passagemath-gap-pkg-semigroups 10.6.30__cp311-cp311-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1158 -0
- gap/pkg/semigroups/config.status +1131 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.cpython-311-darwin.so +0 -0
|
@@ -0,0 +1,106 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
## standard/fp/word.tst
|
|
4
|
+
#Y Copyright (C) 2020-2022 Murray T. Whyte
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local A, w
|
|
12
|
+
gap> START_TEST("Semigroups package: standard/fp/word.tst");
|
|
13
|
+
gap> LoadPackage("semigroups", false);;
|
|
14
|
+
|
|
15
|
+
#
|
|
16
|
+
gap> SEMIGROUPS.StartTest();
|
|
17
|
+
|
|
18
|
+
# Test WordToString
|
|
19
|
+
gap> WordToString("abc", [1, 1, 2, 1, 3]);
|
|
20
|
+
"aabac"
|
|
21
|
+
gap> WordToString("e3a", [3, 3, 3, 1]);
|
|
22
|
+
"aaae"
|
|
23
|
+
gap> WordToString("abc", []);
|
|
24
|
+
""
|
|
25
|
+
gap> WordToString("", []);
|
|
26
|
+
""
|
|
27
|
+
gap> WordToString("abc", [1]);
|
|
28
|
+
"a"
|
|
29
|
+
gap> WordToString("abc", [4]);
|
|
30
|
+
Error, the 1st argument (a string) is too short, expected at least
|
|
31
|
+
4 but found 3
|
|
32
|
+
gap> WordToString("ab", [1, -1]);
|
|
33
|
+
Error, expected list of positive integers as 2nd argument
|
|
34
|
+
|
|
35
|
+
# Test RandomWord
|
|
36
|
+
gap> Length(RandomWord(4, 4)) = 4;
|
|
37
|
+
true
|
|
38
|
+
gap> Length(RandomWord(3, 10)) = 3;
|
|
39
|
+
true
|
|
40
|
+
gap> IsEmpty(RandomWord(0, 100));
|
|
41
|
+
true
|
|
42
|
+
gap> Length(DuplicateFreeList(RandomWord(100, 20))) <= 20;
|
|
43
|
+
true
|
|
44
|
+
gap> RandomWord(0, 0);
|
|
45
|
+
[ ]
|
|
46
|
+
gap> RandomWord(1, 0);
|
|
47
|
+
Error, the 1st argument (an integer) cannot be non-zero if the 2nd argument is\
|
|
48
|
+
0
|
|
49
|
+
gap> RandomWord(-1, 2);
|
|
50
|
+
Error, expected non-negative integer as 1st argument
|
|
51
|
+
gap> RandomWord(2, -1);
|
|
52
|
+
Error, expected non-negative integer as 2nd argument
|
|
53
|
+
|
|
54
|
+
# Test StandardiseWord
|
|
55
|
+
gap> A := [3, 100, 2, 100, 3];
|
|
56
|
+
[ 3, 100, 2, 100, 3 ]
|
|
57
|
+
gap> StandardiseWord(A);
|
|
58
|
+
[ 1, 2, 3, 2, 1 ]
|
|
59
|
+
gap> A;
|
|
60
|
+
[ 1, 2, 3, 2, 1 ]
|
|
61
|
+
gap> A := [];
|
|
62
|
+
[ ]
|
|
63
|
+
gap> StandardiseWord(A);
|
|
64
|
+
[ ]
|
|
65
|
+
gap> StandardiseWord([10]);
|
|
66
|
+
[ 1 ]
|
|
67
|
+
gap> A := [1, 2, 3, 4, 5];
|
|
68
|
+
[ 1, 2, 3, 4, 5 ]
|
|
69
|
+
gap> StandardiseWord(A);
|
|
70
|
+
[ 1, 2, 3, 4, 5 ]
|
|
71
|
+
gap> A := [1, 1, 1, 1, 1, 1, 1, 1, 3];
|
|
72
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 3 ]
|
|
73
|
+
gap> StandardizeWord(A);
|
|
74
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 2 ]
|
|
75
|
+
gap> A := [2, 1, 2, 3, 2];
|
|
76
|
+
[ 2, 1, 2, 3, 2 ]
|
|
77
|
+
gap> StandardiseWord(A);
|
|
78
|
+
[ 1, 2, 1, 3, 1 ]
|
|
79
|
+
gap> StandardiseWord([0, 1, 2, 1]);
|
|
80
|
+
Error, expected a list of positive integers as 2nd argument
|
|
81
|
+
gap> StandardiseWord([[1, 2], [0]]);
|
|
82
|
+
Error, expected a list of positive integers as 2nd argument
|
|
83
|
+
|
|
84
|
+
# Test StringToWord
|
|
85
|
+
gap> w := "aabaacaad";
|
|
86
|
+
"aabaacaad"
|
|
87
|
+
gap> StringToWord(w);
|
|
88
|
+
[ 1, 1, 2, 1, 1, 3, 1, 1, 4 ]
|
|
89
|
+
gap> w;
|
|
90
|
+
"aabaacaad"
|
|
91
|
+
gap> w := "3a5bz!";
|
|
92
|
+
"3a5bz!"
|
|
93
|
+
gap> StringToWord(w);
|
|
94
|
+
[ 1, 2, 3, 4, 5, 6 ]
|
|
95
|
+
gap> w := "xyab77x";
|
|
96
|
+
"xyab77x"
|
|
97
|
+
gap> StringToWord(w);
|
|
98
|
+
[ 1, 2, 3, 4, 5, 5, 1 ]
|
|
99
|
+
gap> StringToWord("");
|
|
100
|
+
[ ]
|
|
101
|
+
gap> StringToWord("a");
|
|
102
|
+
[ 1 ]
|
|
103
|
+
|
|
104
|
+
#
|
|
105
|
+
gap> SEMIGROUPS.StopTest();
|
|
106
|
+
gap> STOP_TEST("Semigroups package: standard/fp/word.tst");
|
|
@@ -0,0 +1,545 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/greens/acting-inverse.tst
|
|
4
|
+
#Y Copyright (C) 2015-2022 Wilf A. Wilson
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local D, L, R, S, acting, an, en, it, x, y
|
|
12
|
+
gap> START_TEST("Semigroups package: standard/greens/acting-inverse.tst");
|
|
13
|
+
gap> LoadPackage("semigroups", false);;
|
|
14
|
+
|
|
15
|
+
#
|
|
16
|
+
gap> SEMIGROUPS.StartTest();
|
|
17
|
+
|
|
18
|
+
# SchutzenbergerGroup, for an L-class of an inverse op sgp
|
|
19
|
+
gap> S := InverseSemigroup([
|
|
20
|
+
> Bipartition([[1, -4], [2, -2], [3, -3], [4, 5, -1, -5]]),
|
|
21
|
+
> Bipartition([[1, -1], [2, -3], [3, 5, -4, -5], [4, -2]]),
|
|
22
|
+
> Bipartition([[1, -4], [2, -1], [3, 5, -3, -5], [4, -2]])],
|
|
23
|
+
> rec(acting := true));;
|
|
24
|
+
gap> x := Bipartition([[1, -2], [2, -4], [3, 4, 5, -1, -3, -5]]);;
|
|
25
|
+
gap> L := LClass(S, x);
|
|
26
|
+
<Green's L-class: <block bijection: [ 1, -2 ], [ 2, -4 ],
|
|
27
|
+
[ 3, 4, 5, -1, -3, -5 ]>>
|
|
28
|
+
gap> x in L;
|
|
29
|
+
true
|
|
30
|
+
gap> SchutzenbergerGroup(L);
|
|
31
|
+
Group([ (2,3) ])
|
|
32
|
+
gap> L := GreensLClassOfElementNC(S, x, true);;
|
|
33
|
+
gap> x in L;
|
|
34
|
+
true
|
|
35
|
+
gap> SchutzenbergerGroup(L);
|
|
36
|
+
Group([ (2,3) ])
|
|
37
|
+
|
|
38
|
+
# DClassOfXClass, for an X=R/L/H-class
|
|
39
|
+
gap> S := InverseSemigroup([
|
|
40
|
+
> Bipartition([[1, -4], [2, -2], [3, -3], [4, 5, -1, -5]]),
|
|
41
|
+
> Bipartition([[1, -1], [2, -3], [3, 5, -4, -5], [4, -2]]),
|
|
42
|
+
> Bipartition([[1, -4], [2, -1], [3, 5, -3, -5], [4, -2]])],
|
|
43
|
+
> rec(acting := true));;
|
|
44
|
+
gap> x := Bipartition([[1, -1], [2, -4], [3, -2], [4, 5, -3, -5]]);;
|
|
45
|
+
gap> D := DClassOfLClass(LClass(S, x));
|
|
46
|
+
<Green's D-class: <block bijection: [ 1, 5, -3, -5 ], [ 2, -4 ], [ 3, -2 ],
|
|
47
|
+
[ 4, -1 ]>>
|
|
48
|
+
gap> x in D;
|
|
49
|
+
true
|
|
50
|
+
gap> D = DClass(S, x);
|
|
51
|
+
true
|
|
52
|
+
gap> DClassOfRClass(RClass(S, x));
|
|
53
|
+
<Green's D-class: <block bijection: [ 1, -4 ], [ 2, -2 ], [ 3, -3 ],
|
|
54
|
+
[ 4, 5, -1, -5 ]>>
|
|
55
|
+
gap> x in D;
|
|
56
|
+
true
|
|
57
|
+
gap> D = DClass(S, x);
|
|
58
|
+
true
|
|
59
|
+
gap> DClassOfHClass(HClass(S, x));
|
|
60
|
+
<Green's D-class: <block bijection: [ 1, -1 ], [ 2, -4 ], [ 3, -2 ],
|
|
61
|
+
[ 4, 5, -3, -5 ]>>
|
|
62
|
+
gap> x in D;
|
|
63
|
+
true
|
|
64
|
+
gap> D = DClass(S, x);
|
|
65
|
+
true
|
|
66
|
+
|
|
67
|
+
# LClassOfHClass, for an H-class
|
|
68
|
+
gap> S := InverseSemigroup([
|
|
69
|
+
> Bipartition([[1, -4], [2, -2], [3, -3], [4, 5, -1, -5]]),
|
|
70
|
+
> Bipartition([[1, -1], [2, -3], [3, 5, -4, -5], [4, -2]]),
|
|
71
|
+
> Bipartition([[1, -4], [2, -1], [3, 5, -3, -5], [4, -2]])],
|
|
72
|
+
> rec(acting := true));;
|
|
73
|
+
gap> x := Bipartition([[1, -4], [2, 3, 5, -2, -3, -5], [4, -1]]);;
|
|
74
|
+
gap> L := LClassOfHClass(HClass(S, x));
|
|
75
|
+
<Green's L-class: <block bijection: [ 1, -4 ], [ 2, 3, 5, -2, -3, -5 ],
|
|
76
|
+
[ 4, -1 ]>>
|
|
77
|
+
gap> L = LClass(S, x);
|
|
78
|
+
true
|
|
79
|
+
|
|
80
|
+
# GreensHClassOfElement, for a Green's class and an element
|
|
81
|
+
gap> S := InverseSemigroup([
|
|
82
|
+
> PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
|
|
83
|
+
> PartialPerm([1, 2, 4], [4, 6, 3]),
|
|
84
|
+
> PartialPerm([1, 2, 3, 5], [6, 4, 5, 1])],
|
|
85
|
+
> rec(acting := true));;
|
|
86
|
+
gap> x := PartialPerm([4, 1, 2, 0]);;
|
|
87
|
+
gap> GreensHClassOfElement(DClass(S, x), x);
|
|
88
|
+
<Green's H-class: [3,2,1,4]>
|
|
89
|
+
gap> GreensHClassOfElement(RClass(S, x), x);
|
|
90
|
+
<Green's H-class: [3,2,1,4]>
|
|
91
|
+
gap> GreensHClassOfElement(LClass(S, x), x);
|
|
92
|
+
<Green's H-class: [3,2,1,4]>
|
|
93
|
+
|
|
94
|
+
# Size, for an inverse op acting D/L-class
|
|
95
|
+
gap> S := InverseSemigroup([
|
|
96
|
+
> PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
|
|
97
|
+
> PartialPerm([1, 2, 4], [4, 6, 3]),
|
|
98
|
+
> PartialPerm([1, 2, 3, 5], [6, 4, 5, 1])],
|
|
99
|
+
> rec(acting := true));;
|
|
100
|
+
gap> x := PartialPerm([4, 1, 2, 0]);;
|
|
101
|
+
gap> Size(DClass(S, x));
|
|
102
|
+
36
|
|
103
|
+
gap> Size(LClass(S, x));
|
|
104
|
+
6
|
|
105
|
+
|
|
106
|
+
# \in, for a D-class and an element, 1
|
|
107
|
+
gap> S := InverseSemigroup([
|
|
108
|
+
> Bipartition([[1, -4], [2, -2], [3, -3], [4, 5, -1, -5]]),
|
|
109
|
+
> Bipartition([[1, -1], [2, -3], [3, 5, -4, -5], [4, -2]]),
|
|
110
|
+
> Bipartition([[1, -4], [2, -1], [3, 5, -3, -5], [4, -2]])],
|
|
111
|
+
> rec(acting := true));;
|
|
112
|
+
gap> x := Bipartition([[1, -4], [2, 3, 5, -2, -3, -5], [4, -1]]);;
|
|
113
|
+
gap> D := DClass(S, x);;
|
|
114
|
+
gap> PartialPerm([]) in D;
|
|
115
|
+
false
|
|
116
|
+
gap> Bipartition([[1, -4], [2, 3, 5, -2, -3, -5], [4, -1], [6, -6]]) in D;
|
|
117
|
+
false
|
|
118
|
+
gap> Bipartition([[1, -4], [2, 3, 5, -2, -3, -5, 4, -1]]) in D;
|
|
119
|
+
false
|
|
120
|
+
gap> Bipartition([[1, -4], [2, 3, 5, -2], [-3, -5, 4, -1]]) in D;
|
|
121
|
+
false
|
|
122
|
+
gap> Bipartition([[1], [2, -3], [3, -4], [4, -5], [5], [-1], [-2]]) in D;
|
|
123
|
+
false
|
|
124
|
+
gap> Bipartition([[1, 2, 5, -1, -2, -3], [3, -4], [4, -5]]) in D;
|
|
125
|
+
false
|
|
126
|
+
|
|
127
|
+
# \in, for a D-class and an element, 2
|
|
128
|
+
gap> S := InverseSemigroup([
|
|
129
|
+
> PartialPerm([1, 2, 3, 5, 6, 7], [5, 7, 1, 9, 4, 2]),
|
|
130
|
+
> PartialPerm([1, 2, 3, 6, 8], [2, 6, 7, 9, 1]),
|
|
131
|
+
> PartialPerm([1, 2, 3, 4, 5, 8], [7, 1, 4, 3, 2, 6]),
|
|
132
|
+
> PartialPerm([1, 2, 3, 4, 5, 7, 9], [5, 3, 8, 1, 9, 4, 6])]);;
|
|
133
|
+
gap> x := PartialPerm([2, 4, 5, 7], [4, 1, 6, 7]);;
|
|
134
|
+
gap> D := DClass(S, x);;
|
|
135
|
+
gap> PartialPerm([2, 4, 5, 7], [2, 4, 7, 5]) in D;
|
|
136
|
+
false
|
|
137
|
+
|
|
138
|
+
# \in, for a D-class and an element, 3
|
|
139
|
+
gap> S := SymmetricInverseMonoid(5);
|
|
140
|
+
<symmetric inverse monoid of degree 5>
|
|
141
|
+
gap> x := S.1 * S.2 * S.1;
|
|
142
|
+
(1,2,4)(3,5)
|
|
143
|
+
gap> x := S.1 * S.2 * S.3 ;
|
|
144
|
+
[5,1](2)(3)(4)
|
|
145
|
+
gap> D := DClass(S, x);;
|
|
146
|
+
gap> x in D;
|
|
147
|
+
true
|
|
148
|
+
|
|
149
|
+
# \in, for an L-class and an element, 1
|
|
150
|
+
gap> S := InverseSemigroup([
|
|
151
|
+
> Bipartition([[1, -4], [2, -2], [3, -3], [4, 5, -1, -5]]),
|
|
152
|
+
> Bipartition([[1, -1], [2, -3], [3, 5, -4, -5], [4, -2]]),
|
|
153
|
+
> Bipartition([[1, -4], [2, -1], [3, 5, -3, -5], [4, -2]])],
|
|
154
|
+
> rec(acting := true));;
|
|
155
|
+
gap> x := Bipartition([[1, -4], [2, 3, 5, -2, -3, -5], [4, -1]]);;
|
|
156
|
+
gap> L := LClass(S, x);;
|
|
157
|
+
gap> PartialPerm([]) in L;
|
|
158
|
+
false
|
|
159
|
+
gap> Bipartition([[1, -4], [2, 3, 5, -2, -3, -5], [4, -1], [6, -6]]) in L;
|
|
160
|
+
false
|
|
161
|
+
gap> Bipartition([[1, -4], [2, 3, 5, -2, -3, -5, 4, -1]]) in L;
|
|
162
|
+
false
|
|
163
|
+
gap> Bipartition([[1, -4], [2, 3, 5, -2], [-3, -5, 4, -1]]) in L;
|
|
164
|
+
false
|
|
165
|
+
gap> Bipartition([[1], [2, -3], [3, -4], [4, -5], [5], [-1], [-2]]) in L;
|
|
166
|
+
false
|
|
167
|
+
gap> Bipartition([[1, 2, 5, -1, -2, -3], [3, -4], [4, -5]]) in L;
|
|
168
|
+
false
|
|
169
|
+
|
|
170
|
+
# \in, for an L-class and an element, 2
|
|
171
|
+
gap> S := InverseSemigroup([PartialPerm([1, 3], [4, 3]),
|
|
172
|
+
> PartialPerm([1, 2, 3], [4, 1, 2]),
|
|
173
|
+
> PartialPerm([1, 2, 4], [4, 5, 1]),
|
|
174
|
+
> PartialPerm([1, 3, 4], [5, 2, 1])],
|
|
175
|
+
> rec(acting := true));;
|
|
176
|
+
gap> x := PartialPerm([1, 2, 4], [1, 2, 4]);;
|
|
177
|
+
gap> L := LClass(S, x);;
|
|
178
|
+
gap> PartialPerm([4, 5, 6], [4, 2, 1]) in L;
|
|
179
|
+
false
|
|
180
|
+
gap> PartialPerm([1, 4, 5], [4, 2, 1]) in L;
|
|
181
|
+
false
|
|
182
|
+
|
|
183
|
+
# \in, for an L-class and an element, 3
|
|
184
|
+
gap> S := SymmetricInverseMonoid(5);
|
|
185
|
+
<symmetric inverse monoid of degree 5>
|
|
186
|
+
gap> x := S.1 * S.2 * S.1;
|
|
187
|
+
(1,2,4)(3,5)
|
|
188
|
+
gap> x := S.1 * S.2 * S.3 ^ 6;
|
|
189
|
+
<empty partial perm>
|
|
190
|
+
gap> x := S.1 * S.2 * S.3 ;
|
|
191
|
+
[5,1](2)(3)(4)
|
|
192
|
+
gap> L := LClass(S, x);;
|
|
193
|
+
gap> x in L;
|
|
194
|
+
true
|
|
195
|
+
|
|
196
|
+
# \in, for an L-class and an element, 4
|
|
197
|
+
gap> S := InverseSemigroup(PartialPerm([1, 3, 4, 8], [2, 7, 8, 4]),
|
|
198
|
+
> PartialPerm([1, 2, 3, 4, 5, 8], [7, 6, 9, 1, 3, 2]),
|
|
199
|
+
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 9], [2, 8, 3, 7, 1, 5, 9, 6]),
|
|
200
|
+
> PartialPerm([1, 2, 3, 4, 6, 7, 9], [3, 5, 7, 2, 6, 9, 8]),
|
|
201
|
+
> PartialPerm([1, 2, 3, 4, 6, 9], [8, 4, 7, 5, 3, 6]));;
|
|
202
|
+
gap> x := PartialPerm([1, 2, 3, 4, 6, 7, 9], [3, 5, 7, 2, 6, 9, 8]);;
|
|
203
|
+
gap> y := PartialPermNC([2, 3, 5, 6, 7, 8, 9], [2, 3, 5, 6, 7, 8, 9]);;
|
|
204
|
+
gap> x in LClass(S, y);
|
|
205
|
+
true
|
|
206
|
+
|
|
207
|
+
# XClassReps: for an inverse op acting semigroup
|
|
208
|
+
gap> S := InverseSemigroup([
|
|
209
|
+
> PartialPerm([1, 2, 3, 4], [7, 6, 2, 1]),
|
|
210
|
+
> PartialPerm([1, 2, 3, 5, 6], [1, 3, 6, 2, 7]),
|
|
211
|
+
> PartialPerm([1, 3, 4, 6, 7], [1, 6, 3, 5, 4]),
|
|
212
|
+
> PartialPerm([1, 2, 5, 6, 7], [6, 7, 3, 2, 1])],
|
|
213
|
+
> rec(acting := true));;
|
|
214
|
+
gap> DClassReps(S);
|
|
215
|
+
[ <identity partial perm on [ 1, 2, 6, 7 ]>,
|
|
216
|
+
<identity partial perm on [ 1, 2, 3, 6, 7 ]>,
|
|
217
|
+
<identity partial perm on [ 1, 3, 4, 5, 6 ]>,
|
|
218
|
+
<identity partial perm on [ 6, 7 ]>, <identity partial perm on [ 1, 3, 6 ]>,
|
|
219
|
+
<identity partial perm on [ 2, 3, 6, 7 ]>,
|
|
220
|
+
<identity partial perm on [ 1, 2, 3, 5 ]>, <empty partial perm>,
|
|
221
|
+
<identity partial perm on [ 7 ]>, <identity partial perm on [ 2, 3, 7 ]> ]
|
|
222
|
+
gap> RClassReps(S);
|
|
223
|
+
[ <identity partial perm on [ 1, 2, 6, 7 ]>, [3,2,6][4,1,7], [3,6,7][5,2](1),
|
|
224
|
+
[3,7][4,6,2](1), [3,2][4,7,6](1),
|
|
225
|
+
<identity partial perm on [ 1, 2, 3, 6, 7 ]>, [5,2,3,6,7](1),
|
|
226
|
+
[5,3](1,6,2,7), <identity partial perm on [ 1, 3, 4, 5, 6 ]>,
|
|
227
|
+
[7,4,3,6,5](1), <identity partial perm on [ 6, 7 ]>, [4,7][5,6],
|
|
228
|
+
[1,7][2,6], [1,7][3,6], [2,6](7), [1,6](7), [1,7](6), [2,6][4,7], [2,7](6),
|
|
229
|
+
[3,6](7), [2,7][5,6], [2,6][3,7], [3,6,7], [3,6][4,7], [4,6](7), [5,7](6),
|
|
230
|
+
[1,7][5,6], [4,7](6), [3,6][5,7], [1,7][4,6], [5,6](7),
|
|
231
|
+
<identity partial perm on [ 1, 3, 6 ]>, [4,3,6](1), [2,6][7,1,3],
|
|
232
|
+
[2,6,3][7,1], [2,3,6](1), [2,6][5,3](1), [7,6,1](3), [2,3,6,1], [5,6,3](1),
|
|
233
|
+
[2,6][5,3,1], [4,6,3][5,1], [5,6,3][7,1], [2,3](1,6), [7,1,6](3),
|
|
234
|
+
[4,1,6,3], [5,3,1,6], [2,1][5,3][7,6], [2,1][4,6](3), [7,6,3](1),
|
|
235
|
+
[4,6][5,3](1), [2,3][4,1,6], [5,6,1](3), [4,3,1](6), [4,1][7,3,6],
|
|
236
|
+
[4,6][7,3](1), [5,3][7,1,6], <identity partial perm on [ 2, 3, 6, 7 ]>,
|
|
237
|
+
[5,2,3,6,7], [1,6,2,7][5,3], [1,6](2,3,7), [5,7,6,3](2),
|
|
238
|
+
<identity partial perm on [ 1, 2, 3, 5 ]>, [6,3,2,5](1), [6,2][7,3,5](1),
|
|
239
|
+
[4,3][6,5,2](1), [7,1,2,3](5), [6,5,2][7,1,3], <empty partial perm>,
|
|
240
|
+
<identity partial perm on [ 7 ]>, [4,7], [3,7], [6,7], [1,7], [5,7], [2,7],
|
|
241
|
+
<identity partial perm on [ 2, 3, 7 ]>, [5,2,3][6,7] ]
|
|
242
|
+
|
|
243
|
+
# XClassReps: for an inverse op acting Greens class
|
|
244
|
+
gap> S := InverseSemigroup([
|
|
245
|
+
> PartialPerm([1, 2, 3, 4], [7, 6, 2, 1]),
|
|
246
|
+
> PartialPerm([1, 2, 3, 5, 6], [1, 3, 6, 2, 7]),
|
|
247
|
+
> PartialPerm([1, 3, 4, 6, 7], [1, 6, 3, 5, 4]),
|
|
248
|
+
> PartialPerm([1, 2, 5, 6, 7], [6, 7, 3, 2, 1])],
|
|
249
|
+
> rec(acting := true));;
|
|
250
|
+
gap> x := PartialPerm([1, 3, 4, 5, 6], [1, 3, 4, 5, 6]);;
|
|
251
|
+
gap> D := DClass(S, x);;
|
|
252
|
+
gap> RClassReps(D);
|
|
253
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 6 ]>, [7,4,3,6,5](1) ]
|
|
254
|
+
gap> HClassReps(D);
|
|
255
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 6 ]>, [5,6,3,4,7](1),
|
|
256
|
+
[7,4,3,6,5](1), <identity partial perm on [ 1, 3, 4, 6, 7 ]> ]
|
|
257
|
+
gap> L := LClass(S, x);;
|
|
258
|
+
gap> HClassReps(L);
|
|
259
|
+
[ <identity partial perm on [ 1, 3, 4, 5, 6 ]>, [7,4,3,6,5](1) ]
|
|
260
|
+
|
|
261
|
+
# Greens(H/L)Classes, for an inverse op acting D-class
|
|
262
|
+
gap> S := InverseSemigroup([
|
|
263
|
+
> PartialPerm([1, 2], [3, 2]),
|
|
264
|
+
> PartialPerm([1, 4], [1, 3]),
|
|
265
|
+
> PartialPerm([1, 3, 5], [4, 3, 1])],
|
|
266
|
+
> rec(acting := true));;
|
|
267
|
+
gap> GreensLClasses(S);
|
|
268
|
+
[ <Green's L-class: <identity partial perm on [ 2, 3 ]>>,
|
|
269
|
+
<Green's L-class: [3,1](2)>,
|
|
270
|
+
<Green's L-class: <identity partial perm on [ 1, 3 ]>>,
|
|
271
|
+
<Green's L-class: [3,4](1)>, <Green's L-class: [3,1,5]>,
|
|
272
|
+
<Green's L-class: [1,4](3)>, <Green's L-class: [1,5](3)>,
|
|
273
|
+
<Green's L-class: <identity partial perm on [ 1, 3, 4 ]>>,
|
|
274
|
+
<Green's L-class: [4,1,5](3)>,
|
|
275
|
+
<Green's L-class: <identity partial perm on [ 2 ]>>,
|
|
276
|
+
<Green's L-class: <empty partial perm>>,
|
|
277
|
+
<Green's L-class: <identity partial perm on [ 4 ]>>,
|
|
278
|
+
<Green's L-class: [4,3]>, <Green's L-class: [4,1]>,
|
|
279
|
+
<Green's L-class: [4,5]> ]
|
|
280
|
+
gap> x := PartialPerm([1, 4], [5, 1]);;
|
|
281
|
+
gap> GreensHClasses(DClass(S, x));
|
|
282
|
+
[ <Green's H-class: <identity partial perm on [ 1, 3 ]>>,
|
|
283
|
+
<Green's H-class: [3,4](1)>, <Green's H-class: [3,1,5]>,
|
|
284
|
+
<Green's H-class: [1,4](3)>, <Green's H-class: [1,5](3)>,
|
|
285
|
+
<Green's H-class: [4,3](1)>,
|
|
286
|
+
<Green's H-class: <identity partial perm on [ 1, 4 ]>>,
|
|
287
|
+
<Green's H-class: [4,1,5]>, <Green's H-class: [1,4,3]>,
|
|
288
|
+
<Green's H-class: [1,5][4,3]>, <Green's H-class: [5,1,3]>,
|
|
289
|
+
<Green's H-class: [5,1,4]>,
|
|
290
|
+
<Green's H-class: <identity partial perm on [ 1, 5 ]>>,
|
|
291
|
+
<Green's H-class: [1,3][5,4]>, <Green's H-class: [1,3](5)>,
|
|
292
|
+
<Green's H-class: [4,1](3)>, <Green's H-class: [3,4,1]>,
|
|
293
|
+
<Green's H-class: [3,1][4,5]>,
|
|
294
|
+
<Green's H-class: <identity partial perm on [ 3, 4 ]>>,
|
|
295
|
+
<Green's H-class: [4,5](3)>, <Green's H-class: [5,1](3)>,
|
|
296
|
+
<Green's H-class: [3,4][5,1]>, <Green's H-class: [3,1](5)>,
|
|
297
|
+
<Green's H-class: [5,4](3)>,
|
|
298
|
+
<Green's H-class: <identity partial perm on [ 3, 5 ]>> ]
|
|
299
|
+
gap> GreensHClasses(RClass(S, x));
|
|
300
|
+
[ <Green's H-class: [4,3](1)>,
|
|
301
|
+
<Green's H-class: <identity partial perm on [ 1, 4 ]>>,
|
|
302
|
+
<Green's H-class: [4,1,5]>, <Green's H-class: [1,4,3]>,
|
|
303
|
+
<Green's H-class: [1,5][4,3]> ]
|
|
304
|
+
gap> GreensHClasses(LClass(S, x));
|
|
305
|
+
[ <Green's H-class: [3,1,5]>, <Green's H-class: [4,1,5]>,
|
|
306
|
+
<Green's H-class: <identity partial perm on [ 1, 5 ]>>,
|
|
307
|
+
<Green's H-class: [3,1][4,5]>, <Green's H-class: [3,1](5)> ]
|
|
308
|
+
gap> GreensHClasses(HClass(S, x));
|
|
309
|
+
Error, the argument is not a Green's L-, R-, or D-class
|
|
310
|
+
|
|
311
|
+
# Nr(H/R/L)Classes, for an inverse op acting semigroup
|
|
312
|
+
gap> S := InverseSemigroup([
|
|
313
|
+
> PartialPerm([1, 2], [3, 2]),
|
|
314
|
+
> PartialPerm([1, 4], [1, 3]),
|
|
315
|
+
> PartialPerm([1, 3, 5], [4, 3, 1])],
|
|
316
|
+
> rec(acting := true));;
|
|
317
|
+
gap> NrRClasses(S);
|
|
318
|
+
15
|
|
319
|
+
gap> NrLClasses(S);
|
|
320
|
+
15
|
|
321
|
+
gap> NrHClasses(S);
|
|
322
|
+
51
|
|
323
|
+
|
|
324
|
+
# Nr(R/L)Classes, for an inverse op acting Greens class
|
|
325
|
+
gap> S := InverseSemigroup([
|
|
326
|
+
> PartialPerm([1, 2], [3, 2]),
|
|
327
|
+
> PartialPerm([1, 4], [1, 3]),
|
|
328
|
+
> PartialPerm([1, 3, 5], [4, 3, 1])],
|
|
329
|
+
> rec(acting := true));;
|
|
330
|
+
gap> x := PartialPerm([1, 3, 4], [5, 3, 1]);;
|
|
331
|
+
gap> D := DClass(S, x);;
|
|
332
|
+
gap> NrRClasses(D);
|
|
333
|
+
2
|
|
334
|
+
gap> NrLClasses(D);
|
|
335
|
+
2
|
|
336
|
+
gap> NrHClasses(D);
|
|
337
|
+
4
|
|
338
|
+
gap> L := LClass(S, x);;
|
|
339
|
+
gap> NrHClasses(L);
|
|
340
|
+
2
|
|
341
|
+
gap> R := LClass(S, x);;
|
|
342
|
+
gap> NrHClasses(R);
|
|
343
|
+
2
|
|
344
|
+
|
|
345
|
+
# GroupHClassOfGreensDClass, for an inverse op acting D-class
|
|
346
|
+
gap> S := InverseSemigroup([
|
|
347
|
+
> PartialPerm([1, 2], [3, 2]),
|
|
348
|
+
> PartialPerm([1, 4], [1, 3]),
|
|
349
|
+
> PartialPerm([1, 3, 5], [4, 3, 1])],
|
|
350
|
+
> rec(acting := true));;
|
|
351
|
+
gap> GroupHClassOfGreensDClass(DClass(S, PartialPerm([])));
|
|
352
|
+
<Green's H-class: <empty partial perm>>
|
|
353
|
+
gap> GroupHClassOfGreensDClass(DClass(S, PartialPerm([3, 5], [4, 1])));
|
|
354
|
+
<Green's H-class: <identity partial perm on [ 1, 3 ]>>
|
|
355
|
+
|
|
356
|
+
# PartialOrderOfDClasses, for an inverse op acting semigroup
|
|
357
|
+
gap> S := SymmetricInverseSemigroup(5);;
|
|
358
|
+
gap> S := InverseSemigroup(S, rec(acting := true));;
|
|
359
|
+
gap> OutNeighbours(DigraphReflexiveTransitiveReduction(
|
|
360
|
+
> PartialOrderOfDClasses(S)));
|
|
361
|
+
[ [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ ] ]
|
|
362
|
+
|
|
363
|
+
# (Nr)Idempotents, for an inv op acting R/L/D-class
|
|
364
|
+
gap> S := InverseSemigroup([
|
|
365
|
+
> Bipartition([[1, -4], [2, 4, 5, 6, -1, -2, -5, -6], [3, -3]]),
|
|
366
|
+
> Bipartition([[1, -4], [2, -1], [3, -2], [4, 5, 6, -3, -5, -6]]),
|
|
367
|
+
> Bipartition([[1, -4], [2, -5], [3, 5, 6, -2, -3, -6], [4, -1]]),
|
|
368
|
+
> Bipartition([[1, -5], [2, 5, 6, -3, -4, -6], [3, -2], [4, -1]])],
|
|
369
|
+
> rec(acting := true));;
|
|
370
|
+
gap> x := Bipartition([[1, 2, 5, 6, -2, -4, -5, -6], [3, -3], [4, -1]]);;
|
|
371
|
+
gap> NrIdempotents(HClass(S, x));
|
|
372
|
+
0
|
|
373
|
+
gap> Idempotents(HClass(S, x));
|
|
374
|
+
[ ]
|
|
375
|
+
gap> NrIdempotents(RClass(S, x));
|
|
376
|
+
1
|
|
377
|
+
gap> Idempotents(RClass(S, x));
|
|
378
|
+
[ <block bijection: [ 1, 2, 5, 6, -1, -2, -5, -6 ], [ 3, -3 ], [ 4, -4 ]> ]
|
|
379
|
+
gap> NrIdempotents(LClass(S, x));
|
|
380
|
+
1
|
|
381
|
+
gap> Idempotents(LClass(S, x));
|
|
382
|
+
[ <block bijection: [ 1, -1 ], [ 2, 4, 5, 6, -2, -4, -5, -6 ], [ 3, -3 ]> ]
|
|
383
|
+
gap> NrIdempotents(DClass(S, x));
|
|
384
|
+
9
|
|
385
|
+
gap> Idempotents(DClass(S, x));
|
|
386
|
+
[ <block bijection: [ 1, 2, 5, 6, -1, -2, -5, -6 ], [ 3, -3 ], [ 4, -4 ]>,
|
|
387
|
+
<block bijection: [ 1, -1 ], [ 2, 4, 5, 6, -2, -4, -5, -6 ], [ 3, -3 ]>,
|
|
388
|
+
<block bijection: [ 1, 3, 5, 6, -1, -3, -5, -6 ], [ 2, -2 ], [ 4, -4 ]>,
|
|
389
|
+
<block bijection: [ 1, -1 ], [ 2, 3, 4, 6, -2, -3, -4, -6 ], [ 5, -5 ]>,
|
|
390
|
+
<block bijection: [ 1, -1 ], [ 2, 3, 5, 6, -2, -3, -5, -6 ], [ 4, -4 ]>,
|
|
391
|
+
<block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, 4, 5, 6, -3, -4, -5, -6 ]>,
|
|
392
|
+
<block bijection: [ 1, 2, 3, 6, -1, -2, -3, -6 ], [ 4, -4 ], [ 5, -5 ]>,
|
|
393
|
+
<block bijection: [ 1, 4, 5, 6, -1, -4, -5, -6 ], [ 2, -2 ], [ 3, -3 ]>,
|
|
394
|
+
<block bijection: [ 1, 3, 4, 6, -1, -3, -4, -6 ], [ 2, -2 ], [ 5, -5 ]> ]
|
|
395
|
+
|
|
396
|
+
# (Nr)Idempotents, for an inverse op acting semigroup
|
|
397
|
+
gap> S := InverseSemigroup(SymmetricInverseSemigroup(5),
|
|
398
|
+
> rec(acting := true));;
|
|
399
|
+
gap> Idempotents(S, 3);
|
|
400
|
+
[ <identity partial perm on [ 1, 2, 3 ]>,
|
|
401
|
+
<identity partial perm on [ 3, 4, 5 ]>,
|
|
402
|
+
<identity partial perm on [ 2, 3, 4 ]>,
|
|
403
|
+
<identity partial perm on [ 2, 4, 5 ]>,
|
|
404
|
+
<identity partial perm on [ 1, 4, 5 ]>,
|
|
405
|
+
<identity partial perm on [ 1, 3, 4 ]>,
|
|
406
|
+
<identity partial perm on [ 2, 3, 5 ]>,
|
|
407
|
+
<identity partial perm on [ 1, 3, 5 ]>,
|
|
408
|
+
<identity partial perm on [ 1, 2, 5 ]>,
|
|
409
|
+
<identity partial perm on [ 1, 2, 4 ]> ]
|
|
410
|
+
gap> Length(last) = Binomial(5, 3);
|
|
411
|
+
true
|
|
412
|
+
gap> S := InverseSemigroup([
|
|
413
|
+
> PartialPerm([1, 2, 3], [1, 3, 4]),
|
|
414
|
+
> PartialPerm([1, 2, 3], [2, 5, 3]),
|
|
415
|
+
> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
|
|
416
|
+
> PartialPerm([1, 3, 5], [5, 1, 3])],
|
|
417
|
+
> rec(acting := true));;
|
|
418
|
+
gap> NrIdempotents(S);
|
|
419
|
+
25
|
|
420
|
+
gap> Idempotents(S);
|
|
421
|
+
[ <identity partial perm on [ 1, 3, 4 ]>,
|
|
422
|
+
<identity partial perm on [ 2, 3, 5 ]>,
|
|
423
|
+
<identity partial perm on [ 1, 2, 4, 5 ]>,
|
|
424
|
+
<identity partial perm on [ 1, 3, 5 ]>,
|
|
425
|
+
<identity partial perm on [ 1, 2, 3 ]>,
|
|
426
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>,
|
|
427
|
+
<identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 2, 3 ]>,
|
|
428
|
+
<identity partial perm on [ 1, 2, 5 ]>, <identity partial perm on [ 1, 5 ]>,
|
|
429
|
+
<identity partial perm on [ 3 ]>, <identity partial perm on [ 3, 4 ]>,
|
|
430
|
+
<identity partial perm on [ 3, 5 ]>, <identity partial perm on [ 1, 3 ]>,
|
|
431
|
+
<identity partial perm on [ 2 ]>, <identity partial perm on [ 2, 5 ]>,
|
|
432
|
+
<identity partial perm on [ 2, 4, 5 ]>, <identity partial perm on [ 1, 2 ]>,
|
|
433
|
+
<identity partial perm on [ 1, 2, 4 ]>, <identity partial perm on [ 1 ]>,
|
|
434
|
+
<identity partial perm on [ 5 ]>, <empty partial perm>,
|
|
435
|
+
<identity partial perm on [ 2, 4 ]>, <identity partial perm on [ 4 ]>,
|
|
436
|
+
<identity partial perm on [ 4, 5 ]> ]
|
|
437
|
+
gap> Length(Idempotents(S)) = NrIdempotents(S);
|
|
438
|
+
true
|
|
439
|
+
gap> Idempotents(S, 4);
|
|
440
|
+
[ <identity partial perm on [ 1, 2, 4, 5 ]>,
|
|
441
|
+
<identity partial perm on [ 1, 2, 3, 4 ]> ]
|
|
442
|
+
gap> Idempotents(S, -1);
|
|
443
|
+
Error, the 2nd argument (an int) is not non-negative
|
|
444
|
+
|
|
445
|
+
# IteratorOfRClassReps
|
|
446
|
+
gap> S := InverseSemigroup(SymmetricInverseSemigroup(5),
|
|
447
|
+
> rec(acting := true));;
|
|
448
|
+
gap> it := IteratorOfRClassReps(S);
|
|
449
|
+
<iterator>
|
|
450
|
+
gap> NextIterator(it);
|
|
451
|
+
<identity partial perm on [ 1, 2, 3, 4, 5 ]>
|
|
452
|
+
gap> NextIterator(it);
|
|
453
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>
|
|
454
|
+
gap> for x in it do od;
|
|
455
|
+
gap> IsDoneIterator(it);
|
|
456
|
+
true
|
|
457
|
+
gap> RClassReps(S);;
|
|
458
|
+
gap> it := IteratorOfRClassReps(S);
|
|
459
|
+
<iterator>
|
|
460
|
+
gap> NextIterator(it);
|
|
461
|
+
<identity partial perm on [ 1, 2, 3, 4, 5 ]>
|
|
462
|
+
gap> NextIterator(it);
|
|
463
|
+
<identity partial perm on [ 1, 2, 3, 4 ]>
|
|
464
|
+
gap> for x in it do od;
|
|
465
|
+
gap> IsDoneIterator(it);
|
|
466
|
+
true
|
|
467
|
+
|
|
468
|
+
# Enumerator for an L-class
|
|
469
|
+
gap> S := InverseSemigroup(SymmetricInverseSemigroup(5),
|
|
470
|
+
> rec(acting := true));;
|
|
471
|
+
gap> x := PartialPerm([1, 2, 3, 5], [2, 4, 3, 5]);
|
|
472
|
+
[1,2,4](3)(5)
|
|
473
|
+
gap> L := LClass(S, x);
|
|
474
|
+
<Green's L-class: [1,2,4](3)(5)>
|
|
475
|
+
gap> en := Enumerator(L);
|
|
476
|
+
<enumerator of <Green's L-class: [1,2,4](3)(5)>>
|
|
477
|
+
gap> ForAll(en, x -> en[Position(en, x)] = x);
|
|
478
|
+
true
|
|
479
|
+
gap> ForAll([1 .. Length(en)], i -> Position(en, en[i]) = i);
|
|
480
|
+
true
|
|
481
|
+
gap> Position(en, PartialPerm([1, 2, 3], [5, 2, 3]));
|
|
482
|
+
fail
|
|
483
|
+
gap> S := InverseSemigroup(PartialPerm([1, 2, 3], [2, 3, 1]),
|
|
484
|
+
> rec(acting := true));
|
|
485
|
+
<partial perm group of rank 3 with 1 generator>
|
|
486
|
+
gap> x := PartialPerm([1, 2, 3]);
|
|
487
|
+
<identity partial perm on [ 1, 2, 3 ]>
|
|
488
|
+
gap> y := PartialPerm([1, 2, 4], [1, 2, 3]);
|
|
489
|
+
[4,3](1)(2)
|
|
490
|
+
gap> en := Enumerator(LClass(S, x));;
|
|
491
|
+
gap> Position(en, y);
|
|
492
|
+
fail
|
|
493
|
+
gap> en[10000];
|
|
494
|
+
fail
|
|
495
|
+
|
|
496
|
+
# Enumerator for a D-class
|
|
497
|
+
gap> S := InverseSemigroup(SymmetricInverseSemigroup(5),
|
|
498
|
+
> rec(acting := true));;
|
|
499
|
+
gap> x := PartialPerm([1, 2, 3, 5], [2, 4, 3, 5]);
|
|
500
|
+
[1,2,4](3)(5)
|
|
501
|
+
gap> D := DClass(S, x);
|
|
502
|
+
<Green's D-class: [1,2,4](3)(5)>
|
|
503
|
+
gap> en := Enumerator(D);
|
|
504
|
+
<enumerator of <Green's D-class: [1,2,4](3)(5)>>
|
|
505
|
+
gap> ForAll(en, x -> en[Position(en, x)] = x);
|
|
506
|
+
true
|
|
507
|
+
gap> ForAll([1 .. Length(en)], i -> Position(en, en[i]) = i);
|
|
508
|
+
true
|
|
509
|
+
gap> Position(en, PartialPerm([1, 2, 3], [5, 2, 3]));
|
|
510
|
+
fail
|
|
511
|
+
gap> S := InverseSemigroup(PartialPerm([1, 2, 3], [2, 3, 1]),
|
|
512
|
+
> rec(acting := true));
|
|
513
|
+
<partial perm group of rank 3 with 1 generator>
|
|
514
|
+
gap> x := PartialPerm([1, 2, 3]);
|
|
515
|
+
<identity partial perm on [ 1, 2, 3 ]>
|
|
516
|
+
gap> y := PartialPerm([1, 2, 4], [1, 2, 3]);
|
|
517
|
+
[4,3](1)(2)
|
|
518
|
+
gap> en := Enumerator(DClass(S, x));
|
|
519
|
+
<enumerator of <Green's D-class: <identity partial perm on [ 1, 2, 3 ]>>>
|
|
520
|
+
gap> Position(en, y ^ -1);
|
|
521
|
+
fail
|
|
522
|
+
gap> Position(en, y);
|
|
523
|
+
fail
|
|
524
|
+
gap> en[10000];
|
|
525
|
+
fail
|
|
526
|
+
|
|
527
|
+
# Iterator for an L-class
|
|
528
|
+
gap> S := InverseSemigroup(SymmetricInverseSemigroup(5),
|
|
529
|
+
> rec(acting := true));;
|
|
530
|
+
gap> x := PartialPerm([1, 2, 3, 5], [2, 4, 3, 5]);
|
|
531
|
+
[1,2,4](3)(5)
|
|
532
|
+
gap> L := LClass(S, x);
|
|
533
|
+
<Green's L-class: [1,2,4](3)(5)>
|
|
534
|
+
gap> it := Iterator(L);
|
|
535
|
+
<iterator>
|
|
536
|
+
gap> for x in it do Assert(0, x in L); od;
|
|
537
|
+
gap> L := LClass(S, x);
|
|
538
|
+
<Green's L-class: [1,5,2,3,4]>
|
|
539
|
+
gap> AsSSortedList(L);;
|
|
540
|
+
gap> Iterator(L);
|
|
541
|
+
<iterator>
|
|
542
|
+
|
|
543
|
+
#
|
|
544
|
+
gap> SEMIGROUPS.StopTest();
|
|
545
|
+
gap> STOP_TEST("Semigroups package: standard/greens/acting-inverse.tst");
|