passagemath-gap-pkg-semigroups 10.6.30__cp311-cp311-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1158 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.cpython-311-darwin.so +0 -0
@@ -0,0 +1,2055 @@
1
+ #############################################################################
2
+ ##
3
+ #W standard/semigroups/semiex.tst
4
+ #Y Copyright (C) 2016-2022 James D. Mitchell
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ ##
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local M, S, T, acting, n, part
12
+ gap> START_TEST("Semigroups package: standard/semigroups/semiex.tst");
13
+ gap> LoadPackage("semigroups", false);;
14
+
15
+ #
16
+ gap> SEMIGROUPS.StartTest();
17
+
18
+ # Test EndomorphismsPartition 1
19
+ gap> EndomorphismsPartition([-1]);
20
+ Error, the argument (a cyclo. coll.) does not consist of positive integers
21
+ gap> EndomorphismsPartition([1, 1, 1]);
22
+ <full transformation monoid of degree 3>
23
+ gap> EndomorphismsPartition([5]);
24
+ <full transformation monoid of degree 5>
25
+ gap> part := [2, 1, 3];
26
+ [ 2, 1, 3 ]
27
+ gap> EndomorphismsPartition(part);
28
+ <transformation semigroup of degree 6 with 7 generators>
29
+ gap> part;
30
+ [ 2, 1, 3 ]
31
+
32
+ # Test EndomorphismsPartition 2
33
+ gap> List(Partitions(11), EndomorphismsPartition);
34
+ [ <full transformation monoid of degree 11>,
35
+ <transformation semigroup of degree 11 with 6 generators>,
36
+ <transformation semigroup of degree 11 with 8 generators>,
37
+ <transformation semigroup of degree 11 with 8 generators>,
38
+ <transformation semigroup of degree 11 with 8 generators>,
39
+ <transformation semigroup of degree 11 with 5 generators>,
40
+ <transformation semigroup of degree 11 with 7 generators>,
41
+ <transformation semigroup of degree 11 with 10 generators>,
42
+ <transformation semigroup of degree 11 with 12 generators>,
43
+ <transformation semigroup of degree 11 with 12 generators>,
44
+ <transformation semigroup of degree 11 with 7 generators>,
45
+ <transformation semigroup of degree 11 with 9 generators>,
46
+ <transformation semigroup of degree 11 with 12 generators>,
47
+ <transformation semigroup of degree 11 with 11 generators>,
48
+ <transformation semigroup of degree 11 with 9 generators>,
49
+ <transformation semigroup of degree 11 with 7 generators>,
50
+ <transformation semigroup of degree 11 with 7 generators>,
51
+ <transformation semigroup of degree 11 with 11 generators>,
52
+ <transformation semigroup of degree 11 with 13 generators>,
53
+ <transformation semigroup of degree 11 with 11 generators>,
54
+ <transformation semigroup of degree 11 with 11 generators>,
55
+ <transformation semigroup of degree 11 with 15 generators>,
56
+ <transformation semigroup of degree 11 with 11 generators>,
57
+ <transformation semigroup of degree 11 with 11 generators>,
58
+ <transformation semigroup of degree 11 with 9 generators>,
59
+ <transformation semigroup of degree 11 with 10 generators>,
60
+ <transformation semigroup of degree 11 with 7 generators>,
61
+ <transformation semigroup of degree 11 with 7 generators>,
62
+ <transformation semigroup of degree 11 with 11 generators>,
63
+ <transformation semigroup of degree 11 with 13 generators>,
64
+ <transformation semigroup of degree 11 with 8 generators>,
65
+ <transformation semigroup of degree 11 with 12 generators>,
66
+ <transformation semigroup of degree 11 with 13 generators>,
67
+ <transformation semigroup of degree 11 with 8 generators>,
68
+ <transformation semigroup of degree 11 with 11 generators>,
69
+ <transformation semigroup of degree 11 with 10 generators>,
70
+ <transformation semigroup of degree 11 with 6 generators>,
71
+ <transformation semigroup of degree 11 with 7 generators>,
72
+ <transformation semigroup of degree 11 with 11 generators>,
73
+ <transformation semigroup of degree 11 with 11 generators>,
74
+ <transformation semigroup of degree 11 with 12 generators>,
75
+ <transformation semigroup of degree 11 with 10 generators>,
76
+ <transformation semigroup of degree 11 with 10 generators>,
77
+ <transformation semigroup of degree 11 with 5 generators>,
78
+ <transformation semigroup of degree 11 with 7 generators>,
79
+ <transformation semigroup of degree 11 with 11 generators>,
80
+ <transformation semigroup of degree 11 with 8 generators>,
81
+ <transformation semigroup of degree 11 with 10 generators>,
82
+ <transformation semigroup of degree 11 with 6 generators>,
83
+ <transformation semigroup of degree 11 with 7 generators>,
84
+ <transformation semigroup of degree 11 with 8 generators>,
85
+ <transformation semigroup of degree 11 with 6 generators>,
86
+ <transformation semigroup of degree 11 with 7 generators>,
87
+ <transformation semigroup of degree 11 with 6 generators>,
88
+ <transformation semigroup of degree 11 with 5 generators>,
89
+ <full transformation monoid of degree 11> ]
90
+
91
+ # ExamplesTest37: ham-examples
92
+ # planar uniform block bijection monoid
93
+ gap> S := PlanarUniformBlockBijectionMonoid(1);
94
+ <trivial block bijection group of degree 1 with 1 generator>
95
+ gap> Size(S);
96
+ 1
97
+ gap> Size(Generators(S));
98
+ 1
99
+ gap> NrHClasses(S);
100
+ 1
101
+ gap> NrRClasses(S);
102
+ 1
103
+ gap> NrDClasses(S);
104
+ 1
105
+ gap> NrIdempotents(S);
106
+ 1
107
+ gap> IsBlockBijectionMonoid(S);
108
+ true
109
+ gap> IsHTrivial(S);
110
+ true
111
+ gap> IsInverseMonoid(S);
112
+ true
113
+ gap> IsRegularSemigroup(S);
114
+ true
115
+ gap> IsSimpleSemigroup(S);
116
+ true
117
+ gap> StructureDescriptionMaximalSubgroups(S);
118
+ [ "1" ]
119
+ gap> S := PlanarUniformBlockBijectionMonoid(4);
120
+ <inverse block bijection monoid of degree 4 with 3 generators>
121
+ gap> Size(S);
122
+ 8
123
+ gap> Size(Generators(S));
124
+ 3
125
+ gap> NrHClasses(S);
126
+ 8
127
+ gap> NrRClasses(S);
128
+ 8
129
+ gap> NrDClasses(S);
130
+ 8
131
+ gap> NrIdempotents(S);
132
+ 8
133
+ gap> IsBlockBijectionMonoid(S);
134
+ true
135
+ gap> IsHTrivial(S);
136
+ true
137
+ gap> IsInverseMonoid(S);
138
+ true
139
+ gap> IsRegularSemigroup(S);
140
+ true
141
+ gap> IsSimpleSemigroup(S);
142
+ false
143
+ gap> StructureDescriptionMaximalSubgroups(S);
144
+ [ "1" ]
145
+
146
+ # singular planar uniform block bijection monoid
147
+ gap> S := SingularPlanarUniformBlockBijectionMonoid(4);
148
+ <inverse bipartition semigroup ideal of degree 4 with 1 generator>
149
+ gap> Size(S);
150
+ 4
151
+ gap> Size(Generators(S));
152
+ 1
153
+ gap> NrHClasses(S);
154
+ 4
155
+ gap> NrRClasses(S);
156
+ 4
157
+ gap> NrDClasses(S);
158
+ 4
159
+ gap> NrIdempotents(S);
160
+ 4
161
+ gap> IsBlockBijectionMonoid(S);
162
+ false
163
+ gap> IsHTrivial(S);
164
+ true
165
+ gap> IsInverseMonoid(S);
166
+ false
167
+ gap> IsRegularSemigroup(S);
168
+ true
169
+ gap> IsSimpleSemigroup(S);
170
+ false
171
+ gap> StructureDescriptionMaximalSubgroups(S);
172
+ [ "1" ]
173
+ gap> SingularPlanarUniformBlockBijectionMonoid(1);
174
+ Error, the argument (an int) is not > 1
175
+
176
+ # uniform block bijection monoid
177
+ gap> S := UniformBlockBijectionMonoid(1);
178
+ <trivial block bijection group of degree 1 with 1 generator>
179
+ gap> Size(S);
180
+ 1
181
+ gap> Size(Generators(S));
182
+ 1
183
+ gap> NrHClasses(S);
184
+ 1
185
+ gap> NrRClasses(S);
186
+ 1
187
+ gap> NrDClasses(S);
188
+ 1
189
+ gap> NrIdempotents(S);
190
+ 1
191
+ gap> IsBlockBijectionMonoid(S);
192
+ true
193
+ gap> IsHTrivial(S);
194
+ true
195
+ gap> IsInverseMonoid(S);
196
+ true
197
+ gap> IsRegularSemigroup(S);
198
+ true
199
+ gap> IsSimpleSemigroup(S);
200
+ true
201
+ gap> StructureDescriptionMaximalSubgroups(S);
202
+ [ "1" ]
203
+ gap> S := UniformBlockBijectionMonoid(4);
204
+ <inverse block bijection monoid of degree 4 with 3 generators>
205
+ gap> Size(S);
206
+ 131
207
+ gap> Size(Generators(S));
208
+ 3
209
+ gap> NrHClasses(S);
210
+ 63
211
+ gap> NrRClasses(S);
212
+ 15
213
+ gap> NrDClasses(S);
214
+ 5
215
+ gap> NrIdempotents(S);
216
+ 15
217
+ gap> IsBlockBijectionMonoid(S);
218
+ true
219
+ gap> IsHTrivial(S);
220
+ false
221
+ gap> IsInverseMonoid(S);
222
+ true
223
+ gap> IsRegularSemigroup(S);
224
+ true
225
+ gap> IsSimpleSemigroup(S);
226
+ false
227
+ gap> StructureDescriptionMaximalSubgroups(S);
228
+ [ "1", "C2", "S4" ]
229
+
230
+ # singular uniform block bijection monoid
231
+ gap> S := SingularUniformBlockBijectionMonoid(4);
232
+ <inverse bipartition semigroup ideal of degree 4 with 1 generator>
233
+ gap> Size(S);
234
+ 107
235
+ gap> Size(Generators(S));
236
+ 1
237
+ gap> NrHClasses(S);
238
+ 62
239
+ gap> NrRClasses(S);
240
+ 14
241
+ gap> NrDClasses(S);
242
+ 4
243
+ gap> NrIdempotents(S);
244
+ 14
245
+ gap> IsBlockBijectionMonoid(S);
246
+ false
247
+ gap> IsHTrivial(S);
248
+ false
249
+ gap> IsInverseMonoid(S);
250
+ false
251
+ gap> IsRegularSemigroup(S);
252
+ true
253
+ gap> IsSimpleSemigroup(S);
254
+ false
255
+ gap> StructureDescriptionMaximalSubgroups(S);
256
+ [ "1", "C2" ]
257
+ gap> SingularUniformBlockBijectionMonoid(1);
258
+ Error, the argument (an int) is not > 1
259
+
260
+ # apsis monoid
261
+ gap> S := ApsisMonoid(1, 1);
262
+ <commutative inverse bipartition monoid of degree 1 with 1 generator>
263
+ gap> Size(S);
264
+ 2
265
+ gap> Size(Generators(S));
266
+ 1
267
+ gap> NrHClasses(S);
268
+ 2
269
+ gap> NrRClasses(S);
270
+ 2
271
+ gap> NrDClasses(S);
272
+ 2
273
+ gap> NrIdempotents(S);
274
+ 2
275
+ gap> IsBlockBijectionMonoid(S);
276
+ false
277
+ gap> IsHTrivial(S);
278
+ true
279
+ gap> IsInverseMonoid(S);
280
+ true
281
+ gap> IsRegularSemigroup(S);
282
+ true
283
+ gap> IsSimpleSemigroup(S);
284
+ false
285
+ gap> StructureDescriptionMaximalSubgroups(S);
286
+ [ "1" ]
287
+ gap> S := ApsisMonoid(2, 1);
288
+ <trivial block bijection group of degree 1 with 1 generator>
289
+ gap> Size(S);
290
+ 1
291
+ gap> Size(Generators(S));
292
+ 1
293
+ gap> NrHClasses(S);
294
+ 1
295
+ gap> NrRClasses(S);
296
+ 1
297
+ gap> NrDClasses(S);
298
+ 1
299
+ gap> NrIdempotents(S);
300
+ 1
301
+ gap> IsBlockBijectionMonoid(S);
302
+ true
303
+ gap> IsHTrivial(S);
304
+ true
305
+ gap> IsInverseMonoid(S);
306
+ true
307
+ gap> IsRegularSemigroup(S);
308
+ true
309
+ gap> IsSimpleSemigroup(S);
310
+ true
311
+ gap> StructureDescriptionMaximalSubgroups(S);
312
+ [ "1" ]
313
+ gap> S := ApsisMonoid(3, 2);
314
+ <trivial block bijection group of degree 2 with 1 generator>
315
+ gap> Size(S);
316
+ 1
317
+ gap> Size(Generators(S));
318
+ 1
319
+ gap> NrHClasses(S);
320
+ 1
321
+ gap> NrRClasses(S);
322
+ 1
323
+ gap> NrDClasses(S);
324
+ 1
325
+ gap> NrIdempotents(S);
326
+ 1
327
+ gap> IsBlockBijectionMonoid(S);
328
+ true
329
+ gap> IsHTrivial(S);
330
+ true
331
+ gap> IsInverseMonoid(S);
332
+ true
333
+ gap> IsRegularSemigroup(S);
334
+ true
335
+ gap> IsSimpleSemigroup(S);
336
+ true
337
+ gap> StructureDescriptionMaximalSubgroups(S);
338
+ [ "1" ]
339
+ gap> S := ApsisMonoid(3, 4);
340
+ <regular bipartition *-monoid of degree 4 with 2 generators>
341
+ gap> Size(S);
342
+ 5
343
+ gap> Size(Generators(S));
344
+ 2
345
+ gap> NrHClasses(S);
346
+ 5
347
+ gap> NrRClasses(S);
348
+ 3
349
+ gap> NrDClasses(S);
350
+ 2
351
+ gap> NrIdempotents(S);
352
+ 5
353
+ gap> IsBlockBijectionMonoid(S);
354
+ false
355
+ gap> IsHTrivial(S);
356
+ true
357
+ gap> IsInverseMonoid(S);
358
+ false
359
+ gap> IsRegularSemigroup(S);
360
+ true
361
+ gap> IsSimpleSemigroup(S);
362
+ false
363
+ gap> StructureDescriptionMaximalSubgroups(S);
364
+ [ "1" ]
365
+ gap> S := ApsisMonoid(5, 4);
366
+ <trivial block bijection group of degree 4 with 1 generator>
367
+ gap> Size(S);
368
+ 1
369
+ gap> Size(Generators(S));
370
+ 1
371
+ gap> NrHClasses(S);
372
+ 1
373
+ gap> NrRClasses(S);
374
+ 1
375
+ gap> NrDClasses(S);
376
+ 1
377
+ gap> NrIdempotents(S);
378
+ 1
379
+ gap> IsBlockBijectionMonoid(S);
380
+ true
381
+ gap> IsHTrivial(S);
382
+ true
383
+ gap> IsInverseMonoid(S);
384
+ true
385
+ gap> IsRegularSemigroup(S);
386
+ true
387
+ gap> IsSimpleSemigroup(S);
388
+ true
389
+ gap> StructureDescriptionMaximalSubgroups(S);
390
+ [ "1" ]
391
+
392
+ # singular apsis monoid
393
+ gap> S := SingularApsisMonoid(1, 1);
394
+ <commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
395
+ gap> Size(S);
396
+ 1
397
+ gap> Size(Generators(S));
398
+ 1
399
+ gap> NrHClasses(S);
400
+ 1
401
+ gap> NrRClasses(S);
402
+ 1
403
+ gap> NrDClasses(S);
404
+ 1
405
+ gap> NrIdempotents(S);
406
+ 1
407
+ gap> IsBlockBijectionMonoid(S);
408
+ false
409
+ gap> IsHTrivial(S);
410
+ true
411
+ gap> IsInverseMonoid(S);
412
+ false
413
+ gap> IsRegularSemigroup(S);
414
+ true
415
+ gap> IsSimpleSemigroup(S);
416
+ true
417
+ gap> StructureDescriptionMaximalSubgroups(S);
418
+ [ "1" ]
419
+ gap> S := SingularApsisMonoid(2, 4);
420
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
421
+ gap> Size(S);
422
+ 13
423
+ gap> Size(Generators(S));
424
+ 1
425
+ gap> NrHClasses(S);
426
+ 13
427
+ gap> NrRClasses(S);
428
+ 5
429
+ gap> NrDClasses(S);
430
+ 2
431
+ gap> NrIdempotents(S);
432
+ 11
433
+ gap> IsBlockBijectionMonoid(S);
434
+ false
435
+ gap> IsHTrivial(S);
436
+ true
437
+ gap> IsInverseMonoid(S);
438
+ false
439
+ gap> IsRegularSemigroup(S);
440
+ true
441
+ gap> IsSimpleSemigroup(S);
442
+ false
443
+ gap> StructureDescriptionMaximalSubgroups(S);
444
+ [ "1" ]
445
+ gap> S := SingularApsisMonoid(3, 4);
446
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
447
+ gap> Size(S);
448
+ 4
449
+ gap> Size(Generators(S));
450
+ 1
451
+ gap> NrHClasses(S);
452
+ 4
453
+ gap> NrRClasses(S);
454
+ 2
455
+ gap> NrDClasses(S);
456
+ 1
457
+ gap> NrIdempotents(S);
458
+ 4
459
+ gap> IsBlockBijectionMonoid(S);
460
+ false
461
+ gap> IsHTrivial(S);
462
+ true
463
+ gap> IsInverseMonoid(S);
464
+ false
465
+ gap> IsRegularSemigroup(S);
466
+ true
467
+ gap> IsSimpleSemigroup(S);
468
+ true
469
+ gap> StructureDescriptionMaximalSubgroups(S);
470
+ [ "1" ]
471
+ gap> SingularApsisMonoid(2, 1);
472
+ Error, the 1st argument (a pos. int.) is not <= to the 2nd argument (a pos. in\
473
+ t.)
474
+
475
+ # crossed apsis monoid
476
+ gap> S := CrossedApsisMonoid(1, 1);
477
+ <commutative inverse bipartition monoid of degree 1 with 1 generator>
478
+ gap> Size(S);
479
+ 2
480
+ gap> Size(Generators(S));
481
+ 1
482
+ gap> NrHClasses(S);
483
+ 2
484
+ gap> NrRClasses(S);
485
+ 2
486
+ gap> NrDClasses(S);
487
+ 2
488
+ gap> NrIdempotents(S);
489
+ 2
490
+ gap> IsBlockBijectionMonoid(S);
491
+ false
492
+ gap> IsHTrivial(S);
493
+ true
494
+ gap> IsInverseMonoid(S);
495
+ true
496
+ gap> IsRegularSemigroup(S);
497
+ true
498
+ gap> IsSimpleSemigroup(S);
499
+ false
500
+ gap> StructureDescriptionMaximalSubgroups(S);
501
+ [ "1" ]
502
+ gap> S := CrossedApsisMonoid(2, 1);
503
+ <trivial block bijection group of degree 1 with 1 generator>
504
+ gap> Size(S);
505
+ 1
506
+ gap> Size(Generators(S));
507
+ 1
508
+ gap> NrHClasses(S);
509
+ 1
510
+ gap> NrRClasses(S);
511
+ 1
512
+ gap> NrDClasses(S);
513
+ 1
514
+ gap> NrIdempotents(S);
515
+ 1
516
+ gap> IsBlockBijectionMonoid(S);
517
+ true
518
+ gap> IsHTrivial(S);
519
+ true
520
+ gap> IsInverseMonoid(S);
521
+ true
522
+ gap> IsRegularSemigroup(S);
523
+ true
524
+ gap> IsSimpleSemigroup(S);
525
+ true
526
+ gap> StructureDescriptionMaximalSubgroups(S);
527
+ [ "1" ]
528
+ gap> S := CrossedApsisMonoid(2, 4);
529
+ <regular bipartition *-monoid of degree 4 with 3 generators>
530
+ gap> Size(S);
531
+ 105
532
+ gap> Size(Generators(S));
533
+ 3
534
+ gap> NrHClasses(S);
535
+ 46
536
+ gap> NrRClasses(S);
537
+ 10
538
+ gap> NrDClasses(S);
539
+ 3
540
+ gap> NrIdempotents(S);
541
+ 40
542
+ gap> IsBlockBijectionMonoid(S);
543
+ false
544
+ gap> IsHTrivial(S);
545
+ false
546
+ gap> IsInverseMonoid(S);
547
+ false
548
+ gap> IsRegularSemigroup(S);
549
+ true
550
+ gap> IsSimpleSemigroup(S);
551
+ false
552
+ gap> StructureDescriptionMaximalSubgroups(S);
553
+ [ "1", "C2", "S4" ]
554
+ gap> S := CrossedApsisMonoid(3, 4);
555
+ <regular bipartition *-monoid of degree 4 with 3 generators>
556
+ gap> Size(S);
557
+ 40
558
+ gap> Size(Generators(S));
559
+ 3
560
+ gap> NrHClasses(S);
561
+ 17
562
+ gap> NrRClasses(S);
563
+ 5
564
+ gap> NrDClasses(S);
565
+ 2
566
+ gap> NrIdempotents(S);
567
+ 17
568
+ gap> IsBlockBijectionMonoid(S);
569
+ false
570
+ gap> IsHTrivial(S);
571
+ false
572
+ gap> IsInverseMonoid(S);
573
+ false
574
+ gap> IsRegularSemigroup(S);
575
+ true
576
+ gap> IsSimpleSemigroup(S);
577
+ false
578
+ gap> StructureDescriptionMaximalSubgroups(S);
579
+ [ "1", "S4" ]
580
+ gap> S := CrossedApsisMonoid(5, 4);
581
+ <block bijection group of degree 4 with 2 generators>
582
+ gap> Size(S);
583
+ 24
584
+ gap> Size(Generators(S));
585
+ 2
586
+ gap> NrHClasses(S);
587
+ 1
588
+ gap> NrRClasses(S);
589
+ 1
590
+ gap> NrDClasses(S);
591
+ 1
592
+ gap> NrIdempotents(S);
593
+ 1
594
+ gap> IsBlockBijectionMonoid(S);
595
+ true
596
+ gap> IsHTrivial(S);
597
+ false
598
+ gap> IsInverseMonoid(S);
599
+ true
600
+ gap> IsRegularSemigroup(S);
601
+ true
602
+ gap> IsSimpleSemigroup(S);
603
+ true
604
+ gap> StructureDescriptionMaximalSubgroups(S);
605
+ [ "S4" ]
606
+
607
+ # singular crossed apsis monoid
608
+ gap> S := SingularCrossedApsisMonoid(1, 1);
609
+ <commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
610
+ gap> Size(S);
611
+ 1
612
+ gap> Size(Generators(S));
613
+ 1
614
+ gap> NrHClasses(S);
615
+ 1
616
+ gap> NrRClasses(S);
617
+ 1
618
+ gap> NrDClasses(S);
619
+ 1
620
+ gap> NrIdempotents(S);
621
+ 1
622
+ gap> IsBlockBijectionMonoid(S);
623
+ false
624
+ gap> IsHTrivial(S);
625
+ true
626
+ gap> IsInverseMonoid(S);
627
+ false
628
+ gap> IsRegularSemigroup(S);
629
+ true
630
+ gap> IsSimpleSemigroup(S);
631
+ true
632
+ gap> StructureDescriptionMaximalSubgroups(S);
633
+ [ "1" ]
634
+ gap> S := SingularCrossedApsisMonoid(2, 4);
635
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
636
+ gap> Size(S);
637
+ 81
638
+ gap> Size(Generators(S));
639
+ 1
640
+ gap> NrHClasses(S);
641
+ 45
642
+ gap> NrRClasses(S);
643
+ 9
644
+ gap> NrDClasses(S);
645
+ 2
646
+ gap> NrIdempotents(S);
647
+ 39
648
+ gap> IsBlockBijectionMonoid(S);
649
+ false
650
+ gap> IsHTrivial(S);
651
+ false
652
+ gap> IsInverseMonoid(S);
653
+ false
654
+ gap> IsRegularSemigroup(S);
655
+ true
656
+ gap> IsSimpleSemigroup(S);
657
+ false
658
+ gap> StructureDescriptionMaximalSubgroups(S);
659
+ [ "1", "C2" ]
660
+ gap> S := SingularCrossedApsisMonoid(3, 4);
661
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
662
+ gap> Size(S);
663
+ 16
664
+ gap> Size(Generators(S));
665
+ 1
666
+ gap> NrHClasses(S);
667
+ 16
668
+ gap> NrRClasses(S);
669
+ 4
670
+ gap> NrDClasses(S);
671
+ 1
672
+ gap> NrIdempotents(S);
673
+ 16
674
+ gap> IsBlockBijectionMonoid(S);
675
+ false
676
+ gap> IsHTrivial(S);
677
+ true
678
+ gap> IsInverseMonoid(S);
679
+ false
680
+ gap> IsRegularSemigroup(S);
681
+ true
682
+ gap> IsSimpleSemigroup(S);
683
+ true
684
+ gap> StructureDescriptionMaximalSubgroups(S);
685
+ [ "1" ]
686
+ gap> SingularCrossedApsisMonoid(2, 1);
687
+ Error, the 1st argument (a pos. int.) is not <= to the 2nd argument (a pos. in\
688
+ t.)
689
+
690
+ # planar modular partition monoid
691
+ gap> S := PlanarModularPartitionMonoid(1, 1);
692
+ <commutative inverse bipartition monoid of degree 1 with 1 generator>
693
+ gap> Size(S);
694
+ 2
695
+ gap> Size(Generators(S));
696
+ 1
697
+ gap> NrHClasses(S);
698
+ 2
699
+ gap> NrRClasses(S);
700
+ 2
701
+ gap> NrDClasses(S);
702
+ 2
703
+ gap> NrIdempotents(S);
704
+ 2
705
+ gap> IsBlockBijectionMonoid(S);
706
+ false
707
+ gap> IsHTrivial(S);
708
+ true
709
+ gap> IsInverseMonoid(S);
710
+ true
711
+ gap> IsRegularSemigroup(S);
712
+ true
713
+ gap> IsSimpleSemigroup(S);
714
+ false
715
+ gap> StructureDescriptionMaximalSubgroups(S);
716
+ [ "1" ]
717
+ gap> S := PlanarModularPartitionMonoid(2, 1);
718
+ <trivial block bijection group of degree 1 with 1 generator>
719
+ gap> Size(S);
720
+ 1
721
+ gap> Size(Generators(S));
722
+ 1
723
+ gap> NrHClasses(S);
724
+ 1
725
+ gap> NrRClasses(S);
726
+ 1
727
+ gap> NrDClasses(S);
728
+ 1
729
+ gap> NrIdempotents(S);
730
+ 1
731
+ gap> IsBlockBijectionMonoid(S);
732
+ true
733
+ gap> IsHTrivial(S);
734
+ true
735
+ gap> IsInverseMonoid(S);
736
+ true
737
+ gap> IsRegularSemigroup(S);
738
+ true
739
+ gap> IsSimpleSemigroup(S);
740
+ true
741
+ gap> StructureDescriptionMaximalSubgroups(S);
742
+ [ "1" ]
743
+ gap> S := PlanarModularPartitionMonoid(2, 4);
744
+ <regular bipartition *-monoid of degree 4 with 6 generators>
745
+ gap> Size(S);
746
+ 55
747
+ gap> Size(Generators(S));
748
+ 6
749
+ gap> NrHClasses(S);
750
+ 55
751
+ gap> NrRClasses(S);
752
+ 17
753
+ gap> NrDClasses(S);
754
+ 8
755
+ gap> NrIdempotents(S);
756
+ 45
757
+ gap> IsBlockBijectionMonoid(S);
758
+ false
759
+ gap> IsHTrivial(S);
760
+ true
761
+ gap> IsInverseMonoid(S);
762
+ false
763
+ gap> IsRegularSemigroup(S);
764
+ true
765
+ gap> IsSimpleSemigroup(S);
766
+ false
767
+ gap> StructureDescriptionMaximalSubgroups(S);
768
+ [ "1" ]
769
+ gap> S := PlanarModularPartitionMonoid(3, 4);
770
+ <regular bipartition *-monoid of degree 4 with 5 generators>
771
+ gap> Size(S);
772
+ 16
773
+ gap> Size(Generators(S));
774
+ 5
775
+ gap> NrHClasses(S);
776
+ 16
777
+ gap> NrRClasses(S);
778
+ 10
779
+ gap> NrDClasses(S);
780
+ 8
781
+ gap> NrIdempotents(S);
782
+ 16
783
+ gap> IsBlockBijectionMonoid(S);
784
+ false
785
+ gap> IsHTrivial(S);
786
+ true
787
+ gap> IsInverseMonoid(S);
788
+ false
789
+ gap> IsRegularSemigroup(S);
790
+ true
791
+ gap> IsSimpleSemigroup(S);
792
+ false
793
+ gap> StructureDescriptionMaximalSubgroups(S);
794
+ [ "1" ]
795
+ gap> S := PlanarModularPartitionMonoid(5, 4);
796
+ <inverse block bijection monoid of degree 4 with 3 generators>
797
+ gap> Size(S);
798
+ 8
799
+ gap> Size(Generators(S));
800
+ 3
801
+ gap> NrHClasses(S);
802
+ 8
803
+ gap> NrRClasses(S);
804
+ 8
805
+ gap> NrDClasses(S);
806
+ 8
807
+ gap> NrIdempotents(S);
808
+ 8
809
+ gap> IsBlockBijectionMonoid(S);
810
+ true
811
+ gap> IsHTrivial(S);
812
+ true
813
+ gap> IsInverseMonoid(S);
814
+ true
815
+ gap> IsRegularSemigroup(S);
816
+ true
817
+ gap> IsSimpleSemigroup(S);
818
+ false
819
+ gap> StructureDescriptionMaximalSubgroups(S);
820
+ [ "1" ]
821
+
822
+ # singular planar modular partition monoid
823
+ gap> S := SingularPlanarModularPartitionMonoid(1, 1);
824
+ <commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
825
+ gap> Size(S);
826
+ 1
827
+ gap> Size(Generators(S));
828
+ 1
829
+ gap> NrHClasses(S);
830
+ 1
831
+ gap> NrRClasses(S);
832
+ 1
833
+ gap> NrDClasses(S);
834
+ 1
835
+ gap> NrIdempotents(S);
836
+ 1
837
+ gap> IsBlockBijectionMonoid(S);
838
+ false
839
+ gap> IsHTrivial(S);
840
+ true
841
+ gap> IsInverseMonoid(S);
842
+ false
843
+ gap> IsRegularSemigroup(S);
844
+ true
845
+ gap> IsSimpleSemigroup(S);
846
+ true
847
+ gap> StructureDescriptionMaximalSubgroups(S);
848
+ [ "1" ]
849
+ gap> S := SingularPlanarModularPartitionMonoid(2, 4);
850
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
851
+ gap> Size(S);
852
+ 52
853
+ gap> Size(Generators(S));
854
+ 1
855
+ gap> NrHClasses(S);
856
+ 52
857
+ gap> NrRClasses(S);
858
+ 14
859
+ gap> NrDClasses(S);
860
+ 5
861
+ gap> NrIdempotents(S);
862
+ 42
863
+ gap> IsBlockBijectionMonoid(S);
864
+ false
865
+ gap> IsHTrivial(S);
866
+ true
867
+ gap> IsInverseMonoid(S);
868
+ false
869
+ gap> IsRegularSemigroup(S);
870
+ true
871
+ gap> IsSimpleSemigroup(S);
872
+ false
873
+ gap> StructureDescriptionMaximalSubgroups(S);
874
+ [ "1" ]
875
+ gap> S := SingularPlanarModularPartitionMonoid(3, 4);
876
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
877
+ gap> Size(S);
878
+ 12
879
+ gap> Size(Generators(S));
880
+ 1
881
+ gap> NrHClasses(S);
882
+ 12
883
+ gap> NrRClasses(S);
884
+ 6
885
+ gap> NrDClasses(S);
886
+ 4
887
+ gap> NrIdempotents(S);
888
+ 12
889
+ gap> IsBlockBijectionMonoid(S);
890
+ false
891
+ gap> IsHTrivial(S);
892
+ true
893
+ gap> IsInverseMonoid(S);
894
+ false
895
+ gap> IsRegularSemigroup(S);
896
+ true
897
+ gap> IsSimpleSemigroup(S);
898
+ false
899
+ gap> StructureDescriptionMaximalSubgroups(S);
900
+ [ "1" ]
901
+ gap> S := SingularPlanarModularPartitionMonoid(5, 4);
902
+ <inverse bipartition semigroup ideal of degree 4 with 1 generator>
903
+ gap> Size(S);
904
+ 4
905
+ gap> Size(Generators(S));
906
+ 1
907
+ gap> NrHClasses(S);
908
+ 4
909
+ gap> NrRClasses(S);
910
+ 4
911
+ gap> NrDClasses(S);
912
+ 4
913
+ gap> NrIdempotents(S);
914
+ 4
915
+ gap> IsBlockBijectionMonoid(S);
916
+ false
917
+ gap> IsHTrivial(S);
918
+ true
919
+ gap> IsInverseMonoid(S);
920
+ false
921
+ gap> IsRegularSemigroup(S);
922
+ true
923
+ gap> IsSimpleSemigroup(S);
924
+ false
925
+ gap> StructureDescriptionMaximalSubgroups(S);
926
+ [ "1" ]
927
+ gap> SingularPlanarModularPartitionMonoid(2, 1);
928
+ Error, the 2nd argument (a pos. int.) must be > 1 when the 1st argument (a pos\
929
+ . int.) is also > 1
930
+
931
+ # planar partition monoid
932
+ gap> S := PlanarPartitionMonoid(1);
933
+ <commutative inverse bipartition monoid of degree 1 with 1 generator>
934
+ gap> Size(S);
935
+ 2
936
+ gap> Size(Generators(S));
937
+ 1
938
+ gap> NrHClasses(S);
939
+ 2
940
+ gap> NrRClasses(S);
941
+ 2
942
+ gap> NrDClasses(S);
943
+ 2
944
+ gap> NrIdempotents(S);
945
+ 2
946
+ gap> IsBlockBijectionMonoid(S);
947
+ false
948
+ gap> IsHTrivial(S);
949
+ true
950
+ gap> IsInverseMonoid(S);
951
+ true
952
+ gap> IsRegularSemigroup(S);
953
+ true
954
+ gap> IsSimpleSemigroup(S);
955
+ false
956
+ gap> StructureDescriptionMaximalSubgroups(S);
957
+ [ "1" ]
958
+ gap> S := PlanarPartitionMonoid(4);
959
+ <regular bipartition *-monoid of degree 4 with 7 generators>
960
+ gap> Size(S);
961
+ 1430
962
+ gap> Size(Generators(S));
963
+ 7
964
+ gap> NrHClasses(S);
965
+ 1430
966
+ gap> NrRClasses(S);
967
+ 70
968
+ gap> NrDClasses(S);
969
+ 5
970
+ gap> NrIdempotents(S);
971
+ 886
972
+ gap> IsBlockBijectionMonoid(S);
973
+ false
974
+ gap> IsHTrivial(S);
975
+ true
976
+ gap> IsInverseMonoid(S);
977
+ false
978
+ gap> IsRegularSemigroup(S);
979
+ true
980
+ gap> IsSimpleSemigroup(S);
981
+ false
982
+ gap> StructureDescriptionMaximalSubgroups(S);
983
+ [ "1" ]
984
+
985
+ # singular planar partition monoid
986
+ gap> S := SingularPlanarPartitionMonoid(1);
987
+ <commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
988
+ gap> Size(S);
989
+ 1
990
+ gap> Size(Generators(S));
991
+ 1
992
+ gap> NrHClasses(S);
993
+ 1
994
+ gap> NrRClasses(S);
995
+ 1
996
+ gap> NrDClasses(S);
997
+ 1
998
+ gap> NrIdempotents(S);
999
+ 1
1000
+ gap> IsBlockBijectionMonoid(S);
1001
+ false
1002
+ gap> IsHTrivial(S);
1003
+ true
1004
+ gap> IsInverseMonoid(S);
1005
+ false
1006
+ gap> IsRegularSemigroup(S);
1007
+ true
1008
+ gap> IsSimpleSemigroup(S);
1009
+ true
1010
+ gap> StructureDescriptionMaximalSubgroups(S);
1011
+ [ "1" ]
1012
+ gap> S := SingularPlanarPartitionMonoid(4);
1013
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
1014
+ gap> Size(S);
1015
+ 1429
1016
+ gap> Size(Generators(S));
1017
+ 1
1018
+ gap> NrHClasses(S);
1019
+ 1429
1020
+ gap> NrRClasses(S);
1021
+ 69
1022
+ gap> NrDClasses(S);
1023
+ 4
1024
+ gap> NrIdempotents(S);
1025
+ 885
1026
+ gap> IsBlockBijectionMonoid(S);
1027
+ false
1028
+ gap> IsHTrivial(S);
1029
+ true
1030
+ gap> IsInverseMonoid(S);
1031
+ false
1032
+ gap> IsRegularSemigroup(S);
1033
+ true
1034
+ gap> IsSimpleSemigroup(S);
1035
+ false
1036
+ gap> StructureDescriptionMaximalSubgroups(S);
1037
+ [ "1" ]
1038
+
1039
+ # modular partition monoid
1040
+ gap> S := ModularPartitionMonoid(1, 1);
1041
+ <commutative inverse bipartition monoid of degree 1 with 1 generator>
1042
+ gap> Size(S);
1043
+ 2
1044
+ gap> Size(Generators(S));
1045
+ 1
1046
+ gap> NrHClasses(S);
1047
+ 2
1048
+ gap> NrRClasses(S);
1049
+ 2
1050
+ gap> NrDClasses(S);
1051
+ 2
1052
+ gap> NrIdempotents(S);
1053
+ 2
1054
+ gap> IsBlockBijectionMonoid(S);
1055
+ false
1056
+ gap> IsHTrivial(S);
1057
+ true
1058
+ gap> IsInverseMonoid(S);
1059
+ true
1060
+ gap> IsRegularSemigroup(S);
1061
+ true
1062
+ gap> IsSimpleSemigroup(S);
1063
+ false
1064
+ gap> StructureDescriptionMaximalSubgroups(S);
1065
+ [ "1" ]
1066
+ gap> S := ModularPartitionMonoid(2, 1);
1067
+ <commutative inverse bipartition monoid of degree 1 with 1 generator>
1068
+ gap> Size(S);
1069
+ 2
1070
+ gap> Size(Generators(S));
1071
+ 1
1072
+ gap> NrHClasses(S);
1073
+ 2
1074
+ gap> NrRClasses(S);
1075
+ 2
1076
+ gap> NrDClasses(S);
1077
+ 2
1078
+ gap> NrIdempotents(S);
1079
+ 2
1080
+ gap> IsBlockBijectionMonoid(S);
1081
+ false
1082
+ gap> IsHTrivial(S);
1083
+ true
1084
+ gap> IsInverseMonoid(S);
1085
+ true
1086
+ gap> IsRegularSemigroup(S);
1087
+ true
1088
+ gap> IsSimpleSemigroup(S);
1089
+ false
1090
+ gap> StructureDescriptionMaximalSubgroups(S);
1091
+ [ "1" ]
1092
+ gap> S := ModularPartitionMonoid(2, 4);
1093
+ <regular bipartition *-monoid of degree 4 with 4 generators>
1094
+ gap> Size(S);
1095
+ 379
1096
+ gap> Size(Generators(S));
1097
+ 4
1098
+ gap> NrHClasses(S);
1099
+ 211
1100
+ gap> NrRClasses(S);
1101
+ 31
1102
+ gap> NrDClasses(S);
1103
+ 6
1104
+ gap> NrIdempotents(S);
1105
+ 127
1106
+ gap> IsBlockBijectionMonoid(S);
1107
+ false
1108
+ gap> IsHTrivial(S);
1109
+ false
1110
+ gap> IsInverseMonoid(S);
1111
+ false
1112
+ gap> IsRegularSemigroup(S);
1113
+ true
1114
+ gap> IsSimpleSemigroup(S);
1115
+ false
1116
+ gap> StructureDescriptionMaximalSubgroups(S);
1117
+ [ "1", "C2", "S4" ]
1118
+ gap> S := ModularPartitionMonoid(3, 4);
1119
+ <regular bipartition *-monoid of degree 4 with 4 generators>
1120
+ gap> Size(S);
1121
+ 155
1122
+ gap> Size(Generators(S));
1123
+ 4
1124
+ gap> NrHClasses(S);
1125
+ 87
1126
+ gap> NrRClasses(S);
1127
+ 19
1128
+ gap> NrDClasses(S);
1129
+ 5
1130
+ gap> NrIdempotents(S);
1131
+ 39
1132
+ gap> IsBlockBijectionMonoid(S);
1133
+ false
1134
+ gap> IsHTrivial(S);
1135
+ false
1136
+ gap> IsInverseMonoid(S);
1137
+ false
1138
+ gap> IsRegularSemigroup(S);
1139
+ true
1140
+ gap> IsSimpleSemigroup(S);
1141
+ false
1142
+ gap> StructureDescriptionMaximalSubgroups(S);
1143
+ [ "1", "C2", "S4" ]
1144
+ gap> S := ModularPartitionMonoid(5, 4);
1145
+ <inverse block bijection monoid of degree 4 with 3 generators>
1146
+ gap> Size(S);
1147
+ 131
1148
+ gap> Size(Generators(S));
1149
+ 3
1150
+ gap> NrHClasses(S);
1151
+ 63
1152
+ gap> NrRClasses(S);
1153
+ 15
1154
+ gap> NrDClasses(S);
1155
+ 5
1156
+ gap> NrIdempotents(S);
1157
+ 15
1158
+ gap> IsBlockBijectionMonoid(S);
1159
+ true
1160
+ gap> IsHTrivial(S);
1161
+ false
1162
+ gap> IsInverseMonoid(S);
1163
+ true
1164
+ gap> IsRegularSemigroup(S);
1165
+ true
1166
+ gap> IsSimpleSemigroup(S);
1167
+ false
1168
+ gap> StructureDescriptionMaximalSubgroups(S);
1169
+ [ "1", "C2", "S4" ]
1170
+
1171
+ # singular modular partition monoid
1172
+ gap> S := SingularModularPartitionMonoid(2, 4);
1173
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
1174
+ gap> Size(S);
1175
+ 355
1176
+ gap> Size(Generators(S));
1177
+ 1
1178
+ gap> NrHClasses(S);
1179
+ 210
1180
+ gap> NrRClasses(S);
1181
+ 30
1182
+ gap> NrDClasses(S);
1183
+ 5
1184
+ gap> NrIdempotents(S);
1185
+ 126
1186
+ gap> IsBlockBijectionMonoid(S);
1187
+ false
1188
+ gap> IsHTrivial(S);
1189
+ false
1190
+ gap> IsInverseMonoid(S);
1191
+ false
1192
+ gap> IsRegularSemigroup(S);
1193
+ true
1194
+ gap> IsSimpleSemigroup(S);
1195
+ false
1196
+ gap> StructureDescriptionMaximalSubgroups(S);
1197
+ [ "1", "C2" ]
1198
+ gap> S := SingularModularPartitionMonoid(3, 4);
1199
+ <regular bipartition *-semigroup ideal of degree 4 with 1 generator>
1200
+ gap> Size(S);
1201
+ 131
1202
+ gap> Size(Generators(S));
1203
+ 1
1204
+ gap> NrHClasses(S);
1205
+ 86
1206
+ gap> NrRClasses(S);
1207
+ 18
1208
+ gap> NrDClasses(S);
1209
+ 4
1210
+ gap> NrIdempotents(S);
1211
+ 38
1212
+ gap> IsBlockBijectionMonoid(S);
1213
+ false
1214
+ gap> IsHTrivial(S);
1215
+ false
1216
+ gap> IsInverseMonoid(S);
1217
+ false
1218
+ gap> IsRegularSemigroup(S);
1219
+ true
1220
+ gap> IsSimpleSemigroup(S);
1221
+ false
1222
+ gap> StructureDescriptionMaximalSubgroups(S);
1223
+ [ "1", "C2" ]
1224
+ gap> S := SingularModularPartitionMonoid(5, 4);
1225
+ <inverse bipartition semigroup ideal of degree 4 with 1 generator>
1226
+ gap> Size(S);
1227
+ 107
1228
+ gap> Size(Generators(S));
1229
+ 1
1230
+ gap> NrHClasses(S);
1231
+ 62
1232
+ gap> NrRClasses(S);
1233
+ 14
1234
+ gap> NrDClasses(S);
1235
+ 4
1236
+ gap> NrIdempotents(S);
1237
+ 14
1238
+ gap> IsBlockBijectionMonoid(S);
1239
+ false
1240
+ gap> IsHTrivial(S);
1241
+ false
1242
+ gap> IsInverseMonoid(S);
1243
+ false
1244
+ gap> IsRegularSemigroup(S);
1245
+ true
1246
+ gap> IsSimpleSemigroup(S);
1247
+ false
1248
+ gap> StructureDescriptionMaximalSubgroups(S);
1249
+ [ "1", "C2" ]
1250
+ gap> SingularModularPartitionMonoid(1, 1);
1251
+ <commutative inverse bipartition semigroup ideal of degree 1 with 1 generator>
1252
+ gap> SingularModularPartitionMonoid(2, 1);
1253
+ Error, the 2nd argument (a pos. int.) must be > 1 when the 1st argument (a pos\
1254
+ . int.) is also > 1
1255
+
1256
+ # Catalan monoid
1257
+ gap> S := CatalanMonoid(1);
1258
+ <trivial transformation group of degree 0 with 1 generator>
1259
+ gap> S := CatalanMonoid(2);
1260
+ <commutative transformation monoid of degree 2 with 1 generator>
1261
+ gap> Size(S);
1262
+ 2
1263
+ gap> S := CatalanMonoid(3);
1264
+ <transformation monoid of degree 3 with 2 generators>
1265
+ gap> Size(S);
1266
+ 5
1267
+ gap> S := CatalanMonoid(4);
1268
+ <transformation monoid of degree 4 with 3 generators>
1269
+ gap> Size(S);
1270
+ 14
1271
+
1272
+ # Example from Semigroupe manual, Section 5.18: Knast's counterexample
1273
+ gap> S := Semigroup(Transformation([4, 4, 8, 8, 8, 8, 4, 8]),
1274
+ > Transformation([8, 2, 8, 2, 5, 5, 8, 8]),
1275
+ > Transformation([8, 8, 3, 7, 8, 3, 7, 8]),
1276
+ > Transformation([8, 6, 6, 8, 6, 8, 8, 8]));;
1277
+ gap> Size(S);
1278
+ 30
1279
+ gap> NrDClasses(S);
1280
+ 6
1281
+ gap> NrRClasses(S);
1282
+ 12
1283
+ gap> NrLClasses(S);
1284
+ 12
1285
+ gap> NrHClasses(S);
1286
+ 30
1287
+ gap> NrIdempotents(S);
1288
+ 15
1289
+ gap> S.1 ^ 2 = MultiplicativeZero(S);
1290
+ true
1291
+ gap> IsCommutative(S);
1292
+ false
1293
+ gap> IsBand(S);
1294
+ false
1295
+ gap> IsNilpotentSemigroup(S);
1296
+ false
1297
+ gap> IsAperiodicSemigroup(S);
1298
+ true
1299
+ gap> IsGroupAsSemigroup(S);
1300
+ false
1301
+ gap> IsSemigroupWithCommutingIdempotents(S);
1302
+ false
1303
+
1304
+ # Example from Semigroupe manual, Section 5.19
1305
+ gap> S := Semigroup(Transformation([3, 5, 3, 3, 5]),
1306
+ > Transformation([6, 2, 4, 2, 2, 6]));;
1307
+ gap> Size(S);
1308
+ 8
1309
+ gap> IsomorphismFpSemigroup(S);;
1310
+ gap> Length(RelationsOfFpSemigroup(Range(last)));
1311
+ 4
1312
+ gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
1313
+ 4
1314
+ gap> NrDClasses(S);
1315
+ 2
1316
+ gap> NrRClasses(S);
1317
+ 4
1318
+ gap> NrLClasses(S);
1319
+ 4
1320
+ gap> NrHClasses(S);
1321
+ 8
1322
+ gap> NrIdempotents(S);
1323
+ 7
1324
+ gap> MultiplicativeZero(S);
1325
+ fail
1326
+ gap> IsCommutative(S);
1327
+ false
1328
+ gap> IsBand(S);
1329
+ false
1330
+ gap> IsNilpotentSemigroup(S);
1331
+ false
1332
+ gap> IsAperiodicSemigroup(S);
1333
+ true
1334
+ gap> IsGroupAsSemigroup(S);
1335
+ false
1336
+ gap> IsSemigroupWithCommutingIdempotents(S);
1337
+ false
1338
+
1339
+ # Example from Semigroupe manual, Section 5.20
1340
+ gap> S := Monoid(Matrix(IsBooleanMat, [[0, 1, 0],
1341
+ > [1, 1, 0],
1342
+ > [0, 1, 0]]),
1343
+ > Matrix(IsBooleanMat, [[1, 0, 0],
1344
+ > [1, 0, 1],
1345
+ > [1, 0, 0]]));
1346
+ <monoid of 3x3 boolean matrices with 2 generators>
1347
+ gap> Size(S);
1348
+ 7
1349
+ gap> Length(RelationsOfFpMonoid(Range(IsomorphismFpMonoid(S))));
1350
+ 8
1351
+ gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
1352
+ 2
1353
+ gap> NrDClasses(S);
1354
+ 4
1355
+ gap> NrRClasses(S);
1356
+ 4
1357
+ gap> NrLClasses(S);
1358
+ 7
1359
+ gap> NrHClasses(S);
1360
+ 7
1361
+ gap> NrIdempotents(S);
1362
+ 5
1363
+ gap> MultiplicativeZero(S);
1364
+ fail
1365
+ gap> IsCommutative(S);
1366
+ false
1367
+ gap> IsBand(S);
1368
+ false
1369
+ gap> IsNilpotentSemigroup(S);
1370
+ false
1371
+ gap> IsAperiodicSemigroup(S);
1372
+ true
1373
+ gap> IsGroupAsSemigroup(S);
1374
+ false
1375
+ gap> IsLTrivial(S);
1376
+ true
1377
+ gap> IsSemigroupWithCommutingIdempotents(S);
1378
+ false
1379
+
1380
+ # Example from Semigroupe manual, Section 5.21
1381
+ gap> S := Monoid(Matrix(IsNTPMatrix, [[0, 1, 0],
1382
+ > [1, 1, 0],
1383
+ > [0, 1, 0]],
1384
+ > 1, 2),
1385
+ > Matrix(IsNTPMatrix, [[1, 0, 0],
1386
+ > [1, 0, 1],
1387
+ > [1, 0, 0]],
1388
+ > 1, 2));
1389
+ <monoid of 3x3 ntp matrices with 2 generators>
1390
+ gap> Size(S);
1391
+ 37
1392
+ gap> Length(RelationsOfFpMonoid(Range(IsomorphismFpMonoid(S))));
1393
+ 12
1394
+ gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
1395
+ 7
1396
+ gap> NrDClasses(S);
1397
+ 8
1398
+ gap> NrRClasses(S);
1399
+ 14
1400
+ gap> NrLClasses(S);
1401
+ 17
1402
+ gap> NrHClasses(S);
1403
+ 35
1404
+ gap> NrIdempotents(S);
1405
+ 20
1406
+ gap> MultiplicativeZero(S);
1407
+ fail
1408
+ gap> IsCommutative(S);
1409
+ false
1410
+ gap> IsBand(S);
1411
+ false
1412
+ gap> IsNilpotentSemigroup(S);
1413
+ false
1414
+ gap> IsAperiodicSemigroup(S);
1415
+ false
1416
+ gap> IsGroupAsSemigroup(S);
1417
+ false
1418
+ gap> IsLTrivial(S);
1419
+ false
1420
+ gap> IsRTrivial(S);
1421
+ false
1422
+ gap> IsSemigroupWithCommutingIdempotents(S);
1423
+ false
1424
+
1425
+ # Example from Semigroupe manual, Section 5.22
1426
+ gap> S := Semigroup(Matrix(IsMaxPlusMatrix, [[0, -4],
1427
+ > [-4, -1]]),
1428
+ > Matrix(IsMaxPlusMatrix, [[0, -3],
1429
+ > [-3, -1]]));
1430
+ <semigroup of 2x2 max-plus matrices with 2 generators>
1431
+ gap> Size(S);
1432
+ 26
1433
+ gap> Length(RelationsOfFpSemigroup(Range(IsomorphismFpSemigroup(S))));
1434
+ 9
1435
+ gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
1436
+ 8
1437
+ gap> NrDClasses(S);
1438
+ 23
1439
+ gap> NrRClasses(S);
1440
+ 24
1441
+ gap> NrLClasses(S);
1442
+ 24
1443
+ gap> NrHClasses(S);
1444
+ 26
1445
+ gap> NrIdempotents(S);
1446
+ 4
1447
+ gap> MultiplicativeZero(S);
1448
+ fail
1449
+ gap> IsCommutative(S);
1450
+ false
1451
+ gap> IsBand(S);
1452
+ false
1453
+ gap> IsNilpotentSemigroup(S);
1454
+ false
1455
+ gap> IsAperiodicSemigroup(S);
1456
+ true
1457
+ gap> IsGroupAsSemigroup(S);
1458
+ false
1459
+ gap> IsLTrivial(S);
1460
+ false
1461
+ gap> IsRTrivial(S);
1462
+ false
1463
+ gap> IsSemigroupWithCommutingIdempotents(S);
1464
+ false
1465
+
1466
+ # Example from Semigroupe manual, Section 6
1467
+ gap> S := Monoid(Transformation([2, 3, 4, 4]),
1468
+ > Transformation([4, 1, 2, 4]), rec(acting := false));;
1469
+ gap> Size(S);
1470
+ 15
1471
+ gap> Length(RelationsOfFpMonoid(Range(IsomorphismFpMonoid(S))));
1472
+ 9
1473
+ gap> Length(MinimalFactorization(S, Enumerator(S)[Size(S)]));
1474
+ 4
1475
+ gap> NrDClasses(S);
1476
+ 4
1477
+ gap> NrRClasses(S);
1478
+ 7
1479
+ gap> NrLClasses(S);
1480
+ 7
1481
+ gap> NrHClasses(S);
1482
+ 15
1483
+ gap> NrIdempotents(S);
1484
+ 7
1485
+ gap> MultiplicativeZero(S) = S.2 ^ 3;
1486
+ true
1487
+ gap> IsCommutative(S);
1488
+ false
1489
+ gap> IsBand(S);
1490
+ false
1491
+ gap> IsNilpotentSemigroup(S);
1492
+ false
1493
+ gap> IsAperiodicSemigroup(S);
1494
+ true
1495
+ gap> IsGroupAsSemigroup(S);
1496
+ false
1497
+ gap> IsLTrivial(S);
1498
+ false
1499
+ gap> IsRTrivial(S);
1500
+ false
1501
+ gap> IsSemigroupWithCommutingIdempotents(S);
1502
+ true
1503
+
1504
+ # Test PartialUniformBlockBijectionMonoid
1505
+ gap> S := PartialUniformBlockBijectionMonoid(5);
1506
+ <inverse block bijection monoid of degree 6 with 4 generators>
1507
+ gap> S := PartialUniformBlockBijectionMonoid(2);
1508
+ <inverse block bijection monoid of degree 3 with 3 generators>
1509
+ gap> Size(S);
1510
+ 8
1511
+ gap> List([1 .. 5], n -> NrIdempotents(PartialUniformBlockBijectionMonoid(n)));
1512
+ [ 2, 5, 15, 52, 203 ]
1513
+ gap> List([1 .. 5], n -> Size(PartialUniformBlockBijectionMonoid(n)));
1514
+ [ 2, 8, 53, 512, 6697 ]
1515
+ gap> S := PartialUniformBlockBijectionMonoid(1);
1516
+ <commutative inverse block bijection monoid of degree 2 with 1 generator>
1517
+ gap> List([1 .. 5], n -> NrDClasses(PartialUniformBlockBijectionMonoid(n)));
1518
+ [ 2, 4, 7, 12, 19 ]
1519
+
1520
+ # Test PartialDualSymmetricInverseMonoid
1521
+ gap> S := PartialDualSymmetricInverseMonoid(4);
1522
+ <inverse block bijection monoid of degree 5 with 4 generators>
1523
+ gap> S := PartialDualSymmetricInverseMonoid(1);
1524
+ <commutative inverse block bijection monoid of degree 2 with 1 generator>
1525
+ gap> S := PartialDualSymmetricInverseMonoid(0);
1526
+ <trivial block bijection group of degree 0 with 1 generator>
1527
+ gap> S := PartialDualSymmetricInverseMonoid(2);
1528
+ <inverse block bijection monoid of degree 3 with 3 generators>
1529
+ gap> List([0 .. 5], n -> NrIdempotents(PartialDualSymmetricInverseMonoid(n)));
1530
+ [ 1, 2, 5, 15, 52, 203 ]
1531
+ gap> List([0 .. 5], n -> Size(PartialDualSymmetricInverseMonoid(n)));
1532
+ [ 1, 2, 8, 80, 1280, 29072 ]
1533
+ gap> List([0 .. 5], n -> NrDClasses(PartialDualSymmetricInverseMonoid(n)));
1534
+ [ 1, 2, 4, 6, 8, 10 ]
1535
+ gap> PartialDualSymmetricInverseMonoid(-1);
1536
+ Error, the argument (an int) is not >= 0
1537
+
1538
+ # Test RookPartitionMonoid
1539
+ gap> S := RookPartitionMonoid(4);
1540
+ <regular bipartition *-monoid of degree 5 with 5 generators>
1541
+ gap> Size(S);
1542
+ 21147
1543
+ gap> NrLClasses(S);
1544
+ 227
1545
+ gap> NrRClasses(S);
1546
+ 227
1547
+ gap> NrDClasses(S);
1548
+ 5
1549
+ gap> NrHClasses(S);
1550
+ 16423
1551
+ gap> NrIdempotents(S);
1552
+ 6255
1553
+ gap> IsStarSemigroup(S);
1554
+ true
1555
+ gap> List([1 .. 3], x -> Size(RookPartitionMonoid(x)));
1556
+ [ 5, 52, 877 ]
1557
+
1558
+ # Test GLM
1559
+ gap> S := GLM(3, 3);
1560
+ <general linear monoid 3x3 over GF(3)>
1561
+ gap> Size(S);
1562
+ 19683
1563
+ gap> NrLClasses(S);
1564
+ 28
1565
+ gap> NrRClasses(S);
1566
+ 28
1567
+ gap> NrDClasses(S);
1568
+ 4
1569
+ gap> NrHClasses(S);
1570
+ 340
1571
+ gap> NrIdempotents(S);
1572
+ 236
1573
+ gap> IsRegularSemigroup(S);
1574
+ true
1575
+ gap> IsFullMatrixMonoid(S);
1576
+ true
1577
+
1578
+ # Test SLM
1579
+ gap> S := SLM(3, 3);
1580
+ <regular monoid of 3x3 matrices over GF(3) with 3 generators>
1581
+ gap> Size(S);
1582
+ 14067
1583
+ gap> NrLClasses(S);
1584
+ 28
1585
+ gap> NrRClasses(S);
1586
+ 28
1587
+ gap> NrDClasses(S);
1588
+ 4
1589
+ gap> NrHClasses(S);
1590
+ 340
1591
+ gap> NrIdempotents(S);
1592
+ 236
1593
+ gap> IsRegularSemigroup(S);
1594
+ true
1595
+ gap> IsFullMatrixMonoid(S);
1596
+ false
1597
+
1598
+ # Test MunnSemigroup
1599
+ gap> S := InverseSemigroup(PartialPerm([1, 2, 3, 4, 5, 6, 7, 10],
1600
+ > [4, 6, 7, 3, 8, 2, 9, 5]),
1601
+ > PartialPerm([1, 2, 7, 9],
1602
+ > [5, 6, 4, 3]));;
1603
+ gap> T := IdempotentGeneratedSubsemigroup(S);;
1604
+ gap> M := MunnSemigroup(T);;
1605
+ gap> NrIdempotents(M);
1606
+ 60
1607
+ gap> NrIdempotents(S);
1608
+ 60
1609
+ gap> MunnSemigroup(S);
1610
+ Error, the argument (a semigroup) is not a semilattice
1611
+
1612
+ # Test OrderEndomorphisms
1613
+ gap> S := OrderEndomorphisms(4);
1614
+ <regular transformation monoid of degree 4 with 4 generators>
1615
+ gap> Size(S);
1616
+ 35
1617
+ gap> NrLClasses(S);
1618
+ 15
1619
+ gap> NrRClasses(S);
1620
+ 8
1621
+ gap> NrDClasses(S);
1622
+ 4
1623
+ gap> NrHClasses(S);
1624
+ 35
1625
+ gap> NrIdempotents(S);
1626
+ 21
1627
+ gap> IsRegularSemigroup(S);
1628
+ true
1629
+ gap> S := OrderEndomorphisms(1);
1630
+ <trivial transformation group of degree 0 with 1 generator>
1631
+ gap> Size(S);
1632
+ 1
1633
+ gap> NrLClasses(S);
1634
+ 1
1635
+ gap> NrRClasses(S);
1636
+ 1
1637
+ gap> NrDClasses(S);
1638
+ 1
1639
+ gap> NrHClasses(S);
1640
+ 1
1641
+ gap> NrIdempotents(S);
1642
+ 1
1643
+ gap> IsRegularSemigroup(S);
1644
+ true
1645
+
1646
+ # Test PartialOrderEndomorphisms
1647
+ gap> S := PartialOrderEndomorphisms(4);
1648
+ <regular transformation monoid of degree 5 with 8 generators>
1649
+ gap> Size(S);
1650
+ 192
1651
+ gap> NrLClasses(S);
1652
+ 16
1653
+ gap> NrRClasses(S);
1654
+ 41
1655
+ gap> NrDClasses(S);
1656
+ 5
1657
+ gap> NrHClasses(S);
1658
+ 192
1659
+ gap> NrIdempotents(S);
1660
+ 76
1661
+ gap> IsRegularSemigroup(S);
1662
+ true
1663
+ gap> S := PartialOrderEndomorphisms(1);
1664
+ <commutative inverse transformation monoid of degree 2 with 1 generator>
1665
+
1666
+ # Test OrderAntiEndomorphisms
1667
+ gap> S := OrderAntiEndomorphisms(4);
1668
+ <regular transformation monoid of degree 4 with 5 generators>
1669
+ gap> Size(S);
1670
+ 66
1671
+ gap> NrLClasses(S);
1672
+ 15
1673
+ gap> NrRClasses(S);
1674
+ 8
1675
+ gap> NrDClasses(S);
1676
+ 4
1677
+ gap> NrHClasses(S);
1678
+ 35
1679
+ gap> NrIdempotents(S);
1680
+ 21
1681
+ gap> IsRegularSemigroup(S);
1682
+ true
1683
+ gap> S := OrderAntiEndomorphisms(1);
1684
+ <trivial transformation group of degree 0 with 1 generator>
1685
+
1686
+ # Test PartialOrderAntiEndomorphisms
1687
+ gap> S := PartialOrderAntiEndomorphisms(4);
1688
+ <regular transformation monoid of degree 5 with 9 generators>
1689
+ gap> Size(S);
1690
+ 323
1691
+ gap> NrLClasses(S);
1692
+ 16
1693
+ gap> NrRClasses(S);
1694
+ 41
1695
+ gap> NrDClasses(S);
1696
+ 5
1697
+ gap> NrHClasses(S);
1698
+ 192
1699
+ gap> NrIdempotents(S);
1700
+ 76
1701
+ gap> IsRegularSemigroup(S);
1702
+ true
1703
+ gap> S := PartialOrderAntiEndomorphisms(1);
1704
+ <regular transformation monoid of degree 2 with 2 generators>
1705
+
1706
+ # Test PartialTranformationMonoid
1707
+ gap> S := PartialTransformationMonoid(1);
1708
+ <commutative inverse transformation monoid of degree 2 with 1 generator>
1709
+ gap> Size(S);
1710
+ 2
1711
+ gap> NrLClasses(S);
1712
+ 2
1713
+ gap> NrRClasses(S);
1714
+ 2
1715
+ gap> NrDClasses(S);
1716
+ 2
1717
+ gap> NrHClasses(S);
1718
+ 2
1719
+ gap> NrIdempotents(S);
1720
+ 2
1721
+ gap> IsRegularSemigroup(S);
1722
+ true
1723
+ gap> S := PartialTransformationMonoid(2);
1724
+ <regular transformation monoid of degree 3 with 3 generators>
1725
+ gap> Size(S);
1726
+ 9
1727
+ gap> NrLClasses(S);
1728
+ 4
1729
+ gap> NrRClasses(S);
1730
+ 5
1731
+ gap> NrDClasses(S);
1732
+ 3
1733
+ gap> NrHClasses(S);
1734
+ 8
1735
+ gap> NrIdempotents(S);
1736
+ 6
1737
+ gap> IsRegularSemigroup(S);
1738
+ true
1739
+ gap> S := PartialTransformationMonoid(4);
1740
+ <regular transformation monoid of degree 5 with 4 generators>
1741
+ gap> Size(S);
1742
+ 625
1743
+ gap> NrLClasses(S);
1744
+ 16
1745
+ gap> NrRClasses(S);
1746
+ 52
1747
+ gap> NrDClasses(S);
1748
+ 5
1749
+ gap> NrHClasses(S);
1750
+ 252
1751
+ gap> NrIdempotents(S);
1752
+ 104
1753
+ gap> IsRegularSemigroup(S);
1754
+ true
1755
+
1756
+ # PartitionMonoid
1757
+ gap> PartitionMonoid(-1);
1758
+ Error, the argument (an int) is not >= 0
1759
+ gap> PartitionMonoid(0);
1760
+ <trivial block bijection group of degree 0 with 1 generator>
1761
+ gap> PartitionMonoid(1);
1762
+ <commutative bipartition monoid of degree 1 with 1 generator>
1763
+ gap> PartitionMonoid(5);
1764
+ <regular bipartition *-monoid of size 115975, degree 5 with 4 generators>
1765
+
1766
+ # DualSymmetricInverseMonoid
1767
+ gap> DualSymmetricInverseMonoid(-1);
1768
+ Error, the argument (an int) is not >= 0
1769
+ gap> DualSymmetricInverseMonoid(0);
1770
+ <trivial block bijection group of degree 0 with 1 generator>
1771
+ gap> DualSymmetricInverseMonoid(1);
1772
+ <trivial block bijection group of degree 1 with 1 generator>
1773
+ gap> DualSymmetricInverseMonoid(2);
1774
+ <inverse block bijection monoid of degree 2 with 2 generators>
1775
+ gap> DualSymmetricInverseMonoid(5);
1776
+ <inverse block bijection monoid of degree 5 with 3 generators>
1777
+
1778
+ # BrauerMonoid
1779
+ gap> BrauerMonoid(-1);
1780
+ Error, the argument (an int) is not >= 0
1781
+ gap> BrauerMonoid(0);
1782
+ <trivial block bijection group of degree 0 with 1 generator>
1783
+ gap> BrauerMonoid(1);
1784
+ <trivial block bijection group of degree 1 with 1 generator>
1785
+ gap> BrauerMonoid(2);
1786
+ <regular bipartition *-monoid of degree 2 with 2 generators>
1787
+ gap> BrauerMonoid(5);
1788
+ <regular bipartition *-monoid of degree 5 with 3 generators>
1789
+
1790
+ # PartialBrauerMonoid
1791
+ gap> PartialBrauerMonoid(-1);
1792
+ Error, the argument (an int) is not >= 0
1793
+ gap> PartialBrauerMonoid(0);
1794
+ <trivial block bijection group of degree 0 with 1 generator>
1795
+ gap> PartialBrauerMonoid(1);
1796
+ <regular bipartition *-monoid of degree 1 with 2 generators>
1797
+ gap> PartialBrauerMonoid(2);
1798
+ <regular bipartition *-monoid of degree 2 with 5 generators>
1799
+ gap> PartialBrauerMonoid(5);
1800
+ <regular bipartition *-monoid of degree 5 with 8 generators>
1801
+
1802
+ # JonesMonoid
1803
+ gap> JonesMonoid(-1);
1804
+ Error, the argument (an int) is not >= 0
1805
+ gap> JonesMonoid(0);
1806
+ <trivial block bijection group of degree 0 with 1 generator>
1807
+ gap> JonesMonoid(1);
1808
+ <trivial block bijection group of degree 1 with 1 generator>
1809
+ gap> JonesMonoid(2);
1810
+ <commutative inverse bipartition monoid of degree 2 with 1 generator>
1811
+ gap> JonesMonoid(5);
1812
+ <regular bipartition *-monoid of degree 5 with 4 generators>
1813
+
1814
+ # AnnularJonesMonoid
1815
+ gap> AnnularJonesMonoid(-1);
1816
+ Error, the argument (an int) is not >= 0
1817
+ gap> AnnularJonesMonoid(0);
1818
+ <trivial block bijection group of degree 0 with 1 generator>
1819
+ gap> AnnularJonesMonoid(1);
1820
+ <trivial block bijection group of degree 1 with 1 generator>
1821
+ gap> AnnularJonesMonoid(2);
1822
+ <regular bipartition *-monoid of degree 2 with 2 generators>
1823
+ gap> AnnularJonesMonoid(5);
1824
+ <regular bipartition *-monoid of degree 5 with 2 generators>
1825
+
1826
+ # PartialJonesMonoid
1827
+ gap> PartialJonesMonoid(-1);
1828
+ Error, the argument (an int) is not >= 0
1829
+ gap> PartialJonesMonoid(0);
1830
+ <trivial block bijection group of degree 0 with 1 generator>
1831
+ gap> PartialJonesMonoid(1);
1832
+ <commutative bipartition monoid of degree 1 with 1 generator>
1833
+ gap> PartialJonesMonoid(2);
1834
+ <regular bipartition *-monoid of degree 2 with 3 generators>
1835
+ gap> PartialJonesMonoid(5);
1836
+ <regular bipartition *-monoid of degree 5 with 9 generators>
1837
+
1838
+ # MotzkinMonoid
1839
+ gap> MotzkinMonoid(-1);
1840
+ Error, the argument (an int) is not >= 0
1841
+ gap> MotzkinMonoid(0);
1842
+ <trivial block bijection group of degree 0 with 1 generator>
1843
+ gap> MotzkinMonoid(1);
1844
+ <regular bipartition *-monoid of degree 1 with 2 generators>
1845
+ gap> MotzkinMonoid(2);
1846
+ <regular bipartition *-monoid of degree 2 with 4 generators>
1847
+ gap> MotzkinMonoid(5);
1848
+ <regular bipartition *-monoid of degree 5 with 10 generators>
1849
+
1850
+ # POI
1851
+ gap> POI(1);
1852
+ <symmetric inverse monoid of degree 1>
1853
+ gap> POI(2);
1854
+ <inverse partial perm monoid of rank 2 with 2 generators>
1855
+ gap> POI(5);
1856
+ <inverse partial perm monoid of rank 5 with 5 generators>
1857
+
1858
+ # POPI
1859
+ gap> POPI(1);
1860
+ <symmetric inverse monoid of degree 1>
1861
+ gap> POPI(2);
1862
+ <symmetric inverse monoid of degree 2>
1863
+ gap> POPI(5);
1864
+ <inverse partial perm monoid of rank 5 with 2 generators>
1865
+
1866
+ # PODI
1867
+ gap> PODI(1);
1868
+ <symmetric inverse monoid of degree 1>
1869
+ gap> PODI(2);
1870
+ <symmetric inverse monoid of degree 2>
1871
+ gap> PODI(5);
1872
+ <inverse partial perm monoid of rank 5 with 6 generators>
1873
+
1874
+ # PORI
1875
+ gap> PORI(1);
1876
+ <symmetric inverse monoid of degree 1>
1877
+ gap> PORI(2);
1878
+ <symmetric inverse monoid of degree 2>
1879
+ gap> PORI(5);
1880
+ <inverse partial perm monoid of rank 5 with 3 generators>
1881
+
1882
+ # SingularPartitionMonoid
1883
+ gap> SingularPartitionMonoid(1);;
1884
+ gap> SingularPartitionMonoid(2);
1885
+ <regular bipartition *-semigroup ideal of degree 2 with 1 generator>
1886
+ gap> SingularPartitionMonoid(5);
1887
+ <regular bipartition *-semigroup ideal of degree 5 with 1 generator>
1888
+
1889
+ # SingularTransformationMonoid
1890
+ gap> SingularTransformationMonoid(1);
1891
+ Error, the argument (an int) is not > 1
1892
+ gap> SingularTransformationMonoid(2);
1893
+ <regular transformation semigroup ideal of degree 2 with 1 generator>
1894
+ gap> SingularTransformationMonoid(5);
1895
+ <regular transformation semigroup ideal of degree 5 with 1 generator>
1896
+
1897
+ # SingularOrderEndomorphisms
1898
+ gap> SingularOrderEndomorphisms(1);
1899
+ Error, the argument (an int) is not > 1
1900
+ gap> SingularOrderEndomorphisms(2);
1901
+ <regular transformation semigroup ideal of degree 2 with 1 generator>
1902
+ gap> SingularOrderEndomorphisms(5);
1903
+ <regular transformation semigroup ideal of degree 5 with 1 generator>
1904
+
1905
+ # SingularBrauerMonoid
1906
+ gap> SingularBrauerMonoid(1);
1907
+ Error, the argument (an int) is not > 1
1908
+ gap> SingularBrauerMonoid(2);
1909
+ <regular bipartition *-semigroup ideal of degree 2 with 1 generator>
1910
+ gap> SingularBrauerMonoid(5);
1911
+ <regular bipartition *-semigroup ideal of degree 5 with 1 generator>
1912
+
1913
+ # SingularJonesMonoid
1914
+ gap> SingularJonesMonoid(1);
1915
+ Error, the argument (an int) is not > 1
1916
+ gap> SingularJonesMonoid(2);
1917
+ <commutative inverse bipartition semigroup ideal of degree 2 with 1 generator>
1918
+ gap> SingularJonesMonoid(5);
1919
+ <regular bipartition *-semigroup ideal of degree 5 with 1 generator>
1920
+
1921
+ # SingularDualSymmetricInverseMonoid
1922
+ gap> SingularDualSymmetricInverseMonoid(1);
1923
+ Error, the argument (an int) is not > 1
1924
+ gap> SingularDualSymmetricInverseMonoid(2);
1925
+ <inverse bipartition semigroup ideal of degree 2 with 1 generator>
1926
+ gap> SingularDualSymmetricInverseMonoid(5);
1927
+ <inverse bipartition semigroup ideal of degree 5 with 1 generator>
1928
+
1929
+ # FullTropicalMinPlusMonoid
1930
+ gap> FullTropicalMinPlusMonoid(3, 10);
1931
+ <monoid of 3x3 tropical min-plus matrices with 521 generators>
1932
+ gap> FullTropicalMinPlusMonoid(10, 10);
1933
+ Error, the 1st argument (dimension) must be 2 or 3
1934
+
1935
+ # FullPBRMonoid
1936
+ gap> FullPBRMonoid(1);
1937
+ <pbr monoid of degree 1 with 4 generators>
1938
+ gap> FullPBRMonoid(2);
1939
+ <pbr monoid of degree 2 with 10 generators>
1940
+ gap> FullPBRMonoid(3);
1941
+ Error, the argument (a pos. int.) must be at most 2
1942
+
1943
+ # Test RegularBooleanMatMonoid
1944
+ gap> S := RegularBooleanMatMonoid(1);
1945
+ <commutative monoid of 1x1 boolean matrices with 1 generator>
1946
+ gap> S = FullBooleanMatMonoid(1);
1947
+ true
1948
+ gap> Size(S);
1949
+ 2
1950
+ gap> S := RegularBooleanMatMonoid(2);
1951
+ <monoid of 2x2 boolean matrices with 3 generators>
1952
+ gap> Size(S);
1953
+ 16
1954
+ gap> S = FullBooleanMatMonoid(2);
1955
+ true
1956
+ gap> S := RegularBooleanMatMonoid(3);
1957
+ <monoid of 3x3 boolean matrices with 4 generators>
1958
+ gap> T := FullBooleanMatMonoid(3);
1959
+ <monoid of 3x3 boolean matrices with 5 generators>
1960
+ gap> Size(S);
1961
+ 506
1962
+ gap> S = T;
1963
+ false
1964
+ gap> S = SubsemigroupByProperty(T, x -> IsRegularSemigroupElement(T, x));
1965
+ true
1966
+
1967
+ # Test GossipMonoid
1968
+ gap> S := GossipMonoid(1);
1969
+ <trivial group of 1x1 boolean matrices with 1 generator>
1970
+ gap> Size(S);
1971
+ 1
1972
+ gap> T := SubsemigroupByProperty(FullBooleanMatMonoid(2),
1973
+ > IsEquivalenceBooleanMat);
1974
+ <commutative monoid of size 2, 2x2 boolean matrices with 1 generator>
1975
+ gap> GossipMonoid(3) = SubsemigroupByProperty(FullBooleanMatMonoid(3),
1976
+ > IsEquivalenceBooleanMat);
1977
+ true
1978
+
1979
+ # Test UnitriangularBooleanMatMonoid
1980
+ gap> UnitriangularBooleanMatMonoid(1);
1981
+ <trivial group of 1x1 boolean matrices with 1 generator>
1982
+ gap> n := 2;;
1983
+ gap> S := UnitriangularBooleanMatMonoid(n);
1984
+ <commutative monoid of 2x2 boolean matrices with 1 generator>
1985
+ gap> Size(S) = 2 ^ (n * (n - 1) / 2);
1986
+ true
1987
+ gap> IsDTrivial(S);
1988
+ true
1989
+ gap> n := 3;;
1990
+ gap> S := UnitriangularBooleanMatMonoid(n);
1991
+ <monoid of 3x3 boolean matrices with 3 generators>
1992
+ gap> Size(S) = 2 ^ (n * (n - 1) / 2);
1993
+ true
1994
+ gap> IsDTrivial(S);
1995
+ true
1996
+
1997
+ # Test TriangularBooleanMatMonoid
1998
+ gap> TriangularBooleanMatMonoid(1);
1999
+ <trivial group of 1x1 boolean matrices with 1 generator>
2000
+ gap> n := 2;;
2001
+ gap> S := TriangularBooleanMatMonoid(n);
2002
+ <monoid of 2x2 boolean matrices with 3 generators>
2003
+ gap> Size(S);
2004
+ 8
2005
+ gap> n := 3;;
2006
+ gap> S := TriangularBooleanMatMonoid(n);
2007
+ <monoid of 3x3 boolean matrices with 6 generators>
2008
+ gap> Size(S);
2009
+ 64
2010
+
2011
+ # Test ReflexiveBooleanMatMonoid
2012
+ gap> ReflexiveBooleanMatMonoid(1);
2013
+ <trivial group of 1x1 boolean matrices with 1 generator>
2014
+ gap> S := ReflexiveBooleanMatMonoid(3);
2015
+ <monoid of 3x3 boolean matrices with 8 generators>
2016
+ gap> S := ReflexiveBooleanMatMonoid(5);
2017
+ <monoid of 5x5 boolean matrices with 1414 generators>
2018
+ gap> S := ReflexiveBooleanMatMonoid(7);
2019
+ Error, generators for this monoid are only provided up to dimension 6
2020
+
2021
+ # Test HallMonoid
2022
+ gap> HallMonoid(1);
2023
+ <trivial group of 1x1 boolean matrices with 1 generator>
2024
+ gap> S := HallMonoid(3);
2025
+ <monoid of 3x3 boolean matrices with 4 generators>
2026
+ gap> Size(S);
2027
+ 247
2028
+ gap> S := HallMonoid(5);
2029
+ <monoid of 5x5 boolean matrices with 12 generators>
2030
+ gap> S := HallMonoid(6);
2031
+ <monoid of 6x6 boolean matrices with 67 generators>
2032
+ gap> S := HallMonoid(7);
2033
+ <monoid of 7x7 boolean matrices with 2141 generators>
2034
+ gap> S := HallMonoid(9);
2035
+ Error, generators for this monoid are only known up to dimension 8
2036
+
2037
+ # Test FullBooleanMatMonoid
2038
+ gap> FullBooleanMatMonoid(1);
2039
+ <commutative monoid of 1x1 boolean matrices with 1 generator>
2040
+ gap> S := FullBooleanMatMonoid(3);
2041
+ <monoid of 3x3 boolean matrices with 5 generators>
2042
+ gap> Size(S) = 2 ^ (3 ^ 2);
2043
+ true
2044
+ gap> S := FullBooleanMatMonoid(5);
2045
+ <monoid of 5x5 boolean matrices with 13 generators>
2046
+ gap> S := FullBooleanMatMonoid(6);
2047
+ <monoid of 6x6 boolean matrices with 68 generators>
2048
+ gap> S := FullBooleanMatMonoid(7);
2049
+ <monoid of 7x7 boolean matrices with 2142 generators>
2050
+ gap> S := FullBooleanMatMonoid(9);
2051
+ Error, generators for this monoid are only known up to dimension 8
2052
+
2053
+ #
2054
+ gap> SEMIGROUPS.StopTest();
2055
+ gap> STOP_TEST("Semigroups package: standard/semigroups/semiex.tst");