passagemath-gap-pkg-semigroups 10.6.30__cp311-cp311-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1158 -0
- gap/pkg/semigroups/config.status +1131 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.cpython-311-darwin.so +0 -0
|
@@ -0,0 +1,1173 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/semigroups/semicons.tst
|
|
4
|
+
#Y Copyright (C) 2015-2022 Wilf A. Wilson
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
|
|
10
|
+
#@local D, H, L, S, S1, S2, c, c1, c2, c3, id, m1, m2, out, p, temp
|
|
11
|
+
gap> START_TEST("Semigroups package: standard/semigroups/semicons.tst");
|
|
12
|
+
gap> LoadPackage("semigroups", false);;
|
|
13
|
+
|
|
14
|
+
#
|
|
15
|
+
gap> SEMIGROUPS.StartTest();
|
|
16
|
+
|
|
17
|
+
# constructions: TrivialSemigroup: errors
|
|
18
|
+
gap> S := TrivialSemigroup(-1);
|
|
19
|
+
Error, the arguments must be a non-negative integer or a filter and a non-nega\
|
|
20
|
+
tive integer
|
|
21
|
+
gap> S := TrivialSemigroup(IsPartialPermSemigroup, -1);
|
|
22
|
+
Error, the arguments must be a non-negative integer or a filter and a non-nega\
|
|
23
|
+
tive integer
|
|
24
|
+
gap> S := TrivialSemigroup(0, 1);
|
|
25
|
+
Error, the arguments must be a non-negative integer or a filter and a non-nega\
|
|
26
|
+
tive integer
|
|
27
|
+
gap> S := TrivialSemigroup(IsPartialPermSemigroup, 1, 1);
|
|
28
|
+
Error, the arguments must be a non-negative integer or a filter and a non-nega\
|
|
29
|
+
tive integer
|
|
30
|
+
gap> S := TrivialSemigroup(IsPermGroup, 1, 1);
|
|
31
|
+
Error, the arguments must be a non-negative integer or a filter and a non-nega\
|
|
32
|
+
tive integer
|
|
33
|
+
gap> S := TrivialSemigroup(IsFreeBand);
|
|
34
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
35
|
+
Error, no 1st choice method found for `TrivialSemigroupCons' on 2 arguments
|
|
36
|
+
|
|
37
|
+
# constructions: TrivialSemigroup: known properties and attributes
|
|
38
|
+
gap> S := TrivialSemigroup(IsPartialPermSemigroup, 5);;
|
|
39
|
+
gap> HasIsTrivial(S);
|
|
40
|
+
true
|
|
41
|
+
gap> IsTrivial(S);
|
|
42
|
+
true
|
|
43
|
+
gap> S := Semigroup(S);;
|
|
44
|
+
gap> HasIsTrivial(S);
|
|
45
|
+
true
|
|
46
|
+
gap> IsTrivial(S);
|
|
47
|
+
true
|
|
48
|
+
|
|
49
|
+
# constructions: TrivialSemigroup: default
|
|
50
|
+
gap> S := TrivialSemigroup();
|
|
51
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
52
|
+
gap> S := TrivialSemigroup(0);
|
|
53
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
54
|
+
gap> S := TrivialSemigroup(1);
|
|
55
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
56
|
+
gap> S := TrivialSemigroup(5);
|
|
57
|
+
<trivial transformation group of degree 5 with 1 generator>
|
|
58
|
+
gap> S := TrivialSemigroup(10);
|
|
59
|
+
<trivial transformation group of degree 10 with 1 generator>
|
|
60
|
+
|
|
61
|
+
# constructions: TrivialSemigroup: transformation semigroup
|
|
62
|
+
gap> S := TrivialSemigroup(IsTransformationSemigroup);
|
|
63
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
64
|
+
gap> S := TrivialSemigroup(IsTransformationSemigroup, 0);
|
|
65
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
66
|
+
gap> S := TrivialSemigroup(IsTransformationSemigroup, 1);
|
|
67
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
68
|
+
gap> S := TrivialSemigroup(IsTransformationSemigroup, 5);
|
|
69
|
+
<trivial transformation group of degree 5 with 1 generator>
|
|
70
|
+
gap> S := TrivialSemigroup(IsTransformationSemigroup, 10);
|
|
71
|
+
<trivial transformation group of degree 10 with 1 generator>
|
|
72
|
+
|
|
73
|
+
# constructions: TrivialSemigroup: partial perm semigroup
|
|
74
|
+
gap> S := TrivialSemigroup(IsPartialPermSemigroup);
|
|
75
|
+
<trivial partial perm group of rank 0 with 1 generator>
|
|
76
|
+
gap> S := TrivialSemigroup(IsPartialPermSemigroup, 0);
|
|
77
|
+
<trivial partial perm group of rank 0 with 1 generator>
|
|
78
|
+
gap> S := TrivialSemigroup(IsPartialPermSemigroup, 1);
|
|
79
|
+
<trivial partial perm group of rank 1 with 1 generator>
|
|
80
|
+
gap> S := TrivialSemigroup(IsPartialPermSemigroup, 5);
|
|
81
|
+
<trivial partial perm group of rank 5 with 1 generator>
|
|
82
|
+
gap> S := TrivialSemigroup(IsPartialPermSemigroup, 10);
|
|
83
|
+
<trivial partial perm group of rank 10 with 1 generator>
|
|
84
|
+
|
|
85
|
+
# constructions: TrivialSemigroup: bipartition semigroup
|
|
86
|
+
gap> S := TrivialSemigroup(IsBipartitionSemigroup);
|
|
87
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
88
|
+
gap> S := TrivialSemigroup(IsBipartitionSemigroup, 0);
|
|
89
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
90
|
+
gap> S := TrivialSemigroup(IsBipartitionSemigroup, 1);
|
|
91
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
92
|
+
gap> S := TrivialSemigroup(IsBipartitionSemigroup, 5);
|
|
93
|
+
<trivial block bijection group of degree 5 with 1 generator>
|
|
94
|
+
gap> S := TrivialSemigroup(IsBipartitionSemigroup, 10);
|
|
95
|
+
<trivial block bijection group of degree 10 with 1 generator>
|
|
96
|
+
|
|
97
|
+
# constructions: TrivialSemigroup: block bijection semigroup
|
|
98
|
+
gap> S := TrivialSemigroup(IsBlockBijectionSemigroup);
|
|
99
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
100
|
+
gap> S := TrivialSemigroup(IsBlockBijectionSemigroup, 0);
|
|
101
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
102
|
+
gap> S := TrivialSemigroup(IsBlockBijectionSemigroup, 1);
|
|
103
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
104
|
+
gap> S := TrivialSemigroup(IsBlockBijectionSemigroup, 5);
|
|
105
|
+
<trivial block bijection group of degree 5 with 1 generator>
|
|
106
|
+
gap> S := TrivialSemigroup(IsBlockBijectionSemigroup, 10);
|
|
107
|
+
<trivial block bijection group of degree 10 with 1 generator>
|
|
108
|
+
|
|
109
|
+
# constructions: TrivialSemigroup: PBR semigroup
|
|
110
|
+
gap> S := TrivialSemigroup(IsPBRSemigroup);
|
|
111
|
+
<trivial pbr group of degree 1 with 1 generator>
|
|
112
|
+
gap> S := TrivialSemigroup(IsPBRSemigroup, 0);
|
|
113
|
+
<trivial pbr group of degree 1 with 1 generator>
|
|
114
|
+
gap> S := TrivialSemigroup(IsPBRSemigroup, 1);
|
|
115
|
+
<trivial pbr group of degree 1 with 1 generator>
|
|
116
|
+
gap> S := TrivialSemigroup(IsPBRSemigroup, 5);
|
|
117
|
+
<trivial pbr group of degree 5 with 1 generator>
|
|
118
|
+
gap> S := TrivialSemigroup(IsPBRSemigroup, 10);
|
|
119
|
+
<trivial pbr group of degree 10 with 1 generator>
|
|
120
|
+
|
|
121
|
+
# constructions: TrivialSemigroup: Boolean matrix semigroup
|
|
122
|
+
gap> S := TrivialSemigroup(IsBooleanMatSemigroup);
|
|
123
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
124
|
+
gap> S := TrivialSemigroup(IsBooleanMatSemigroup, 0);
|
|
125
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
126
|
+
gap> S := TrivialSemigroup(IsBooleanMatSemigroup, 1);
|
|
127
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
128
|
+
gap> S := TrivialSemigroup(IsBooleanMatSemigroup, 5);
|
|
129
|
+
<trivial group of 5x5 boolean matrices with 1 generator>
|
|
130
|
+
gap> S := TrivialSemigroup(IsBooleanMatSemigroup, 10);
|
|
131
|
+
<trivial group of 10x10 boolean matrices with 1 generator>
|
|
132
|
+
|
|
133
|
+
# constructions: TrivialSemigroup: other constructors
|
|
134
|
+
gap> S := TrivialSemigroup(IsMaxPlusMatrixSemigroup);
|
|
135
|
+
<trivial group of 1x1 max-plus matrices with 1 generator>
|
|
136
|
+
|
|
137
|
+
# constructions: MonogenicSemigroup: errors
|
|
138
|
+
gap> S := MonogenicSemigroup(0);
|
|
139
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
140
|
+
integers
|
|
141
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 0);
|
|
142
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
143
|
+
integers
|
|
144
|
+
gap> S := MonogenicSemigroup(0, 1);
|
|
145
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
146
|
+
integers
|
|
147
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 0, 0);
|
|
148
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
149
|
+
integers
|
|
150
|
+
gap> S := MonogenicSemigroup(IsPermGroup, 1, 1, 1);
|
|
151
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
152
|
+
integers
|
|
153
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 2, true);
|
|
154
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
155
|
+
integers
|
|
156
|
+
gap> S := MonogenicSemigroup(IsMaxPlusMatrixSemigroup, 100, 100);
|
|
157
|
+
<commutative non-regular semigroup of size 199, 200x200 max-plus matrices
|
|
158
|
+
with 1 generator>
|
|
159
|
+
|
|
160
|
+
# constructions: MonogenicSemigroup: known properties and attributes, [4, 7]
|
|
161
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 4, 7);;
|
|
162
|
+
gap> IndexPeriodOfPartialPerm(GeneratorsOfSemigroup(S)[1]);
|
|
163
|
+
[ 4, 7 ]
|
|
164
|
+
gap> HasSize(S);
|
|
165
|
+
true
|
|
166
|
+
gap> Size(S) = 4 + 7 - 1;
|
|
167
|
+
true
|
|
168
|
+
gap> HasIsMonogenicSemigroup(S);
|
|
169
|
+
true
|
|
170
|
+
gap> IsMonogenicSemigroup(S);
|
|
171
|
+
true
|
|
172
|
+
gap> HasIsGroupAsSemigroup(S);
|
|
173
|
+
true
|
|
174
|
+
gap> IsGroupAsSemigroup(S);
|
|
175
|
+
false
|
|
176
|
+
gap> HasIsRegularSemigroup(S);
|
|
177
|
+
true
|
|
178
|
+
gap> IsRegularSemigroup(S);
|
|
179
|
+
false
|
|
180
|
+
gap> HasIsZeroSemigroup(S);
|
|
181
|
+
true
|
|
182
|
+
gap> IsZeroSemigroup(S);
|
|
183
|
+
false
|
|
184
|
+
gap> S := Semigroup(S);;
|
|
185
|
+
gap> IndexPeriodOfPartialPerm(GeneratorsOfSemigroup(S)[1]);
|
|
186
|
+
[ 4, 7 ]
|
|
187
|
+
gap> Size(S) = 4 + 7 - 1;
|
|
188
|
+
true
|
|
189
|
+
gap> IsMonogenicSemigroup(S);
|
|
190
|
+
true
|
|
191
|
+
gap> IsGroupAsSemigroup(S);
|
|
192
|
+
false
|
|
193
|
+
gap> IsRegularSemigroup(S);
|
|
194
|
+
false
|
|
195
|
+
gap> IsZeroSemigroup(S);
|
|
196
|
+
false
|
|
197
|
+
|
|
198
|
+
# constructions: MonogenicSemigroup: known properties and attributes, [2, 1]
|
|
199
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 2, 1);;
|
|
200
|
+
gap> HasIsZeroSemigroup(S);
|
|
201
|
+
true
|
|
202
|
+
gap> IsZeroSemigroup(S);
|
|
203
|
+
true
|
|
204
|
+
gap> S := Semigroup(S);;
|
|
205
|
+
gap> IsZeroSemigroup(S);
|
|
206
|
+
true
|
|
207
|
+
|
|
208
|
+
# constructions: MonogenicSemigroup: known properties and attributes, [1, 2]
|
|
209
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 1, 2);;
|
|
210
|
+
gap> HasIsGroupAsSemigroup(S);
|
|
211
|
+
true
|
|
212
|
+
gap> IsGroupAsSemigroup(S);
|
|
213
|
+
true
|
|
214
|
+
gap> S := Semigroup(S);;
|
|
215
|
+
gap> IsGroupAsSemigroup(S);
|
|
216
|
+
true
|
|
217
|
+
|
|
218
|
+
# constructions: MonogenicSemigroup: default
|
|
219
|
+
gap> S := MonogenicSemigroup(1, 1);
|
|
220
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
221
|
+
gap> S := MonogenicSemigroup(2, 1);
|
|
222
|
+
<commutative non-regular transformation semigroup of size 2, degree 3 with 1
|
|
223
|
+
generator>
|
|
224
|
+
gap> S := MonogenicSemigroup(1, 2);
|
|
225
|
+
<transformation group of size 2, degree 2 with 1 generator>
|
|
226
|
+
gap> S := MonogenicSemigroup(5, 5);
|
|
227
|
+
<commutative non-regular transformation semigroup of size 9, degree 10 with 1
|
|
228
|
+
generator>
|
|
229
|
+
gap> S := MonogenicSemigroup(10, 11);
|
|
230
|
+
<commutative non-regular transformation semigroup of size 20, degree 21 with
|
|
231
|
+
1 generator>
|
|
232
|
+
|
|
233
|
+
# constructions: MonogenicSemigroup: transformation semigroup
|
|
234
|
+
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 1, 1);
|
|
235
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
236
|
+
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 2, 1);
|
|
237
|
+
<commutative non-regular transformation semigroup of size 2, degree 3 with 1
|
|
238
|
+
generator>
|
|
239
|
+
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 1, 2);
|
|
240
|
+
<transformation group of size 2, degree 2 with 1 generator>
|
|
241
|
+
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 5, 5);
|
|
242
|
+
<commutative non-regular transformation semigroup of size 9, degree 10 with 1
|
|
243
|
+
generator>
|
|
244
|
+
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 10, 11);
|
|
245
|
+
<commutative non-regular transformation semigroup of size 20, degree 21 with
|
|
246
|
+
1 generator>
|
|
247
|
+
|
|
248
|
+
# constructions: MonogenicSemigroup: partial perm semigroup
|
|
249
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 1, 1);
|
|
250
|
+
<trivial partial perm group of rank 0 with 1 generator>
|
|
251
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 2, 1);
|
|
252
|
+
<commutative non-regular partial perm semigroup of size 2, rank 1 with 1
|
|
253
|
+
generator>
|
|
254
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 1, 2);
|
|
255
|
+
<partial perm group of size 2, rank 2 with 1 generator>
|
|
256
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 5, 5);
|
|
257
|
+
<commutative non-regular partial perm semigroup of size 9, rank 9 with 1
|
|
258
|
+
generator>
|
|
259
|
+
gap> S := MonogenicSemigroup(IsPartialPermSemigroup, 10, 11);
|
|
260
|
+
<commutative non-regular partial perm semigroup of size 20, rank 20 with 1
|
|
261
|
+
generator>
|
|
262
|
+
|
|
263
|
+
# constructions: MonogenicSemigroup: bipartition semigroup
|
|
264
|
+
gap> S := MonogenicSemigroup(IsBipartitionSemigroup, 1, 1);
|
|
265
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
266
|
+
gap> S := MonogenicSemigroup(IsBipartitionSemigroup, 2, 1);
|
|
267
|
+
<commutative non-regular block bijection semigroup of size 2, degree 3 with 1
|
|
268
|
+
generator>
|
|
269
|
+
gap> S := MonogenicSemigroup(IsBipartitionSemigroup, 1, 2);
|
|
270
|
+
<block bijection group of size 2, degree 2 with 1 generator>
|
|
271
|
+
gap> S := MonogenicSemigroup(IsBipartitionSemigroup, 5, 5);
|
|
272
|
+
<commutative non-regular block bijection semigroup of size 9, degree 11 with
|
|
273
|
+
1 generator>
|
|
274
|
+
gap> S := MonogenicSemigroup(IsBipartitionSemigroup, 10, 11);
|
|
275
|
+
<commutative non-regular block bijection semigroup of size 20, degree 22 with
|
|
276
|
+
1 generator>
|
|
277
|
+
|
|
278
|
+
# constructions: MonogenicSemigroup: block bijection semigroup
|
|
279
|
+
gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 1, 1);
|
|
280
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
281
|
+
gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 2, 1);
|
|
282
|
+
<commutative non-regular block bijection semigroup of size 2, degree 3 with 1
|
|
283
|
+
generator>
|
|
284
|
+
gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 1, 2);
|
|
285
|
+
<block bijection group of size 2, degree 2 with 1 generator>
|
|
286
|
+
gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 5, 5);
|
|
287
|
+
<commutative non-regular block bijection semigroup of size 9, degree 11 with
|
|
288
|
+
1 generator>
|
|
289
|
+
gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 10, 11);
|
|
290
|
+
<commutative non-regular block bijection semigroup of size 20, degree 22 with
|
|
291
|
+
1 generator>
|
|
292
|
+
|
|
293
|
+
# constructions: MonogenicSemigroup: PBR semigroup
|
|
294
|
+
gap> S := MonogenicSemigroup(IsPBRSemigroup, 1, 1);
|
|
295
|
+
<trivial pbr group of degree 1 with 1 generator>
|
|
296
|
+
gap> S := MonogenicSemigroup(IsPBRSemigroup, 2, 1);
|
|
297
|
+
<commutative non-regular pbr semigroup of size 2, degree 3 with 1 generator>
|
|
298
|
+
gap> S := MonogenicSemigroup(IsPBRSemigroup, 1, 2);
|
|
299
|
+
<pbr group of size 2, degree 2 with 1 generator>
|
|
300
|
+
gap> S := MonogenicSemigroup(IsPBRSemigroup, 5, 5);
|
|
301
|
+
<commutative non-regular pbr semigroup of size 9, degree 10 with 1 generator>
|
|
302
|
+
gap> S := MonogenicSemigroup(IsPBRSemigroup, 10, 11);
|
|
303
|
+
<commutative non-regular pbr semigroup of size 20, degree 21 with 1 generator>
|
|
304
|
+
|
|
305
|
+
# constructions: MonogenicSemigroup: Boolean matrix semigroup
|
|
306
|
+
gap> S := MonogenicSemigroup(IsBooleanMatSemigroup, 1, 1);
|
|
307
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
308
|
+
gap> S := MonogenicSemigroup(IsBooleanMatSemigroup, 2, 1);
|
|
309
|
+
<commutative non-regular semigroup of size 2, 3x3 boolean matrices with 1
|
|
310
|
+
generator>
|
|
311
|
+
gap> S := MonogenicSemigroup(IsBooleanMatSemigroup, 1, 2);
|
|
312
|
+
<group of size 2, 2x2 boolean matrices with 1 generator>
|
|
313
|
+
gap> S := MonogenicSemigroup(IsBooleanMatSemigroup, 5, 5);
|
|
314
|
+
<commutative non-regular semigroup of size 9, 10x10 boolean matrices with 1
|
|
315
|
+
generator>
|
|
316
|
+
gap> S := MonogenicSemigroup(IsBooleanMatSemigroup, 10, 11);
|
|
317
|
+
<commutative non-regular semigroup of size 20, 21x21 boolean matrices with 1
|
|
318
|
+
generator>
|
|
319
|
+
|
|
320
|
+
# constructions: RectangularBand: errors
|
|
321
|
+
gap> S := RectangularBand(0);
|
|
322
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
323
|
+
integers
|
|
324
|
+
gap> S := RectangularBand(IsPartialPermSemigroup, 0);
|
|
325
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
326
|
+
integers
|
|
327
|
+
gap> S := RectangularBand(0, 1);
|
|
328
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
329
|
+
integers
|
|
330
|
+
gap> S := RectangularBand(IsPartialPermSemigroup, 0, 0);
|
|
331
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
332
|
+
integers
|
|
333
|
+
gap> S := RectangularBand(IsPermGroup, 1, 1, 1);
|
|
334
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
335
|
+
integers
|
|
336
|
+
gap> S := RectangularBand(IsPartialPermSemigroup, 2, true);
|
|
337
|
+
Error, the arguments must be 2 positive integers or a filter and a 2 positive \
|
|
338
|
+
integers
|
|
339
|
+
gap> S := RectangularBand(IsMaxPlusMatrixSemigroup, 100, 100);
|
|
340
|
+
<regular semigroup of size 10000, 21x21 max-plus matrices with 100 generators>
|
|
341
|
+
|
|
342
|
+
# constructions: RectangularBand: known properties and attributes, [3, 4]
|
|
343
|
+
gap> S := RectangularBand(3, 4);;
|
|
344
|
+
gap> HasSize(S);
|
|
345
|
+
true
|
|
346
|
+
gap> Size(S) = 3 * 4;
|
|
347
|
+
true
|
|
348
|
+
gap> HasIsRectangularBand(S);
|
|
349
|
+
true
|
|
350
|
+
gap> IsRectangularBand(S);
|
|
351
|
+
true
|
|
352
|
+
gap> HasIsGroupAsSemigroup(S);
|
|
353
|
+
true
|
|
354
|
+
gap> IsGroupAsSemigroup(S);
|
|
355
|
+
false
|
|
356
|
+
gap> HasIsTrivial(S);
|
|
357
|
+
true
|
|
358
|
+
gap> IsTrivial(S);
|
|
359
|
+
false
|
|
360
|
+
gap> HasIsRightZeroSemigroup(S);
|
|
361
|
+
true
|
|
362
|
+
gap> IsRightZeroSemigroup(S);
|
|
363
|
+
false
|
|
364
|
+
gap> HasIsLeftZeroSemigroup(S);
|
|
365
|
+
true
|
|
366
|
+
gap> IsLeftZeroSemigroup(S);
|
|
367
|
+
false
|
|
368
|
+
gap> S := Semigroup(S);;
|
|
369
|
+
gap> Size(S) = 3 * 4;
|
|
370
|
+
true
|
|
371
|
+
gap> IsRectangularBand(S);
|
|
372
|
+
true
|
|
373
|
+
gap> IsGroupAsSemigroup(S);
|
|
374
|
+
false
|
|
375
|
+
gap> IsTrivial(S);
|
|
376
|
+
false
|
|
377
|
+
gap> IsRightZeroSemigroup(S);
|
|
378
|
+
false
|
|
379
|
+
gap> IsLeftZeroSemigroup(S);
|
|
380
|
+
false
|
|
381
|
+
gap> S := RectangularBand(5, 2);
|
|
382
|
+
<regular transformation semigroup of size 10, degree 7 with 5 generators>
|
|
383
|
+
|
|
384
|
+
# constructions: RectangularBand: known properties and attributes, [1, 1]
|
|
385
|
+
gap> S := RectangularBand(IsBooleanMatSemigroup, 1, 1);;
|
|
386
|
+
gap> HasIsTrivial(S);
|
|
387
|
+
true
|
|
388
|
+
gap> IsTrivial(S);
|
|
389
|
+
true
|
|
390
|
+
gap> S := Semigroup(S);;
|
|
391
|
+
gap> IsTrivial(S);
|
|
392
|
+
true
|
|
393
|
+
|
|
394
|
+
# constructions: RectangularBand: known properties and attributes, [2, 1]
|
|
395
|
+
gap> S := RectangularBand(IsBooleanMatSemigroup, 2, 1);;
|
|
396
|
+
gap> HasIsLeftZeroSemigroup(S);
|
|
397
|
+
true
|
|
398
|
+
gap> IsLeftZeroSemigroup(S);
|
|
399
|
+
true
|
|
400
|
+
gap> S := Semigroup(S);;
|
|
401
|
+
gap> IsLeftZeroSemigroup(S);
|
|
402
|
+
true
|
|
403
|
+
|
|
404
|
+
# constructions: RectangularBand: known properties and attributes, [1, 2]
|
|
405
|
+
gap> S := RectangularBand(IsBooleanMatSemigroup, 1, 2);;
|
|
406
|
+
gap> HasIsRightZeroSemigroup(S);
|
|
407
|
+
true
|
|
408
|
+
gap> IsRightZeroSemigroup(S);
|
|
409
|
+
true
|
|
410
|
+
gap> S := Semigroup(S);;
|
|
411
|
+
gap> IsRightZeroSemigroup(S);
|
|
412
|
+
true
|
|
413
|
+
|
|
414
|
+
# constructions: RectangularBand: default
|
|
415
|
+
gap> S := RectangularBand(1, 1);
|
|
416
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
417
|
+
gap> S := RectangularBand(2, 1);
|
|
418
|
+
<regular transformation semigroup of size 2, degree 3 with 2 generators>
|
|
419
|
+
gap> S := RectangularBand(1, 2);
|
|
420
|
+
<regular transformation semigroup of size 2, degree 2 with 2 generators>
|
|
421
|
+
gap> S := RectangularBand(5, 5);
|
|
422
|
+
<regular transformation semigroup of size 25, degree 10 with 5 generators>
|
|
423
|
+
gap> S := RectangularBand(10, 11);
|
|
424
|
+
<regular transformation semigroup of size 110, degree 13 with 11 generators>
|
|
425
|
+
|
|
426
|
+
# constructions: RectangularBand: transformation semigroup
|
|
427
|
+
gap> S := RectangularBand(IsTransformationSemigroup, 1, 1);
|
|
428
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
429
|
+
gap> S := RectangularBand(IsTransformationSemigroup, 2, 1);
|
|
430
|
+
<regular transformation semigroup of size 2, degree 3 with 2 generators>
|
|
431
|
+
gap> S := RectangularBand(IsTransformationSemigroup, 1, 2);
|
|
432
|
+
<regular transformation semigroup of size 2, degree 2 with 2 generators>
|
|
433
|
+
gap> S := RectangularBand(IsTransformationSemigroup, 5, 5);
|
|
434
|
+
<regular transformation semigroup of size 25, degree 10 with 5 generators>
|
|
435
|
+
gap> S := RectangularBand(IsTransformationSemigroup, 10, 11);
|
|
436
|
+
<regular transformation semigroup of size 110, degree 13 with 11 generators>
|
|
437
|
+
|
|
438
|
+
# constructions: RectangularBand: partial perm semigroup
|
|
439
|
+
gap> S := RectangularBand(IsPartialPermSemigroup, 1, 1);
|
|
440
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
441
|
+
Error, no 1st choice method found for `RectangularBandCons' on 3 arguments
|
|
442
|
+
gap> S := RectangularBand(IsPartialPermSemigroup, 2, 2);
|
|
443
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
444
|
+
Error, no 1st choice method found for `RectangularBandCons' on 3 arguments
|
|
445
|
+
|
|
446
|
+
# constructions: RectangularBand: bipartition semigroup
|
|
447
|
+
gap> S := RectangularBand(IsBipartitionSemigroup, 1, 1);
|
|
448
|
+
<trivial bipartition group of degree 1 with 1 generator>
|
|
449
|
+
gap> S := RectangularBand(IsBipartitionSemigroup, 2, 1);
|
|
450
|
+
<regular bipartition semigroup of size 2, degree 2 with 2 generators>
|
|
451
|
+
gap> S := RectangularBand(IsBipartitionSemigroup, 1, 2);
|
|
452
|
+
<regular bipartition semigroup of size 2, degree 2 with 2 generators>
|
|
453
|
+
gap> S := RectangularBand(IsBipartitionSemigroup, 5, 5);
|
|
454
|
+
<regular bipartition semigroup of size 25, degree 3 with 5 generators>
|
|
455
|
+
gap> S := RectangularBand(IsBipartitionSemigroup, 10, 11);
|
|
456
|
+
<regular bipartition semigroup of size 110, degree 4 with 11 generators>
|
|
457
|
+
|
|
458
|
+
# constructions: RectangularBand: block bijection semigroup
|
|
459
|
+
gap> S := RectangularBand(IsBlockBijectionSemigroup, 1, 1);
|
|
460
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
461
|
+
Error, no 1st choice method found for `RectangularBandCons' on 3 arguments
|
|
462
|
+
gap> S := RectangularBand(IsBlockBijectionSemigroup, 2, 2);
|
|
463
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
464
|
+
Error, no 1st choice method found for `RectangularBandCons' on 3 arguments
|
|
465
|
+
|
|
466
|
+
# constructions: RectangularBand: PBR semigroup
|
|
467
|
+
gap> S := RectangularBand(IsPBRSemigroup, 1, 1);
|
|
468
|
+
<trivial pbr group of degree 1 with 1 generator>
|
|
469
|
+
gap> S := RectangularBand(IsPBRSemigroup, 2, 1);
|
|
470
|
+
<regular pbr semigroup of size 2, degree 2 with 2 generators>
|
|
471
|
+
gap> S := RectangularBand(IsPBRSemigroup, 1, 2);
|
|
472
|
+
<regular pbr semigroup of size 2, degree 2 with 2 generators>
|
|
473
|
+
gap> S := RectangularBand(IsPBRSemigroup, 5, 5);
|
|
474
|
+
<regular pbr semigroup of size 25, degree 3 with 5 generators>
|
|
475
|
+
gap> S := RectangularBand(IsPBRSemigroup, 10, 11);
|
|
476
|
+
<regular pbr semigroup of size 110, degree 4 with 11 generators>
|
|
477
|
+
|
|
478
|
+
# constructions: RectangularBand: Boolean matrix semigroup
|
|
479
|
+
gap> S := RectangularBand(IsBooleanMatSemigroup, 1, 1);
|
|
480
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
481
|
+
gap> S := RectangularBand(IsBooleanMatSemigroup, 2, 1);
|
|
482
|
+
<regular semigroup of size 2, 3x3 boolean matrices with 2 generators>
|
|
483
|
+
gap> S := RectangularBand(IsBooleanMatSemigroup, 1, 2);
|
|
484
|
+
<regular semigroup of size 2, 2x2 boolean matrices with 2 generators>
|
|
485
|
+
gap> S := RectangularBand(IsBooleanMatSemigroup, 5, 5);
|
|
486
|
+
<regular semigroup of size 25, 10x10 boolean matrices with 5 generators>
|
|
487
|
+
|
|
488
|
+
# constructions: RectangularBand: Rees matrix semigroup
|
|
489
|
+
gap> S := RectangularBand(IsReesMatrixSemigroup, 1, 1);
|
|
490
|
+
<Rees matrix semigroup 1x1 over Group(())>
|
|
491
|
+
gap> S := RectangularBand(IsReesMatrixSemigroup, 2, 1);
|
|
492
|
+
<Rees matrix semigroup 2x1 over Group(())>
|
|
493
|
+
gap> S := RectangularBand(IsReesMatrixSemigroup, 1, 2);
|
|
494
|
+
<Rees matrix semigroup 1x2 over Group(())>
|
|
495
|
+
gap> S := RectangularBand(IsReesMatrixSemigroup, 5, 5);
|
|
496
|
+
<Rees matrix semigroup 5x5 over Group(())>
|
|
497
|
+
gap> S := RectangularBand(IsReesMatrixSemigroup, 10, 11);
|
|
498
|
+
<Rees matrix semigroup 10x11 over Group(())>
|
|
499
|
+
|
|
500
|
+
# constructions: FreeSemilattice: errors
|
|
501
|
+
gap> S := FreeSemilattice(0);
|
|
502
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
503
|
+
eger
|
|
504
|
+
gap> S := FreeSemilattice(IsPartialPermSemigroup, 0);
|
|
505
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
506
|
+
eger
|
|
507
|
+
gap> S := FreeSemilattice(IsPermGroup, 1, 1);
|
|
508
|
+
Error, expected 2 arguments found 3
|
|
509
|
+
gap> S := FreeSemilattice(IsPartialPermSemigroup, true);
|
|
510
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
511
|
+
eger
|
|
512
|
+
|
|
513
|
+
# constructions: FreeSemilattice: known properties and attributes, 17
|
|
514
|
+
gap> S := FreeSemilattice(17);;
|
|
515
|
+
gap> HasSize(S);
|
|
516
|
+
true
|
|
517
|
+
gap> Size(S) = 2 ^ 17 - 1;
|
|
518
|
+
true
|
|
519
|
+
|
|
520
|
+
# constructions: FreeSemilattice: default
|
|
521
|
+
gap> S := FreeSemilattice(1);
|
|
522
|
+
<trivial transformation group of degree 2 with 1 generator>
|
|
523
|
+
gap> S := FreeSemilattice(2);
|
|
524
|
+
<inverse transformation semigroup of size 3, degree 3 with 2 generators>
|
|
525
|
+
gap> S := FreeSemilattice(5);
|
|
526
|
+
<inverse transformation semigroup of size 31, degree 6 with 5 generators>
|
|
527
|
+
gap> S := FreeSemilattice(21);
|
|
528
|
+
<inverse transformation semigroup of size 2097151, degree 22 with 21
|
|
529
|
+
generators>
|
|
530
|
+
|
|
531
|
+
# constructions: FreeSemilattice: transformation semigroup
|
|
532
|
+
gap> S := FreeSemilattice(IsTransformationSemigroup, 1);
|
|
533
|
+
<trivial transformation group of degree 2 with 1 generator>
|
|
534
|
+
gap> S := FreeSemilattice(IsTransformationSemigroup, 2);
|
|
535
|
+
<inverse transformation semigroup of size 3, degree 3 with 2 generators>
|
|
536
|
+
gap> S := FreeSemilattice(IsTransformationSemigroup, 5);
|
|
537
|
+
<inverse transformation semigroup of size 31, degree 6 with 5 generators>
|
|
538
|
+
gap> S := FreeSemilattice(IsTransformationSemigroup, 11);
|
|
539
|
+
<inverse transformation semigroup of size 2047, degree 12 with 11 generators>
|
|
540
|
+
|
|
541
|
+
# constructions: ZeroSemigroup: errors
|
|
542
|
+
gap> S := ZeroSemigroup(0);
|
|
543
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
544
|
+
eger
|
|
545
|
+
gap> S := ZeroSemigroup(IsPartialPermSemigroup, 0);
|
|
546
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
547
|
+
eger
|
|
548
|
+
gap> S := ZeroSemigroup(0, 1);
|
|
549
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
550
|
+
eger
|
|
551
|
+
gap> S := ZeroSemigroup(0, 0);
|
|
552
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
553
|
+
eger
|
|
554
|
+
gap> S := ZeroSemigroup(IsPermGroup, 1);
|
|
555
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
556
|
+
Error, no 1st choice method found for `ZeroSemigroupCons' on 2 arguments
|
|
557
|
+
gap> S := ZeroSemigroup(IsPartialPermSemigroup, 2, true);
|
|
558
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
559
|
+
eger
|
|
560
|
+
gap> S := ZeroSemigroup(IsMaxPlusMatrixSemigroup, 10);
|
|
561
|
+
<commutative non-regular semigroup of size 10, 6x6 max-plus matrices with 9
|
|
562
|
+
generators>
|
|
563
|
+
|
|
564
|
+
# constructions: ZeroSemigroup: known properties and attributes, n = 1
|
|
565
|
+
gap> S := ZeroSemigroup(1);;
|
|
566
|
+
gap> HasSize(S);
|
|
567
|
+
true
|
|
568
|
+
gap> Size(S);
|
|
569
|
+
1
|
|
570
|
+
gap> HasIsZeroSemigroup(S);
|
|
571
|
+
true
|
|
572
|
+
gap> IsZeroSemigroup(S);
|
|
573
|
+
true
|
|
574
|
+
gap> HasMultiplicativeZero(S);
|
|
575
|
+
true
|
|
576
|
+
gap> MultiplicativeZero(S);
|
|
577
|
+
IdentityTransformation
|
|
578
|
+
gap> HasAsList(S);
|
|
579
|
+
false
|
|
580
|
+
gap> AsList(S);
|
|
581
|
+
[ IdentityTransformation ]
|
|
582
|
+
gap> IsGroup(S);
|
|
583
|
+
false
|
|
584
|
+
gap> S := Semigroup(S);;
|
|
585
|
+
gap> HasSize(S);
|
|
586
|
+
false
|
|
587
|
+
gap> Size(S);
|
|
588
|
+
1
|
|
589
|
+
gap> HasIsZeroSemigroup(S);
|
|
590
|
+
true
|
|
591
|
+
gap> IsZeroSemigroup(S);
|
|
592
|
+
true
|
|
593
|
+
gap> HasMultiplicativeZero(S);
|
|
594
|
+
false
|
|
595
|
+
gap> MultiplicativeZero(S);
|
|
596
|
+
IdentityTransformation
|
|
597
|
+
gap> HasAsList(S);
|
|
598
|
+
false
|
|
599
|
+
gap> AsList(S);
|
|
600
|
+
[ IdentityTransformation ]
|
|
601
|
+
gap> IsGroup(S);
|
|
602
|
+
false
|
|
603
|
+
|
|
604
|
+
# constructions: ZeroSemigroup: known properties and attributes, n = 2
|
|
605
|
+
gap> S := ZeroSemigroup(2);;
|
|
606
|
+
gap> HasIsMonogenicSemigroup(S);
|
|
607
|
+
true
|
|
608
|
+
gap> IsMonogenicSemigroup(S);
|
|
609
|
+
true
|
|
610
|
+
gap> S := Semigroup(S);;
|
|
611
|
+
gap> HasIsMonogenicSemigroup(S);
|
|
612
|
+
true
|
|
613
|
+
gap> IsMonogenicSemigroup(S);
|
|
614
|
+
true
|
|
615
|
+
|
|
616
|
+
# constructions: ZeroSemigroup: known properties and attributes, n = 5
|
|
617
|
+
gap> S := ZeroSemigroup(5);;
|
|
618
|
+
gap> HasSize(S);
|
|
619
|
+
true
|
|
620
|
+
gap> Size(S);
|
|
621
|
+
5
|
|
622
|
+
gap> HasIsZeroSemigroup(S);
|
|
623
|
+
true
|
|
624
|
+
gap> IsZeroSemigroup(S);
|
|
625
|
+
true
|
|
626
|
+
gap> HasMultiplicativeZero(S);
|
|
627
|
+
true
|
|
628
|
+
gap> MultiplicativeZero(S);
|
|
629
|
+
Transformation( [ 1, 1, 1, 1, 1 ] )
|
|
630
|
+
gap> HasAsList(S);
|
|
631
|
+
false
|
|
632
|
+
gap> AsList(S);
|
|
633
|
+
[ Transformation( [ 1, 1, 1, 1, 2 ] ), Transformation( [ 1, 1, 1, 1, 3 ] ),
|
|
634
|
+
Transformation( [ 1, 1, 1, 2, 1 ] ), Transformation( [ 1, 1, 1, 2, 2 ] ),
|
|
635
|
+
Transformation( [ 1, 1, 1, 1, 1 ] ) ]
|
|
636
|
+
gap> HasIsGroupAsSemigroup(S);
|
|
637
|
+
true
|
|
638
|
+
gap> IsGroupAsSemigroup(S);
|
|
639
|
+
false
|
|
640
|
+
gap> HasIsRegularSemigroup(S);
|
|
641
|
+
true
|
|
642
|
+
gap> IsRegularSemigroup(S);
|
|
643
|
+
false
|
|
644
|
+
gap> HasIsMonogenicSemigroup(S);
|
|
645
|
+
true
|
|
646
|
+
gap> IsMonogenicSemigroup(S);
|
|
647
|
+
false
|
|
648
|
+
gap> S := Semigroup(S);;
|
|
649
|
+
gap> HasSize(S);
|
|
650
|
+
false
|
|
651
|
+
gap> Size(S);
|
|
652
|
+
5
|
|
653
|
+
gap> HasIsZeroSemigroup(S);
|
|
654
|
+
false
|
|
655
|
+
gap> IsZeroSemigroup(S);
|
|
656
|
+
true
|
|
657
|
+
gap> HasMultiplicativeZero(S);
|
|
658
|
+
true
|
|
659
|
+
gap> MultiplicativeZero(S);
|
|
660
|
+
Transformation( [ 1, 1, 1, 1, 1 ] )
|
|
661
|
+
gap> HasAsList(S);
|
|
662
|
+
false
|
|
663
|
+
gap> AsList(S);
|
|
664
|
+
[ Transformation( [ 1, 1, 1, 1, 2 ] ), Transformation( [ 1, 1, 1, 1, 3 ] ),
|
|
665
|
+
Transformation( [ 1, 1, 1, 2, 1 ] ), Transformation( [ 1, 1, 1, 2, 2 ] ),
|
|
666
|
+
Transformation( [ 1, 1, 1, 1, 1 ] ) ]
|
|
667
|
+
gap> HasIsGroupAsSemigroup(S);
|
|
668
|
+
false
|
|
669
|
+
gap> IsGroupAsSemigroup(S);
|
|
670
|
+
false
|
|
671
|
+
gap> HasIsRegularSemigroup(S);
|
|
672
|
+
false
|
|
673
|
+
gap> IsRegularSemigroup(S);
|
|
674
|
+
false
|
|
675
|
+
gap> HasIsMonogenicSemigroup(S);
|
|
676
|
+
false
|
|
677
|
+
gap> IsMonogenicSemigroup(S);
|
|
678
|
+
false
|
|
679
|
+
|
|
680
|
+
# constructions: ZeroSemigroup: default
|
|
681
|
+
gap> S := ZeroSemigroup(1);
|
|
682
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
683
|
+
gap> S := ZeroSemigroup(2);
|
|
684
|
+
<commutative non-regular transformation semigroup of size 2, degree 3 with 1
|
|
685
|
+
generator>
|
|
686
|
+
gap> S := ZeroSemigroup(3);
|
|
687
|
+
<commutative non-regular transformation semigroup of size 3, degree 4 with 2
|
|
688
|
+
generators>
|
|
689
|
+
gap> IsZeroSemigroup(Semigroup(S));
|
|
690
|
+
true
|
|
691
|
+
|
|
692
|
+
# constructions: ZeroSemigroup: transformation semigroup
|
|
693
|
+
gap> S := ZeroSemigroup(IsTransformationSemigroup, 1);
|
|
694
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
695
|
+
gap> S := ZeroSemigroup(IsTransformationSemigroup, 5);
|
|
696
|
+
<commutative non-regular transformation semigroup of size 5, degree 5 with 4
|
|
697
|
+
generators>
|
|
698
|
+
gap> S := ZeroSemigroup(IsTransformationSemigroup, 10);
|
|
699
|
+
<commutative non-regular transformation semigroup of size 10, degree 6 with 9
|
|
700
|
+
generators>
|
|
701
|
+
gap> IsZeroSemigroup(Semigroup(S));
|
|
702
|
+
true
|
|
703
|
+
|
|
704
|
+
# constructions: ZeroSemigroup: partial perm semigroup
|
|
705
|
+
gap> S := ZeroSemigroup(IsPartialPermSemigroup, 1);
|
|
706
|
+
<trivial partial perm group of rank 0 with 1 generator>
|
|
707
|
+
gap> S := ZeroSemigroup(IsPartialPermSemigroup, 5);
|
|
708
|
+
<commutative non-regular partial perm semigroup of size 5, rank 4 with 4
|
|
709
|
+
generators>
|
|
710
|
+
gap> S := ZeroSemigroup(IsPartialPermSemigroup, 10);
|
|
711
|
+
<commutative non-regular partial perm semigroup of size 10, rank 9 with 9
|
|
712
|
+
generators>
|
|
713
|
+
gap> IsZeroSemigroup(Semigroup(S));
|
|
714
|
+
true
|
|
715
|
+
|
|
716
|
+
# constructions: ZeroSemigroup: bipartition semigroup
|
|
717
|
+
gap> S := ZeroSemigroup(IsBipartitionSemigroup, 1);
|
|
718
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
719
|
+
gap> S := ZeroSemigroup(IsBipartitionSemigroup, 2);
|
|
720
|
+
<commutative non-regular bipartition semigroup of size 2, degree 2 with 1
|
|
721
|
+
generator>
|
|
722
|
+
gap> S := ZeroSemigroup(IsBipartitionSemigroup, 5);
|
|
723
|
+
<commutative non-regular bipartition semigroup of size 5, degree 5 with 4
|
|
724
|
+
generators>
|
|
725
|
+
gap> S := ZeroSemigroup(IsBipartitionSemigroup, 10);
|
|
726
|
+
<commutative non-regular bipartition semigroup of size 10, degree 6 with 9
|
|
727
|
+
generators>
|
|
728
|
+
gap> IsZeroSemigroup(Semigroup(S));
|
|
729
|
+
true
|
|
730
|
+
|
|
731
|
+
# constructions: ZeroSemigroup: block bijection semigroup
|
|
732
|
+
gap> S := ZeroSemigroup(IsBlockBijectionSemigroup, 1);
|
|
733
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
734
|
+
gap> S := ZeroSemigroup(IsBlockBijectionSemigroup, 2);
|
|
735
|
+
<commutative non-regular block bijection semigroup of size 2, degree 3 with 1
|
|
736
|
+
generator>
|
|
737
|
+
gap> S := ZeroSemigroup(IsBlockBijectionSemigroup, 5);
|
|
738
|
+
<commutative non-regular block bijection semigroup of size 5, degree 8 with 4
|
|
739
|
+
generators>
|
|
740
|
+
gap> S := ZeroSemigroup(IsBlockBijectionSemigroup, 10);
|
|
741
|
+
<commutative non-regular block bijection semigroup of size 10, degree 18 with
|
|
742
|
+
9 generators>
|
|
743
|
+
gap> IsZeroSemigroup(Semigroup(S));
|
|
744
|
+
true
|
|
745
|
+
|
|
746
|
+
# constructions: ZeroSemigroup: PBR semigroup
|
|
747
|
+
gap> S := ZeroSemigroup(IsPBRSemigroup, 1);
|
|
748
|
+
<trivial pbr group of degree 1 with 1 generator>
|
|
749
|
+
gap> S := ZeroSemigroup(IsPBRSemigroup, 5);
|
|
750
|
+
<commutative non-regular pbr semigroup of size 5, degree 5 with 4 generators>
|
|
751
|
+
gap> S := ZeroSemigroup(IsPBRSemigroup, 10);
|
|
752
|
+
<commutative non-regular pbr semigroup of size 10, degree 6 with 9 generators>
|
|
753
|
+
gap> IsZeroSemigroup(Semigroup(S));
|
|
754
|
+
true
|
|
755
|
+
|
|
756
|
+
# constructions: ZeroSemigroup: Boolean matrix semigroup
|
|
757
|
+
gap> S := ZeroSemigroup(IsBooleanMatSemigroup, 1);
|
|
758
|
+
<trivial group of 1x1 boolean matrices with 1 generator>
|
|
759
|
+
gap> S := ZeroSemigroup(IsBooleanMatSemigroup, 5);
|
|
760
|
+
<commutative non-regular semigroup of size 5, 5x5 boolean matrices with 4
|
|
761
|
+
generators>
|
|
762
|
+
gap> S := ZeroSemigroup(IsBooleanMatSemigroup, 10);
|
|
763
|
+
<commutative non-regular semigroup of size 10, 6x6 boolean matrices with 9
|
|
764
|
+
generators>
|
|
765
|
+
gap> IsZeroSemigroup(Semigroup(S));
|
|
766
|
+
true
|
|
767
|
+
|
|
768
|
+
# constructions: ZeroSemigroup: Rees 0-matrix semigroup, error
|
|
769
|
+
gap> S := ZeroSemigroup(IsReesZeroMatrixSemigroup, 1);
|
|
770
|
+
Error, there is no Rees 0-matrix semigroup of order 1
|
|
771
|
+
|
|
772
|
+
# constructions: ZeroSemigroup: Rees 0-matrix semigroup, 2
|
|
773
|
+
gap> S := ZeroSemigroup(IsReesZeroMatrixSemigroup, 2);
|
|
774
|
+
<Rees 0-matrix semigroup 1x1 over Group(())>
|
|
775
|
+
gap> S := ZeroSemigroup(IsReesZeroMatrixSemigroup, 5);
|
|
776
|
+
<Rees 0-matrix semigroup 4x1 over Group(())>
|
|
777
|
+
gap> S := ZeroSemigroup(IsReesZeroMatrixSemigroup, 10);
|
|
778
|
+
<Rees 0-matrix semigroup 9x1 over Group(())>
|
|
779
|
+
gap> IsZeroSemigroup(Semigroup(S));
|
|
780
|
+
true
|
|
781
|
+
|
|
782
|
+
# constructions: LeftZeroSemigroup, error
|
|
783
|
+
gap> S := LeftZeroSemigroup();
|
|
784
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
785
|
+
eger
|
|
786
|
+
gap> S := LeftZeroSemigroup(0);
|
|
787
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
788
|
+
eger
|
|
789
|
+
gap> S := LeftZeroSemigroup(0, 1);
|
|
790
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
791
|
+
eger
|
|
792
|
+
gap> S := LeftZeroSemigroup(IsTransformationSemigroup, 0);
|
|
793
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
794
|
+
eger
|
|
795
|
+
gap> S := LeftZeroSemigroup(1, 2, 3);
|
|
796
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
797
|
+
eger
|
|
798
|
+
gap> S := LeftZeroSemigroup(IsMaxPlusMatrixSemigroup, 4);
|
|
799
|
+
<regular semigroup of size 4, 4x4 max-plus matrices with 4 generators>
|
|
800
|
+
gap> S := LeftZeroSemigroup(IsGroup, 4);
|
|
801
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
802
|
+
Error, no 1st choice method found for `RectangularBandCons' on 3 arguments
|
|
803
|
+
|
|
804
|
+
# constructions: LeftZeroSemigroup
|
|
805
|
+
gap> S := LeftZeroSemigroup(1);
|
|
806
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
807
|
+
gap> S := LeftZeroSemigroup(IsBipartitionSemigroup, 10);
|
|
808
|
+
<regular bipartition semigroup of size 10, degree 4 with 10 generators>
|
|
809
|
+
gap> IsLeftZeroSemigroup(Semigroup(S));
|
|
810
|
+
true
|
|
811
|
+
gap> Size(S);
|
|
812
|
+
10
|
|
813
|
+
|
|
814
|
+
# constructions: RightZeroSemigroup, error
|
|
815
|
+
gap> S := RightZeroSemigroup();
|
|
816
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
817
|
+
eger
|
|
818
|
+
gap> S := RightZeroSemigroup(0);
|
|
819
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
820
|
+
eger
|
|
821
|
+
gap> S := RightZeroSemigroup(0, 1);
|
|
822
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
823
|
+
eger
|
|
824
|
+
gap> S := RightZeroSemigroup(IsTransformationSemigroup, 0);
|
|
825
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
826
|
+
eger
|
|
827
|
+
gap> S := RightZeroSemigroup(1, 2, 3);
|
|
828
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
829
|
+
eger
|
|
830
|
+
gap> S := RightZeroSemigroup(IsMaxPlusMatrixSemigroup, 4);
|
|
831
|
+
<regular semigroup of size 4, 4x4 max-plus matrices with 4 generators>
|
|
832
|
+
gap> S := RightZeroSemigroup(IsGroup, 4);
|
|
833
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
834
|
+
Error, no 1st choice method found for `RectangularBandCons' on 3 arguments
|
|
835
|
+
|
|
836
|
+
# constructions: RightZeroSemigroup
|
|
837
|
+
gap> S := RightZeroSemigroup(1);
|
|
838
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
839
|
+
gap> S := RightZeroSemigroup(IsBipartitionSemigroup, 10);
|
|
840
|
+
<regular bipartition semigroup of size 10, degree 4 with 10 generators>
|
|
841
|
+
gap> IsRightZeroSemigroup(Semigroup(S));
|
|
842
|
+
true
|
|
843
|
+
gap> Size(S);
|
|
844
|
+
10
|
|
845
|
+
|
|
846
|
+
# constructions: RightZeroSemigroup, deg = 0 mod 3
|
|
847
|
+
gap> S := RightZeroSemigroup(9);
|
|
848
|
+
<transformation semigroup of degree 6 with 9 generators>
|
|
849
|
+
|
|
850
|
+
# constructions: Brandt semigroups, partial perm semigroups, default
|
|
851
|
+
gap> S := BrandtSemigroup(Group((1, 2)), 1);
|
|
852
|
+
<0-simple inverse partial perm semigroup of rank 2 with 2 generators>
|
|
853
|
+
gap> MultiplicativeZero(S);
|
|
854
|
+
<empty partial perm>
|
|
855
|
+
gap> Size(S);
|
|
856
|
+
3
|
|
857
|
+
gap> IsBrandtSemigroup(S);
|
|
858
|
+
true
|
|
859
|
+
gap> S := BrandtSemigroup(Group((1, 2)), 2);
|
|
860
|
+
<0-simple inverse partial perm semigroup of rank 4 with 2 generators>
|
|
861
|
+
gap> MultiplicativeZero(S);
|
|
862
|
+
<empty partial perm>
|
|
863
|
+
gap> Size(S);
|
|
864
|
+
9
|
|
865
|
+
gap> IsBrandtSemigroup(S);
|
|
866
|
+
true
|
|
867
|
+
gap> S := BrandtSemigroup(IsPartialPermSemigroup, Group((1, 2)), 5);
|
|
868
|
+
<0-simple inverse partial perm semigroup of rank 10 with 5 generators>
|
|
869
|
+
gap> Size(S);
|
|
870
|
+
51
|
|
871
|
+
gap> S := BrandtSemigroup(10);
|
|
872
|
+
<0-simple inverse partial perm semigroup of rank 10 with 9 generators>
|
|
873
|
+
gap> Size(S);
|
|
874
|
+
101
|
|
875
|
+
gap> S := BrandtSemigroup(1);
|
|
876
|
+
<0-simple inverse partial perm monoid of rank 1 with 2 generators>
|
|
877
|
+
gap> Size(S);
|
|
878
|
+
2
|
|
879
|
+
gap> S := BrandtSemigroup(TrivialGroup(IsPermGroup), 1);
|
|
880
|
+
<0-simple inverse partial perm monoid of rank 1 with 2 generators>
|
|
881
|
+
gap> Size(S);
|
|
882
|
+
2
|
|
883
|
+
|
|
884
|
+
# constructions: Brandt semigroups, Rees 0-matrix semigroup
|
|
885
|
+
gap> S := BrandtSemigroup(IsReesZeroMatrixSemigroup, 4);
|
|
886
|
+
<Rees 0-matrix semigroup 4x4 over Group(())>
|
|
887
|
+
gap> S := BrandtSemigroup(IsReesZeroMatrixSemigroup, DihedralGroup(4), 4);
|
|
888
|
+
<Rees 0-matrix semigroup 4x4 over <pc group of size 4 with 2 generators>>
|
|
889
|
+
gap> IsInverseSemigroup(last);
|
|
890
|
+
true
|
|
891
|
+
gap> S := BrandtSemigroup(IsReesZeroMatrixSemigroup, DihedralGroup(4));
|
|
892
|
+
Error, the arguments must be a positive integer or a filter and a positive int\
|
|
893
|
+
eger, or a perm group and positive integer, or a filter, perm group, and posi\
|
|
894
|
+
tive integer
|
|
895
|
+
|
|
896
|
+
# constructions: Brandt semigroups, other semigroups
|
|
897
|
+
gap> S := BrandtSemigroup(IsTransformationSemigroup, 3);
|
|
898
|
+
<0-simple transformation semigroup of degree 4 with 4 generators>
|
|
899
|
+
gap> S := BrandtSemigroup(IsTransformationSemigroup, Group((1, 2)), 3);
|
|
900
|
+
<0-simple transformation semigroup of degree 7 with 5 generators>
|
|
901
|
+
gap> S := BrandtSemigroup(IsTransformationSemigroup, DihedralGroup(4), 3);
|
|
902
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
903
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
904
|
+
gap> S := BrandtSemigroup(IsBipartitionSemigroup, 3);
|
|
905
|
+
<0-simple inverse bipartition semigroup of degree 3 with 2 generators>
|
|
906
|
+
gap> S := BrandtSemigroup(IsBipartitionSemigroup, Group((1, 2)), 3);
|
|
907
|
+
<0-simple inverse bipartition semigroup of degree 6 with 3 generators>
|
|
908
|
+
gap> S := BrandtSemigroup(IsBipartitionSemigroup, DihedralGroup(4), 3);
|
|
909
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
910
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
911
|
+
gap> S := BrandtSemigroup(IsPBRSemigroup, 3);
|
|
912
|
+
<0-simple pbr semigroup of degree 4 with 4 generators>
|
|
913
|
+
gap> S := BrandtSemigroup(IsPBRSemigroup, Group((1, 2)), 3);
|
|
914
|
+
<0-simple pbr semigroup of degree 7 with 5 generators>
|
|
915
|
+
gap> S := BrandtSemigroup(IsPBRSemigroup, DihedralGroup(4), 3);
|
|
916
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
917
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
918
|
+
gap> S := BrandtSemigroup(IsBooleanMatSemigroup, 3);
|
|
919
|
+
<0-simple semigroup of 4x4 boolean matrices with 4 generators>
|
|
920
|
+
gap> S := BrandtSemigroup(IsBooleanMatSemigroup, Group((1, 2)), 3);
|
|
921
|
+
<0-simple semigroup of 7x7 boolean matrices with 5 generators>
|
|
922
|
+
gap> S := BrandtSemigroup(IsBooleanMatSemigroup, DihedralGroup(4), 3);
|
|
923
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
924
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
925
|
+
gap> S := BrandtSemigroup(IsNTPMatrixSemigroup, 3);
|
|
926
|
+
<0-simple semigroup of 4x4 ntp matrices with 4 generators>
|
|
927
|
+
gap> S := BrandtSemigroup(IsNTPMatrixSemigroup, Group((1, 2)), 3);
|
|
928
|
+
<0-simple semigroup of 7x7 ntp matrices with 5 generators>
|
|
929
|
+
gap> S := BrandtSemigroup(IsNTPMatrixSemigroup, DihedralGroup(4), 3);
|
|
930
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
931
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
932
|
+
gap> S := BrandtSemigroup(IsMaxPlusMatrixSemigroup, 3);
|
|
933
|
+
<0-simple semigroup of 4x4 max-plus matrices with 4 generators>
|
|
934
|
+
gap> S := BrandtSemigroup(IsMaxPlusMatrixSemigroup, Group((1, 2)), 3);
|
|
935
|
+
<0-simple semigroup of 7x7 max-plus matrices with 5 generators>
|
|
936
|
+
gap> S := BrandtSemigroup(IsMaxPlusMatrixSemigroup, DihedralGroup(4), 3);
|
|
937
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
938
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
939
|
+
gap> S := BrandtSemigroup(IsMinPlusMatrixSemigroup, 3);
|
|
940
|
+
<0-simple semigroup of 4x4 min-plus matrices with 4 generators>
|
|
941
|
+
gap> S := BrandtSemigroup(IsMinPlusMatrixSemigroup, Group((1, 2)), 3);
|
|
942
|
+
<0-simple semigroup of 7x7 min-plus matrices with 5 generators>
|
|
943
|
+
gap> S := BrandtSemigroup(IsMinPlusMatrixSemigroup, DihedralGroup(4), 3);
|
|
944
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
945
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
946
|
+
gap> S := BrandtSemigroup(IsTropicalMaxPlusMatrixSemigroup, 3);
|
|
947
|
+
<0-simple semigroup of 4x4 tropical max-plus matrices with 4 generators>
|
|
948
|
+
gap> S := BrandtSemigroup(IsTropicalMaxPlusMatrixSemigroup, Group((1, 2)), 3);
|
|
949
|
+
<0-simple semigroup of 7x7 tropical max-plus matrices with 5 generators>
|
|
950
|
+
gap> S := BrandtSemigroup(IsTropicalMaxPlusMatrixSemigroup, DihedralGroup(4), 3);
|
|
951
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
952
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
953
|
+
gap> S := BrandtSemigroup(IsTropicalMinPlusMatrixSemigroup, 3);
|
|
954
|
+
<0-simple semigroup of 4x4 tropical min-plus matrices with 4 generators>
|
|
955
|
+
gap> S := BrandtSemigroup(IsTropicalMinPlusMatrixSemigroup, Group((1, 2)), 3);
|
|
956
|
+
<0-simple semigroup of 7x7 tropical min-plus matrices with 5 generators>
|
|
957
|
+
gap> S := BrandtSemigroup(IsTropicalMinPlusMatrixSemigroup, DihedralGroup(4), 3);
|
|
958
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
959
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
960
|
+
gap> S := BrandtSemigroup(IsProjectiveMaxPlusMatrixSemigroup, 3);
|
|
961
|
+
<0-simple semigroup of 4x4 projective max-plus matrices with 4 generators>
|
|
962
|
+
gap> S := BrandtSemigroup(IsProjectiveMaxPlusMatrixSemigroup, Group((1, 2)), 3);
|
|
963
|
+
<0-simple semigroup of 7x7 projective max-plus matrices with 5 generators>
|
|
964
|
+
gap> S := BrandtSemigroup(IsProjectiveMaxPlusMatrixSemigroup, DihedralGroup(4), 3);
|
|
965
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
966
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
967
|
+
gap> S := BrandtSemigroup(IsIntegerMatrixSemigroup, 3);
|
|
968
|
+
<0-simple semigroup of 4x4 integer matrices with 4 generators>
|
|
969
|
+
gap> S := BrandtSemigroup(IsIntegerMatrixSemigroup, Group((1, 2)), 3);
|
|
970
|
+
<0-simple semigroup of 7x7 integer matrices with 5 generators>
|
|
971
|
+
gap> S := BrandtSemigroup(IsIntegerMatrixSemigroup, DihedralGroup(4), 3);
|
|
972
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
973
|
+
Error, no 1st choice method found for `BrandtSemigroupCons' on 3 arguments
|
|
974
|
+
|
|
975
|
+
# constructions: strong semilattices of semigroups: trivial argument checks
|
|
976
|
+
gap> D := CompleteDigraph(2);;
|
|
977
|
+
gap> S1 := TrivialSemigroup();;
|
|
978
|
+
gap> id := IdentityMapping(S1);;
|
|
979
|
+
gap> StrongSemilatticeOfSemigroups(D, [S1, S1], [[id, id], [id, id]]);
|
|
980
|
+
Error, the reflexive transitive closure of the 1st argument (a digraph) must b\
|
|
981
|
+
e a meet semilattice
|
|
982
|
+
gap> D := Digraph([[2], []]);;
|
|
983
|
+
gap> StrongSemilatticeOfSemigroups(D, [S1, 1], [[id], []]);
|
|
984
|
+
Error, the 2nd argument (a list) must consist of semigroups, but found integer\
|
|
985
|
+
in position 2
|
|
986
|
+
gap> StrongSemilatticeOfSemigroups(D, [S1, S1, S1], [[id], []]);
|
|
987
|
+
Error, the 2nd argument (a list) must have length 2, the number of vertices of\
|
|
988
|
+
the 1st argument (a digraph), but found length 3
|
|
989
|
+
gap> StrongSemilatticeOfSemigroups(D, [S1, S1], [[id], [], []]);
|
|
990
|
+
Error, the 3rd argument (a list) must have length 2, the number of vertices of\
|
|
991
|
+
the 1st argument (a digraph), but found length 3
|
|
992
|
+
gap> StrongSemilatticeOfSemigroups(D, [S1, S1], [1, []]);
|
|
993
|
+
Error, the 3rd argument (a list) must consist of lists, but found integer in p\
|
|
994
|
+
osition 1
|
|
995
|
+
gap> StrongSemilatticeOfSemigroups(D, [S1, S1], [[id, id], []]);
|
|
996
|
+
Error, the 3rd argument (a list) must have the same shape as the out-neighbour\
|
|
997
|
+
s of the 1st argument (a digraph), expected shape [ 1, 0 ] but found [ 2, 0 ]
|
|
998
|
+
gap> S2 := FullTransformationMonoid(2);;
|
|
999
|
+
gap> m1 := SemigroupHomomorphismByFunction(S2, S2, x -> Transformation([2, 1]));;
|
|
1000
|
+
gap> StrongSemilatticeOfSemigroups(D, [S2, S2], [[m1], []]);
|
|
1001
|
+
Error, the 3rd argument (a list) must consist of lists of homomorphisms, but p\
|
|
1002
|
+
osition [1, 1] is not a homomorphism
|
|
1003
|
+
gap> StrongSemilatticeOfSemigroups(D, [S1, S2], [[id], []]);
|
|
1004
|
+
Error, expected the homomorphism in position [ 1, 1 ] of the 3rd argument to h\
|
|
1005
|
+
ave source equal to position 2 in the 2nd argument
|
|
1006
|
+
gap> id := SemigroupHomomorphismByFunction(S1, S2, IdFunc);;
|
|
1007
|
+
gap> StrongSemilatticeOfSemigroups(D, [S2, S1], [[id], []]);
|
|
1008
|
+
<strong semilattice of 2 semigroups>
|
|
1009
|
+
|
|
1010
|
+
# constructions: strong semilattices of semigroups: homomorphism checks
|
|
1011
|
+
gap> D := Digraph([[2, 3], [4], [4], []]);;
|
|
1012
|
+
gap> S1 := FullTransformationMonoid(2);;
|
|
1013
|
+
gap> id := IdentityMapping(S1);;
|
|
1014
|
+
gap> m1 := SemigroupHomomorphismByFunction(S1, S1, x -> Transformation([1, 1]));;
|
|
1015
|
+
gap> m2 := SemigroupHomomorphismByFunction(S1, S1, x -> Transformation([2, 2]));;
|
|
1016
|
+
gap> L := [S1, S1, S1, S1];;
|
|
1017
|
+
gap> H := [[m1, m2], [id], [id], []];;
|
|
1018
|
+
gap> StrongSemilatticeOfSemigroups(D, L, H);
|
|
1019
|
+
Error, Composing homomorphisms along different paths from 1 to
|
|
1020
|
+
4 does not produce the same result. The homomorphisms must commute
|
|
1021
|
+
gap> D := Digraph([[2, 3], [4], [4], [4]]);;
|
|
1022
|
+
gap> H := [[id, id], [id], [id], [m1]];;
|
|
1023
|
+
gap> StrongSemilatticeOfSemigroups(D, L, H);
|
|
1024
|
+
Error, Expected homomorphism from 4 to 4 to be the identity
|
|
1025
|
+
|
|
1026
|
+
# constructions: strong semilattices of semigroups: valid example
|
|
1027
|
+
gap> D := Digraph([[2, 3], [2], []]);;
|
|
1028
|
+
gap> S1 := FullTransformationMonoid(2);;
|
|
1029
|
+
gap> id := IdentityMapping(S1);;
|
|
1030
|
+
gap> m1 := SemigroupHomomorphismByFunction(S1, S1, x -> Transformation([1, 1]));
|
|
1031
|
+
<full transformation monoid of degree 2> ->
|
|
1032
|
+
<full transformation monoid of degree 2>
|
|
1033
|
+
gap> m2 := SemigroupHomomorphismByFunction(S1, S1, x -> Transformation([2, 2]));
|
|
1034
|
+
<full transformation monoid of degree 2> ->
|
|
1035
|
+
<full transformation monoid of degree 2>
|
|
1036
|
+
gap> L := [S1, S1, S1];;
|
|
1037
|
+
gap> H := [[m1, m2], [id], []];;
|
|
1038
|
+
gap> StrongSemilatticeOfSemigroups(D, L, H);
|
|
1039
|
+
<strong semilattice of 3 semigroups>
|
|
1040
|
+
gap> Size(last);
|
|
1041
|
+
12
|
|
1042
|
+
|
|
1043
|
+
# constructions: strong semilattices of semigroups: SSSEs
|
|
1044
|
+
gap> D := Digraph([[2, 3], [2], []]);;
|
|
1045
|
+
gap> S1 := FullTransformationMonoid(2);;
|
|
1046
|
+
gap> id := IdentityMapping(S1);;
|
|
1047
|
+
gap> m1 := SemigroupHomomorphismByFunction(S1, S1, x -> Transformation([1, 1]));
|
|
1048
|
+
<full transformation monoid of degree 2> ->
|
|
1049
|
+
<full transformation monoid of degree 2>
|
|
1050
|
+
gap> m2 := SemigroupHomomorphismByFunction(S1, S1, x -> Transformation([2, 2]));
|
|
1051
|
+
<full transformation monoid of degree 2> ->
|
|
1052
|
+
<full transformation monoid of degree 2>
|
|
1053
|
+
gap> L := [S1, S1, S1];;
|
|
1054
|
+
gap> H := [[m1, m2], [id], []];;
|
|
1055
|
+
gap> S := StrongSemilatticeOfSemigroups(D, L, H);;
|
|
1056
|
+
gap> SSSE(S, 10, IdentityTransformation);
|
|
1057
|
+
Error, expected 2nd argument to be an integer between 1 and the size of the se\
|
|
1058
|
+
milattice, i.e. 3
|
|
1059
|
+
gap> SSSE(S, 1, Transformation([3, 2, 1]));
|
|
1060
|
+
Error, where S, n and x are the 1st, 2nd and 3rd arguments respectively, expec\
|
|
1061
|
+
ted x to be an element of SemigroupsOfStrongSemilatticeOfSemigroups(S)[n]
|
|
1062
|
+
gap> SSSE(S, 2, Transformation([2, 1])) < SSSE(S, 3, Transformation([1, 1]));
|
|
1063
|
+
true
|
|
1064
|
+
gap> SSSE(S, 2, Transformation([2, 1])) = SSSE(S, 3, Transformation([1, 1]));
|
|
1065
|
+
false
|
|
1066
|
+
gap> SSSE(S, 2, Transformation([2, 1])) * SSSE(S, 3, Transformation([1, 1]))
|
|
1067
|
+
> = SSSE(S, 1, Transformation([2, 2]));
|
|
1068
|
+
true
|
|
1069
|
+
gap> S = UnderlyingSemilatticeOfSemigroups(SSSE(S, 2, Transformation([2, 1])));
|
|
1070
|
+
true
|
|
1071
|
+
gap> ViewString(SSSE(S, 1, Transformation([2, 2])));
|
|
1072
|
+
"SSSE(1, \>Transformation( [ \>2\<,\> 2\< ] )\<)"
|
|
1073
|
+
|
|
1074
|
+
# constructions: strong semilattices of semigroups: full worked example (SLOW!)
|
|
1075
|
+
#
|
|
1076
|
+
# 5 4
|
|
1077
|
+
# / \ /
|
|
1078
|
+
# / \ /
|
|
1079
|
+
# 2 3
|
|
1080
|
+
# \ /
|
|
1081
|
+
# \ /
|
|
1082
|
+
# 1
|
|
1083
|
+
#
|
|
1084
|
+
gap> L := [];;
|
|
1085
|
+
gap> H := [[], [], [], [], []];;
|
|
1086
|
+
gap> Add(L, Semigroup(Transformation([1, 1, 1]),
|
|
1087
|
+
> Transformation([1, 2, 3]),
|
|
1088
|
+
> Transformation([1, 3, 2])));
|
|
1089
|
+
gap> Add(L, MagmaWithZeroAdjoined(SymmetricGroup(3)));
|
|
1090
|
+
gap> Add(L, FullTransformationMonoid(4));
|
|
1091
|
+
gap> Add(L, RightZeroSemigroup(4));
|
|
1092
|
+
gap> Add(L, FullTransformationMonoid(3));
|
|
1093
|
+
gap> m1 := function(trans)
|
|
1094
|
+
> local temp, out;
|
|
1095
|
+
> # A clever way of embedding T3 in T4, fixing the point 1 rather than 4.
|
|
1096
|
+
> temp := ShallowCopy(ListTransformation(trans)) + 1;
|
|
1097
|
+
> out := [1];
|
|
1098
|
+
> Append(out, temp);
|
|
1099
|
+
> return Transformation(out);
|
|
1100
|
+
> end;;
|
|
1101
|
+
gap> H[3][2] := SemigroupHomomorphismByFunction(L[5], L[3], m1);;
|
|
1102
|
+
gap> c := SemigroupCongruence(L[3], [[Transformation([1, 2, 4, 3]),
|
|
1103
|
+
> Transformation([1, 3, 2, 4])]]);;
|
|
1104
|
+
gap> # this congruence separates T_4 into three sets:
|
|
1105
|
+
gap> # A_4;
|
|
1106
|
+
gap> # S_4 \ A_4;
|
|
1107
|
+
gap> # all transformations with size of image < 4.
|
|
1108
|
+
gap> c1 := EquivalenceClassOfElement(c,
|
|
1109
|
+
> Transformation([1, 2, 3, 1]));;
|
|
1110
|
+
gap> c2 := EquivalenceClassOfElement(c,
|
|
1111
|
+
> IdentityTransformation);;
|
|
1112
|
+
gap> c3 := EquivalenceClassOfElement(c,
|
|
1113
|
+
> Transformation([2, 3, 4, 1]));;
|
|
1114
|
+
gap> m1 := function(trans)
|
|
1115
|
+
> if trans in c1 then
|
|
1116
|
+
> return Transformation([1, 1, 1]);
|
|
1117
|
+
> elif trans in c2 then
|
|
1118
|
+
> return Transformation([1, 2, 3]);
|
|
1119
|
+
> elif trans in c3 then
|
|
1120
|
+
> return Transformation([1, 3, 2]);
|
|
1121
|
+
> else
|
|
1122
|
+
> return fail;
|
|
1123
|
+
> fi;
|
|
1124
|
+
> end;;
|
|
1125
|
+
gap> H[1][2] := SemigroupHomomorphismByFunction(L[3], L[1], m1);;
|
|
1126
|
+
gap> m1 := function(trans)
|
|
1127
|
+
> if Length(ImageSetOfTransformation(trans, 3)) < 3 then
|
|
1128
|
+
> return MultiplicativeZero(L[2]);
|
|
1129
|
+
> else
|
|
1130
|
+
> return PermutationOfImage(trans) ^ UnderlyingInjectionZeroMagma(L[2]);
|
|
1131
|
+
> fi;
|
|
1132
|
+
> end;;
|
|
1133
|
+
gap> H[2][1] := SemigroupHomomorphismByFunction(L[5], L[2], m1);;
|
|
1134
|
+
gap> m1 := function(magelem)
|
|
1135
|
+
> local p;
|
|
1136
|
+
> p := magelem ^ InverseGeneralMapping(UnderlyingInjectionZeroMagma(L[2]));
|
|
1137
|
+
> if p = fail then
|
|
1138
|
+
> return Transformation([1, 1, 1]);
|
|
1139
|
+
> elif p in AlternatingGroup(3) then
|
|
1140
|
+
> return Transformation([1, 2, 3]);
|
|
1141
|
+
> else
|
|
1142
|
+
> return Transformation([1, 3, 2]);
|
|
1143
|
+
> fi;
|
|
1144
|
+
> end;;
|
|
1145
|
+
gap> H[1][1] := SemigroupHomomorphismByFunction(L[2], L[1], m1);;
|
|
1146
|
+
gap> H[3][1] := SemigroupHomomorphismByFunction(L[4], L[3], IdFunc);
|
|
1147
|
+
<transformation semigroup of size 4, degree 4 with 4 generators> ->
|
|
1148
|
+
<full transformation monoid of degree 4>
|
|
1149
|
+
gap> D := Digraph([[2, 3], [5], [4, 5], [], []]);;
|
|
1150
|
+
gap> S := StrongSemilatticeOfSemigroups(D, L, H);
|
|
1151
|
+
<strong semilattice of 5 semigroups>
|
|
1152
|
+
gap> IsStrongSemilatticeOfSemigroups(S);
|
|
1153
|
+
true
|
|
1154
|
+
gap> Size(S);
|
|
1155
|
+
297
|
|
1156
|
+
gap> Length(GreensDClasses(S));
|
|
1157
|
+
12
|
|
1158
|
+
gap> SSSE(S, 2, (1, 2) ^ UnderlyingInjectionZeroMagma(L[2]))
|
|
1159
|
+
> * SSSE(S, 3, Transformation([1, 4, 3, 2]))
|
|
1160
|
+
> = SSSE(S, 1, IdentityTransformation);
|
|
1161
|
+
true
|
|
1162
|
+
gap> SSSE(S, 4, Transformation([4, 4, 4, 4]))
|
|
1163
|
+
> * SSSE(S, 5, Transformation([3, 3, 2]))
|
|
1164
|
+
> = SSSE(S, 3, Transformation([3, 3, 3, 3]));
|
|
1165
|
+
true
|
|
1166
|
+
gap> MultiplicativeZero(S) = SSSE(S, 1, Transformation([1, 1, 1]));
|
|
1167
|
+
true
|
|
1168
|
+
gap> MultiplicativeNeutralElement(S);
|
|
1169
|
+
fail
|
|
1170
|
+
|
|
1171
|
+
#
|
|
1172
|
+
gap> SEMIGROUPS.StopTest();
|
|
1173
|
+
gap> STOP_TEST("Semigroups package: standard/semigroups/semicons.tst");
|