r, pairs);;
74
+ gap> NrEquivalenceClasses(cong);
75
+ 1
76
+
77
+ # CongUnivTest4: No zero, is simple
78
+ gap> S := Semigroup(
79
+ > [Transformation([1, 1, 1, 1, 5, 1, 1]),
80
+ > Transformation([1, 5, 1, 1, 5, 1, 1]),
81
+ > Transformation([3, 3, 3, 3, 5, 3, 3]),
82
+ > Transformation([3, 5, 3, 3, 5, 3, 3]),
83
+ > Transformation([4, 4, 4, 4, 5, 4, 4]),
84
+ > Transformation([4, 5, 4, 4, 5, 4, 4]),
85
+ > Transformation([6, 5, 6, 6, 5, 6, 6]),
86
+ > Transformation([6, 6, 6, 6, 5, 6, 6]),
87
+ > Transformation([7, 5, 7, 7, 5, 7, 7]),
88
+ > Transformation([7, 7, 7, 7, 5, 7, 7])]);;
89
+ gap> uni := UniversalSemigroupCongruence(r);;
90
+ gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
91
+ gap> cong := SemigroupCongruence(r, pairs);;
92
+ gap> NrEquivalenceClasses(cong);
93
+ 1
94
+
95
+ # EquivalenceRelationCanonicalLookup
96
+ gap> S := FullTransformationMonoid(2);;
97
+ gap> uni := UniversalSemigroupCongruence(S);;
98
+ gap> EquivalenceRelationCanonicalLookup(uni);
99
+ [ 1, 1, 1, 1 ]
100
+
101
+ # Equality checking
102
+ gap> S := FullTransformationMonoid(2);;
103
+ gap> T := Semigroup([Transformation([2, 3, 3])]);;
104
+ gap> uniS := UniversalSemigroupCongruence(S);;
105
+ gap> uniT := UniversalSemigroupCongruence(T);;
106
+ gap> uniS = uniT;
107
+ false
108
+ gap> uniS = UniversalSemigroupCongruence(S);
109
+ true
110
+ gap> cong := SemigroupCongruence(S, [Transformation([1, 1]),
111
+ > Transformation([2, 2])]);;
112
+ gap> cong = uniS;
113
+ false
114
+ gap> cong := SemigroupCongruence(T, [Transformation([2, 3, 3]),
115
+ > Transformation([3, 3, 3])]);;
116
+ gap> uniT = cong;
117
+ true
118
+
119
+ # Pair inclusion
120
+ gap> S := Semigroup([Transformation([1, 4, 2, 4])]);;
121
+ gap> uni := UniversalSemigroupCongruence(S);;
122
+ gap> [Transformation([1, 4, 2, 4]), Transformation([1, 4, 4, 4])] in uni;
123
+ true
124
+ gap> [Transformation([1, 3, 2, 4]), Transformation([1, 4, 4, 4])] in uni;
125
+ Error, the items in the 1st argument (a list) do not all belong to the range o\
126
+ f the 2nd argument (a 2-sided semigroup congruence)
127
+ gap> [3, 4] in uni;
128
+ Error, the items in the 1st argument (a list) do not all belong to the range o\
129
+ f the 2nd argument (a 2-sided semigroup congruence)
130
+ gap> [Transformation([1, 4, 2, 4])] in uni;
131
+ Error, the 1st argument (a list) does not have length 2
132
+
133
+ # Classes
134
+ gap> S := Semigroup([PartialPerm([1, 2], [3, 1]),
135
+ > PartialPerm([1, 2, 3], [1, 3, 4])]);
136
+ <partial perm semigroup of rank 3 with 2 generators>
137
+ gap> uni := UniversalSemigroupCongruence(S);;
138
+ gap> AsSSortedList(ImagesElm(uni, PartialPerm([1, 2, 3], [1, 3, 4]))) = Elements(S);
139
+ true
140
+ gap> ImagesElm(uni, Transformation([1, 3, 2]));
141
+ Error, the 2nd argument (a mult. elt.) does not belong to the range of the 1st\
142
+ argument (a congruence)
143
+ gap> classes := EquivalenceClasses(uni);
144
+ [ <2-sided congruence class of [2,1,3]> ]
145
+ gap> EquivalenceClassOfElement(uni, Transformation([1, 3, 2]));
146
+ Error, the 2nd argument (a mult. elt.) does not belong to the range of the 1st\
147
+ argument (a 2-sided congruence)
148
+ gap> class := EquivalenceClassOfElement(uni, PartialPerm([1, 2, 3], [1, 3, 4]));
149
+ <2-sided congruence class of [2,3,4](1)>
150
+ gap> PartialPerm([2], [3]) in class;
151
+ true
152
+ gap> PartialPerm([1, 2, 4], [3, 2, 1]) in class;
153
+ false
154
+ gap> classes[1] * class = class;
155
+ true
156
+ gap> class = classes[1];
157
+ true
158
+ gap> T := Semigroup([PartialPerm([1], [3]),
159
+ > PartialPerm([1, 2, 3], [1, 3, 4])]);;
160
+ gap> badcong := UniversalSemigroupCongruence(T);;
161
+ gap> class * EquivalenceClassOfElement(badcong, PartialPerm([1], [3]));
162
+ Error, the arguments (cong. classes) are not classes of the same congruence
163
+ gap> Size(class);
164
+ 11
165
+
166
+ # Meet and join
167
+ gap> S := Semigroup([Transformation([1, 3, 4, 1]),
168
+ > Transformation([3, 1, 1, 3])]);;
169
+ gap> T := Semigroup([Transformation([1, 2, 4, 1]),
170
+ > Transformation([3, 3, 1, 3])]);;
171
+ gap> cong := SemigroupCongruence(S, [Transformation([1, 3, 1, 1]),
172
+ > Transformation([1, 3, 4, 1])]);;
173
+ gap> uni := UniversalSemigroupCongruence(S);;
174
+ gap> uni = JoinSemigroupCongruences(uni, uni);
175
+ true
176
+ gap> uni = JoinSemigroupCongruences(cong, uni);
177
+ true
178
+ gap> uni = JoinSemigroupCongruences(uni, cong);
179
+ true
180
+ gap> uni = MeetSemigroupCongruences(uni, uni);
181
+ true
182
+ gap> cong = MeetSemigroupCongruences(cong, uni);
183
+ true
184
+ gap> cong = MeetSemigroupCongruences(uni, cong);
185
+ true
186
+ gap> badcong := SemigroupCongruence(T, [Transformation([1, 2, 4, 1]),
187
+ > Transformation([1, 1, 1, 1])]);;
188
+ gap> JoinSemigroupCongruences(uni, badcong);
189
+ Error, cannot form the join of congruences over different semigroups
190
+ gap> JoinSemigroupCongruences(badcong, uni);
191
+ Error, cannot form the join of congruences over different semigroups
192
+ gap> MeetSemigroupCongruences(uni, badcong);
193
+ Error, cannot form the meet of congruences over different semigroups
194
+ gap> MeetSemigroupCongruences(badcong, uni);
195
+ Error, cannot form the meet of congruences over different semigroups
196
+ gap> cong := SemigroupCongruence(S, [Transformation([1, 3, 4, 1]),
197
+ > Transformation([1, 3, 3, 1])]);;
198
+ gap> cong = uni;
199
+ true
200
+
201
+ # GeneratingPairsOfSemigroupCongruence
202
+ gap> S := Semigroup(IdentityTransformation);
203
+ <trivial transformation group of degree 0 with 1 generator>
204
+ gap> uni := UniversalSemigroupCongruence(S);;
205
+ gap> GeneratingPairsOfSemigroupCongruence(uni);
206
+ [ ]
207
+ gap> S := Semigroup([Transformation([4, 5, 3, 4, 5]),
208
+ > Transformation([5, 1, 3, 1, 5])]);;
209
+ gap> uni := UniversalSemigroupCongruence(S);;
210
+ gap> GeneratingPairsOfSemigroupCongruence(uni);
211
+ [ [ Transformation( [ 4, 5, 3, 4, 5 ] ), Transformation( [ 5, 5, 3, 5, 5 ] )
212
+ ] ]
213
+ gap> S := Monoid([PartialPerm([1], [1]),
214
+ > PartialPerm([1, 2], [1, 2]),
215
+ > PartialPerm([1], [1])]);;
216
+ gap> uni := UniversalSemigroupCongruence(S);;
217
+ gap> GeneratingPairsOfSemigroupCongruence(uni);
218
+ [ [ <identity partial perm on [ 1 ]>, <identity partial perm on [ 1, 2 ]> ] ]
219
+ gap> S := Semigroup([Transformation([2, 1, 2]),
220
+ > Transformation([1, 2, 2])]);;
221
+ gap> uni := UniversalSemigroupCongruence(S);
222
+ <universal semigroup congruence over <transformation semigroup of degree 3
223
+ with 2 generators>>
224
+ gap> pairs := GeneratingPairsOfSemigroupCongruence(uni);;
225
+ gap> cong := SemigroupCongruenceByGeneratingPairs(S, pairs);;
226
+ gap> NrEquivalenceClasses(cong);
227
+ 1
228
+
229
+ # IsUniversalSemigroupCongruence for a cong by generating pairs
230
+ gap> S := Semigroup([PartialPerm([1], [2]),
231
+ > PartialPerm([1, 2, 3], [2, 3, 1])]);;
232
+ gap> cong := SemigroupCongruence(S, [PartialPerm([1], [1]),
233
+ > PartialPerm([1, 2, 3], [3, 1, 2])]);;
234
+ gap> IsUniversalSemigroupCongruence(cong);
235
+ true
236
+ gap> cong := SemigroupCongruence(S, [PartialPerm([1], [2]),
237
+ > PartialPerm([1], [3])]);;
238
+ gap> IsUniversalSemigroupCongruence(cong);
239
+ false
240
+
241
+ # IsUniversalSemigroupCongruence for an RMS congruence
242
+ gap> S := ReesMatrixSemigroup(SymmetricGroup(4),
243
+ > [[(), (), (), ()],
244
+ > [(2, 4), (), (1, 3), ()],
245
+ > [(1, 2, 3, 4), (), (1, 3, 2, 4), ()]]);;
246
+ gap> cong := RMSCongruenceByLinkedTriple(S, Group([(2, 4, 3),
247
+ > (1, 4)(2, 3),
248
+ > (1, 3)(2, 4)]),
249
+ > [[1], [2], [3], [4]], [[1], [2, 3]]);;
250
+ gap> IsUniversalSemigroupCongruence(cong);
251
+ false
252
+ gap> cong := RMSCongruenceByLinkedTriple(S, SymmetricGroup(4),
253
+ > [[1, 2, 3, 4]], [[1, 2, 3]]);;
254
+ gap> IsUniversalSemigroupCongruence(cong);
255
+ true
256
+
257
+ #
258
+ gap> SEMIGROUPS.StopTest();
259
+ gap> STOP_TEST("Semigroups package: standard/congruences/conguniv.tst");