passagemath-gap-pkg-semigroups 10.6.30__cp311-cp311-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1158 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.cpython-311-darwin.so +0 -0
@@ -0,0 +1,1144 @@
1
+ #############################################################################
2
+ ##
3
+ #W standard/main/setup.tst
4
+ #Y Copyright (C) 2016-2022 James D. Mitchell
5
+ ## Wilf A. Wilson
6
+ ##
7
+ ## Licensing information can be found in the README file of this package.
8
+ ##
9
+ #############################################################################
10
+ ##
11
+
12
+ #@local G, M, R, S, acting, b, data, forflatplainlists, func, o, r, rank, s
13
+ #@local schutz, x, y
14
+ gap> START_TEST("Semigroups package: standard/main/setup.tst");
15
+ gap> LoadPackage("semigroups", false);;
16
+
17
+ #
18
+ gap> SEMIGROUPS.StartTest();
19
+ gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
20
+
21
+ # IsGeneratorsOfActingSemigroup
22
+ gap> IsGeneratorsOfActingSemigroup([Transformation([2, 2])]);
23
+ true
24
+ gap> IsGeneratorsOfActingSemigroup([PartialPerm([1])]);
25
+ true
26
+ gap> IsGeneratorsOfActingSemigroup([Bipartition([[1, -1]])]);
27
+ true
28
+ gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
29
+ gap> IsGeneratorsOfActingSemigroup(R);
30
+ true
31
+ gap> IsGeneratorsOfActingSemigroup(Elements(R));
32
+ true
33
+ gap> IsGeneratorsOfActingSemigroup(SLM(2, 2));
34
+ true
35
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]), Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
36
+ gap> IsGeneratorsOfActingSemigroup(M);
37
+ true
38
+
39
+ # ActionDegree
40
+
41
+ # ActionDegree, for a partial perm
42
+ gap> ActionDegree(PartialPerm([]));
43
+ 0
44
+ gap> ActionDegree(PartialPerm([2]));
45
+ 2
46
+ gap> ActionDegree(PartialPerm([0, 1]));
47
+ 2
48
+
49
+ # ActionDegree, for a bipartition
50
+ gap> ActionDegree(Bipartition([[1, 3], [2, 4, -2], [5, -1, -3, -4], [-5]]));
51
+ 5
52
+
53
+ # ActionDegree, for an RZMS element
54
+ gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
55
+ > [(), (), ()]]);;
56
+ gap> ActionDegree(R.1);
57
+ 1
58
+ gap> ActionDegree(MultiplicativeZero(R));
59
+ 0
60
+ gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[()]]);;
61
+ gap> Set(R, ActionDegree);
62
+ [ 0, 1, 3, 4 ]
63
+
64
+ # ActionDegree, for a MTS element
65
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]), Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
66
+ gap> ActionDegree(M.1);
67
+ 0
68
+
69
+ # ActionDegree, for a matrix over finite field object
70
+ gap> ActionDegree(Matrix(GF(2 ^ 2),
71
+ > [[Z(2) ^ 0, 0 * Z(2)], [0 * Z(2), 0 * Z(2)]]));
72
+ 2
73
+
74
+ # ActionDegree, for a transformation collection
75
+ gap> ActionDegree(FullTransformationMonoid(3));
76
+ 3
77
+ gap> ActionDegree([IdentityTransformation]);
78
+ 0
79
+
80
+ # ActionDegree, for a partial perm collection
81
+ gap> ActionDegree([PartialPerm([2, 3]), PartialPerm([2, 1, 3])]);
82
+ 3
83
+ gap> ActionDegree([PartialPerm([])]);
84
+ 0
85
+
86
+ # ActionDegree, for a bipartition collection
87
+ gap> ActionDegree([Bipartition([[1, 2, -2], [-1]]),
88
+ > Bipartition([[1], [2, -2], [-1]])]);
89
+ 2
90
+
91
+ # ActionDegree, for an RZMS element collection
92
+ gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
93
+ > [(), (), ()]]);;
94
+ gap> ActionDegree([R.1, MultiplicativeZero(R)]);
95
+ 1
96
+ gap> ActionDegree([MultiplicativeZero(R)]);
97
+ 0
98
+
99
+ # ActionDegree, for an MTS element collection
100
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]),
101
+ > Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
102
+ gap> ActionDegree(Generators(M));
103
+ 0
104
+
105
+ # ActionDegree for MatrixOverFiniteFieldSemigroup
106
+ gap> ActionDegree(SLM(2, 2));
107
+ 2
108
+
109
+ # ActionDegree, for a transformation semigroup
110
+ gap> ActionDegree(FullTransformationSemigroup(2));
111
+ 2
112
+
113
+ # ActionDegree, for a partial perm semigroup
114
+ gap> ActionDegree(MonogenicSemigroup(IsPartialPermSemigroup, 3, 3));
115
+ 6
116
+
117
+ # ActionDegree, for a partial perm inverse semigroup
118
+ gap> ActionDegree(SymmetricInverseMonoid(4));
119
+ 4
120
+
121
+ # ActionDegree, for a bipartition semigroup
122
+ gap> ActionDegree(PartitionMonoid(10));
123
+ 10
124
+
125
+ # ActionDegree, for a Rees 0-matrix subsemigroup with generators
126
+ gap> R := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[()]]);;
127
+ gap> GeneratorsOfSemigroup(R);;
128
+ gap> ActionDegree(R);
129
+ 3
130
+ gap> ActionDegree(Semigroup(MultiplicativeZero(R)));
131
+ 0
132
+
133
+ # ActionDegree, for an MTS subsemigroup
134
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]), Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
135
+ gap> ActionDegree(Semigroup(Representative(M)));
136
+ 0
137
+
138
+ # ActionDegree, for a matrix over finite field semigroup
139
+ gap> ActionDegree(GLM(2, 2));
140
+ 2
141
+ gap> ActionDegree(SLM(2, 2));
142
+ 2
143
+
144
+ # ActionRank
145
+
146
+ # ActionRank, for a transformation and integer
147
+ gap> ActionRank(Transformation([2, 3, 4, 5, 5, 6]), 5);
148
+ 4
149
+ gap> ActionRank(Transformation([2, 3, 4, 5, 5, 6]), 6);
150
+ 5
151
+
152
+ # ActionRank, for a transformation semigroup
153
+ gap> rank := ActionRank(FullTransformationMonoid(4));;
154
+ gap> rank(IdentityTransformation);
155
+ 4
156
+
157
+ # ActionRank, for a partial perm and integer
158
+ gap> ActionRank(PartialPerm([0, 3, 0, 6]), 8);
159
+ 2
160
+
161
+ # ActionRank, for a partial perm semigroup
162
+ gap> rank := ActionRank(SymmetricInverseSemigroup(2));;
163
+ gap> rank(PartialPerm([]));
164
+ 0
165
+ gap> rank(PartialPerm([2, 1]));
166
+ 2
167
+
168
+ # ActionRank, for a bipartition and integer
169
+ gap> ActionRank(Bipartition([[1, 3], [2, -1], [-2, -3]]), 3);
170
+ 1
171
+
172
+ # ActionRank, for a bipartition semigroup
173
+ gap> rank := ActionRank(PartitionMonoid(3));;
174
+ gap> rank(Bipartition([[1, 3], [2, -1], [-2, -3]]));
175
+ 1
176
+
177
+ # ActionRank, for an RZMS element and integer
178
+ gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
179
+ > [(), (), ()]]);;
180
+ gap> ActionRank(R.1, 10);
181
+ 1
182
+ gap> ActionRank(MultiplicativeZero(R), 10);
183
+ 0
184
+
185
+ # ActionRank, for a Rees 0-matrix subsemigroup
186
+ gap> R := ReesZeroMatrixSemigroup(Group([(2, 3)]), [[()]]);;
187
+ gap> rank := ActionRank(R);;
188
+ gap> rank(RMSElement(R, 1, (2, 3), 1));
189
+ 3
190
+ gap> rank(MultiplicativeZero(R));
191
+ 0
192
+
193
+ # ActionRank, for an MTS semigroup and subsemigroup
194
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3]), Digraph([[1], [1, 2], [1, 3]]), [1, 2]);;
195
+ gap> rank := ActionRank(M);;
196
+ gap> rank(Representative(M));
197
+ 0
198
+ gap> S := Semigroup(Representative(M));;
199
+ gap> rank := ActionRank(S);;
200
+ gap> rank(Representative(S));
201
+ 0
202
+
203
+ # ActionRank, for a matrix over FF
204
+ gap> x := Matrix(GF(2), [[0 * Z(2), 0 * Z(2)], [0 * Z(2), Z(2) ^ 0]]);;
205
+ gap> ActionRank(x, 10);
206
+ 1
207
+
208
+ # ActionRank, for a matrix over FF semigroup
209
+ gap> rank := ActionRank(GLM(2, 2));;
210
+ gap> rank(Matrix(GF(2), [[0 * Z(2), 0 * Z(2)], [0 * Z(2), 0 * Z(2)]]));
211
+ 0
212
+ gap> rank(Matrix(GF(2), [[Z(2) ^ 0, 0 * Z(2)], [0 * Z(2), 0 * Z(2)]]));
213
+ 1
214
+
215
+ # MinActionRank
216
+
217
+ # MinActionRank, for a transformation semigroup
218
+ gap> MinActionRank(FullTransformationMonoid(2));
219
+ 1
220
+
221
+ # MinActionRank, for a partial perm semigroup
222
+ gap> MinActionRank(SymmetricInverseSemigroup(2));
223
+ 0
224
+
225
+ # MinActionRank, for a bipartition semigroup
226
+ gap> MinActionRank(PartitionMonoid(2));
227
+ 0
228
+
229
+ # MinActionRank, for a RZMS
230
+ gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
231
+ > [(), (), ()]]);;
232
+ gap> MinActionRank(R);
233
+ 0
234
+
235
+ # MinActionRank, for a MTS
236
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
237
+ gap> MinActionRank(M);
238
+ 1
239
+
240
+ # MinActionRank for a matrix over FF semigroup
241
+ gap> MinActionRank(GLM(2, 2));
242
+ 0
243
+
244
+ # Rho/LambdaOrbOpts
245
+
246
+ # Rho/LambdaOrbOpts, for a transformation semigroup
247
+ gap> LambdaOrbOpts(FullTransformationMonoid(2));
248
+ rec( forflatplainlists := true )
249
+ gap> RhoOrbOpts(FullTransformationMonoid(2));
250
+ rec( forflatplainlists := true )
251
+
252
+ # Rho/LambdaOrbOpts, for a partial perm semigroup
253
+ gap> LambdaOrbOpts(SymmetricInverseSemigroup(2));
254
+ rec( forflatplainlists := true )
255
+ gap> RhoOrbOpts(SymmetricInverseSemigroup(2));
256
+ rec( forflatplainlists := true )
257
+
258
+ # Rho/LambdaOrbOpts, for a bipartition semigroup
259
+ gap> LambdaOrbOpts(PartitionMonoid(2));
260
+ rec( )
261
+ gap> RhoOrbOpts(PartitionMonoid(2));
262
+ rec( )
263
+
264
+ # Rho/LambdaOrbOpts, for a RZMS
265
+ gap> R := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
266
+ > [(), (), ()]]);;
267
+ gap> LambdaOrbOpts(R);
268
+ rec( )
269
+ gap> RhoOrbOpts(R);
270
+ rec( )
271
+
272
+ # Rho/lambdaOrbOpts, for a MTS
273
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
274
+ gap> LambdaOrbOpts(M);
275
+ rec( )
276
+ gap> RhoOrbOpts(M);
277
+ rec( )
278
+
279
+ # Rho/LambdaOrbOpts for a matrix over FF semigroup
280
+ gap> LambdaOrbOpts(GLM(2, 2));
281
+ rec( )
282
+ gap> RhoOrbOpts(GLM(2, 2));
283
+ rec( )
284
+
285
+ # Rho/LambdaAct
286
+
287
+ # Rho/LambdaAct, for a transformation semigroup
288
+ gap> x := LambdaAct(FullTransformationMonoid(10));;
289
+ gap> x([2, 4, 7], Transformation([4, 2, 6, 6, 3, 1, 6, 5, 3, 7]));
290
+ [ 2, 6 ]
291
+ gap> x := RhoAct(FullTransformationMonoid(5));;
292
+ gap> x([1, 2, 1, 1, 3], Transformation([3, 2, 4, 3, 2]));
293
+ [ 1, 2, 1, 1, 2 ]
294
+
295
+ # Rho/LambdaAct, for a partial perm semigroup
296
+ gap> x := LambdaAct(SymmetricInverseMonoid(3));;
297
+ gap> x([2, 4], PartialPerm([4, 3, 2, 0]));
298
+ [ 3 ]
299
+ gap> x := RhoAct(SymmetricInverseMonoid(3));;
300
+ gap> x([2, 4], PartialPerm([4, 3, 2, 0]));
301
+ [ 1, 3 ]
302
+
303
+ # Rho/LambdaAct, for a bipartition semigroup
304
+ gap> S := PartitionMonoid(3);;
305
+ gap> r := BLOCKS_NC([[1, 2], [-3]]);;
306
+ gap> s := Bipartition([[1], [2, -1, -2], [3, -3]]);;
307
+ gap> x := LambdaAct(S);;
308
+ gap> x(r, s);
309
+ <blocks: [ 1*, 2* ], [ 3 ]>
310
+ gap> x := RhoAct(S);;
311
+ gap> x(r, s);
312
+ <blocks: [ 1 ], [ 2* ], [ 3 ]>
313
+
314
+ # Rho/LambdaAct, for an RZMS
315
+ gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[(), 0], [0, ()]]);;
316
+ gap> r := RMSElement(R, 1, (1, 3, 2), 1);;
317
+ gap> s := RMSElement(R, 1, (2, 3), 2);;
318
+ gap> x := LambdaAct(R);;
319
+ gap> x(1, MultiplicativeZero(R));
320
+ 0
321
+ gap> x(0, r);
322
+ 0
323
+ gap> x(-1, r);
324
+ 1
325
+ gap> x(1, r);
326
+ 1
327
+ gap> x(2, r);
328
+ 0
329
+ gap> x(1, s);
330
+ 2
331
+ gap> x(2, s);
332
+ 0
333
+ gap> x := RhoAct(R);;
334
+ gap> x(1, MultiplicativeZero(R));
335
+ 0
336
+ gap> x(0, r);
337
+ 0
338
+ gap> x(-1, r);
339
+ 1
340
+ gap> x(1, r);
341
+ 1
342
+ gap> x(2, r);
343
+ 0
344
+ gap> x(1, s);
345
+ 0
346
+ gap> x(2, s);
347
+ 1
348
+
349
+ # Rho/LambdaAct, for a MTS
350
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
351
+ gap> r := MTSE(M, 1, (3, 4));;
352
+ gap> s := MTSE(M, 3, (2, 3));;
353
+ gap> x := LambdaAct(M);;
354
+ gap> x(3, s);
355
+ 2
356
+ gap> x(2, s);
357
+ 1
358
+ gap> x(2, r);
359
+ 1
360
+ gap> x(3, r);
361
+ 1
362
+ gap> x(1, r);
363
+ 1
364
+ gap> x(0, r);
365
+ 1
366
+ gap> x := RhoAct(M);;
367
+ gap> x(3, s);
368
+ 1
369
+ gap> x(2, s);
370
+ 3
371
+ gap> x(2, r);
372
+ 1
373
+ gap> x(3, r);
374
+ 1
375
+ gap> x(1, r);
376
+ 1
377
+ gap> x(0, r);
378
+ 1
379
+
380
+ # Rho/LambdaAct, for a matrix over FF semigroup
381
+ gap> r := Matrix(GF(2), [[Z(2) ^ 0, Z(2) ^ 0], [Z(2) ^ 0, 0 * Z(2)]]);;
382
+ gap> s := Matrix(GF(2), [[Z(2) ^ 0, Z(2) ^ 0], [0 * Z(2), 0 * Z(2)]]);;
383
+ gap> b := NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep,
384
+ > GF(2),
385
+ > [[Z(2) ^ 0, 0 * Z(2)],
386
+ > [0 * Z(2), Z(2) ^ 0]]);
387
+ <rowbasis of rank 2 over GF(2)>
388
+ gap> x := LambdaAct(GLM(2, 2));;
389
+ gap> x(b, r);
390
+ <rowbasis of rank 2 over GF(2)>
391
+ gap> x := RhoAct(GLM(2, 2));;
392
+ gap> x(b, s);
393
+ <rowbasis of rank 1 over GF(2)>
394
+
395
+ # Rho/LambdaOrbSeed
396
+
397
+ # Rho/LambdaOrbSeed, for a transformation semigroup
398
+ gap> LambdaOrbSeed(FullTransformationMonoid(4));
399
+ [ 0 ]
400
+ gap> RhoOrbSeed(FullTransformationMonoid(4));
401
+ [ 0 ]
402
+
403
+ # Rho/LambdaOrbSeed, for a partial perm semigroup
404
+ gap> LambdaOrbSeed(SymmetricInverseSemigroup(3));
405
+ [ 0 ]
406
+ gap> RhoOrbSeed(SymmetricInverseSemigroup(3));
407
+ [ 0 ]
408
+
409
+ # Rho/LambdaOrbSeed, for a bipartition semigroup
410
+ gap> LambdaOrbSeed(PartitionMonoid(3));
411
+ <blocks: [ 1*, 2*, 3*, 4* ]>
412
+ gap> RhoOrbSeed(PartitionMonoid(3));
413
+ <blocks: [ 1*, 2*, 3*, 4* ]>
414
+
415
+ # Rho/LambdaOrbSeed, for an RZMS
416
+ gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
417
+ gap> LambdaOrbSeed(R);
418
+ -1
419
+ gap> RhoOrbSeed(R);
420
+ -1
421
+
422
+ # Rho/LambdaOrbSeed, for an MTS
423
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
424
+ gap> LambdaOrbSeed(M);
425
+ 0
426
+ gap> RhoOrbSeed(M);
427
+ 0
428
+
429
+ # Rho/LambdaOrbSeed, for a matrix over FF semigroup
430
+ gap> LambdaOrbSeed(GLM(2, 2));
431
+ <rowbasis of rank 4 over GF(2)>
432
+ gap> RhoOrbSeed(SLM(2, 2));
433
+ <rowbasis of rank 4 over GF(2)>
434
+
435
+ # Rho/LambdaFunc
436
+
437
+ # Rho/LambdaFunc, for a transformation semigroup
438
+ gap> S := FullTransformationMonoid(3);;
439
+ gap> x := LambdaFunc(S);;
440
+ gap> x(Transformation([2, 3, 3]));
441
+ [ 2, 3 ]
442
+ gap> x(IdentityTransformation);
443
+ [ 1, 2, 3 ]
444
+ gap> x := RhoFunc(S);;
445
+ gap> x(Transformation([2, 3, 3]));
446
+ [ 1, 2, 2 ]
447
+ gap> x(IdentityTransformation);
448
+ [ 1, 2, 3 ]
449
+
450
+ # Rho/LambdaFunc, for a partial perm semigroup
451
+ gap> S := SymmetricInverseMonoid(3);;
452
+ gap> x := LambdaFunc(S);;
453
+ gap> x(PartialPerm([1, 2], [1, 3]));
454
+ [ 1, 3 ]
455
+ gap> x := RhoFunc(S);;
456
+ gap> x(PartialPerm([1, 2], [1, 3]));
457
+ [ 1, 2 ]
458
+
459
+ # Rho/LambdaFunc, for a bipartition semigroup
460
+ gap> S := PartitionMonoid(3);;
461
+ gap> x := LambdaFunc(S);;
462
+ gap> x(Bipartition([[1], [2], [3, -1, -2, -3]]));
463
+ <blocks: [ 1*, 2*, 3* ]>
464
+ gap> x := RhoFunc(S);;
465
+ gap> x(Bipartition([[1], [2], [3, -1, -2, -3]]));
466
+ <blocks: [ 1 ], [ 2 ], [ 3* ]>
467
+
468
+ # Rho/LambdaFunc, for an RZMS
469
+ gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[(), 0], [0, ()]]);;
470
+ gap> x := LambdaFunc(S);;
471
+ gap> x(MultiplicativeZero(S));
472
+ 0
473
+ gap> x(RMSElement(S, 1, (1, 3), 2));
474
+ 2
475
+ gap> x := RhoFunc(S);;
476
+ gap> x(MultiplicativeZero(S));
477
+ 0
478
+ gap> x(RMSElement(S, 1, (1, 3), 2));
479
+ 1
480
+
481
+ # Rho/LambdaFunc, for a MTS
482
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
483
+ gap> x := LambdaFunc(M);;
484
+ gap> x(MTSE(M, 1, ()));
485
+ 1
486
+ gap> x(MTSE(M, 2, (2, 3)));
487
+ 3
488
+ gap> x := RhoFunc(M);;
489
+ gap> x(MTSE(M, 1, ()));
490
+ 1
491
+ gap> x(MTSE(M, 2, (2, 3)));
492
+ 2
493
+
494
+ # Rho/LambdaFunc, for a matrix over FF semigroup
495
+ gap> S := GLM(2, 3);;
496
+ gap> x := LambdaFunc(S);;
497
+ gap> x(Matrix(GF(3), [[Z(3) ^ 0, 0 * Z(3)], [0 * Z(3), Z(3)]]));
498
+ <rowbasis of rank 2 over GF(3)>
499
+ gap> x := RhoFunc(S);;
500
+ gap> x(Matrix(GF(3), [[Z(3) ^ 0, 0 * Z(3)], [0 * Z(3), Z(3)]]));
501
+ <rowbasis of rank 2 over GF(3)>
502
+
503
+ # Rho/LambdaRank
504
+
505
+ # Rho/LambdaRank, for a transformation semigroup
506
+ gap> S := FullTransformationMonoid(6);;
507
+ gap> x := LambdaRank(S);;
508
+ gap> x([]);
509
+ 0
510
+ gap> x([2, 4]);
511
+ 2
512
+ gap> x := RhoRank(S);;
513
+ gap> x([]);
514
+ 0
515
+ gap> x([2, 3, 1, 2, 3, 2]);
516
+ 3
517
+
518
+ # Rho/LambdaRank, for a partial perm semigroup
519
+ gap> S := SymmetricInverseMonoid(5);;
520
+ gap> x := LambdaRank(S);;
521
+ gap> x([2, 4]);
522
+ 2
523
+ gap> x([]);
524
+ 0
525
+ gap> x := RhoRank(S);;
526
+ gap> x([4]);
527
+ 1
528
+ gap> x([]);
529
+ 0
530
+
531
+ # Rho/LambdaRank, for a bipartition semigroup
532
+ gap> S := PartitionMonoid(3);;
533
+ gap> x := LambdaRank(S);;
534
+ gap> x := RhoRank(S);;
535
+
536
+ # Rho/LambdaRank, for an RZMS
537
+ gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[(), 0], [0, ()]]);;
538
+ gap> x := LambdaRank(S);;
539
+ gap> x(0);
540
+ 0
541
+ gap> x(2);
542
+ 4
543
+ gap> x := RhoRank(S);;
544
+ gap> x(0);
545
+ 0
546
+ gap> x(1);
547
+ 4
548
+
549
+ # Rho/LambdaRank, for a MTS
550
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
551
+ gap> x := LambdaRank(M);;
552
+ gap> x(1);
553
+ 1
554
+ gap> x(2);
555
+ 2
556
+ gap> x(0);
557
+ 0
558
+ gap> x := RhoRank(M);;
559
+ gap> x(1);
560
+ 1
561
+ gap> x(2);
562
+ 2
563
+ gap> x(0);
564
+ 0
565
+
566
+ # Rho/LambdaRank, for a matrix over FF semigroup
567
+ gap> S := GLM(2, 3);;
568
+ gap> b := NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep,
569
+ > GF(3),
570
+ > [[Z(3) ^ 0, Z(3)]]);
571
+ <rowbasis of rank 1 over GF(3)>
572
+ gap> x := LambdaRank(S);;
573
+ gap> x(b);
574
+ 1
575
+ gap> x := RhoRank(S);;
576
+ gap> x(b);
577
+ 1
578
+
579
+ # Rho/LambdaInverse
580
+
581
+ # Rho/LambdaInverse, for a transformation semigroup
582
+ gap> S := FullTransformationMonoid(4);;
583
+ gap> x := LambdaInverse(S);;
584
+ gap> x([2, 3], Transformation([1, 4, 1, 1]));
585
+ Transformation( [ 3, 2, 3, 2 ] )
586
+ gap> x := RhoInverse(S);;
587
+ gap> x([1, 2, 2, 1], Transformation([3, 2, 2, 1]));
588
+ Transformation( [ 4, 3, 3, 4 ] )
589
+
590
+ # Rho/LambdaInverse, for a partial perm semigroup
591
+ gap> S := SymmetricInverseMonoid(4);;
592
+ gap> x := LambdaInverse(S);;
593
+ gap> x([1, 4], PartialPerm([1, 2, 4], [4, 1, 2]));
594
+ (1,2,4)
595
+ gap> x := RhoInverse(S);;
596
+ gap> x([2, 3], PartialPerm([2, 3], [3, 2]));
597
+ (2,3)
598
+
599
+ # Rho/LambdaInverse, for a bipartition semigroup
600
+ gap> S := PartitionMonoid(4);;
601
+ gap> x := LambdaInverse(S);;
602
+ gap> x(BLOCKS_NC([[1, 2], [3], [4]]),
603
+ > Bipartition([[1], [2, -1, -2], [3, -3], [4, -4]]));
604
+ <block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, -4 ]>
605
+ gap> x := RhoInverse(S);;
606
+ gap> x(BLOCKS_NC([[1, 2], [3], [4]]),
607
+ > Bipartition([[1], [2, -1, -2], [3, -3], [4, -4]]));
608
+ <bipartition: [ 1, 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ -1 ]>
609
+
610
+ # Rho/LambdaInverse, for an RZMS
611
+ gap> S := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0],
612
+ > [(), (), ()],
613
+ > [(), (), ()]]);;
614
+ gap> x := LambdaInverse(S);;
615
+ gap> x(2, MultiplicativeZero(S));
616
+ 0
617
+ gap> x(0, S.1);
618
+ (1,(),1)
619
+ gap> x(2, S.1);
620
+ (1,(),2)
621
+ gap> x := RhoInverse(S);;
622
+ gap> x(2, MultiplicativeZero(S));
623
+ 0
624
+ gap> x(0, S.1);
625
+ (1,(),1)
626
+ gap> x(2, S.1);
627
+ (2,(),1)
628
+
629
+ # Rho/LambdaInverse, for a MTS
630
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
631
+ gap> x := LambdaInverse(M);;
632
+ gap> x(2, MTSE(M, 1, ()));
633
+ (1, ())
634
+ gap> x(2, MTSE(M, 2, (2, 3)));
635
+ (3, (2,3))
636
+ gap> x := RhoInverse(M);;
637
+ gap> x(2, MTSE(M, 1, ()));
638
+ (1, ())
639
+ gap> x(2, MTSE(M, 2, (2, 3)));
640
+ (3, (2,3))
641
+
642
+ # Rho/LambdaInverse, for a matrix over FF semigroup
643
+ gap> S := GLM(2, 2);;
644
+ gap> x := LambdaInverse(S);;
645
+ gap> x(RowSpaceBasis(S.2), S.2);
646
+ <a 2x2 matrix over GF2>
647
+ gap> x := RhoInverse(S);;
648
+ gap> x(RowSpaceBasis(S.2), S.2);
649
+ <an immutable 2x2 matrix over GF2>
650
+
651
+ # Rho/LambdaBound
652
+
653
+ # Rho/LambdaBound, for a transformation semigroup
654
+ gap> S := FullTransformationMonoid(4);;
655
+ gap> LambdaBound(S)(1000);
656
+ infinity
657
+ gap> LambdaBound(S)(6);
658
+ 720
659
+ gap> RhoBound(S)(1000);
660
+ infinity
661
+ gap> RhoBound(S)(6);
662
+ 720
663
+
664
+ # Rho/LambdaBound, for a partial perm semigroup
665
+ gap> S := SymmetricInverseMonoid(4);;
666
+ gap> LambdaBound(S)(1000);
667
+ infinity
668
+ gap> LambdaBound(S)(6);
669
+ 720
670
+ gap> RhoBound(S)(1000);
671
+ infinity
672
+ gap> RhoBound(S)(6);
673
+ 720
674
+
675
+ # Rho/LambdaBound, for a bipartition semigroup
676
+ gap> S := PartitionMonoid(5);;
677
+ gap> LambdaBound(S)(1000);
678
+ infinity
679
+ gap> LambdaBound(S)(6);
680
+ 720
681
+ gap> RhoBound(S)(1000);
682
+ infinity
683
+ gap> RhoBound(S)(6);
684
+ 720
685
+
686
+ # Rho/LambdaBound, for an RZMS
687
+ gap> S := ReesZeroMatrixSemigroup(Group([()]), [[(), (), 0], [(), (), ()],
688
+ > [(), (), ()]]);;
689
+ gap> LambdaBound(S)(1000);
690
+ infinity
691
+ gap> LambdaBound(S)(5);
692
+ 120
693
+ gap> RhoBound(S)(1000);
694
+ infinity
695
+ gap> RhoBound(S)(5);
696
+ 120
697
+
698
+ # Rho/LambdaBound, for a MTS
699
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
700
+ gap> LambdaBound(M)(5);
701
+ 6
702
+ gap> LambdaBound(M)(10000);
703
+ 6
704
+ gap> RhoBound(M)(5);
705
+ 6
706
+ gap> RhoBound(M)(10000);
707
+ 6
708
+
709
+ # Rho/LambdaBound, for a matrix over FF semigroup
710
+ gap> S := GLM(2, 2);;
711
+ gap> LambdaBound(S)(1000);
712
+ infinity
713
+ gap> LambdaBound(S)(2);
714
+ 6
715
+ gap> LambdaBound(S)(0);
716
+ 1
717
+ gap> RhoBound(S)(1000);
718
+ infinity
719
+ gap> RhoBound(S)(2);
720
+ 6
721
+ gap> RhoBound(S)(0);
722
+ 1
723
+
724
+ # Rho/LambdaIdentity
725
+
726
+ # Rho/LambdaIdentity, for a transformation semigroup
727
+ gap> S := FullTransformationMonoid(2);;
728
+ gap> LambdaIdentity(S)(2);
729
+ ()
730
+ gap> RhoIdentity(S)(2);
731
+ ()
732
+
733
+ # Rho/LambdaIdentity, for a partial perm semigroup
734
+ gap> S := SymmetricInverseMonoid(2);;
735
+ gap> LambdaIdentity(S)(2);
736
+ ()
737
+ gap> RhoIdentity(S)(2);
738
+ ()
739
+
740
+ # Rho/LambdaIdentity, for a bipartition semigroup
741
+ gap> S := PartitionMonoid(1);;
742
+ gap> LambdaIdentity(S)(1);
743
+ ()
744
+ gap> RhoIdentity(S)(1);
745
+ ()
746
+
747
+ # Rho/LambdaIdentity, for an RZMS
748
+ gap> S := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
749
+ gap> LambdaIdentity(S)(2);
750
+ ()
751
+ gap> RhoIdentity(S)(2);
752
+ ()
753
+
754
+ # Rho/LambdaIdentity, for a MTS
755
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
756
+ gap> LambdaIdentity(M)(2);
757
+ ()
758
+ gap> RhoIdentity(M)(2);
759
+ ()
760
+
761
+ # Rho/LambdaIdentity, for a matrix over FF semigroup
762
+ gap> S := SLM(2, 2);;
763
+ gap> LambdaIdentity(S)(2);
764
+ [ <a GF2 vector of length 2>, <a GF2 vector of length 2> ]
765
+ gap> RhoIdentity(S)(2);
766
+ [ <a GF2 vector of length 2>, <a GF2 vector of length 2> ]
767
+
768
+ # LambdaPerm
769
+
770
+ # LambdaPerm, for a transformation semigroup
771
+ gap> x := LambdaPerm(FullTransformationMonoid(3));;
772
+ gap> x(Transformation([2, 2]), Transformation([3, 3, 2]));
773
+ (2,3)
774
+
775
+ # LambdaPerm, for a partial perm semigroup
776
+ gap> x := LambdaPerm(SymmetricInverseMonoid(3));;
777
+ gap> x(PartialPerm([2, 0, 3]), PartialPerm([3, 0, 2]));
778
+ (2,3)
779
+
780
+ # LambdaPerm, for a bipartition semigroup
781
+ gap> x := LambdaPerm(PartitionMonoid(3));;
782
+ gap> x(Bipartition([[1, -2], [2], [3, -3], [-1]]),
783
+ > Bipartition([[1, -3], [2], [3, -2], [-1]]));
784
+ (2,3)
785
+
786
+ # LambdaPerm, for an RZMS
787
+ gap> R := ReesZeroMatrixSemigroup(Group((1, 2, 3)), [[()]]);;
788
+ gap> x := LambdaPerm(R);;
789
+ gap> x(RMSElement(R, 1, (1, 3, 2), 1), RMSElement(R, 1, (1, 2, 3), 1));
790
+ (1,3,2)
791
+ gap> x(MultiplicativeZero(R), MultiplicativeZero(R));
792
+ ()
793
+
794
+ # LambdaPerm, for a MTS
795
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
796
+ gap> x := LambdaPerm(M);;
797
+ gap> x(MTSE(M, 1, (2, 3, 4)), MTSE(M, 2, (2, 3)));
798
+ (2,4)
799
+ gap> x(MTSE(M, 2, ()), MTSE(M, 2, (2, 3)));
800
+ (2,3)
801
+
802
+ # LambdaPerm, for a matrix over FF semigroup
803
+ gap> x := LambdaPerm(GLM(2, 3));;
804
+ gap> x(Matrix(GF(3), [[Z(3) ^ 0, Z(3) ^ 0], [0 * Z(3), 0 * Z(3)]]),
805
+ > Matrix(GF(3), [[Z(3), Z(3)], [0 * Z(3), 0 * Z(3)]]));
806
+ [ [ Z(3) ] ]
807
+
808
+ # LambdaConjugator
809
+
810
+ # LambdaConjugator, for a transformation semigroup
811
+ gap> x := LambdaConjugator(FullTransformationMonoid(3));;
812
+ gap> x(Transformation([3, 1, 1]), Transformation([2, 3, 3]));
813
+ (1,3,2)
814
+
815
+ # LambdaConjugator, for a partial perm semigroup
816
+ gap> x := LambdaConjugator(SymmetricInverseMonoid(3));;
817
+ gap> x(PartialPerm([2]), PartialPerm([3]));
818
+ (2,3)
819
+
820
+ # LambdaConjugator, for a bipartition semigroup
821
+ gap> x := LambdaConjugator(PartitionMonoid(3));;
822
+ gap> x(Bipartition([[1, -1, -2], [2], [3, -3]]),
823
+ > Bipartition([[1, -1], [2], [3, -2], [-3]]));
824
+ ()
825
+
826
+ # LambdaConjugator, for an RZMS
827
+ gap> R := ReesZeroMatrixSemigroup(Group((1, 2, 3)), [[(), 0], [0, ()]]);;
828
+ gap> x := LambdaConjugator(R);;
829
+ gap> x(RMSElement(R, 1, (1, 3, 2), 1), RMSElement(R, 1, (1, 2, 3), 2));
830
+ ()
831
+
832
+ # LambdaConjugator, for an MTS
833
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
834
+ gap> x := LambdaConjugator(M);;
835
+ gap> x(MTSE(M, 1, (2, 3, 4)), MTSE(M, 2, (2, 3)));
836
+ fail
837
+ gap> x(MTSE(M, 2, ()), MTSE(M, 2, (2, 3)));
838
+ (2,3)
839
+ gap> x(MTSE(M, 3, ()), MTSE(M, 2, (2, 3)));
840
+ ()
841
+
842
+ # LambdaConjugator, for a matrix over FF semigroup
843
+ gap> x := LambdaConjugator(GLM(2, 3));;
844
+ gap> x(Matrix(GF(3), [[Z(3) ^ 0, 0 * Z(3)], [0 * Z(3), Z(3) ^ 0]]),
845
+ > Matrix(GF(3), [[Z(3), 0 * Z(3)], [Z(3), Z(3)]]));
846
+ [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
847
+
848
+ # IdempotentTester and IdempotentCreator
849
+
850
+ # IdempotentTester and IdempotentCreator, for a transformation semigroup
851
+ gap> S := FullTransformationMonoid(3);;
852
+ gap> x := IdempotentTester(S);;
853
+ gap> y := IdempotentCreator(S);;
854
+ gap> x([], [1]);
855
+ false
856
+ gap> x([1, 2], [1]);
857
+ false
858
+ gap> x([], []);
859
+ true
860
+ gap> y([], []);
861
+ IdentityTransformation
862
+ gap> x([1, 2], [1, 1]);
863
+ false
864
+ gap> x([1, 2], [1, 2, 1]);
865
+ true
866
+ gap> y([1, 2], [1, 2, 1]);
867
+ Transformation( [ 1, 2, 1 ] )
868
+ gap> x([1], [1, 2]);
869
+ false
870
+
871
+ # IdempotentTester and IdempotentCreator, for a partial perm semigroup
872
+ gap> S := SymmetricInverseMonoid(3);;
873
+ gap> x := IdempotentTester(S);;
874
+ gap> y := IdempotentCreator(S);;
875
+ gap> x([], []);
876
+ true
877
+ gap> y([], []);
878
+ <empty partial perm>
879
+ gap> x([], [1]);
880
+ false
881
+ gap> x([2, 3], [2, 3]);
882
+ true
883
+ gap> y([2, 3], [2, 3]);
884
+ <identity partial perm on [ 2, 3 ]>
885
+
886
+ # IdempotentTester and IdempotentCreator, for a bipartition semigroup
887
+ gap> S := PartitionMonoid(3);;
888
+ gap> x := IdempotentTester(S);;
889
+ gap> y := IdempotentCreator(S);;
890
+ gap> x(BLOCKS_NC([[1, 2], [-3]]), BLOCKS_NC([[1, 2, 3, 4]]));
891
+ true
892
+ gap> y(BLOCKS_NC([[1, 2], [-3]]), BLOCKS_NC([[1, 2, 3, 4]]));
893
+ <bipartition: [ 1, 2, 3, -1, -2 ], [ -3 ]>
894
+ gap> x(BLOCKS_NC([[1, 2], [3]]), BLOCKS_NC([[1, 2, 3]]));
895
+ false
896
+
897
+ # IdempotentTester and IdempotentCreator, for an RZMS
898
+ gap> S := ReesZeroMatrixSemigroup(Group([(1, 2)]), [[(), 0], [0, (1, 2)]]);;
899
+ gap> x := IdempotentTester(S);;
900
+ gap> y := IdempotentCreator(S);;
901
+ gap> x(0, 0);
902
+ true
903
+ gap> y(0, 0);
904
+ 0
905
+ gap> x(1, 1);
906
+ true
907
+ gap> y(1, 1);
908
+ (1,(),1)
909
+ gap> x(1, 2);
910
+ false
911
+ gap> x(2, 1);
912
+ false
913
+ gap> x(2, 2);
914
+ true
915
+ gap> y(2, 2);
916
+ (2,(1,2),2)
917
+
918
+ # IdempotentTester and IdempotentCreator, for an MTS
919
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
920
+ gap> x := IdempotentTester(M);;
921
+ gap> y := IdempotentCreator(M);;
922
+ gap> x(1, 1);
923
+ true
924
+ gap> x(2, 1);
925
+ false
926
+ gap> x(2, 2);
927
+ true
928
+ gap> x(3, 2);
929
+ false
930
+ gap> x(3, 3);
931
+ true
932
+ gap> y(2, 2);
933
+ (2, ())
934
+ gap> y(1, 2);
935
+ (1, ())
936
+ gap> y(1, 1);
937
+ (1, ())
938
+ gap> y(3, 2);
939
+ (3, ())
940
+ gap> y(3, 3);
941
+ (3, ())
942
+
943
+ # IdempotentTester and IdempotentCreator, for a matrix over FF semigroup
944
+ gap> S := GLM(2, 3);;
945
+ gap> x := IdempotentTester(S);;
946
+ gap> y := IdempotentCreator(S);;
947
+ gap> x(NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
948
+ > [[Z(3) ^ 0, 0 * Z(3)]]),
949
+ > NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
950
+ > [[0 * Z(3), 0 * Z(3), 0 * Z(3)],
951
+ > [0 * Z(3), 0 * Z(3), 0 * Z(3)],
952
+ > [0 * Z(3), 0 * Z(3), 0 * Z(3)]]));
953
+ Error, Assertion failure
954
+ gap> x(NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
955
+ > [[0 * Z(3), Z(3) ^ 0]]),
956
+ > NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
957
+ > [[0 * Z(3), Z(3) ^ 0]]));
958
+ true
959
+ gap> y(NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
960
+ > [[0 * Z(3), Z(3) ^ 0]]),
961
+ > NewRowBasisOverFiniteField(IsPlistRowBasisOverFiniteFieldRep, GF(3),
962
+ > [[0 * Z(3), Z(3) ^ 0]]));
963
+ [ [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
964
+
965
+ # StabilizerAction
966
+
967
+ # StabilizerAction, for a transformation semigroup
968
+ gap> x := StabilizerAction(FullTransformationMonoid(2));;
969
+ gap> x(Transformation([2, 2]), (1, 2));
970
+ Transformation( [ 1, 1 ] )
971
+
972
+ # StabilizerAction, for a partial perm semigroup
973
+ gap> x := StabilizerAction(SymmetricInverseMonoid(2));;
974
+ gap> x(PartialPerm([0, 2]), (2, 1));
975
+ [2,1]
976
+
977
+ # StabilizerAction, for a bipartition semigroup
978
+ gap> x := StabilizerAction(PartitionMonoid(3));;
979
+ gap> x(Bipartition([[1, 3], [2, -1], [-2, -3]]), ());
980
+ <bipartition: [ 1, 3 ], [ 2, -1 ], [ -2, -3 ]>
981
+
982
+ # StabilizerAction, for an RZMS
983
+ gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
984
+ gap> x := StabilizerAction(R);;
985
+ gap> x(MultiplicativeZero(R), ());
986
+ 0
987
+ gap> x(RMSElement(R, 1, (), 1), ());
988
+ (1,(),1)
989
+
990
+ # StabilizerAction, for a MTS
991
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
992
+ gap> x := StabilizerAction(M);;
993
+ gap> x(MTSE(M, 1, ()), ());
994
+ (1, ())
995
+ gap> x(MTSE(M, 2, (2, 3)), (2, 3));
996
+ (2, ())
997
+ gap> x(MTSE(M, 3, ()), (2, 4, 3));
998
+ (3, (2,4,3))
999
+
1000
+ # StabilizerAction, for a matrix over FF semigroup
1001
+ gap> S := GLM(2, 3);;
1002
+ gap> x := StabilizerAction(S);;
1003
+ gap> x(One(S), Matrix(GF(3), [[Z(3) ^ 0, 0 * Z(3)], [0 * Z(3), Z(3) ^ 0]]));
1004
+ [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
1005
+
1006
+ # IsActingSemigroupWithFixedDegreeMultiplication
1007
+
1008
+ # IsActingSemigroupWithFixedDegreeMultiplication, for a transformation semigroup
1009
+ gap> IsActingSemigroupWithFixedDegreeMultiplication(
1010
+ > FullTransformationMonoid(4));
1011
+ false
1012
+
1013
+ # IsActingSemigroupWithFixedDegreeMultiplication, for a partial perm semigroup
1014
+ gap> IsActingSemigroupWithFixedDegreeMultiplication(
1015
+ > SymmetricInverseMonoid(3));
1016
+ false
1017
+
1018
+ # IsActingSemigroupWithFixedDegreeMultiplication, for a bipartition semigroup
1019
+ gap> IsActingSemigroupWithFixedDegreeMultiplication(
1020
+ > PartitionMonoid(5));
1021
+ true
1022
+
1023
+ # IsActingSemigroupWithFixedDegreeMultiplication, for an RZMS
1024
+ gap> S := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
1025
+ gap> IsActingSemigroupWithFixedDegreeMultiplication(Semigroup(S));
1026
+ false
1027
+
1028
+ # IsActingSemigroupWithFixedDegreeMultiplication, for a MTS
1029
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]), Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
1030
+ gap> IsActingSemigroupWithFixedDegreeMultiplication(Semigroup(M));
1031
+ false
1032
+
1033
+ # IsActingSemigroupWithFixedDegreeMultiplication, for a matrix over FF semigroup
1034
+ gap> IsActingSemigroupWithFixedDegreeMultiplication(
1035
+ > GLM(2, 2));
1036
+ true
1037
+
1038
+ # SchutzGpMembership
1039
+
1040
+ # SchutzGpMembership, for a transformation semigroup
1041
+ gap> S := Semigroup([Transformation([1, 2, 1]), Transformation([2, 3, 1])]);;
1042
+ gap> o := LambdaOrb(S);; Enumerate(o);;
1043
+ gap> schutz := LambdaOrbStabChain(o, 3);;
1044
+ gap> SchutzGpMembership(S)(schutz, (1, 2, 3));
1045
+ true
1046
+
1047
+ # SchutzGpMembership, for a partial perm semigroup
1048
+ gap> S := InverseMonoid([PartialPerm([1, 3, 2]),
1049
+ > PartialPerm([2, 3], [1, 2])]);;
1050
+ gap> o := LambdaOrb(S);; Enumerate(o);;
1051
+ gap> schutz := LambdaOrbStabChain(o, 2);;
1052
+ gap> SchutzGpMembership(S)(schutz, (2, 3));
1053
+ true
1054
+
1055
+ # SchutzGpMembership, for a bipartition semigroup
1056
+ gap> S := Monoid([
1057
+ > Bipartition([[1, -1], [2, -3], [3, -2]]),
1058
+ > Bipartition([[1, -2], [2, -3], [3], [-1]]),
1059
+ > Bipartition([[1, 2, -1, -2], [3, -3]]),
1060
+ > Bipartition([[1], [2, -1], [3, -2, -3]]),
1061
+ > Bipartition([[1, -3], [2, 3, -2], [-1]]),
1062
+ > Bipartition([[1], [2, -1], [3, -2], [-3]])]);;
1063
+ gap> o := LambdaOrb(S);; Enumerate(o);;
1064
+ gap> schutz := LambdaOrbStabChain(o, 2);;
1065
+ gap> SchutzGpMembership(S)(schutz, (2, 3));
1066
+ true
1067
+
1068
+ # SchutzGpMembership, for an RZMS
1069
+ gap> R := ReesZeroMatrixSemigroup(Group((1, 2, 3)), [[()]]);;
1070
+ gap> R := Semigroup(Elements(R));;
1071
+ gap> o := LambdaOrb(R);; Enumerate(o);;
1072
+ gap> schutz := LambdaOrbStabChain(o, 3);;
1073
+ gap> SchutzGpMembership(R)(schutz, ());
1074
+ true
1075
+
1076
+ # SchutzGpMembership, for an MTS
1077
+ gap> M := McAlisterTripleSemigroup(SymmetricGroup([2, 3, 4]),
1078
+ > Digraph([[1], [1, 2], [1, 3], [1, 4]]), [1, 2, 3]);;
1079
+ gap> M := Semigroup(MTSE(M, 2, (2, 3)), MTSE(M, 3, (2, 3)));;
1080
+ gap> o := LambdaOrb(M);; Enumerate(o);;
1081
+ gap> schutz := LambdaOrbStabChain(o, 3);;
1082
+ gap> SchutzGpMembership(M)(schutz, ());
1083
+ true
1084
+
1085
+ # SchutzGpMembership, for a matrix over FF semigroup
1086
+ gap> S := Monoid([
1087
+ > Matrix(GF(2), [[0 * Z(2), Z(2) ^ 0], [0 * Z(2), 0 * Z(2)]]),
1088
+ > Matrix(GF(2), [[Z(2) ^ 0, 0 * Z(2)], [Z(2) ^ 0, 0 * Z(2)]]),
1089
+ > Matrix(GF(2), [[Z(2) ^ 0, Z(2) ^ 0], [0 * Z(2), Z(2) ^ 0]])]);;
1090
+ gap> o := Enumerate(LambdaOrb(S));;
1091
+ gap> schutz := LambdaOrbStabChain(o, 2);;
1092
+ gap> SchutzGpMembership(S)(schutz, LambdaIdentity(S)(3));
1093
+ true
1094
+
1095
+ # FakeOne
1096
+
1097
+ # FakeOne, for a transformation semigroup
1098
+ gap> FakeOne(FullTransformationMonoid(1));
1099
+ IdentityTransformation
1100
+
1101
+ # FakeOne, for a partial perm semigroup
1102
+ gap> FakeOne(SymmetricInverseMonoid(1));
1103
+ <identity partial perm on [ 1 ]>
1104
+
1105
+ # FakeOne, for a bipartition semigroup
1106
+ gap> FakeOne(PartitionMonoid(1));
1107
+ <block bijection: [ 1, -1 ]>
1108
+
1109
+ # FakeOne, for an RZMS
1110
+ gap> FakeOne(ReesZeroMatrixSemigroup(Group(()), [[()]]));
1111
+ <universal fake one>
1112
+
1113
+ # FakeOne, for a MTS
1114
+ gap> FakeOne(McAlisterTripleSemigroup(Group(()), Digraph([[1]]), [1]));
1115
+ <universal fake one>
1116
+
1117
+ # FakeOne, for a matrix over FF semigroup
1118
+ gap> FakeOne(GLM(2, 2));
1119
+ <an immutable 2x2 matrix over GF2>
1120
+
1121
+ # ChooseHashFunction
1122
+
1123
+ # ChooseHashFunction, for an RZMS element and integer
1124
+ gap> R := ReesZeroMatrixSemigroup(Group(()), [[()]]);;
1125
+ gap> ChooseHashFunction(MultiplicativeZero(R), 0);
1126
+ rec( data := 0, func := function( x, hashlen ) ... end )
1127
+ gap> G := SymmetricGroup(IsPcGroup, 3);;
1128
+ gap> R := ReesZeroMatrixSemigroup(G, [[Identity(G)]]);;
1129
+ gap> x := ChooseHashFunction(MultiplicativeNeutralElement(R), 1000);
1130
+ rec( data := [ 101, 1000 ], func := function( x, hashlen ) ... end )
1131
+ gap> G := FullPBRMonoid(1);;
1132
+ gap> R := ReesZeroMatrixSemigroup(G, [[One(G)]]);;
1133
+ gap> x := ChooseHashFunction(RMSElement(R, 1, One(G), 1), 1);
1134
+ rec( data := 1, func := function( x, hashlen ) ... end )
1135
+
1136
+ # ChooseHashFunction, for an object and integer
1137
+ gap> x := ChooseHashFunction(fail, 0);
1138
+ rec( data := fail, func := function( v, data ) ... end )
1139
+ gap> x.func(fail, fail);
1140
+ 1
1141
+
1142
+ #
1143
+ gap> SEMIGROUPS.StopTest();
1144
+ gap> STOP_TEST("Semigroups package: standard/main/setup.tst");