passagemath-gap-pkg-semigroups 10.6.30__cp311-cp311-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1158 -0
- gap/pkg/semigroups/config.status +1131 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.cpython-311-darwin.so +0 -0
|
@@ -0,0 +1,435 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/attributes/isomorph.tst
|
|
4
|
+
#Y Copyright (C) 2015-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local A, BruteForceInverseCheck, BruteForceIsoCheck, F, G, S, T, U, V, inv
|
|
12
|
+
#@local map, x, y, M, N, R, L
|
|
13
|
+
gap> START_TEST("Semigroups package: standard/attributes/isomorph.tst");
|
|
14
|
+
gap> LoadPackage("semigroups", false);;
|
|
15
|
+
|
|
16
|
+
#
|
|
17
|
+
gap> SEMIGROUPS.StartTest();
|
|
18
|
+
|
|
19
|
+
# helper functions
|
|
20
|
+
gap> BruteForceIsoCheck := function(iso)
|
|
21
|
+
> local x, y;
|
|
22
|
+
> if not IsInjective(iso) or not IsSurjective(iso) then
|
|
23
|
+
> return false;
|
|
24
|
+
> fi;
|
|
25
|
+
> for x in Generators(Source(iso)) do
|
|
26
|
+
> for y in Generators(Source(iso)) do
|
|
27
|
+
> if x ^ iso * y ^ iso <> (x * y) ^ iso then
|
|
28
|
+
> return false;
|
|
29
|
+
> fi;
|
|
30
|
+
> od;
|
|
31
|
+
> od;
|
|
32
|
+
> return true;
|
|
33
|
+
> end;;
|
|
34
|
+
gap> BruteForceInverseCheck := function(map)
|
|
35
|
+
> local inv;
|
|
36
|
+
> inv := InverseGeneralMapping(map);
|
|
37
|
+
> return ForAll(Source(map), x -> x = (x ^ map) ^ inv)
|
|
38
|
+
> and ForAll(Range(map), x -> x = (x ^ inv) ^ map);
|
|
39
|
+
> end;;
|
|
40
|
+
|
|
41
|
+
# isomorph: SmallestMultiplicationTable, 1/2
|
|
42
|
+
gap> S := DualSymmetricInverseMonoid(2);
|
|
43
|
+
<inverse block bijection monoid of degree 2 with 2 generators>
|
|
44
|
+
gap> Size(S);
|
|
45
|
+
3
|
|
46
|
+
gap> SmallestMultiplicationTable(S);
|
|
47
|
+
[ [ 1, 2, 3 ], [ 2, 1, 3 ], [ 3, 3, 3 ] ]
|
|
48
|
+
|
|
49
|
+
# isomorph: SmallestMultiplicationTable, 2/2
|
|
50
|
+
gap> S := Semigroup(
|
|
51
|
+
> [PBR([[-4, 1, 2, 3], [-4, 1, 2, 4], [-2, -1, 1], [-4, -1, 1, 2, 4]],
|
|
52
|
+
> [[-4, -3, 1, 4], [-3, -1, 3], [-4, -1, 1, 2, 4], [-4, -3, -2, 3, 4]]),
|
|
53
|
+
> PBR([[-3, -2, -1, 1, 3, 4], [-4, -3, -2, -1, 2, 3], [-3, -2, -1, 1],
|
|
54
|
+
> [-1, 1, 2, 3]],
|
|
55
|
+
> [[-3, -2, -1, 2, 3, 4], [-3, 1, 4],
|
|
56
|
+
> [-3, 1, 2], [-4, -3, 1, 2, 3, 4]]),
|
|
57
|
+
> PBR([[-3, -1, 1, 3], [-1, 1, 2], [-2, -1, 1], [-4, -3, -1, 1, 2, 3, 4]],
|
|
58
|
+
> [[-4, -3, -2], [], [-4, -1, 1, 2], [-4, -3, -2, -1, 2, 3, 4]]),
|
|
59
|
+
> PBR([[-3, -2, -1, 2, 3], [-2, -1, 2, 4], [-3, -2, 1, 3],
|
|
60
|
+
> [-4, -3, -2, -1, 1, 2, 3, 4]],
|
|
61
|
+
> [[-4, -2, -1, 4], [-4, -3, -2, 2, 3], [-3, -2, -1, 1, 3, 4], [-3, 2]]),
|
|
62
|
+
> PBR([[-4, -3, -2, -1, 2, 3], [-4, -1, 1, 2, 3, 4], [-3, 1, 2, 3],
|
|
63
|
+
> [-4, -3, -2, -1, 1, 4]],
|
|
64
|
+
> [[-4, -3, -1, 2, 4], [-3, -2, 2, 3, 4], [-4, -2, -1, 1],
|
|
65
|
+
> [-4, -2, 1, 4]]),
|
|
66
|
+
> PBR([[-4, -2, -1, 2, 3], [-4, -3, -1, 1, 3], [-4, 2, 4], [-3, -1, 1]],
|
|
67
|
+
> [[-4, -3, -1, 1, 3], [-4, -3, 2, 3], [-4, -3, -2, -1, 2, 4],
|
|
68
|
+
> [-4, -1, 1, 3, 4]])]);
|
|
69
|
+
<pbr semigroup of degree 4 with 6 generators>
|
|
70
|
+
gap> Size(S);
|
|
71
|
+
11
|
|
72
|
+
gap> SmallestMultiplicationTable(S);
|
|
73
|
+
[ [ 1, 1, 1, 1, 1, 6, 6, 6, 9, 9, 11 ], [ 1, 1, 1, 1, 1, 6, 6, 6, 9, 9, 11 ],
|
|
74
|
+
[ 1, 1, 1, 1, 1, 6, 6, 6, 9, 9, 11 ], [ 1, 1, 1, 1, 1, 6, 6, 6, 9, 9, 11 ],
|
|
75
|
+
[ 1, 1, 1, 1, 1, 6, 6, 7, 9, 9, 11 ], [ 1, 1, 1, 11, 1, 6, 6, 6, 9, 9, 11 ],
|
|
76
|
+
[ 1, 1, 1, 11, 1, 6, 6, 6, 9, 9, 11 ], [ 1, 1, 1, 11, 1, 6, 6, 6, 9, 9, 11 ]
|
|
77
|
+
, [ 1, 1, 1, 1, 1, 6, 6, 6, 9, 9, 11 ],
|
|
78
|
+
[ 1, 1, 1, 1, 1, 6, 6, 6, 9, 9, 11 ], [ 1, 1, 1, 1, 1, 6, 6, 6, 9, 9, 11 ] ]
|
|
79
|
+
gap> CanonicalMultiplicationTable(S);
|
|
80
|
+
[ [ 11, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
81
|
+
[ 11, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
82
|
+
[ 11, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
83
|
+
[ 8, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
84
|
+
[ 11, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
85
|
+
[ 11, 11, 11, 7, 9, 11, 10, 8, 9, 10, 11 ],
|
|
86
|
+
[ 8, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
87
|
+
[ 11, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
88
|
+
[ 11, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
89
|
+
[ 8, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ],
|
|
90
|
+
[ 11, 11, 11, 10, 9, 11, 10, 8, 9, 10, 11 ] ]
|
|
91
|
+
|
|
92
|
+
# isomorph: IsIsomorphicSemigroup, 1/2
|
|
93
|
+
gap> S := DualSymmetricInverseMonoid(2);;
|
|
94
|
+
gap> T := Semigroup([Transformation([2, 1, 2, 2]),
|
|
95
|
+
> Transformation([1, 2, 3, 3])]);;
|
|
96
|
+
gap> IsIsomorphicSemigroup(S, T);
|
|
97
|
+
false
|
|
98
|
+
|
|
99
|
+
# isomorph: IsIsomorphicSemigroup, 2/2
|
|
100
|
+
gap> S := Semigroup([
|
|
101
|
+
> Matrix(IsNTPMatrix, [[0, 1, 2], [4, 3, 0], [0, 2, 0]], 9, 4),
|
|
102
|
+
> Matrix(IsNTPMatrix, [[1, 1, 0], [4, 1, 1], [0, 0, 0]], 9, 4)]);
|
|
103
|
+
<semigroup of 3x3 ntp matrices with 2 generators>
|
|
104
|
+
gap> IsIsomorphicSemigroup(S, S);
|
|
105
|
+
true
|
|
106
|
+
gap> T := AsSemigroup(IsTransformationSemigroup, S);
|
|
107
|
+
<transformation semigroup of size 46, degree 47 with 2 generators>
|
|
108
|
+
gap> IsIsomorphicSemigroup(S, T);
|
|
109
|
+
true
|
|
110
|
+
gap> S := Semigroup(IdentityTransformation);
|
|
111
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
112
|
+
gap> T := Semigroup(PartialPerm([]));
|
|
113
|
+
<trivial partial perm group of rank 0 with 1 generator>
|
|
114
|
+
gap> IsIsomorphicSemigroup(S, T);
|
|
115
|
+
true
|
|
116
|
+
gap> T := JonesMonoid(4);
|
|
117
|
+
<regular bipartition *-monoid of degree 4 with 3 generators>
|
|
118
|
+
gap> IsIsomorphicSemigroup(S, T);
|
|
119
|
+
false
|
|
120
|
+
|
|
121
|
+
# isomorph: IsIsomorphicSemigroup, for finite simple semigroups
|
|
122
|
+
gap> M := [[(1, 2, 3), ()], [(), ()], [(), ()]];
|
|
123
|
+
[ [ (1,2,3), () ], [ (), () ], [ (), () ] ]
|
|
124
|
+
gap> N := [[(1, 3, 2), ()], [(), (1, 2, 3)], [(1, 3, 2), (1, 3, 2)]];
|
|
125
|
+
[ [ (1,3,2), () ], [ (), (1,2,3) ], [ (1,3,2), (1,3,2) ] ]
|
|
126
|
+
gap> R := ReesMatrixSemigroup(AlternatingGroup([1 .. 3]), M);
|
|
127
|
+
<Rees matrix semigroup 2x3 over Alt( [ 1 .. 3 ] )>
|
|
128
|
+
gap> S := ReesMatrixSemigroup(Group([(1, 2, 3)]), N);
|
|
129
|
+
<Rees matrix semigroup 2x3 over Group([ (1,2,3) ])>
|
|
130
|
+
gap> IsIsomorphicSemigroup(R, S);
|
|
131
|
+
true
|
|
132
|
+
gap> R := SemigroupByMultiplicationTable(MultiplicationTable(R));;
|
|
133
|
+
gap> S := SemigroupByMultiplicationTable(MultiplicationTable(S));;
|
|
134
|
+
gap> IsIsomorphicSemigroup(R, S);
|
|
135
|
+
true
|
|
136
|
+
gap> L := [[(), ()], [(), ()], [(1, 2, 3), ()]];
|
|
137
|
+
[ [ (), () ], [ (), () ], [ (1,2,3), () ] ]
|
|
138
|
+
gap> T := ReesMatrixSemigroup(SymmetricGroup([1 .. 3]), L);
|
|
139
|
+
<Rees matrix semigroup 2x3 over Sym( [ 1 .. 3 ] )>
|
|
140
|
+
gap> IsIsomorphicSemigroup(S, T);
|
|
141
|
+
false
|
|
142
|
+
gap> IsIsomorphicSemigroup(T, T);
|
|
143
|
+
true
|
|
144
|
+
gap> M := [[(1, 2, 3), ()], [(), ()], [(), ()]];
|
|
145
|
+
[ [ (1,2,3), () ], [ (), () ], [ (), () ] ]
|
|
146
|
+
gap> N := [[(1, 3, 2), ()], [(), (1, 2, 3)]];
|
|
147
|
+
[ [ (1,3,2), () ], [ (), (1,2,3) ] ]
|
|
148
|
+
gap> R := ReesMatrixSemigroup(AlternatingGroup([1 .. 3]), M);;
|
|
149
|
+
gap> S := ReesMatrixSemigroup(AlternatingGroup([1 .. 3]), N);;
|
|
150
|
+
gap> IsIsomorphicSemigroup(R, S);
|
|
151
|
+
false
|
|
152
|
+
gap> R := ReesMatrixSemigroup(AlternatingGroup([1 .. 5]),
|
|
153
|
+
> [[(), ()], [(), (1, 3, 2, 4, 5)]]);;
|
|
154
|
+
gap> S := ReesMatrixSemigroup(AlternatingGroup([1 .. 5]),
|
|
155
|
+
> [[(1, 5, 4, 3, 2), ()], [(1, 4, 5), (1, 4)(3, 5)]]);;
|
|
156
|
+
gap> IsIsomorphicSemigroup(R, S);
|
|
157
|
+
false
|
|
158
|
+
|
|
159
|
+
# isomorph: IsomorphismSemigroups, for infinite semigroup(s)
|
|
160
|
+
gap> S := FreeSemigroup(1);;
|
|
161
|
+
gap> T := TrivialSemigroup();;
|
|
162
|
+
gap> IsomorphismSemigroups(S, T);
|
|
163
|
+
fail
|
|
164
|
+
gap> IsomorphismSemigroups(S, FreeSemigroup(2));
|
|
165
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
166
|
+
Error, no 2nd choice method found for `IsomorphismSemigroups' on 2 arguments
|
|
167
|
+
|
|
168
|
+
# isomorph: IsomorphismSemigroups, for trivial semigroups
|
|
169
|
+
gap> S := TrivialSemigroup(IsTransformationSemigroup);
|
|
170
|
+
<trivial transformation group of degree 0 with 1 generator>
|
|
171
|
+
gap> T := TrivialSemigroup(IsBipartitionSemigroup);
|
|
172
|
+
<trivial block bijection group of degree 1 with 1 generator>
|
|
173
|
+
gap> map := IsomorphismSemigroups(S, T);;
|
|
174
|
+
gap> BruteForceIsoCheck(map);
|
|
175
|
+
true
|
|
176
|
+
gap> BruteForceInverseCheck(map);
|
|
177
|
+
true
|
|
178
|
+
|
|
179
|
+
# isomorph: IsomorphismSemigroups, for monogenic semigroups
|
|
180
|
+
gap> S := MonogenicSemigroup(IsTransformationSemigroup, 3, 2);
|
|
181
|
+
<commutative non-regular transformation semigroup of size 4, degree 5 with 1
|
|
182
|
+
generator>
|
|
183
|
+
gap> T := MonogenicSemigroup(IsBipartitionSemigroup, 3, 2);
|
|
184
|
+
<commutative non-regular block bijection semigroup of size 4, degree 6 with 1
|
|
185
|
+
generator>
|
|
186
|
+
gap> map := IsomorphismSemigroups(S, T);
|
|
187
|
+
<commutative non-regular transformation semigroup of size 4, degree 5 with 1
|
|
188
|
+
generator> -> <commutative non-regular block bijection semigroup of size 4,
|
|
189
|
+
degree 6 with 1 generator>
|
|
190
|
+
gap> BruteForceIsoCheck(map);
|
|
191
|
+
true
|
|
192
|
+
gap> BruteForceInverseCheck(map);
|
|
193
|
+
true
|
|
194
|
+
|
|
195
|
+
# isomorph: IsomorphismSemigroups, for simple semigroups
|
|
196
|
+
gap> S := ReesMatrixSemigroup(SymmetricGroup(3), [[(), (1, 3, 2)],
|
|
197
|
+
> [(2, 3), (1, 2)],
|
|
198
|
+
> [(), (2, 3, 1)]]);
|
|
199
|
+
<Rees matrix semigroup 2x3 over Sym( [ 1 .. 3 ] )>
|
|
200
|
+
gap> T := ReesMatrixSemigroup(SymmetricGroup(3), [[(), ()],
|
|
201
|
+
> [(), ()],
|
|
202
|
+
> [(), ()]]);
|
|
203
|
+
<Rees matrix semigroup 2x3 over Sym( [ 1 .. 3 ] )>
|
|
204
|
+
gap> U := AsSemigroup(IsBipartitionSemigroup, S);
|
|
205
|
+
<bipartition semigroup of size 36, degree 37 with 4 generators>
|
|
206
|
+
gap> V := AsSemigroup(IsTransformationSemigroup, S);
|
|
207
|
+
<transformation semigroup of size 36, degree 37 with 4 generators>
|
|
208
|
+
gap> map := IsomorphismSemigroups(S, U);;
|
|
209
|
+
gap> BruteForceIsoCheck(map);
|
|
210
|
+
true
|
|
211
|
+
gap> BruteForceInverseCheck(map);
|
|
212
|
+
true
|
|
213
|
+
gap> map := IsomorphismSemigroups(U, S);;
|
|
214
|
+
gap> BruteForceIsoCheck(map);
|
|
215
|
+
true
|
|
216
|
+
gap> BruteForceInverseCheck(map);
|
|
217
|
+
true
|
|
218
|
+
gap> map := IsomorphismSemigroups(U, V);;
|
|
219
|
+
gap> BruteForceIsoCheck(map);
|
|
220
|
+
true
|
|
221
|
+
gap> BruteForceInverseCheck(map);
|
|
222
|
+
true
|
|
223
|
+
gap> IsomorphismSemigroups(U, T);
|
|
224
|
+
fail
|
|
225
|
+
|
|
226
|
+
# isomorph: IsomorphismSemigroups, for 0-simple semigroups
|
|
227
|
+
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[(), (1, 3, 2)],
|
|
228
|
+
> [0, (1, 2)],
|
|
229
|
+
> [(), (2, 3, 1)]]);
|
|
230
|
+
<Rees 0-matrix semigroup 2x3 over Sym( [ 1 .. 3 ] )>
|
|
231
|
+
gap> T := ReesZeroMatrixSemigroup(SymmetricGroup(3), [[(), ()],
|
|
232
|
+
> [(), ()],
|
|
233
|
+
> [(), 0]]);
|
|
234
|
+
<Rees 0-matrix semigroup 2x3 over Sym( [ 1 .. 3 ] )>
|
|
235
|
+
gap> U := AsSemigroup(IsBipartitionSemigroup, S);
|
|
236
|
+
<bipartition semigroup of size 37, degree 38 with 5 generators>
|
|
237
|
+
gap> V := AsSemigroup(IsTransformationSemigroup, S);
|
|
238
|
+
<transformation semigroup of size 37, degree 38 with 5 generators>
|
|
239
|
+
gap> map := IsomorphismSemigroups(S, U);;
|
|
240
|
+
gap> BruteForceIsoCheck(map);
|
|
241
|
+
true
|
|
242
|
+
gap> BruteForceInverseCheck(map);
|
|
243
|
+
true
|
|
244
|
+
gap> map := IsomorphismSemigroups(U, S);;
|
|
245
|
+
gap> BruteForceIsoCheck(map);
|
|
246
|
+
true
|
|
247
|
+
gap> BruteForceInverseCheck(map);
|
|
248
|
+
true
|
|
249
|
+
gap> map := IsomorphismSemigroups(U, V);;
|
|
250
|
+
gap> BruteForceIsoCheck(map);
|
|
251
|
+
true
|
|
252
|
+
gap> BruteForceInverseCheck(map);
|
|
253
|
+
true
|
|
254
|
+
gap> IsomorphismSemigroups(U, T);
|
|
255
|
+
fail
|
|
256
|
+
gap> F := FreeSemigroup(1);;
|
|
257
|
+
gap> F := F / [[F.1 ^ 4, F.1]];;
|
|
258
|
+
gap> S := ReesZeroMatrixSemigroup(F, [[F.1]]);;
|
|
259
|
+
gap> T := ReesZeroMatrixSemigroup(F, [[F.1 ^ 2]]);;
|
|
260
|
+
gap> map := IsomorphismSemigroups(S, T);;
|
|
261
|
+
gap> BruteForceIsoCheck(map);
|
|
262
|
+
true
|
|
263
|
+
gap> BruteForceInverseCheck(map);
|
|
264
|
+
true
|
|
265
|
+
|
|
266
|
+
# isomorph: IsomorphismSemigroups, non-isomorphic partial order of D-classes
|
|
267
|
+
gap> S := ZeroSemigroup(3);
|
|
268
|
+
<commutative non-regular transformation semigroup of size 3, degree 4 with 2
|
|
269
|
+
generators>
|
|
270
|
+
gap> T := MonogenicSemigroup(3, 1);
|
|
271
|
+
<commutative non-regular transformation semigroup of size 3, degree 4 with 1
|
|
272
|
+
generator>
|
|
273
|
+
gap> IsomorphismSemigroups(S, T);
|
|
274
|
+
fail
|
|
275
|
+
|
|
276
|
+
# for monogenic semigroups
|
|
277
|
+
gap> S := MonogenicSemigroup(4, 5);;
|
|
278
|
+
gap> T := MonogenicSemigroup(20, 1);;
|
|
279
|
+
gap> IsomorphismSemigroups(S, T);
|
|
280
|
+
fail
|
|
281
|
+
gap> S := MonogenicSemigroup(1, 4);;
|
|
282
|
+
gap> T := MonogenicSemigroup(2, 3);;
|
|
283
|
+
gap> IsomorphismSemigroups(S, T);
|
|
284
|
+
fail
|
|
285
|
+
gap> S := MonogenicSemigroup(1, 4);;
|
|
286
|
+
gap> T := Semigroup(Generators(S) ^ (1, 2));;
|
|
287
|
+
gap> IsomorphismSemigroups(S, T) <> fail;
|
|
288
|
+
true
|
|
289
|
+
|
|
290
|
+
# for larger semigroups, Sean Clark's PLU monoid
|
|
291
|
+
gap> A := [DigraphFromDiSparse6String(".[{?`abcdefghijklmnopqrstuvwxyz"),
|
|
292
|
+
> DigraphFromDiSparse6String(
|
|
293
|
+
> ".[_bAdCfEhGjIlKnMpOrQtSvU{_bAdCfEhGjIlKnMpOrQtSvUwxyz"),
|
|
294
|
+
> DigraphFromDiSparse6String(".[h?jAlCnE`gbidkfm{h?jAlCnE`gbidkfmwxyz"),
|
|
295
|
+
> DigraphFromSparse6String(":[w?BGJORaDILQTcFKNSV`EHMPU")];;
|
|
296
|
+
gap> S := Semigroup(List(A, AsBooleanMat));
|
|
297
|
+
<monoid of 28x28 boolean matrices with 3 generators>
|
|
298
|
+
gap> Size(S);
|
|
299
|
+
40
|
|
300
|
+
gap> CanonicalMultiplicationTable(S);
|
|
301
|
+
[ [ 35, 34, 39, 40, 34, 35, 39, 40, 35, 34, 39, 40, 2, 2, 1, 1, 1, 1, 3, 3,
|
|
302
|
+
3, 3, 3, 3, 3, 1, 1, 34, 35, 39, 40, 4, 4, 2, 1, 1, 1, 3, 3, 4 ],
|
|
303
|
+
[ 34, 35, 40, 39, 35, 34, 40, 39, 34, 35, 40, 39, 1, 1, 2, 2, 2, 2, 4, 4,
|
|
304
|
+
4, 4, 4, 4, 4, 2, 2, 35, 34, 40, 39, 3, 3, 1, 2, 2, 2, 4, 4, 3 ],
|
|
305
|
+
[ 40, 39, 34, 35, 39, 40, 34, 35, 40, 39, 34, 35, 4, 4, 3, 3, 3, 3, 1, 1,
|
|
306
|
+
1, 1, 1, 1, 1, 3, 3, 39, 40, 34, 35, 2, 2, 4, 3, 3, 3, 1, 1, 2 ],
|
|
307
|
+
[ 39, 40, 35, 34, 40, 39, 35, 34, 39, 40, 35, 34, 3, 3, 4, 4, 4, 4, 2, 2,
|
|
308
|
+
2, 2, 2, 2, 2, 4, 4, 40, 39, 35, 34, 1, 1, 3, 4, 4, 4, 2, 2, 1 ],
|
|
309
|
+
[ 34, 35, 40, 39, 35, 34, 40, 39, 34, 36, 40, 38, 1, 6, 5, 2, 5, 2, 4, 8,
|
|
310
|
+
4, 8, 8, 8, 8, 5, 5, 36, 34, 40, 38, 7, 3, 1, 2, 2, 5, 4, 4, 3 ],
|
|
311
|
+
[ 35, 34, 39, 40, 34, 35, 39, 40, 36, 34, 38, 40, 5, 2, 1, 6, 1, 6, 7, 3,
|
|
312
|
+
7, 3, 7, 7, 7, 6, 6, 34, 36, 38, 40, 4, 8, 2, 1, 1, 6, 3, 3, 4 ],
|
|
313
|
+
[ 40, 39, 34, 35, 39, 40, 34, 35, 40, 38, 34, 36, 4, 8, 7, 3, 7, 3, 1, 6,
|
|
314
|
+
1, 6, 6, 6, 6, 7, 7, 38, 40, 34, 36, 5, 2, 4, 3, 3, 7, 1, 1, 2 ],
|
|
315
|
+
[ 39, 40, 35, 34, 40, 39, 35, 34, 38, 40, 36, 34, 7, 3, 4, 8, 4, 8, 5, 2,
|
|
316
|
+
5, 2, 5, 5, 5, 8, 8, 40, 38, 36, 34, 1, 6, 3, 4, 4, 8, 2, 2, 1 ],
|
|
317
|
+
[ 35, 34, 39, 40, 13, 16, 21, 33, 35, 34, 39, 40, 2, 2, 1, 1, 9, 9, 11, 11,
|
|
318
|
+
3, 3, 11, 11, 11, 9, 9, 13, 16, 21, 33, 4, 4, 2, 1, 9, 9, 11, 3, 4 ],
|
|
319
|
+
[ 34, 35, 40, 39, 15, 14, 32, 22, 34, 35, 40, 39, 1, 1, 2, 2, 10, 10, 12,
|
|
320
|
+
12, 4, 4, 12, 12, 12, 10, 10, 15, 14, 32, 22, 3, 3, 1, 2, 10, 10, 12,
|
|
321
|
+
4, 3 ],
|
|
322
|
+
[ 40, 39, 34, 35, 21, 33, 13, 16, 40, 39, 34, 35, 4, 4, 3, 3, 11, 11, 9, 9,
|
|
323
|
+
1, 1, 9, 9, 9, 11, 11, 21, 33, 13, 16, 2, 2, 4, 3, 11, 11, 9, 1, 2 ],
|
|
324
|
+
[ 39, 40, 35, 34, 32, 22, 15, 14, 39, 40, 35, 34, 3, 3, 4, 4, 12, 12, 10,
|
|
325
|
+
10, 2, 2, 10, 10, 10, 12, 12, 32, 22, 15, 14, 1, 1, 3, 4, 12, 12, 10,
|
|
326
|
+
2, 1 ],
|
|
327
|
+
[ 2, 1, 4, 3, 1, 2, 4, 3, 2, 9, 4, 11, 35, 16, 13, 34, 13, 34, 40, 33, 40,
|
|
328
|
+
33, 33, 33, 33, 13, 13, 9, 2, 4, 11, 21, 39, 35, 34, 34, 13, 40, 40, 39
|
|
329
|
+
], [ 2, 1, 4, 3, 1, 2, 4, 3, 10, 1, 12, 3, 15, 35, 34, 14, 34, 14, 32,
|
|
330
|
+
40, 32, 40, 32, 32, 32, 14, 14, 1, 10, 12, 3, 39, 22, 35, 34, 34, 14,
|
|
331
|
+
40, 40, 39 ],
|
|
332
|
+
[ 1, 2, 3, 4, 2, 1, 3, 4, 1, 10, 3, 12, 34, 14, 15, 35, 15, 35, 39, 22, 39,
|
|
333
|
+
22, 22, 22, 22, 15, 15, 10, 1, 3, 12, 32, 40, 34, 35, 35, 15, 39, 39,
|
|
334
|
+
40 ],
|
|
335
|
+
[ 1, 2, 3, 4, 2, 1, 3, 4, 9, 2, 11, 4, 13, 34, 35, 16, 35, 16, 21, 39, 21,
|
|
336
|
+
39, 21, 21, 21, 16, 16, 2, 9, 11, 4, 40, 33, 34, 35, 35, 16, 39, 39, 40
|
|
337
|
+
], [ 1, 2, 3, 4, 5, 6, 7, 8, 1, 10, 3, 12, 34, 14, 15, 35, 17, 36, 38,
|
|
338
|
+
20, 39, 22, 20, 20, 20, 17, 17, 28, 6, 7, 31, 32, 40, 34, 35, 36, 17,
|
|
339
|
+
38, 39, 40 ],
|
|
340
|
+
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 11, 4, 13, 34, 35, 16, 36, 18, 19, 38, 21,
|
|
341
|
+
39, 19, 19, 19, 18, 18, 5, 29, 30, 8, 40, 33, 34, 35, 36, 18, 38, 39,
|
|
342
|
+
40 ],
|
|
343
|
+
[ 4, 3, 2, 1, 7, 8, 5, 6, 4, 11, 2, 9, 40, 33, 21, 39, 19, 38, 36, 18, 35,
|
|
344
|
+
16, 18, 18, 18, 19, 19, 30, 8, 5, 29, 13, 34, 40, 39, 38, 19, 36, 35,
|
|
345
|
+
34 ], [ 4, 3, 2, 1, 7, 8, 5, 6, 12, 3, 10, 1, 32, 40, 39, 22, 38, 20,
|
|
346
|
+
17, 36, 15, 35, 17, 17, 17, 20, 20, 7, 31, 28, 6, 34, 14, 40, 39, 38,
|
|
347
|
+
20, 36, 35, 34 ],
|
|
348
|
+
[ 4, 3, 2, 1, 3, 4, 2, 1, 4, 11, 2, 9, 40, 33, 21, 39, 21, 39, 35, 16, 35,
|
|
349
|
+
16, 16, 16, 16, 21, 21, 11, 4, 2, 9, 13, 34, 40, 39, 39, 21, 35, 35, 34
|
|
350
|
+
], [ 4, 3, 2, 1, 3, 4, 2, 1, 12, 3, 10, 1, 32, 40, 39, 22, 39, 22, 15,
|
|
351
|
+
35, 15, 35, 15, 15, 15, 22, 22, 3, 12, 10, 1, 34, 14, 40, 39, 39, 22,
|
|
352
|
+
35, 35, 34 ],
|
|
353
|
+
[ 4, 3, 2, 1, 7, 8, 5, 6, 12, 11, 10, 9, 32, 33, 21, 22, 19, 20, 17, 18,
|
|
354
|
+
15, 16, 37, 26, 27, 24, 25, 30, 31, 28, 29, 13, 14, 40, 39, 38, 23, 36,
|
|
355
|
+
35, 34 ],
|
|
356
|
+
[ 4, 3, 2, 1, 7, 8, 5, 6, 12, 11, 10, 9, 32, 33, 21, 22, 19, 20, 17, 18,
|
|
357
|
+
15, 16, 27, 37, 26, 25, 23, 30, 31, 28, 29, 13, 14, 40, 39, 38, 24, 36,
|
|
358
|
+
35, 34 ],
|
|
359
|
+
[ 4, 3, 2, 1, 7, 8, 5, 6, 12, 11, 10, 9, 32, 33, 21, 22, 19, 20, 17, 18,
|
|
360
|
+
15, 16, 26, 27, 37, 23, 24, 30, 31, 28, 29, 13, 14, 40, 39, 38, 25, 36,
|
|
361
|
+
35, 34 ],
|
|
362
|
+
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
|
|
363
|
+
21, 22, 25, 23, 24, 27, 37, 28, 29, 30, 31, 32, 33, 34, 35, 36, 26, 38,
|
|
364
|
+
39, 40 ],
|
|
365
|
+
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
|
|
366
|
+
21, 22, 24, 25, 23, 37, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 27, 38,
|
|
367
|
+
39, 40 ],
|
|
368
|
+
[ 34, 35, 40, 39, 15, 14, 32, 22, 34, 36, 40, 38, 1, 6, 5, 2, 28, 10, 12,
|
|
369
|
+
31, 4, 8, 31, 31, 31, 28, 28, 17, 14, 32, 20, 7, 3, 1, 2, 10, 28, 12,
|
|
370
|
+
4, 3 ],
|
|
371
|
+
[ 35, 34, 39, 40, 13, 16, 21, 33, 36, 34, 38, 40, 5, 2, 1, 6, 9, 29, 30,
|
|
372
|
+
11, 7, 3, 30, 30, 30, 29, 29, 13, 18, 19, 33, 4, 8, 2, 1, 9, 29, 11, 3,
|
|
373
|
+
4 ], [ 40, 39, 34, 35, 21, 33, 13, 16, 40, 38, 34, 36, 4, 8, 7, 3, 30,
|
|
374
|
+
11, 9, 29, 1, 6, 29, 29, 29, 30, 30, 19, 33, 13, 18, 5, 2, 4, 3, 11,
|
|
375
|
+
30, 9, 1, 2 ],
|
|
376
|
+
[ 39, 40, 35, 34, 32, 22, 15, 14, 38, 40, 36, 34, 7, 3, 4, 8, 12, 31, 28,
|
|
377
|
+
10, 5, 2, 28, 28, 28, 31, 31, 32, 20, 17, 14, 1, 6, 3, 4, 12, 31, 10,
|
|
378
|
+
2, 1 ], [ 3, 4, 1, 2, 4, 3, 1, 2, 3, 12, 1, 10, 39, 22, 32, 40, 32, 40,
|
|
379
|
+
34, 14, 34, 14, 14, 14, 14, 32, 32, 12, 3, 1, 10, 15, 35, 39, 40, 40,
|
|
380
|
+
32, 34, 34, 35 ],
|
|
381
|
+
[ 3, 4, 1, 2, 4, 3, 1, 2, 11, 4, 9, 2, 21, 39, 40, 33, 40, 33, 13, 34, 13,
|
|
382
|
+
34, 13, 13, 13, 33, 33, 4, 11, 9, 2, 35, 16, 39, 40, 40, 33, 34, 34, 35
|
|
383
|
+
], [ 2, 1, 4, 3, 1, 2, 4, 3, 2, 1, 4, 3, 35, 35, 34, 34, 34, 34, 40, 40,
|
|
384
|
+
40, 40, 40, 40, 40, 34, 34, 1, 2, 4, 3, 39, 39, 35, 34, 34, 34, 40, 40,
|
|
385
|
+
39 ], [ 1, 2, 3, 4, 2, 1, 3, 4, 1, 2, 3, 4, 34, 34, 35, 35, 35, 35, 39,
|
|
386
|
+
39, 39, 39, 39, 39, 39, 35, 35, 2, 1, 3, 4, 40, 40, 34, 35, 35, 35, 39,
|
|
387
|
+
39, 40 ],
|
|
388
|
+
[ 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 34, 34, 35, 35, 36, 36, 38, 38, 39,
|
|
389
|
+
39, 38, 38, 38, 36, 36, 5, 6, 7, 8, 40, 40, 34, 35, 36, 36, 38, 39, 40 ]
|
|
390
|
+
, [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
|
391
|
+
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
|
|
392
|
+
38, 39, 40 ],
|
|
393
|
+
[ 4, 3, 2, 1, 7, 8, 5, 6, 4, 3, 2, 1, 40, 40, 39, 39, 38, 38, 36, 36, 35,
|
|
394
|
+
35, 36, 36, 36, 38, 38, 7, 8, 5, 6, 34, 34, 40, 39, 38, 38, 36, 35, 34 ]
|
|
395
|
+
, [ 4, 3, 2, 1, 3, 4, 2, 1, 4, 3, 2, 1, 40, 40, 39, 39, 39, 39, 35, 35,
|
|
396
|
+
35, 35, 35, 35, 35, 39, 39, 3, 4, 2, 1, 34, 34, 40, 39, 39, 39, 35, 35,
|
|
397
|
+
34 ], [ 3, 4, 1, 2, 4, 3, 1, 2, 3, 4, 1, 2, 39, 39, 40, 40, 40, 40, 34,
|
|
398
|
+
34, 34, 34, 34, 34, 34, 40, 40, 4, 3, 1, 2, 35, 35, 39, 40, 40, 40, 34,
|
|
399
|
+
34, 35 ] ]
|
|
400
|
+
|
|
401
|
+
# IsomorphismSemigroups
|
|
402
|
+
gap> S := FullTransformationMonoid(3);
|
|
403
|
+
<full transformation monoid of degree 3>
|
|
404
|
+
gap> T := AsMonoid(IsPBRMonoid, S);
|
|
405
|
+
<pbr monoid of size 27, degree 3 with 3 generators>
|
|
406
|
+
gap> map := IsomorphismSemigroups(S, T);
|
|
407
|
+
<full transformation monoid of degree 3> -> <pbr monoid of size 27, degree 3
|
|
408
|
+
with 3 generators>
|
|
409
|
+
gap> BruteForceIsoCheck(map);
|
|
410
|
+
true
|
|
411
|
+
gap> BruteForceInverseCheck(map);
|
|
412
|
+
true
|
|
413
|
+
|
|
414
|
+
# AutomorphismGroup
|
|
415
|
+
gap> S := JonesMonoid(5);
|
|
416
|
+
<regular bipartition *-monoid of degree 5 with 4 generators>
|
|
417
|
+
gap> G := AutomorphismGroup(S);;
|
|
418
|
+
gap> StructureDescription(G);
|
|
419
|
+
"C2"
|
|
420
|
+
gap> S := FullTransformationMonoid(3);
|
|
421
|
+
<full transformation monoid of degree 3>
|
|
422
|
+
gap> G := AutomorphismGroup(S);
|
|
423
|
+
<group with 2 generators>
|
|
424
|
+
gap> StructureDescription(G);
|
|
425
|
+
"S3"
|
|
426
|
+
gap> S := Semigroup(Matrix(IsMaxPlusMatrix,
|
|
427
|
+
> [[1, -infinity, 2], [-2, 4, -infinity], [1, 0, 3]]));
|
|
428
|
+
<commutative semigroup of 3x3 max-plus matrices with 1 generator>
|
|
429
|
+
gap> AutomorphismGroup(S);
|
|
430
|
+
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
|
|
431
|
+
Error, no 2nd choice method found for `AutomorphismGroup' on 1 arguments
|
|
432
|
+
|
|
433
|
+
#
|
|
434
|
+
gap> SEMIGROUPS.StopTest();
|
|
435
|
+
gap> STOP_TEST("Semigroups package: standard/attributes/isomorph.tst");
|