passagemath-gap-pkg-semigroups 10.6.30__cp311-cp311-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1158 -0
- gap/pkg/semigroups/config.status +1131 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.cpython-311-darwin.so +0 -0
|
@@ -0,0 +1,2803 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W extreme/bipart.tst
|
|
4
|
+
#Y Copyright (C) 2014-15 Attila Egri-Nagy
|
|
5
|
+
## James D. Mitchell
|
|
6
|
+
##
|
|
7
|
+
## Licensing information can be found in the README file of this package.
|
|
8
|
+
##
|
|
9
|
+
#############################################################################
|
|
10
|
+
##
|
|
11
|
+
|
|
12
|
+
#@local D, DD, G, H, HH, L, LL, N, R, S, T, acting, an, bp, classes, classes2
|
|
13
|
+
#@local e, elts, f, g, gens, inv, iso, l, r, s, triples, x
|
|
14
|
+
gap> START_TEST("Semigroups package: extreme/bipart.tst");
|
|
15
|
+
gap> LoadPackage("semigroups", false);;
|
|
16
|
+
|
|
17
|
+
#
|
|
18
|
+
gap> SEMIGROUPS.StartTest();
|
|
19
|
+
|
|
20
|
+
# BipartitionTest1: IsomorphismTransformationMonoid, IsomorphismTransformationSemigroup
|
|
21
|
+
gap> S := DualSymmetricInverseMonoid(4);
|
|
22
|
+
<inverse block bijection monoid of degree 4 with 3 generators>
|
|
23
|
+
gap> IsomorphismTransformationMonoid(S);
|
|
24
|
+
<inverse block bijection monoid of size 339, degree 4 with 3 generators> ->
|
|
25
|
+
<transformation monoid of size 339, degree 339 with 3 generators>
|
|
26
|
+
gap> S := Semigroup(Bipartition([[1, 2, 3, 4, -2, -3], [-1], [-4]]),
|
|
27
|
+
> Bipartition([[1, 2, -1, -3], [3, 4, -2, -4]]),
|
|
28
|
+
> Bipartition([[1, 3, -1], [2, 4, -2, -3], [-4]]),
|
|
29
|
+
> Bipartition([[1, -4], [2], [3, -2], [4, -1], [-3]]));;
|
|
30
|
+
gap> IsomorphismTransformationSemigroup(S);
|
|
31
|
+
<bipartition semigroup of size 284, degree 4 with 4 generators> ->
|
|
32
|
+
<transformation semigroup of size 284, degree 285 with 4 generators>
|
|
33
|
+
gap> S := Monoid(Bipartition([[1, 2, -2], [3], [4, -3, -4], [-1]]),
|
|
34
|
+
> Bipartition([[1, 3, -3, -4], [2, 4, -1, -2]]),
|
|
35
|
+
> Bipartition([[1, -1, -2], [2, 3, -3, -4], [4]]),
|
|
36
|
+
> Bipartition([[1, 4, -4], [2, -1], [3, -2, -3]]));;
|
|
37
|
+
gap> IsomorphismTransformationMonoid(S);
|
|
38
|
+
<bipartition monoid of size 41, degree 4 with 4 generators> ->
|
|
39
|
+
<transformation monoid of size 41, degree 41 with 4 generators>
|
|
40
|
+
|
|
41
|
+
# the number of iterations, change here to get faster test
|
|
42
|
+
gap> N := 333;;
|
|
43
|
+
|
|
44
|
+
# BipartitionTest2: BASICS
|
|
45
|
+
gap> classes := [[1, 2, 3, -2], [4, -5], [5, -7], [6, -3, -4], [7], [-1],
|
|
46
|
+
> [-6]];;
|
|
47
|
+
gap> f := Bipartition(classes);
|
|
48
|
+
<bipartition: [ 1, 2, 3, -2 ], [ 4, -5 ], [ 5, -7 ], [ 6, -3, -4 ], [ 7 ],
|
|
49
|
+
[ -1 ], [ -6 ]>
|
|
50
|
+
gap> LeftProjection(f);
|
|
51
|
+
<bipartition: [ 1, 2, 3, -1, -2, -3 ], [ 4, -4 ], [ 5, -5 ], [ 6, -6 ],
|
|
52
|
+
[ 7 ], [ -7 ]>
|
|
53
|
+
|
|
54
|
+
# BipartitionTest3: different order of classes
|
|
55
|
+
gap> classes2 := [[-6], [1, 2, 3, -2], [4, -5], [5, -7], [6, -3, -4], [-1],
|
|
56
|
+
> [7]];;
|
|
57
|
+
gap> f = Bipartition(classes2);
|
|
58
|
+
true
|
|
59
|
+
gap> f := Bipartition([[1, 2, -3, -5, -6], [3, -2, -4], [4, 7],
|
|
60
|
+
> [5, -7, -8, -9],
|
|
61
|
+
> [6], [8, 9, -1]]);
|
|
62
|
+
<bipartition: [ 1, 2, -3, -5, -6 ], [ 3, -2, -4 ], [ 4, 7 ], [ 5, -7, -8, -9 ]
|
|
63
|
+
, [ 6 ], [ 8, 9, -1 ]>
|
|
64
|
+
gap> LeftProjection(f);
|
|
65
|
+
<bipartition: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, 7 ], [ 5, -5 ], [ 6 ],
|
|
66
|
+
[ 8, 9, -8, -9 ], [ -4, -7 ], [ -6 ]>
|
|
67
|
+
|
|
68
|
+
# BipartitionTest4: ASSOCIATIVITY
|
|
69
|
+
gap> l := List([1 .. 3 * N], i -> RandomBipartition(17));;
|
|
70
|
+
gap> triples := List([1 .. N], i -> [l[i], l[i + 1], l[i + 2]]);;
|
|
71
|
+
gap> ForAll(triples, x -> ((x[1] * x[2]) * x[3]) = (x[1] * (x[2] * x[3])));
|
|
72
|
+
true
|
|
73
|
+
|
|
74
|
+
# BipartitionTest5: EMBEDDING into T_n
|
|
75
|
+
gap> l := List([1, 2, 3, 4, 5, 15, 35, 1999, 64999, 65000], RandomTransformation);;
|
|
76
|
+
gap> ForAll(l, t -> t = AsTransformation(AsBipartition(t)));
|
|
77
|
+
true
|
|
78
|
+
|
|
79
|
+
# BipartitionTest6: checking IsTransBipartitition
|
|
80
|
+
gap> l := List([1, 2, 3, 4, 5, 15, 35, 1999, 30101, 54321], RandomTransformation);;
|
|
81
|
+
gap> ForAll(l, t -> IsTransBipartition(AsBipartition(t)));
|
|
82
|
+
true
|
|
83
|
+
|
|
84
|
+
# BipartitionTest7: check big size, identity, multiplication
|
|
85
|
+
gap> bp := RandomBipartition(70000);;bp * One(bp) = bp;One(bp) * bp = bp;
|
|
86
|
+
true
|
|
87
|
+
true
|
|
88
|
+
|
|
89
|
+
# BipartitionTest8: check BlocksIdempotentTester, first a few little examples
|
|
90
|
+
gap> l := BLOCKS_NC([[-1], [-2, -3, -4]]);;
|
|
91
|
+
gap> r := BLOCKS_NC([[-1], [-2], [-3, -4]]);;
|
|
92
|
+
gap> BLOCKS_E_TESTER(l, r);
|
|
93
|
+
true
|
|
94
|
+
gap> e := BLOCKS_E_CREATOR(l, r);
|
|
95
|
+
<bipartition: [ 1 ], [ 2 ], [ 3, 4 ], [ -1 ], [ -2, -3, -4 ]>
|
|
96
|
+
gap> IsIdempotent(e);
|
|
97
|
+
true
|
|
98
|
+
|
|
99
|
+
# BipartitionTest9: JDM is this the right behaviour?
|
|
100
|
+
gap> RightBlocks(e) = l;
|
|
101
|
+
true
|
|
102
|
+
gap> LeftBlocks(e) = r;
|
|
103
|
+
true
|
|
104
|
+
|
|
105
|
+
# BipartitionTest10: AsBipartition for a bipartition
|
|
106
|
+
gap> f := Bipartition([[1, 2, 3], [4, -1, -3], [5, 6, -4, -5],
|
|
107
|
+
> [-2], [-6]]);;
|
|
108
|
+
gap> AsBipartition(f, 8);
|
|
109
|
+
<bipartition: [ 1, 2, 3 ], [ 4, -1, -3 ], [ 5, 6, -4, -5 ], [ 7 ], [ 8 ],
|
|
110
|
+
[ -2 ], [ -6 ], [ -7 ], [ -8 ]>
|
|
111
|
+
gap> AsBipartition(f, 6);
|
|
112
|
+
<bipartition: [ 1, 2, 3 ], [ 4, -1, -3 ], [ 5, 6, -4, -5 ], [ -2 ], [ -6 ]>
|
|
113
|
+
gap> AsBipartition(f, 4);
|
|
114
|
+
<bipartition: [ 1, 2, 3 ], [ 4, -1, -3 ], [ -2 ], [ -4 ]>
|
|
115
|
+
|
|
116
|
+
# BipartitionTest11: AsPartialPerm for bipartitions
|
|
117
|
+
gap> S := DualSymmetricInverseMonoid(4);;
|
|
118
|
+
gap> Number(S, IsPartialPermBipartition);
|
|
119
|
+
24
|
|
120
|
+
gap> S := PartitionMonoid(4);;
|
|
121
|
+
gap> Number(S, IsPartialPermBipartition);
|
|
122
|
+
209
|
|
123
|
+
gap> Size(SymmetricInverseMonoid(4));
|
|
124
|
+
209
|
|
125
|
+
gap> S := SymmetricInverseMonoid(4);;
|
|
126
|
+
gap> ForAll(S, x -> AsPartialPerm(AsBipartition(x)) = x);
|
|
127
|
+
true
|
|
128
|
+
gap> elts := Filtered(PartitionMonoid(4), IsPartialPermBipartition);;
|
|
129
|
+
gap> ForAll(elts, x -> AsBipartition(AsPartialPerm(x), 4) = x);
|
|
130
|
+
true
|
|
131
|
+
|
|
132
|
+
# BipartitionTest12: AsPermutation for bipartitions
|
|
133
|
+
gap> G := SymmetricGroup(5);;
|
|
134
|
+
gap> ForAll(G, x -> AsPermutation(AsBipartition(x)) = x);
|
|
135
|
+
true
|
|
136
|
+
gap> G := GroupOfUnits(PartitionMonoid(5));
|
|
137
|
+
<block bijection group of degree 5 with 2 generators>
|
|
138
|
+
gap> ForAll(G, x -> AsBipartition(AsPermutation(x), 5) = x);
|
|
139
|
+
true
|
|
140
|
+
|
|
141
|
+
# Test IsomorphismBipartitionSemigroup for a CanUseFroidurePin semigroup
|
|
142
|
+
gap> S := Semigroup(
|
|
143
|
+
> Bipartition([[1, 2, 3, -3], [4, -4, -5], [5, -1], [-2]]),
|
|
144
|
+
> Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]),
|
|
145
|
+
> Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2], [-4]]),
|
|
146
|
+
> Bipartition([[1], [2], [3, 5, -1, -2], [4, -3], [-4, -5]]),
|
|
147
|
+
> Bipartition([[1], [2], [3], [4, -1, -4], [5], [-2, -3],
|
|
148
|
+
> [-5]]));;
|
|
149
|
+
gap> D := DClass(S, Bipartition([[1], [2], [3], [4, -1, -4],
|
|
150
|
+
> [5], [-2, -3], [-5]]));;
|
|
151
|
+
gap> IsRegularDClass(D);
|
|
152
|
+
true
|
|
153
|
+
gap> R := PrincipalFactor(D);
|
|
154
|
+
<Rees 0-matrix semigroup 12x15 over Group(())>
|
|
155
|
+
gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, R);
|
|
156
|
+
<Rees 0-matrix semigroup 12x15 over Group(())> ->
|
|
157
|
+
<bipartition semigroup of size 181, degree 182 with 26 generators>
|
|
158
|
+
gap> g := InverseGeneralMapping(f);;
|
|
159
|
+
gap> ForAll(R, x -> (x ^ f) ^ g = x);
|
|
160
|
+
true
|
|
161
|
+
gap> x := RMSElement(R, 12, (), 8);;
|
|
162
|
+
gap> ForAll(R, y -> (x ^ f) * (y ^ f) = (x * y) ^ f);
|
|
163
|
+
true
|
|
164
|
+
|
|
165
|
+
# BipartitionTest14: IsomorphismBipartitionSemigroup
|
|
166
|
+
# for a transformation semigroup
|
|
167
|
+
gap> gens := [Transformation([3, 4, 1, 2, 1]),
|
|
168
|
+
> Transformation([4, 2, 1, 5, 5]),
|
|
169
|
+
> Transformation([4, 2, 2, 2, 4])];;
|
|
170
|
+
gap> s := Semigroup(gens);;
|
|
171
|
+
gap> S := Range(IsomorphismSemigroup(IsBipartitionSemigroup, s));
|
|
172
|
+
<bipartition semigroup of degree 5 with 3 generators>
|
|
173
|
+
gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, s);
|
|
174
|
+
<transformation semigroup of degree 5 with 3 generators> ->
|
|
175
|
+
<bipartition semigroup of degree 5 with 3 generators>
|
|
176
|
+
gap> g := InverseGeneralMapping(f);;
|
|
177
|
+
gap> ForAll(s, x -> (x ^ f) ^ g = x);
|
|
178
|
+
true
|
|
179
|
+
gap> ForAll(S, x -> (x ^ g) ^ f = x);
|
|
180
|
+
true
|
|
181
|
+
gap> Size(s);
|
|
182
|
+
731
|
|
183
|
+
gap> Size(S);
|
|
184
|
+
731
|
|
185
|
+
gap> x := Transformation([3, 1, 3, 3, 3]);;
|
|
186
|
+
gap> ForAll(s, y -> (x ^ f) * (y ^ f) = (x * y) ^ f);
|
|
187
|
+
true
|
|
188
|
+
|
|
189
|
+
# BipartitionTest15: IsomorphismTransformationSemigroup for a bipartition
|
|
190
|
+
# semigroup consisting of IsTransBipartition
|
|
191
|
+
gap> S := Semigroup(Transformation([1, 3, 4, 1, 3]),
|
|
192
|
+
> Transformation([2, 4, 1, 5, 5]),
|
|
193
|
+
> Transformation([2, 5, 3, 5, 3]),
|
|
194
|
+
> Transformation([4, 1, 2, 2, 1]),
|
|
195
|
+
> Transformation([5, 5, 1, 1, 3]));;
|
|
196
|
+
gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
|
|
197
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
198
|
+
gap> f := IsomorphismTransformationSemigroup(T);
|
|
199
|
+
<bipartition semigroup of degree 5 with 5 generators> ->
|
|
200
|
+
<transformation semigroup of degree 5 with 5 generators>
|
|
201
|
+
gap> g := InverseGeneralMapping(f);;
|
|
202
|
+
gap> ForAll(T, x -> (x ^ f) ^ g = x);
|
|
203
|
+
true
|
|
204
|
+
gap> ForAll(S, x -> (x ^ g) ^ f = x);
|
|
205
|
+
true
|
|
206
|
+
gap> Size(T);
|
|
207
|
+
602
|
|
208
|
+
gap> Size(S);
|
|
209
|
+
602
|
|
210
|
+
gap> Size(Range(f));
|
|
211
|
+
602
|
|
212
|
+
|
|
213
|
+
# BipartitionTest16: IsomorphismBipartitionSemigroup
|
|
214
|
+
# for a partial perm semigroup
|
|
215
|
+
gap> S := Semigroup(
|
|
216
|
+
> [PartialPerm([1, 2, 3], [1, 3, 4]),
|
|
217
|
+
> PartialPerm([1, 2, 3], [2, 5, 3]),
|
|
218
|
+
> PartialPerm([1, 2, 3], [4, 1, 2]),
|
|
219
|
+
> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
|
|
220
|
+
> PartialPerm([1, 3, 5], [5, 1, 3])]);;
|
|
221
|
+
gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
|
|
222
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
223
|
+
gap> Generators(S);
|
|
224
|
+
[ [2,3,4](1), [1,2,5](3), [3,2,1,4], [3,1,2,4,5], (1,5,3) ]
|
|
225
|
+
gap> Generators(T);
|
|
226
|
+
[ <bipartition: [ 1, -1 ], [ 2, -3 ], [ 3, -4 ], [ 4 ], [ 5 ], [ -2 ], [ -5 ]>
|
|
227
|
+
, <bipartition: [ 1, -2 ], [ 2, -5 ], [ 3, -3 ], [ 4 ], [ 5 ], [ -1 ],
|
|
228
|
+
[ -4 ]>, <bipartition: [ 1, -4 ], [ 2, -1 ], [ 3, -2 ], [ 4 ], [ 5 ],
|
|
229
|
+
[ -3 ], [ -5 ]>,
|
|
230
|
+
<bipartition: [ 1, -2 ], [ 2, -4 ], [ 3, -1 ], [ 4, -5 ], [ 5 ], [ -3 ]>,
|
|
231
|
+
<bipartition: [ 1, -5 ], [ 2 ], [ 3, -1 ], [ 4 ], [ 5, -3 ], [ -2 ], [ -4 ]>
|
|
232
|
+
]
|
|
233
|
+
gap> Size(S);
|
|
234
|
+
156
|
|
235
|
+
gap> Size(T);
|
|
236
|
+
156
|
|
237
|
+
gap> IsInverseSemigroup(S);
|
|
238
|
+
false
|
|
239
|
+
gap> IsInverseSemigroup(T);
|
|
240
|
+
false
|
|
241
|
+
gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
|
|
242
|
+
gap> g := InverseGeneralMapping(f);;
|
|
243
|
+
gap> ForAll(S, x -> (x ^ f) ^ g = x);
|
|
244
|
+
true
|
|
245
|
+
gap> ForAll(T, x -> (x ^ g) ^ f = x);
|
|
246
|
+
true
|
|
247
|
+
gap> Size(S);
|
|
248
|
+
156
|
|
249
|
+
gap> ForAll(S, x -> ForAll(S, y -> (x * y) ^ f = (x ^ f) * (y ^ f)));
|
|
250
|
+
true
|
|
251
|
+
|
|
252
|
+
# BipartitionTest17: IsomorphismPartialPermSemigroup
|
|
253
|
+
# for a semigroup of bipartitions consisting of IsPartialPermBipartition
|
|
254
|
+
gap> f := IsomorphismPartialPermSemigroup(T);;
|
|
255
|
+
gap> g := InverseGeneralMapping(f);;
|
|
256
|
+
gap> ForAll(T, x -> ForAll(T, y -> (x * y) ^ f = (x ^ f) * (y ^ f)));
|
|
257
|
+
true
|
|
258
|
+
gap> Size(S); Size(T);
|
|
259
|
+
156
|
|
260
|
+
156
|
|
261
|
+
gap> ForAll(T, x -> (x ^ f) ^ g = x);
|
|
262
|
+
true
|
|
263
|
+
gap> ForAll(S, x -> (x ^ g) ^ f = x);
|
|
264
|
+
true
|
|
265
|
+
|
|
266
|
+
# BipartitionTest18
|
|
267
|
+
# Testing the cases to which the new methods for
|
|
268
|
+
# IsomorphismPartialPermSemigroup and IsomorphismTransformationSemigroup
|
|
269
|
+
# don't apply
|
|
270
|
+
gap> S := Semigroup(
|
|
271
|
+
> Bipartition([[1, 2, 3, 4, -1, -2, -5], [5], [-3, -4]]),
|
|
272
|
+
> Bipartition([[1, 2, 3], [4, -2, -4], [5, -1, -5], [-3]]),
|
|
273
|
+
> Bipartition([[1, 3, 5], [2, 4, -1, -2, -5], [-3], [-4]]),
|
|
274
|
+
> Bipartition([[1, -5], [2, 3, 4, 5], [-1], [-2], [-3, -4]]),
|
|
275
|
+
> Bipartition([[1, -4], [2], [3, -2], [4, 5, -1], [-3, -5]]));;
|
|
276
|
+
gap> IsomorphismPartialPermSemigroup(S);
|
|
277
|
+
Error, the argument must be an inverse semigroup
|
|
278
|
+
gap> Range(IsomorphismTransformationSemigroup(S));
|
|
279
|
+
<transformation semigroup of size 207, degree 208 with 5 generators>
|
|
280
|
+
|
|
281
|
+
# BipartitionTest19: IsomorphismBipartitionSemigroup for a perm group
|
|
282
|
+
gap> G := DihedralGroup(IsPermGroup, 10);;
|
|
283
|
+
gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, G);;
|
|
284
|
+
gap> g := InverseGeneralMapping(f);;
|
|
285
|
+
gap> ForAll(G, x -> (x ^ f) ^ g = x);
|
|
286
|
+
true
|
|
287
|
+
gap> ForAll(G, x -> ForAll(G, y -> (x * y) ^ f = x ^ f * y ^ f));
|
|
288
|
+
true
|
|
289
|
+
gap> ForAll(Range(f), x -> (x ^ g) ^ f = x);
|
|
290
|
+
true
|
|
291
|
+
|
|
292
|
+
# BipartitionTest20: IsomorphismPermGroup
|
|
293
|
+
gap> G := GroupOfUnits(PartitionMonoid(5));
|
|
294
|
+
<block bijection group of degree 5 with 2 generators>
|
|
295
|
+
gap> IsomorphismPermGroup(G);;
|
|
296
|
+
gap> f := last;; g := InverseGeneralMapping(f);;
|
|
297
|
+
gap> ForAll(G, x -> ForAll(G, y -> (x * y) ^ f = x ^ f * y ^ f));
|
|
298
|
+
true
|
|
299
|
+
gap> ForAll(G, x -> (x ^ f) ^ g = x);
|
|
300
|
+
true
|
|
301
|
+
gap> ForAll(Range(f), x -> (x ^ g) ^ f = x);
|
|
302
|
+
true
|
|
303
|
+
gap> S := PartitionMonoid(5);;
|
|
304
|
+
gap> D := DClass(S,
|
|
305
|
+
> Bipartition([[1], [2, -3], [3, -4], [4, -5], [5], [-1],
|
|
306
|
+
> [-2]]));;
|
|
307
|
+
gap> G := GroupHClass(D);;
|
|
308
|
+
gap> G = GreensHClassOfElement(S, Bipartition([[1], [2], [3, -3], [4, -4],
|
|
309
|
+
> [5, -5], [-1], [-2]]))
|
|
310
|
+
> or G = GreensHClassOfElement(S, Bipartition([[1], [2, -1, -2], [3, -3],
|
|
311
|
+
> [4, -4, -5], [5]]));
|
|
312
|
+
true
|
|
313
|
+
gap> IsomorphismPermGroup(G);;
|
|
314
|
+
|
|
315
|
+
# BipartitionTest21: IsomorphismBipartitionSemigroup
|
|
316
|
+
# for an inverse semigroup of partial perms
|
|
317
|
+
gap> S := InverseSemigroup(
|
|
318
|
+
> PartialPerm([1, 3, 5, 7, 9], [7, 6, 5, 10, 1]),
|
|
319
|
+
> PartialPerm([1, 2, 3, 4, 6, 10], [9, 10, 4, 2, 5, 6]));;
|
|
320
|
+
gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
|
|
321
|
+
<inverse bipartition semigroup of degree 10 with 2 generators>
|
|
322
|
+
gap> Size(S);
|
|
323
|
+
281
|
|
324
|
+
gap> Size(T);
|
|
325
|
+
281
|
|
326
|
+
gap> IsomorphismPartialPermSemigroup(T);
|
|
327
|
+
<inverse bipartition semigroup of size 281, degree 10 with 2 generators> ->
|
|
328
|
+
<inverse partial perm semigroup of size 281, rank 9 with 2 generators>
|
|
329
|
+
gap> Size(Range(last));
|
|
330
|
+
281
|
|
331
|
+
gap> f := last2;; g := InverseGeneralMapping(f);;
|
|
332
|
+
gap> ForAll(T, x -> (x ^ f) ^ g = x);
|
|
333
|
+
true
|
|
334
|
+
|
|
335
|
+
# BipartitionTest22: AsBlockBijection and
|
|
336
|
+
# IsomorphismSemigroup(IsBlockBijectionSemigroup for an inverse semigroup of
|
|
337
|
+
# partial perms
|
|
338
|
+
gap> S := InverseSemigroup(
|
|
339
|
+
> PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
|
|
340
|
+
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6]));;
|
|
341
|
+
gap> AsBlockBijection(S.1);
|
|
342
|
+
<block bijection: [ 1, -2 ], [ 2, -6 ], [ 3, -7 ],
|
|
343
|
+
[ 4, 5, 7, 9, 11, -3, -4, -8, -10, -11 ], [ 6, -9 ], [ 8, -1 ], [ 10, -5 ]>
|
|
344
|
+
gap> S.1;
|
|
345
|
+
[3,7][8,1,2,6,9][10,5]
|
|
346
|
+
gap> T := Range(IsomorphismSemigroup(IsBlockBijectionSemigroup, S));
|
|
347
|
+
<inverse block bijection semigroup of degree 11 with 2 generators>
|
|
348
|
+
gap> f := IsomorphismSemigroup(IsBlockBijectionSemigroup, S);;
|
|
349
|
+
gap> g := InverseGeneralMapping(f);;
|
|
350
|
+
gap> ForAll(S, x -> (x ^ f) ^ g = x);
|
|
351
|
+
true
|
|
352
|
+
gap> ForAll(T, x -> (x ^ g) ^ f = x);
|
|
353
|
+
true
|
|
354
|
+
gap> Size(S);
|
|
355
|
+
2657
|
|
356
|
+
gap> Size(T);
|
|
357
|
+
2657
|
|
358
|
+
gap> x := PartialPerm([1, 2, 3, 8], [8, 4, 10, 3]);;
|
|
359
|
+
gap> ForAll(S, y -> x ^ f * y ^ f = (x * y) ^ f);
|
|
360
|
+
true
|
|
361
|
+
|
|
362
|
+
# BipartitionTest23: Same as last for non-inverse partial perm semigroup
|
|
363
|
+
gap> S := Semigroup(
|
|
364
|
+
> PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
|
|
365
|
+
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6]));;
|
|
366
|
+
gap> Size(S);
|
|
367
|
+
90
|
|
368
|
+
gap> IsInverseSemigroup(S);
|
|
369
|
+
false
|
|
370
|
+
gap> T := Range(IsomorphismSemigroup(IsBlockBijectionSemigroup, S));
|
|
371
|
+
<block bijection semigroup of size 90, degree 11 with 2 generators>
|
|
372
|
+
gap> Size(T);
|
|
373
|
+
90
|
|
374
|
+
gap> IsInverseSemigroup(T);
|
|
375
|
+
false
|
|
376
|
+
gap> f := IsomorphismSemigroup(IsBlockBijectionSemigroup, S);;
|
|
377
|
+
gap> g := InverseGeneralMapping(f);;
|
|
378
|
+
gap> ForAll(S, x -> (x ^ f) ^ g = x);
|
|
379
|
+
true
|
|
380
|
+
gap> ForAll(T, x -> (x ^ g) ^ f = x);
|
|
381
|
+
true
|
|
382
|
+
gap> x := PartialPerm([1, 3], [3, 1]);;
|
|
383
|
+
gap> ForAll(S, y -> x ^ f * y ^ f = (x * y) ^ f);
|
|
384
|
+
true
|
|
385
|
+
|
|
386
|
+
# BipartitionTest24: NaturalLeqBlockBijection
|
|
387
|
+
gap> S := DualSymmetricInverseMonoid(4);;
|
|
388
|
+
gap> f := Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]]);;
|
|
389
|
+
gap> g := Bipartition([[1, 4, -3], [2, -1, -2], [3, -4]]);;
|
|
390
|
+
gap> NaturalLeqBlockBijection(f, g);
|
|
391
|
+
false
|
|
392
|
+
gap> NaturalLeqBlockBijection(f, f);
|
|
393
|
+
true
|
|
394
|
+
gap> NaturalLeqBlockBijection(f, g);
|
|
395
|
+
false
|
|
396
|
+
gap> NaturalLeqBlockBijection(g, f);
|
|
397
|
+
false
|
|
398
|
+
gap> NaturalLeqBlockBijection(g, g);
|
|
399
|
+
true
|
|
400
|
+
gap> f := Bipartition([[1, 4, 2, -1, -2, -3], [3, -4]]);
|
|
401
|
+
<block bijection: [ 1, 2, 4, -1, -2, -3 ], [ 3, -4 ]>
|
|
402
|
+
gap> NaturalLeqBlockBijection(f, g);
|
|
403
|
+
true
|
|
404
|
+
gap> NaturalLeqBlockBijection(g, f);
|
|
405
|
+
false
|
|
406
|
+
gap> First(Idempotents(S), e -> e * g = f);
|
|
407
|
+
<block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, -4 ]>
|
|
408
|
+
gap> Set(Filtered(S, f -> NaturalLeqBlockBijection(f, g)));
|
|
409
|
+
[ <block bijection: [ 1, 2, 3, 4, -1, -2, -3, -4 ]>,
|
|
410
|
+
<block bijection: [ 1, 2, 4, -1, -2, -3 ], [ 3, -4 ]>,
|
|
411
|
+
<block bijection: [ 1, 3, 4, -3, -4 ], [ 2, -1, -2 ]>,
|
|
412
|
+
<block bijection: [ 1, 4, -3 ], [ 2, 3, -1, -2, -4 ]>,
|
|
413
|
+
<block bijection: [ 1, 4, -3 ], [ 2, -1, -2 ], [ 3, -4 ]> ]
|
|
414
|
+
gap> Set(Filtered(S, f -> ForAny(Idempotents(S), e -> e * f = g)));
|
|
415
|
+
[ <block bijection: [ 1, 4, -3 ], [ 2, -1, -2 ], [ 3, -4 ]> ]
|
|
416
|
+
gap> Set(Filtered(S, f -> ForAny(Idempotents(S), e -> e * g = f)));
|
|
417
|
+
[ <block bijection: [ 1, 2, 3, 4, -1, -2, -3, -4 ]>,
|
|
418
|
+
<block bijection: [ 1, 2, 4, -1, -2, -3 ], [ 3, -4 ]>,
|
|
419
|
+
<block bijection: [ 1, 3, 4, -3, -4 ], [ 2, -1, -2 ]>,
|
|
420
|
+
<block bijection: [ 1, 4, -3 ], [ 2, 3, -1, -2, -4 ]>,
|
|
421
|
+
<block bijection: [ 1, 4, -3 ], [ 2, -1, -2 ], [ 3, -4 ]> ]
|
|
422
|
+
|
|
423
|
+
# BipartitionTest25: Factorization/EvaluateWord
|
|
424
|
+
gap> S := DualSymmetricInverseMonoid(6);;
|
|
425
|
+
gap> f := S.1 * S.2 * S.3 * S.2 * S.1;
|
|
426
|
+
<block bijection: [ 1, 6, -4 ], [ 2, -2, -3 ], [ 3, -5 ], [ 4, -6 ],
|
|
427
|
+
[ 5, -1 ]>
|
|
428
|
+
gap> EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f));
|
|
429
|
+
<block bijection: [ 1, 6, -4 ], [ 2, -2, -3 ], [ 3, -5 ], [ 4, -6 ],
|
|
430
|
+
[ 5, -1 ]>
|
|
431
|
+
gap> S := PartitionMonoid(5);;
|
|
432
|
+
gap> f := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);;
|
|
433
|
+
gap> EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f));
|
|
434
|
+
<bipartition: [ 1, 4, -2, -3 ], [ 2, 3, 5, -5 ], [ -1, -4 ]>
|
|
435
|
+
gap> S := Range(IsomorphismSemigroup(IsBipartitionSemigroup,
|
|
436
|
+
> SymmetricInverseMonoid(5)));
|
|
437
|
+
<inverse bipartition monoid of degree 5 with 3 generators>
|
|
438
|
+
gap> f := S.1 * S.2 * S.3 * S.2 * S.1;
|
|
439
|
+
<bipartition: [ 1 ], [ 2, -2 ], [ 3, -4 ], [ 4, -5 ], [ 5, -3 ], [ -1 ]>
|
|
440
|
+
gap> EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f));
|
|
441
|
+
<bipartition: [ 1 ], [ 2, -2 ], [ 3, -4 ], [ 4, -5 ], [ 5, -3 ], [ -1 ]>
|
|
442
|
+
gap> S := Semigroup(
|
|
443
|
+
> [Bipartition([[1, 2, 3, 5, -1, -4], [4], [-2, -3], [-5]]),
|
|
444
|
+
> Bipartition([[1, 2, 4], [3, 5, -1, -4], [-2, -5], [-3]]),
|
|
445
|
+
> Bipartition([[1, 2], [3, -1, -3], [4, 5, -4, -5], [-2]]),
|
|
446
|
+
> Bipartition([[1, 3, 4, -4], [2], [5], [-1, -2, -3], [-5]]),
|
|
447
|
+
> Bipartition([[1, -3], [2, -5], [3, -1], [4, 5],
|
|
448
|
+
> [-2, -4]])]);;
|
|
449
|
+
gap> x := S.1 * S.2 * S.3 * S.4 * S.5;
|
|
450
|
+
<bipartition: [ 1, 2, 3, 5 ], [ 4 ], [ -1, -3, -5 ], [ -2, -4 ]>
|
|
451
|
+
gap> EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x));
|
|
452
|
+
<bipartition: [ 1, 2, 3, 5 ], [ 4 ], [ -1, -3, -5 ], [ -2, -4 ]>
|
|
453
|
+
gap> IsInverseSemigroup(S);
|
|
454
|
+
false
|
|
455
|
+
|
|
456
|
+
# BipartitionTest26:
|
|
457
|
+
# Tests of things in greens-generic.xml in the order they appear in that file.
|
|
458
|
+
gap> S := Semigroup(
|
|
459
|
+
> Bipartition([[1, -1], [2, -2], [3, -3], [4, -4], [5, -8],
|
|
460
|
+
> [6, -9], [7, -10], [8, -11], [9, -12], [10, -13], [11, -5],
|
|
461
|
+
> [12, -6], [13, -7]]),
|
|
462
|
+
> Bipartition([[1, -2], [2, -5], [3, -8], [4, -11], [5, -1],
|
|
463
|
+
> [6, -4], [7, -3], [8, -7], [9, -10], [10, -13], [11, -6],
|
|
464
|
+
> [12, -12], [13, -9]]),
|
|
465
|
+
> Bipartition([[1, 7, -10, -12], [2, 3, 4, 6, 10, 13, -13],
|
|
466
|
+
> [5, 12, -1], [8, 9, 11], [-2, -9], [-3, -7, -8], [-4],
|
|
467
|
+
> [-5], [-6, -11]]), rec(acting := true));
|
|
468
|
+
<bipartition semigroup of degree 13 with 3 generators>
|
|
469
|
+
gap> f := Bipartition([[1, 2, 3, 4, 7, 8, 11, 13], [5, 9], [6, 10, 12],
|
|
470
|
+
> [-1, -2, -6], [-3], [-4, -8], [-5, -11], [-7, -10, -13], [-9],
|
|
471
|
+
> [-12]]);;
|
|
472
|
+
gap> H := HClassNC(S, f);
|
|
473
|
+
<Green's H-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
|
|
474
|
+
[ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
|
|
475
|
+
[ -7, -10, -13 ], [ -9 ], [ -12 ]>>
|
|
476
|
+
gap> IsGreensClassNC(H);
|
|
477
|
+
true
|
|
478
|
+
gap> MultiplicativeNeutralElement(H);
|
|
479
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ], [ 6, 10, 12 ],
|
|
480
|
+
[ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ], [ -7, -10, -13 ], [ -9 ],
|
|
481
|
+
[ -12 ]>
|
|
482
|
+
gap> StructureDescription(H);
|
|
483
|
+
"1"
|
|
484
|
+
gap> H := HClassNC(S, f);
|
|
485
|
+
<Green's H-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
|
|
486
|
+
[ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
|
|
487
|
+
[ -7, -10, -13 ], [ -9 ], [ -12 ]>>
|
|
488
|
+
gap> f := Bipartition([[1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13],
|
|
489
|
+
> [3, 4, 13], [-2, -9], [-3, -7, -8], [-4], [-5], [-6, -11]]);;
|
|
490
|
+
gap> HH := HClassNC(S, f);
|
|
491
|
+
<Green's H-class:
|
|
492
|
+
<bipartition: [ 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13 ],
|
|
493
|
+
[ 3, 4, 13 ], [ -2, -9 ], [ -3, -7, -8 ], [ -4 ], [ -5 ], [ -6, -11 ]>>
|
|
494
|
+
gap> HH < H;
|
|
495
|
+
false
|
|
496
|
+
gap> H < HH;
|
|
497
|
+
true
|
|
498
|
+
gap> H = HH;
|
|
499
|
+
false
|
|
500
|
+
gap> D := DClass(H);
|
|
501
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
|
|
502
|
+
[ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
|
|
503
|
+
[ -7, -10, -13 ], [ -9 ], [ -12 ]>>
|
|
504
|
+
gap> DD := DClass(HH);
|
|
505
|
+
<Green's D-class:
|
|
506
|
+
<bipartition: [ 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13 ],
|
|
507
|
+
[ 3, 4, 13 ], [ -2, -9 ], [ -3, -7, -8 ], [ -4 ], [ -5 ], [ -6, -11 ]>>
|
|
508
|
+
gap> DD < D;
|
|
509
|
+
true
|
|
510
|
+
gap> D < DD;
|
|
511
|
+
false
|
|
512
|
+
gap> D = DD;
|
|
513
|
+
false
|
|
514
|
+
gap> S := Semigroup(
|
|
515
|
+
> [Bipartition([[1, 2, 3, 4, 5], [-1, -2, -4, -5], [-3]]),
|
|
516
|
+
> Bipartition([[1, 2, 3, 4, -2, -3, -4], [5], [-1, -5]]),
|
|
517
|
+
> Bipartition([[1, 2, 3, -3, -5], [4, -1], [5, -2, -4]]),
|
|
518
|
+
> Bipartition([[1, 5, -1, -3], [2, 3], [4, -2], [-4, -5]]),
|
|
519
|
+
> Bipartition([[1, 4, -3], [2], [3], [5, -1, -2, -5], [-4]])]);;
|
|
520
|
+
gap> IsGreensLessThanOrEqual(DClass(S, S.1), DClass(S, S.2));
|
|
521
|
+
true
|
|
522
|
+
gap> IsGreensLessThanOrEqual(DClass(S, S.2), DClass(S, S.1));
|
|
523
|
+
false
|
|
524
|
+
gap> f := S.1 * S.2 * S.3;
|
|
525
|
+
<bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -2, -3, -4, -5 ]>
|
|
526
|
+
gap> f := S.1 * S.2;
|
|
527
|
+
<bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
|
|
528
|
+
gap> H := HClass(S, f);
|
|
529
|
+
<Green's H-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
|
|
530
|
+
>
|
|
531
|
+
gap> LClass(H);
|
|
532
|
+
<Green's L-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
|
|
533
|
+
>
|
|
534
|
+
gap> RClass(H);;
|
|
535
|
+
gap> DClass(RClass(H));;
|
|
536
|
+
gap> DClass(LClass(H));;
|
|
537
|
+
gap> DClass(H);;
|
|
538
|
+
gap> f := Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]);
|
|
539
|
+
<bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
540
|
+
gap> H := HClassNC(S, f);
|
|
541
|
+
<Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
542
|
+
>
|
|
543
|
+
gap> LClass(H);
|
|
544
|
+
<Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
545
|
+
>
|
|
546
|
+
gap> RClass(H);
|
|
547
|
+
<Green's R-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
548
|
+
>
|
|
549
|
+
gap> DClass(RClass(H));
|
|
550
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
551
|
+
>
|
|
552
|
+
gap> DClass(LClass(H));
|
|
553
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
554
|
+
>
|
|
555
|
+
gap> DClass(H);
|
|
556
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
557
|
+
>
|
|
558
|
+
gap> DClasses(S);;
|
|
559
|
+
gap> H := HClassNC(S, f);
|
|
560
|
+
<Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
561
|
+
>
|
|
562
|
+
gap> RClasses(DClass(H));;
|
|
563
|
+
gap> LClasses(DClass(H));;
|
|
564
|
+
gap> HClasses(LClass(H));;
|
|
565
|
+
gap> HClasses(RClass(H));;
|
|
566
|
+
gap> JClasses(S);;
|
|
567
|
+
gap> S := Semigroup(S);
|
|
568
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
569
|
+
gap> D := DClassNC(S, f);
|
|
570
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
571
|
+
>
|
|
572
|
+
gap> D := [D];
|
|
573
|
+
[ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ],
|
|
574
|
+
[ -4, -5 ]>> ]
|
|
575
|
+
gap> D[2] := DClass(S, f);;
|
|
576
|
+
gap> D[3] := DClass(RClass(S, f));;
|
|
577
|
+
gap> D[4] := DClass(RClass(S, f));;
|
|
578
|
+
gap> D[5] := DClass(LClass(S, f));;
|
|
579
|
+
gap> D[6] := DClass(HClass(S, f));;
|
|
580
|
+
gap> D[7] := DClass(LClass(HClass(S, f)));;
|
|
581
|
+
gap> D[8] := DClass(RClass(HClass(S, f)));;
|
|
582
|
+
gap> ForAll(Combinations([1 .. 8], 2), x -> D[x[1]] = D[x[2]]);
|
|
583
|
+
true
|
|
584
|
+
gap> Number(D, IsGreensClassNC) in [0, 1];
|
|
585
|
+
true
|
|
586
|
+
gap> D[7] := DClass(LClass(HClassNC(S, f)));
|
|
587
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
588
|
+
>
|
|
589
|
+
gap> D[6] := DClass(RClass(HClassNC(S, f)));
|
|
590
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
591
|
+
>
|
|
592
|
+
gap> D[5] := DClass(HClassNC(S, f));
|
|
593
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
594
|
+
>
|
|
595
|
+
gap> D[4] := DClass(LClassNC(S, f));
|
|
596
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
597
|
+
>
|
|
598
|
+
gap> ForAll(Combinations([1 .. 8], 2), x -> D[x[1]] = D[x[2]]);
|
|
599
|
+
true
|
|
600
|
+
gap> Number(D, IsGreensClassNC) in [0, 5];
|
|
601
|
+
true
|
|
602
|
+
gap> S := Semigroup(S);
|
|
603
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
604
|
+
gap> D := DClassNC(S, f);
|
|
605
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
606
|
+
>
|
|
607
|
+
gap> LClassNC(D, f);
|
|
608
|
+
<Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
609
|
+
>
|
|
610
|
+
gap> Size(last);
|
|
611
|
+
7
|
|
612
|
+
gap> Size(LClass(S, f));
|
|
613
|
+
7
|
|
614
|
+
gap> LClass(S, f) = LClassNC(D, f);
|
|
615
|
+
true
|
|
616
|
+
gap> LClass(D, f) = LClassNC(S, f);
|
|
617
|
+
true
|
|
618
|
+
gap> LClassNC(D, f) = LClassNC(S, f);
|
|
619
|
+
true
|
|
620
|
+
gap> LClassNC(D, f) = LClass(S, f);
|
|
621
|
+
true
|
|
622
|
+
gap> S := Semigroup(S);
|
|
623
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
624
|
+
gap> D := DClass(S, f);;
|
|
625
|
+
gap> LClassNC(D, f);
|
|
626
|
+
<Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
627
|
+
>
|
|
628
|
+
gap> Size(last);
|
|
629
|
+
7
|
|
630
|
+
gap> Size(LClass(S, f));
|
|
631
|
+
7
|
|
632
|
+
gap> LClass(S, f) = LClassNC(D, f);
|
|
633
|
+
true
|
|
634
|
+
gap> LClass(D, f) = LClassNC(S, f);
|
|
635
|
+
true
|
|
636
|
+
gap> LClassNC(D, f) = LClassNC(S, f);
|
|
637
|
+
true
|
|
638
|
+
gap> LClassNC(D, f) = LClass(S, f);
|
|
639
|
+
true
|
|
640
|
+
gap> S := Semigroup(S);
|
|
641
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
642
|
+
gap> D := DClass(S, f);;
|
|
643
|
+
gap> RClassNC(D, f);;
|
|
644
|
+
gap> Size(last);
|
|
645
|
+
9
|
|
646
|
+
gap> Size(RClass(S, f));
|
|
647
|
+
9
|
|
648
|
+
gap> RClass(S, f) = RClassNC(D, f);
|
|
649
|
+
true
|
|
650
|
+
gap> RClass(D, f) = RClassNC(S, f);
|
|
651
|
+
true
|
|
652
|
+
gap> RClassNC(D, f) = RClassNC(S, f);
|
|
653
|
+
true
|
|
654
|
+
gap> RClassNC(D, f) = RClass(S, f);
|
|
655
|
+
true
|
|
656
|
+
gap> S := Semigroup(S);
|
|
657
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
658
|
+
gap> D := DClassNC(S, f);
|
|
659
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
660
|
+
>
|
|
661
|
+
gap> RClassNC(D, f);
|
|
662
|
+
<Green's R-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
663
|
+
>
|
|
664
|
+
gap> Size(last);
|
|
665
|
+
9
|
|
666
|
+
gap> Size(RClass(S, f));
|
|
667
|
+
9
|
|
668
|
+
gap> RClass(S, f) = RClassNC(D, f);
|
|
669
|
+
true
|
|
670
|
+
gap> RClass(D, f) = RClassNC(S, f);
|
|
671
|
+
true
|
|
672
|
+
gap> RClassNC(D, f) = RClassNC(S, f);
|
|
673
|
+
true
|
|
674
|
+
gap> RClassNC(D, f) = RClass(S, f);
|
|
675
|
+
true
|
|
676
|
+
gap> S := Semigroup(S);
|
|
677
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
678
|
+
gap> D := DClass(S, f);;
|
|
679
|
+
gap> HClassNC(D, f);;
|
|
680
|
+
gap> Size(last);
|
|
681
|
+
1
|
|
682
|
+
gap> Size(HClass(S, f));
|
|
683
|
+
1
|
|
684
|
+
gap> HClass(S, f) = HClassNC(D, f);
|
|
685
|
+
true
|
|
686
|
+
gap> HClass(D, f) = HClassNC(S, f);
|
|
687
|
+
true
|
|
688
|
+
gap> HClassNC(D, f) = HClassNC(S, f);
|
|
689
|
+
true
|
|
690
|
+
gap> HClassNC(D, f) = HClass(S, f);
|
|
691
|
+
true
|
|
692
|
+
gap> S := Semigroup(S);
|
|
693
|
+
<bipartition semigroup of degree 5 with 5 generators>
|
|
694
|
+
gap> D := DClassNC(S, f);
|
|
695
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
|
|
696
|
+
>
|
|
697
|
+
gap> HClassNC(D, f);;
|
|
698
|
+
gap> Size(last);
|
|
699
|
+
1
|
|
700
|
+
gap> Size(HClass(S, f));
|
|
701
|
+
1
|
|
702
|
+
gap> HClass(S, f) = HClassNC(D, f);
|
|
703
|
+
true
|
|
704
|
+
gap> HClass(D, f) = HClassNC(S, f);
|
|
705
|
+
true
|
|
706
|
+
gap> HClassNC(D, f) = HClassNC(S, f);
|
|
707
|
+
true
|
|
708
|
+
gap> HClassNC(D, f) = HClass(S, f);
|
|
709
|
+
true
|
|
710
|
+
gap> S := Semigroup([
|
|
711
|
+
> Bipartition([[1, 2, 3, 4, 5, -2, -4], [6, 7], [8, -1, -6],
|
|
712
|
+
> [-3, -5, -7], [-8]]),
|
|
713
|
+
> Bipartition([[1, 2, 3, 4, -1, -2], [5, 6, -5], [7, 8, -4, -6],
|
|
714
|
+
> [-3, -7], [-8]]),
|
|
715
|
+
> Bipartition([[1, 2, 3, 7, -7], [4, 5, 6, 8], [-1, -2],
|
|
716
|
+
> [-3, -6, -8], [-4], [-5]]),
|
|
717
|
+
> Bipartition([[1, 2, 4, 7, -1, -2, -4], [3, -7], [5, -5], [6, 8],
|
|
718
|
+
> [-3], [-6, -8]]),
|
|
719
|
+
> Bipartition([[1, 2, 8, -2], [3, 4, 5, -5], [6, 7, -4], [-1, -7],
|
|
720
|
+
> [-3, -6, -8]]),
|
|
721
|
+
> Bipartition([[1, 2, 5, 6, 7, -4], [3, 8, -5], [4],
|
|
722
|
+
> [-1, -2, -3, -6], [-7], [-8]]),
|
|
723
|
+
> Bipartition([[1, 3, 4, 5, 6, 8, -1, -5], [2, -4], [7, -3, -8],
|
|
724
|
+
> [-2, -6, -7]]),
|
|
725
|
+
> Bipartition([[1, 3, 4, 5, -1, -7], [2, -6], [6], [7, -3],
|
|
726
|
+
> [8, -4], [-2, -5, -8]]),
|
|
727
|
+
> Bipartition([[1, 3, 4, 6, 7, -1, -7, -8], [2, 5, 8, -6], [-2, -4],
|
|
728
|
+
> [-3, -5]]),
|
|
729
|
+
> Bipartition([[1, 3, 4, -8], [2, 6, 8, -1], [5, 7, -2, -3, -4, -7],
|
|
730
|
+
> [-5], [-6]]),
|
|
731
|
+
> Bipartition([[1, 4, 8, -4, -6, -8], [2, 3, 6, -3, -5], [5, -1, -7],
|
|
732
|
+
> [7], [-2]]),
|
|
733
|
+
> Bipartition([[1, 5, -1, -2], [2, 3, 4, 6, 7], [8, -4], [-3, -5],
|
|
734
|
+
> [-6], [-7], [-8]]),
|
|
735
|
+
> Bipartition([[1, -6], [2, 3, 4, -2, -8], [5, 6, 7, -1, -3], [8],
|
|
736
|
+
> [-4, -7], [-5]]),
|
|
737
|
+
> Bipartition([[1, 7, 8, -1, -3, -4, -6], [2, 3, 4], [5, -2, -5],
|
|
738
|
+
> [6], [-7, -8]]),
|
|
739
|
+
> Bipartition([[1, 8, -3, -5, -6], [2, 3, 4, -1], [5, -2], [6, 7],
|
|
740
|
+
> [-4, -7], [-8]]),
|
|
741
|
+
> Bipartition([[1, 7, 8, -5], [2, 3, 5, -6], [4], [6, -1, -3],
|
|
742
|
+
> [-2], [-4, -7, -8]]),
|
|
743
|
+
> Bipartition([[1, 4, -1, -3, -4], [2, 7, 8, -2, -6], [3, 5, 6, -8],
|
|
744
|
+
> [-5, -7]]),
|
|
745
|
+
> Bipartition([[1, 5, 8], [2, 4, 7, -2], [3, 6], [-1, -3],
|
|
746
|
+
> [-4, -5], [-6], [-7], [-8]]),
|
|
747
|
+
> Bipartition([[1], [2, 4], [3, 6, -5], [5, 7, -3, -4, -6],
|
|
748
|
+
> [8, -2], [-1, -7], [-8]]),
|
|
749
|
+
> Bipartition([[1, 5, -8], [2, -4], [3, 6, 8, -1, -6],
|
|
750
|
+
> [4, 7, -2, -3, -5], [-7]])], rec(acting := true));;
|
|
751
|
+
gap> DClassReps(S);
|
|
752
|
+
[ <bipartition: [ 1, 2, 3, 4, 5, -2, -4 ], [ 6, 7 ], [ 8, -1, -6 ],
|
|
753
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
754
|
+
<bipartition: [ 1, 2, 3, 4, -1, -2 ], [ 5, 6, -5 ], [ 7, 8, -4, -6 ],
|
|
755
|
+
[ -3, -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
|
|
756
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
757
|
+
<bipartition: [ 1, 2, 4, 7, -1, -2, -4 ], [ 3, -7 ], [ 5, -5 ], [ 6, 8 ],
|
|
758
|
+
[ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 8, -2 ], [ 3, 4, 5, -5 ],
|
|
759
|
+
[ 6, 7, -4 ], [ -1, -7 ], [ -3, -6, -8 ]>,
|
|
760
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -5 ], [ 4 ], [ -1, -2, -3, -6 ]
|
|
761
|
+
, [ -7 ], [ -8 ]>,
|
|
762
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -5 ], [ 2, -4 ], [ 7, -3, -8 ],
|
|
763
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, -1, -7 ], [ 2, -6 ], [ 6 ],
|
|
764
|
+
[ 7, -3 ], [ 8, -4 ], [ -2, -5, -8 ]>,
|
|
765
|
+
<bipartition: [ 1, 3, 4, -8 ], [ 2, 6, 8, -1 ], [ 5, 7, -2, -3, -4, -7 ],
|
|
766
|
+
[ -5 ], [ -6 ]>,
|
|
767
|
+
<bipartition: [ 1, 4, 8, -4, -6, -8 ], [ 2, 3, 6, -3, -5 ], [ 5, -1, -7 ],
|
|
768
|
+
[ 7 ], [ -2 ]>,
|
|
769
|
+
<bipartition: [ 1, -6 ], [ 2, 3, 4, -2, -8 ], [ 5, 6, 7, -1, -3 ], [ 8 ],
|
|
770
|
+
[ -4, -7 ], [ -5 ]>,
|
|
771
|
+
<bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 4 ], [ 5, -2, -5 ],
|
|
772
|
+
[ 6 ], [ -7, -8 ]>, <bipartition: [ 1, 8, -3, -5, -6 ], [ 2, 3, 4, -1 ],
|
|
773
|
+
[ 5, -2 ], [ 6, 7 ], [ -4, -7 ], [ -8 ]>,
|
|
774
|
+
<bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, -6 ], [ 4 ], [ 6, -1, -3 ],
|
|
775
|
+
[ -2 ], [ -4, -7, -8 ]>,
|
|
776
|
+
<bipartition: [ 1, 4, -1, -3, -4 ], [ 2, 7, 8, -2, -6 ], [ 3, 5, 6, -8 ],
|
|
777
|
+
[ -5, -7 ]>,
|
|
778
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, -3, -4, -6 ],
|
|
779
|
+
[ 8, -2 ], [ -1, -7 ], [ -8 ]>,
|
|
780
|
+
<bipartition: [ 1, 5, -8 ], [ 2, -4 ], [ 3, 6, 8, -1, -6 ],
|
|
781
|
+
[ 4, 7, -2, -3, -5 ], [ -7 ]>,
|
|
782
|
+
<bipartition: [ 1, 2, 4, 5, 7, -2, -4 ], [ 3, -1, -6 ], [ 6, 8 ],
|
|
783
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
784
|
+
<bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 5, 6, 7, 8, -2, -4 ],
|
|
785
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
786
|
+
<bipartition: [ 1, 2, 4, 7, 8, -2, -4 ], [ 3, 5, 6, -1, -6 ],
|
|
787
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
788
|
+
<bipartition: [ 1, 2, 4, 7, -1, -2, -4, -7 ], [ 3, 5, -5 ], [ 6, 8 ],
|
|
789
|
+
[ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -4, -7 ],
|
|
790
|
+
[ 3, 8, -5 ], [ 4 ], [ -3 ], [ -6, -8 ]>,
|
|
791
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ], [ 6 ], [ 7, -3 ],
|
|
792
|
+
[ -2, -5, -8 ], [ -4 ]>,
|
|
793
|
+
<bipartition: [ 1, 4, 5, 8, -5 ], [ 2, 3, 6, -1, -2, -4, -7 ], [ 7 ],
|
|
794
|
+
[ -3 ], [ -6, -8 ]>,
|
|
795
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
|
|
796
|
+
, [ -7 ], [ -8 ]>,
|
|
797
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -4, -5 ], [ 3, -3, -8 ], [ 6, 8 ],
|
|
798
|
+
[ -2, -6, -7 ]>,
|
|
799
|
+
<bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -8 ],
|
|
800
|
+
[ -2, -6, -7 ]>,
|
|
801
|
+
<bipartition: [ 1, 3, 4, -4 ], [ 2, 5, 6, 7, 8, -1, -3, -6, -7 ],
|
|
802
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 4, -1, -3, -7 ], [ 2, 7, 8, -6 ],
|
|
803
|
+
[ 3, 5, 6, -4 ], [ -2, -5, -8 ]>,
|
|
804
|
+
<bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6, -7 ],
|
|
805
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
806
|
+
<bipartition: [ 1, 5, 6, 7, -5 ], [ 2, 3, 4, -1, -2, -4, -7 ], [ 8 ],
|
|
807
|
+
[ -3 ], [ -6, -8 ]>,
|
|
808
|
+
<bipartition: [ 1, 4, -8 ], [ 2, 3, 5, 6, 7, 8, -1 ], [ -2, -3, -4, -7 ],
|
|
809
|
+
[ -5 ], [ -6 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -3, -4, -5, -6, -8 ],
|
|
810
|
+
[ 5, 6, -1, -7 ], [ -2 ]>,
|
|
811
|
+
<bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3 ], [ 5, -1, -7 ],
|
|
812
|
+
[ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 5, 6, 7, -3, -4, -5, -6, -8 ],
|
|
813
|
+
[ 3, 8, -1, -7 ], [ 4 ], [ -2 ]>,
|
|
814
|
+
<bipartition: [ 1, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
|
|
815
|
+
[ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ],
|
|
816
|
+
[ 2, 7, -5 ], [ -3 ], [ -6, -8 ]>,
|
|
817
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -4, -6 ], [ 5, 6, -2, -5 ],
|
|
818
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -4, -6 ],
|
|
819
|
+
[ 3, 8, -2, -5 ], [ 4 ], [ -7, -8 ]>,
|
|
820
|
+
<bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5 ], [ 4 ], [ 6, -1, -3, -4, -6 ]
|
|
821
|
+
, [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -4, -7 ],
|
|
822
|
+
[ 2, 7, -5 ], [ 6 ], [ -3 ], [ -6, -8 ]>,
|
|
823
|
+
<bipartition: [ 1, 5, 8 ], [ 2, 3, 4, 6, 7 ], [ -1, -2, -3, -6 ],
|
|
824
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
825
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -4, -8 ], [ 7, 8, -1, -2, -3, -5, -6 ],
|
|
826
|
+
[ -7 ]>, <bipartition: [ 1, 4, -1, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -4 ],
|
|
827
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
828
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2, 7, -2, -4 ],
|
|
829
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
830
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2 ], [ 7, -5 ],
|
|
831
|
+
[ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -5 ],
|
|
832
|
+
[ 6, 8 ], [ -1, -2, -3, -6 ], [ -7 ], [ -8 ]>,
|
|
833
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -8 ], [ 3, 8, -4 ], [ 4 ],
|
|
834
|
+
[ -2, -6, -7 ]>,
|
|
835
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -6, -7 ],
|
|
836
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -6, -7 ],
|
|
837
|
+
[ 2, 5, 8, -4 ], [ -2, -5, -8 ]>,
|
|
838
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -6, -7 ],
|
|
839
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
840
|
+
<bipartition: [ 1, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 6, -1, -7 ],
|
|
841
|
+
[ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ],
|
|
842
|
+
[ 2 ], [ 7, -1, -7 ], [ -2 ]>,
|
|
843
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -7 ], [ 3, 8, -3, -4, -5, -6, -8 ],
|
|
844
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -3, -4, -5, -6, -8 ],
|
|
845
|
+
[ 2, 7, -1, -7 ], [ 6 ], [ -2 ]>,
|
|
846
|
+
<bipartition: [ 1, 5, 6, 7, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
|
|
847
|
+
[ 8 ], [ -2 ]>,
|
|
848
|
+
<bipartition: [ 1, 4, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -4, -7 ], [ -3 ],
|
|
849
|
+
[ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ],
|
|
850
|
+
[ 7, -2, -5 ], [ -7, -8 ]>,
|
|
851
|
+
<bipartition: [ 1, 4, -5 ], [ 2, 7, 8, -1, -2, -4, -7 ], [ 3, 5, 6 ],
|
|
852
|
+
[ -3 ], [ -6, -8 ]>,
|
|
853
|
+
<bipartition: [ 1, 5, 6, 7, -2, -4 ], [ 2, 3, 4, -1, -6 ], [ 8 ],
|
|
854
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
855
|
+
<bipartition: [ 1, 4, -2, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6 ],
|
|
856
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
857
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -2, -4, -7 ], [ 3, -5 ], [ 6, 8 ],
|
|
858
|
+
[ -3 ], [ -6, -8 ]>,
|
|
859
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ],
|
|
860
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
|
|
861
|
+
[ 2 ], [ 7, -4 ], [ -2, -6, -7 ]>,
|
|
862
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -5, -8 ], [ 4 ],
|
|
863
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -8 ],
|
|
864
|
+
[ 2, 7, -4 ], [ 6 ], [ -2, -6, -7 ]>,
|
|
865
|
+
<bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 8 ],
|
|
866
|
+
[ -2, -6, -7 ]>,
|
|
867
|
+
<bipartition: [ 1, 5, 6, 7, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
|
|
868
|
+
[ -2, -5, -8 ]>,
|
|
869
|
+
<bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
|
|
870
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
871
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2, 7, -1, -7 ],
|
|
872
|
+
[ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -3, -4, -5, -6, -8 ],
|
|
873
|
+
[ 3, -1, -7 ], [ 6, 8 ], [ -2 ]>,
|
|
874
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -7 ], [ 3, 8, -4, -6, -8 ],
|
|
875
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2 ],
|
|
876
|
+
[ 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
877
|
+
<bipartition: [ 1, 3, 4, 5, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
|
|
878
|
+
[ 6 ], [ -2 ]>, <bipartition: [ 1, 5, 6, 7, -3, -4, -5, -6, -8 ],
|
|
879
|
+
[ 2, 3, 4, -1, -7 ], [ 8 ], [ -2 ]>,
|
|
880
|
+
<bipartition: [ 1, 2, 5, 6, 7, -2, -5 ], [ 3, 8, -1, -3, -4, -6 ], [ 4 ],
|
|
881
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -4, -6 ],
|
|
882
|
+
[ 2, 7, -2, -5 ], [ 6 ], [ -7, -8 ]>,
|
|
883
|
+
<bipartition: [ 1, 5, 6, 7, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 8 ],
|
|
884
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ],
|
|
885
|
+
[ 2, 7, -2, -5 ], [ -7, -8 ]>,
|
|
886
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -3, -4, -6 ], [ 3, -2, -5 ], [ 6, 8 ],
|
|
887
|
+
[ -7, -8 ]>,
|
|
888
|
+
<bipartition: [ 1, 4, -2, -5 ], [ 2, 7, 8, -1, -3, -4, -6 ], [ 3, 5, 6 ],
|
|
889
|
+
[ -7, -8 ]>,
|
|
890
|
+
<bipartition: [ 1, 4, 5, 8, -2, -5 ], [ 2, 3, 6, -1, -3, -4, -6 ], [ 7 ],
|
|
891
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ],
|
|
892
|
+
[ 2, 7, -4, -8 ], [ -7 ]>,
|
|
893
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -6 ], [ 3, 8, -2, -4 ], [ 4 ],
|
|
894
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
895
|
+
<bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -5, -8 ], [ 7 ],
|
|
896
|
+
[ -2, -6, -7 ]>,
|
|
897
|
+
<bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 3, 5, 6, 7, 8, -4 ],
|
|
898
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
|
|
899
|
+
[ 2, 7, -4 ], [ -2, -6, -7 ]>,
|
|
900
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -8 ], [ 3, -4 ], [ 6, 8 ],
|
|
901
|
+
[ -2, -6, -7 ]>,
|
|
902
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -5, -8 ],
|
|
903
|
+
[ -2, -6, -7 ]>,
|
|
904
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ], [ 6 ],
|
|
905
|
+
[ -2, -6, -7 ]>,
|
|
906
|
+
<bipartition: [ 1, 5, 6, 7, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 8 ],
|
|
907
|
+
[ -2, -6, -7 ]>,
|
|
908
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -6, -7 ], [ 4 ],
|
|
909
|
+
[ -2, -5, -8 ]>,
|
|
910
|
+
<bipartition: [ 1, 4, -1, -7 ], [ 2, 7, 8, -3, -4, -5, -6, -8 ],
|
|
911
|
+
[ 3, 5, 6 ], [ -2 ]>,
|
|
912
|
+
<bipartition: [ 1, 4, 5, 8, -1, -7 ], [ 2, 3, 6, -3, -4, -5, -6, -8 ],
|
|
913
|
+
[ 7 ], [ -2 ]>,
|
|
914
|
+
<bipartition: [ 1, 4, -1, -7 ], [ 2, 3, 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
|
|
915
|
+
[ -2 ]>,
|
|
916
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
|
|
917
|
+
[ -2 ]>,
|
|
918
|
+
<bipartition: [ 1, 4, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 6, -4, -6, -8 ],
|
|
919
|
+
[ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
|
|
920
|
+
[ 2 ], [ 7, -4, -6, -8 ], [ -2 ]>,
|
|
921
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -7 ], [ 3, -3, -4, -5, -6, -8 ],
|
|
922
|
+
[ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2 ],
|
|
923
|
+
[ 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
924
|
+
<bipartition: [ 1, 3, 4, 5, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ], [ 6 ],
|
|
925
|
+
[ -7, -8 ]>,
|
|
926
|
+
<bipartition: [ 1, 5, 6, 7, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 8 ],
|
|
927
|
+
[ -7, -8 ]>,
|
|
928
|
+
<bipartition: [ 1, 4, -2, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -4, -6 ],
|
|
929
|
+
[ -7, -8 ]>,
|
|
930
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ],
|
|
931
|
+
[ -7, -8 ]>,
|
|
932
|
+
<bipartition: [ 1, 4, -4, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
|
|
933
|
+
[ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2 ],
|
|
934
|
+
[ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
935
|
+
<bipartition: [ 1, 2, 5, 6, 7, -2, -4 ], [ 3, 8, -1, -6 ], [ 4 ],
|
|
936
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
937
|
+
<bipartition: [ 1, 3, 4, 5, 8, -1, -6 ], [ 2, 7, -2, -4 ], [ 6 ],
|
|
938
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
939
|
+
<bipartition: [ 1, 4, 5, 8, -1, -6 ], [ 2, 3, 6, -2, -4 ], [ 7 ],
|
|
940
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
941
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -8 ],
|
|
942
|
+
[ -2, -6, -7 ]>,
|
|
943
|
+
<bipartition: [ 1, 4, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 6, -4 ], [ 7 ],
|
|
944
|
+
[ -2, -6, -7 ]>,
|
|
945
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -5, -8 ], [ 3, 5, 6 ],
|
|
946
|
+
[ -2, -6, -7 ]>,
|
|
947
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -5, -8 ], [ 6, 8 ],
|
|
948
|
+
[ -2, -6, -7 ]>,
|
|
949
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -6, -7 ],
|
|
950
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -6, -7 ],
|
|
951
|
+
[ 3, 8, -4 ], [ 4 ], [ -2, -5, -8 ]>,
|
|
952
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ], [ 6 ],
|
|
953
|
+
[ -2, -5, -8 ]>,
|
|
954
|
+
<bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -6, -7 ], [ 7 ],
|
|
955
|
+
[ -2, -5, -8 ]>,
|
|
956
|
+
<bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -6, -7 ], [ 7 ],
|
|
957
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
958
|
+
<bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -7 ],
|
|
959
|
+
[ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -7 ],
|
|
960
|
+
[ 3, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
|
|
961
|
+
<bipartition: [ 1, 2, 4, 5, 7, -2, -5 ], [ 3, -1, -3, -4, -6 ], [ 6, 8 ],
|
|
962
|
+
[ -7, -8 ]>,
|
|
963
|
+
<bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -5 ],
|
|
964
|
+
[ -7, -8 ]>,
|
|
965
|
+
<bipartition: [ 1, 4, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 6, -2, -5 ], [ 7 ],
|
|
966
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -6 ], [ 3, -2, -4 ],
|
|
967
|
+
[ 6, 8 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
968
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2 ], [ 7, -1, -6 ],
|
|
969
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
970
|
+
<bipartition: [ 1, 3, 4, 5, 8, -2, -4 ], [ 2, 7, -1, -6 ], [ 6 ],
|
|
971
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
972
|
+
<bipartition: [ 1, 5, 6, 7, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 8 ],
|
|
973
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
974
|
+
<bipartition: [ 1, 4, 5, 8, -2, -4 ], [ 2, 3, 6, -1, -6 ], [ 7 ],
|
|
975
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
976
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -6, -7 ], [ 6, 8 ],
|
|
977
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
|
|
978
|
+
[ 2 ], [ 7, -4 ], [ -2, -5, -8 ]>,
|
|
979
|
+
<bipartition: [ 1, 3, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
|
|
980
|
+
[ -2, -5, -8 ]>,
|
|
981
|
+
<bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 8 ],
|
|
982
|
+
[ -2, -5, -8 ]>,
|
|
983
|
+
<bipartition: [ 1, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
|
|
984
|
+
[ -2, -5, -8 ]>,
|
|
985
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -6, -7 ], [ 4 ],
|
|
986
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
987
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4, -6, -8 ], [ 3, 8, -1, -3, -5, -7 ],
|
|
988
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -7 ],
|
|
989
|
+
[ 2, 7, -4, -6, -8 ], [ 6 ], [ -2 ]>,
|
|
990
|
+
<bipartition: [ 1, 5, 6, 7, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
|
|
991
|
+
[ 8 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
|
|
992
|
+
[ 2, 7, -4, -6, -8 ], [ -2 ]>,
|
|
993
|
+
<bipartition: [ 1, 4, 5, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 6, -4, -8 ],
|
|
994
|
+
[ 7 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -6, -7 ],
|
|
995
|
+
[ 3, -4 ], [ 6, 8 ], [ -2, -5, -8 ]>,
|
|
996
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ],
|
|
997
|
+
[ -2, -5, -8 ]>,
|
|
998
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -6, -7 ],
|
|
999
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1000
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -6, -7 ], [ 3, 8, -4 ], [ 4 ],
|
|
1001
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1002
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -6, -7 ], [ 6 ],
|
|
1003
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1004
|
+
<bipartition: [ 1, 5, 6, 7, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
|
|
1005
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
|
|
1006
|
+
[ 2 ], [ 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
1007
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4, -6, -8 ], [ 2, 7, -1, -3, -5, -7 ],
|
|
1008
|
+
[ 6 ], [ -2 ]>,
|
|
1009
|
+
<bipartition: [ 1, 5, 6, 7, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
|
|
1010
|
+
[ 8 ], [ -2 ]>,
|
|
1011
|
+
<bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -7 ],
|
|
1012
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
|
|
1013
|
+
[ 2, 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
1014
|
+
<bipartition: [ 1, 4, 5, 8, -4, -6, -8 ], [ 2, 3, 6, -1, -3, -5, -7 ],
|
|
1015
|
+
[ 7 ], [ -2 ]>,
|
|
1016
|
+
<bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 7, 8, -2, -5 ], [ 3, 5, 6 ],
|
|
1017
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -3, -5, -6 ],
|
|
1018
|
+
[ 3, 8, -4, -8 ], [ 4 ], [ -7 ]>,
|
|
1019
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2, 7, -1, -6 ],
|
|
1020
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1021
|
+
<bipartition: [ 1, 4, -2, -4 ], [ 2, 7, 8, -1, -6 ], [ 3, 5, 6 ],
|
|
1022
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1023
|
+
<bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
|
|
1024
|
+
[ -2, -6, -7 ]>,
|
|
1025
|
+
<bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
|
|
1026
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
|
|
1027
|
+
[ 2, 7, -4 ], [ -2, -5, -8 ]>,
|
|
1028
|
+
<bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
|
|
1029
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -6, -7 ],
|
|
1030
|
+
[ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
1031
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 7, -4 ],
|
|
1032
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1033
|
+
<bipartition: [ 1, 3, 4, 5, 8, -1, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
|
|
1034
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1035
|
+
<bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 8 ],
|
|
1036
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ],
|
|
1037
|
+
[ 2, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
1038
|
+
<bipartition: [ 1, 4, 5, 8, -1, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
|
|
1039
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1040
|
+
<bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 7, 8, -1, -7 ],
|
|
1041
|
+
[ 3, 5, 6 ], [ -2 ]>,
|
|
1042
|
+
<bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 7, 8, -1, -3, -5, -7 ],
|
|
1043
|
+
[ 3, 5, 6 ], [ -2 ]>,
|
|
1044
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4, -6, -8 ], [ 3, -1, -3, -5, -7 ],
|
|
1045
|
+
[ 6, 8 ], [ -2 ]>,
|
|
1046
|
+
<bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 3, 5, 6, 7, 8, -4, -6, -8 ],
|
|
1047
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ],
|
|
1048
|
+
[ 7, -4, -8 ], [ -7 ]>,
|
|
1049
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4, -8 ], [ 3, 8, -1, -2, -3, -5, -6 ],
|
|
1050
|
+
[ 4 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -3, -5, -6 ],
|
|
1051
|
+
[ 2, 7, -4, -8 ], [ 6 ], [ -7 ]>,
|
|
1052
|
+
<bipartition: [ 1, 5, 6, 7, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
|
|
1053
|
+
[ 8 ], [ -7 ]>, <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 7, 8, -4 ],
|
|
1054
|
+
[ 3, 5, 6 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
1055
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -4 ], [ 6, 8 ],
|
|
1056
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1057
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6, -7 ],
|
|
1058
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1059
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -2, -3, -5, -6 ], [ 3, -4, -8 ],
|
|
1060
|
+
[ 6, 8 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2 ],
|
|
1061
|
+
[ 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
1062
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
|
|
1063
|
+
[ 6 ], [ -7 ]>, <bipartition: [ 1, 5, 6, 7, -1, -2, -3, -5, -6 ],
|
|
1064
|
+
[ 2, 3, 4, -4, -8 ], [ 8 ], [ -7 ]>,
|
|
1065
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
|
|
1066
|
+
[ -7 ]>,
|
|
1067
|
+
<bipartition: [ 1, 4, 5, 8, -4, -8 ], [ 2, 3, 6, -1, -2, -3, -5, -6 ],
|
|
1068
|
+
[ 7 ], [ -7 ]>, <bipartition: [ 1, 4, -1, -6 ], [ 2, 7, 8, -2, -4 ],
|
|
1069
|
+
[ 3, 5, 6 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
1070
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -6, -7 ], [ 3, 5, 6 ],
|
|
1071
|
+
[ -2, -5, -8 ]>,
|
|
1072
|
+
<bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 7, 8, -4, -6, -8 ],
|
|
1073
|
+
[ 3, 5, 6 ], [ -2 ]>,
|
|
1074
|
+
<bipartition: [ 1, 4, -4, -8 ], [ 2, 7, 8, -1, -2, -3, -5, -6 ],
|
|
1075
|
+
[ 3, 5, 6 ], [ -7 ]>,
|
|
1076
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4, -8 ], [ 3, -1, -2, -3, -5, -6 ],
|
|
1077
|
+
[ 6, 8 ], [ -7 ]>,
|
|
1078
|
+
<bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, 7, 8, -4, -8 ],
|
|
1079
|
+
[ -7 ]>, <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -6, -7 ],
|
|
1080
|
+
[ 3, 5, 6 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
1081
|
+
<bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 7, 8, -4, -8 ],
|
|
1082
|
+
[ 3, 5, 6 ], [ -7 ]> ]
|
|
1083
|
+
gap> RClassReps(S);
|
|
1084
|
+
[ <bipartition: [ 1, 2, 3, 4, 5, -2, -4 ], [ 6, 7 ], [ 8, -1, -6 ],
|
|
1085
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1086
|
+
<bipartition: [ 1, 2, 3, 4, -1, -2 ], [ 5, 6, -5 ], [ 7, 8, -4, -6 ],
|
|
1087
|
+
[ -3, -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
|
|
1088
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1089
|
+
<bipartition: [ 1, 2, 4, 7, -1, -2, -4 ], [ 3, -7 ], [ 5, -5 ], [ 6, 8 ],
|
|
1090
|
+
[ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 8, -2 ], [ 3, 4, 5, -5 ],
|
|
1091
|
+
[ 6, 7, -4 ], [ -1, -7 ], [ -3, -6, -8 ]>,
|
|
1092
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -5 ], [ 4 ], [ -1, -2, -3, -6 ]
|
|
1093
|
+
, [ -7 ], [ -8 ]>,
|
|
1094
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -5 ], [ 2, -4 ], [ 7, -3, -8 ],
|
|
1095
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, -1, -7 ], [ 2, -6 ], [ 6 ],
|
|
1096
|
+
[ 7, -3 ], [ 8, -4 ], [ -2, -5, -8 ]>,
|
|
1097
|
+
<bipartition: [ 1, 3, 4, 6, 7, -5 ], [ 2, 5, 8, -1, -2, -4, -7 ], [ -3 ],
|
|
1098
|
+
[ -6, -8 ]>, <bipartition: [ 1, 3, 4, -8 ], [ 2, 6, 8, -1 ],
|
|
1099
|
+
[ 5, 7, -2, -3, -4, -7 ], [ -5 ], [ -6 ]>,
|
|
1100
|
+
<bipartition: [ 1, 4, 8, -4, -6, -8 ], [ 2, 3, 6, -3, -5 ], [ 5, -1, -7 ],
|
|
1101
|
+
[ 7 ], [ -2 ]>,
|
|
1102
|
+
<bipartition: [ 1, 5, -1, -2, -4, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -5 ],
|
|
1103
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1104
|
+
<bipartition: [ 1, -6 ], [ 2, 3, 4, -2, -8 ], [ 5, 6, 7, -1, -3 ], [ 8 ],
|
|
1105
|
+
[ -4, -7 ], [ -5 ]>,
|
|
1106
|
+
<bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 4 ], [ 5, -2, -5 ],
|
|
1107
|
+
[ 6 ], [ -7, -8 ]>, <bipartition: [ 1, 8, -3, -5, -6 ], [ 2, 3, 4, -1 ],
|
|
1108
|
+
[ 5, -2 ], [ 6, 7 ], [ -4, -7 ], [ -8 ]>,
|
|
1109
|
+
<bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, -6 ], [ 4 ], [ 6, -1, -3 ],
|
|
1110
|
+
[ -2 ], [ -4, -7, -8 ]>,
|
|
1111
|
+
<bipartition: [ 1, 4, -1, -3, -4 ], [ 2, 7, 8, -2, -6 ], [ 3, 5, 6, -8 ],
|
|
1112
|
+
[ -5, -7 ]>, <bipartition: [ 1, 5, 8 ], [ 2, 4, 7, -7 ], [ 3, 6 ],
|
|
1113
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1114
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, -3, -4, -6 ],
|
|
1115
|
+
[ 8, -2 ], [ -1, -7 ], [ -8 ]>,
|
|
1116
|
+
<bipartition: [ 1, 5, -8 ], [ 2, -4 ], [ 3, 6, 8, -1, -6 ],
|
|
1117
|
+
[ 4, 7, -2, -3, -5 ], [ -7 ]>,
|
|
1118
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -7 ], [ 6, 7 ], [ -1, -2 ],
|
|
1119
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1120
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, 7, 8, -7 ], [ -1, -2 ], [ -3, -6, -8 ],
|
|
1121
|
+
[ -4 ], [ -5 ]>, <bipartition: [ 1, 2, 4, 5, 7, -2, -4 ], [ 3, -1, -6 ],
|
|
1122
|
+
[ 6, 8 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
1123
|
+
<bipartition: [ 1, 2, 3, 5, 6, 7, 8, -7 ], [ 4 ], [ -1, -2 ],
|
|
1124
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1125
|
+
<bipartition: [ 1, 2, 3, 4, 5, 7, 8, -7 ], [ 6 ], [ -1, -2 ],
|
|
1126
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1127
|
+
<bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 5, 6, 7, 8, -2, -4 ],
|
|
1128
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1129
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, 8, -7 ], [ 7 ], [ -1, -2 ],
|
|
1130
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1131
|
+
<bipartition: [ 1, 5, 8, -7 ], [ 2, 3, 4, 6, 7 ], [ -1, -2 ],
|
|
1132
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1133
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
|
|
1134
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1135
|
+
<bipartition: [ 1, 5, 7, 8, -7 ], [ 2, 3, 4 ], [ 6 ], [ -1, -2 ],
|
|
1136
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1137
|
+
<bipartition: [ 1, 2, 4, 7, 8, -2, -4 ], [ 3, 5, 6, -1, -6 ],
|
|
1138
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1139
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, 8, -7 ], [ -1, -2 ],
|
|
1140
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1141
|
+
<bipartition: [ 1, 5, -1, -6 ], [ 2, 3, 4, 6, 7, 8, -2, -4 ],
|
|
1142
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1143
|
+
<bipartition: [ 1, 2, 4, 7, -1, -2, -4, -7 ], [ 3, 5, -5 ], [ 6, 8 ],
|
|
1144
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1145
|
+
<bipartition: [ 1, -5 ], [ 2, 3, 4, 5, 6, 7, -1, -2, -4, -7 ], [ 8 ],
|
|
1146
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1147
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -5 ], [ 4 ], [ 6, -1, -2, -4, -7 ],
|
|
1148
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1149
|
+
<bipartition: [ 1, 5, -1, -2, -4, -7 ], [ 2, 3, 4, 6, 7, 8, -5 ], [ -3 ],
|
|
1150
|
+
[ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, -7 ], [ 5, 6, 7, 8 ],
|
|
1151
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1152
|
+
<bipartition: [ 1, 2, 3, 4, 5, 7, -7 ], [ 6, 8 ], [ -1, -2 ],
|
|
1153
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1154
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -1, -2, -4, -7 ], [ 5, 6, -5 ], [ -3 ],
|
|
1155
|
+
[ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -5 ], [ 5, -1, -2, -4, -7 ],
|
|
1156
|
+
[ 6, 8 ], [ -3 ], [ -6, -8 ]>,
|
|
1157
|
+
<bipartition: [ 1, 2, 6, 7, 8, -5 ], [ 3, 4, 5, -1, -2, -4, -7 ], [ -3 ],
|
|
1158
|
+
[ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -4, -7 ],
|
|
1159
|
+
[ 3, 8, -5 ], [ 4 ], [ -3 ], [ -6, -8 ]>,
|
|
1160
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ], [ 6 ], [ 7, -3 ],
|
|
1161
|
+
[ -2, -5, -8 ], [ -4 ]>,
|
|
1162
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 5, 6, 7, 8, -7 ], [ -1, -2 ],
|
|
1163
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1164
|
+
<bipartition: [ 1, 4, 5, 8, -5 ], [ 2, 3, 6, -1, -2, -4, -7 ], [ 7 ],
|
|
1165
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1166
|
+
<bipartition: [ 1, 8, -1, -2, -4, -7 ], [ 2, 3, 4, 5, -5 ], [ 6, 7 ],
|
|
1167
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1168
|
+
<bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, 6, -1, -2, -4, -7 ], [ 4 ],
|
|
1169
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1170
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, 8, -1, -2, -4, -7 ],
|
|
1171
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1172
|
+
<bipartition: [ 1, 2, 3, 4, -1, -2, -4, -7 ], [ 5, 6, 7, 8, -5 ], [ -3 ],
|
|
1173
|
+
[ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7 ], [ 3, 8, -7 ], [ 4 ],
|
|
1174
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1175
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
|
|
1176
|
+
, [ -7 ], [ -8 ]>,
|
|
1177
|
+
<bipartition: [ 1, 2, 3, 4, 5, 7, -7 ], [ 6 ], [ 8 ], [ -1, -2 ],
|
|
1178
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1179
|
+
<bipartition: [ 1, 5, -7 ], [ 2, 3, 4, 6, 7 ], [ 8 ], [ -1, -2 ],
|
|
1180
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1181
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -7 ], [ 2 ], [ -1, -2 ],
|
|
1182
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1183
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -4, -5 ], [ 3, -3, -8 ], [ 6, 8 ],
|
|
1184
|
+
[ -2, -6, -7 ]>,
|
|
1185
|
+
<bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -8 ],
|
|
1186
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -5, -8 ],
|
|
1187
|
+
[ 5, -4 ], [ 6, 7 ], [ -2, -6, -7 ]>,
|
|
1188
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -5, -8 ], [ 8, -4 ],
|
|
1189
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -3 ],
|
|
1190
|
+
[ 6, 8 ], [ -2, -5, -8 ], [ -4 ]>,
|
|
1191
|
+
<bipartition: [ 1, 2, 8, -1, -2, -4, -7 ], [ 3, 4, 5, 6, 7, -5 ], [ -3 ],
|
|
1192
|
+
[ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, 8, -7 ], [ 2 ], [ 6 ],
|
|
1193
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1194
|
+
<bipartition: [ 1, 3, 4, 6, 7, -7 ], [ 2, 5, 8 ], [ -1, -2 ],
|
|
1195
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1196
|
+
<bipartition: [ 1, 3, 4, -4 ], [ 2, 5, 6, 7, 8, -1, -3, -6, -7 ],
|
|
1197
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -2, -4, -7 ],
|
|
1198
|
+
[ 5, 6, 7, -5 ], [ 8 ], [ -3 ], [ -6, -8 ]>,
|
|
1199
|
+
<bipartition: [ 1, 2, 3, 4, 8, -5 ], [ 5, -1, -2, -4, -7 ], [ 6, 7 ],
|
|
1200
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1201
|
+
<bipartition: [ 1, 6, 7, 8, -7 ], [ 2, 3, 5 ], [ 4 ], [ -1, -2 ],
|
|
1202
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1203
|
+
<bipartition: [ 1, 4, -1, -3, -7 ], [ 2, 7, 8, -6 ], [ 3, 5, 6, -4 ],
|
|
1204
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -5 ],
|
|
1205
|
+
[ 8, -1, -2, -4, -7 ], [ -3 ], [ -6, -8 ]>,
|
|
1206
|
+
<bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6, -7 ],
|
|
1207
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1208
|
+
<bipartition: [ 1, 5, 6, 7, -5 ], [ 2, 3, 4, -1, -2, -4, -7 ], [ 8 ],
|
|
1209
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1210
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -2, -4, -7 ], [ 5, 7, -5 ],
|
|
1211
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1212
|
+
<bipartition: [ 1, 2, 3, 4, -5 ], [ 5, 6, 7, -1, -2, -4, -7 ], [ 8 ],
|
|
1213
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1214
|
+
<bipartition: [ 1, 4, -8 ], [ 2, 3, 5, 6, 7, 8, -1 ], [ -2, -3, -4, -7 ],
|
|
1215
|
+
[ -5 ], [ -6 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -3, -4, -5, -6, -8 ],
|
|
1216
|
+
[ 5, 6, -1, -7 ], [ -2 ]>,
|
|
1217
|
+
<bipartition: [ 1, 2, 3, 7 ], [ 4, 5, 6, 8 ], [ -1, -2, -3, -6 ],
|
|
1218
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1219
|
+
<bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3 ], [ 5, -1, -7 ],
|
|
1220
|
+
[ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 6, 7, 8, -3, -4, -5, -6, -8 ],
|
|
1221
|
+
[ 3, 4, 5, -1, -7 ], [ -2 ]>,
|
|
1222
|
+
<bipartition: [ 1, 2, 5, 6, 7, -3, -4, -5, -6, -8 ], [ 3, 8, -1, -7 ],
|
|
1223
|
+
[ 4 ], [ -2 ]>,
|
|
1224
|
+
<bipartition: [ 1, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
|
|
1225
|
+
[ 6, 7 ], [ -2 ]>,
|
|
1226
|
+
<bipartition: [ 1, 7, 8, -1, -7 ], [ 2, 3, 5, 6, -3, -4, -5, -6, -8 ],
|
|
1227
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -7 ],
|
|
1228
|
+
[ 5, 7, 8, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
1229
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2, 7, -5 ], [ -3 ],
|
|
1230
|
+
[ -6, -8 ]>, <bipartition: [ 1, 3, 4, -5 ], [ 2, 6, 8, -1, -2, -4, -7 ],
|
|
1231
|
+
[ 5, 7 ], [ -3 ], [ -6, -8 ]>,
|
|
1232
|
+
<bipartition: [ 1, 2, 4, 7, 8, -1, -2, -4, -7 ], [ 3, 5, 6, -5 ], [ -3 ],
|
|
1233
|
+
[ -6, -8 ]>,
|
|
1234
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -5 ], [ 5, 7, -1, -2, -4, -7 ],
|
|
1235
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1236
|
+
<bipartition: [ 1, 5, 8, -1, -2, -4, -7 ], [ 2, 3, 4, -5 ], [ 6, 7 ],
|
|
1237
|
+
[ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -7 ], [ 3, 5, 6 ],
|
|
1238
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1239
|
+
<bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7, 8, -7 ], [ -1, -2 ],
|
|
1240
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1241
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -4, -6 ], [ 5, 6, -2, -5 ],
|
|
1242
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -4, -6 ],
|
|
1243
|
+
[ 5, -2, -5 ], [ 6, 8 ], [ -7, -8 ]>,
|
|
1244
|
+
<bipartition: [ 1, 2, 6, 7, 8, -1, -3, -4, -6 ], [ 3, 4, 5, -2, -5 ],
|
|
1245
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -4, -6 ],
|
|
1246
|
+
[ 3, 8, -2, -5 ], [ 4 ], [ -7, -8 ]>,
|
|
1247
|
+
<bipartition: [ 1 ], [ 2, 3, 4, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
|
|
1248
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1249
|
+
<bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5 ], [ 4 ], [ 6, -1, -3, -4, -6 ]
|
|
1250
|
+
, [ -7, -8 ]>,
|
|
1251
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -7 ], [ 5, 7, 8 ], [ -1, -2 ],
|
|
1252
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1253
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -3, -4, -6 ], [ 2, 4, 7, -2, -5 ],
|
|
1254
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -2, -4, -7 ],
|
|
1255
|
+
[ 5, 7, -5 ], [ -3 ], [ -6, -8 ]>,
|
|
1256
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -2, -4, -7 ], [ 2, 4, 7, -5 ], [ -3 ],
|
|
1257
|
+
[ -6, -8 ]>,
|
|
1258
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -5 ], [ 7, 8, -1, -2, -4, -7 ], [ -3 ],
|
|
1259
|
+
[ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -5 ], [ 2, -1, -2, -4, -7 ],
|
|
1260
|
+
[ 6 ], [ 8 ], [ -3 ], [ -6, -8 ]>,
|
|
1261
|
+
<bipartition: [ 1, 6, 7, 8, -5 ], [ 2, 3, 5, -1, -2, -4, -7 ], [ 4 ],
|
|
1262
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1263
|
+
<bipartition: [ 1, 3, 5, 6, 8, -5 ], [ 2 ], [ 4, 7, -1, -2, -4, -7 ],
|
|
1264
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1265
|
+
<bipartition: [ 1, 3, 4, 5, 8, -7 ], [ 2, 7 ], [ 6 ], [ -1, -2 ],
|
|
1266
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1267
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8 ], [ 5, 7, -7 ], [ -1, -2 ],
|
|
1268
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1269
|
+
<bipartition: [ 1, 2, 3, 4, 8 ], [ 5, -7 ], [ 6, 7 ], [ -1, -2 ],
|
|
1270
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1271
|
+
<bipartition: [ 1, 2, 3, 4, 5 ], [ 6, 7 ], [ 8, -7 ], [ -1, -2 ],
|
|
1272
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1273
|
+
<bipartition: [ 1, 2, 4, 7 ], [ 3, 5, -7 ], [ 6, 8 ], [ -1, -2 ],
|
|
1274
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1275
|
+
<bipartition: [ 1, 2, 6, 7, 8 ], [ 3, 4, 5, -7 ], [ -1, -2 ],
|
|
1276
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1277
|
+
<bipartition: [ 1, 3, 4, 5, 8, -1, -2, -4, -7 ], [ 2, 7, -5 ], [ 6 ],
|
|
1278
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1279
|
+
<bipartition: [ 1, 3, 4, -1, -2, -4, -7 ], [ 2, 6, 8 ], [ 5, 7, -5 ],
|
|
1280
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1281
|
+
<bipartition: [ 1, 5, 8 ], [ 2, 3, 4, 6, 7 ], [ -1, -2, -3, -6 ],
|
|
1282
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1283
|
+
<bipartition: [ 1, 5, 8, -7 ], [ 2, 3, 4 ], [ 6, 7 ], [ -1, -2 ],
|
|
1284
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1285
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -4, -8 ], [ 7, 8, -1, -2, -3, -5, -6 ],
|
|
1286
|
+
[ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -5 ], [ 2, 6, 8, -1, -2, -4, -7 ]
|
|
1287
|
+
, [ -3 ], [ -6, -8 ]>,
|
|
1288
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -5 ], [ 2, -1, -2, -4, -7 ], [ -3 ],
|
|
1289
|
+
[ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -2, -4 ], [ 6 ],
|
|
1290
|
+
[ 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
1291
|
+
<bipartition: [ 1, 4, -1, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -4 ],
|
|
1292
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1293
|
+
<bipartition: [ 1, 2, 4, 5, 7, -7 ], [ 3 ], [ 6, 8 ], [ -1, -2 ],
|
|
1294
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1295
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -7 ], [ 5, 7 ], [ -1, -2 ],
|
|
1296
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1297
|
+
<bipartition: [ 1, 3, 4, 6, 7, -2, -4 ], [ 2, 5, 8, -1, -6 ],
|
|
1298
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1299
|
+
<bipartition: [ 1, 8, -1, -6 ], [ 2, 3, 4, 5, -2, -4 ], [ 6, 7 ],
|
|
1300
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1301
|
+
<bipartition: [ 1, 3, 4, 5, 7, -7 ], [ 2, 6, 8 ], [ -1, -2 ],
|
|
1302
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1303
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2, 7, -2, -4 ],
|
|
1304
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1305
|
+
<bipartition: [ 1, 3, 4, 5, 7, -2, -4 ], [ 2, 6, 8, -1, -6 ],
|
|
1306
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1307
|
+
<bipartition: [ 1, 2, 4, 7, -7 ], [ 3, 5 ], [ 6, 8 ], [ -1, -2 ],
|
|
1308
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1309
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2 ], [ 7, -5 ],
|
|
1310
|
+
[ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 4 ], [ 2, 3, 5, 6, 7, 8, -7 ],
|
|
1311
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1312
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2 ], [ 7, -7 ], [ -1, -2 ],
|
|
1313
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1314
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -5 ], [ 6, 8 ], [ -1, -2, -3, -6 ]
|
|
1315
|
+
, [ -7 ], [ -8 ]>, <bipartition: [ 1, 2, 8 ], [ 3, 4, 5, 6, 7, -7 ],
|
|
1316
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1317
|
+
<bipartition: [ 1, 2, 3, 4, 8, -7 ], [ 5 ], [ 6, 7 ], [ -1, -2 ],
|
|
1318
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1319
|
+
<bipartition: [ 1, 5, 8 ], [ 2, 4, 7 ], [ 3, 6 ], [ -1, -2, -3, -6 ],
|
|
1320
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1321
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
|
|
1322
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1323
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -7 ], [ 2, 7 ], [ -1, -2 ],
|
|
1324
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1325
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -7 ], [ 5, 7 ], [ -1, -2 ],
|
|
1326
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1327
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -1, -4, -5 ], [ 6 ], [ 7, -3, -8 ],
|
|
1328
|
+
[ -2, -6, -7 ]>,
|
|
1329
|
+
<bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -3, -5, -8 ],
|
|
1330
|
+
[ -2, -6, -7 ]>,
|
|
1331
|
+
<bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -3, -5, -8 ],
|
|
1332
|
+
[ -2, -6, -7 ]>,
|
|
1333
|
+
<bipartition: [ 1, 8, -1, -3, -5, -8 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
|
|
1334
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -5, -8 ],
|
|
1335
|
+
[ 5, 6, -4 ], [ -2, -6, -7 ]>,
|
|
1336
|
+
<bipartition: [ 1, 2, 3, 4, 7, -1, -3, -5, -8 ], [ 5, -4 ], [ 6, 8 ],
|
|
1337
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -5, -8 ],
|
|
1338
|
+
[ 3, 4, 5, -4 ], [ -2, -6, -7 ]>,
|
|
1339
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -8 ], [ 3, 8, -4 ], [ 4 ],
|
|
1340
|
+
[ -2, -6, -7 ]>,
|
|
1341
|
+
<bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -3, -5, -8 ], [ 4 ],
|
|
1342
|
+
[ -2, -6, -7 ]>,
|
|
1343
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -3, -5, -8 ],
|
|
1344
|
+
[ -2, -6, -7 ]>,
|
|
1345
|
+
<bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -3, -5, -8 ],
|
|
1346
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -5, -8 ],
|
|
1347
|
+
[ 3, 5, 6, -4 ], [ -2, -6, -7 ]>,
|
|
1348
|
+
<bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -5, -8 ],
|
|
1349
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, -7 ], [ 2, 7, 8 ],
|
|
1350
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1351
|
+
<bipartition: [ 1, 5, 6, 7, -7 ], [ 2, 3, 4 ], [ 8 ], [ -1, -2 ],
|
|
1352
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1353
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8 ], [ 5, 7, -7 ], [ -1, -2 ],
|
|
1354
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1355
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -6, -7 ],
|
|
1356
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8 ], [ 5, 7, -7 ],
|
|
1357
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1358
|
+
<bipartition: [ 1, 4, 5, 8, -7 ], [ 2, 3, 6 ], [ 7 ], [ -1, -2 ],
|
|
1359
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1360
|
+
<bipartition: [ 1, 3, 5, 6, 8, -7 ], [ 2 ], [ 4, 7 ], [ -1, -2 ],
|
|
1361
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1362
|
+
<bipartition: [ 1, 3, 4, 6, 7, -1, -3, -6, -7 ], [ 2, 5, 8, -4 ],
|
|
1363
|
+
[ -2, -5, -8 ]>,
|
|
1364
|
+
<bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -3, -6, -7 ], [ 6, 7 ],
|
|
1365
|
+
[ -2, -5, -8 ]>,
|
|
1366
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -6, -7 ],
|
|
1367
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1368
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -6, -7 ], [ 2, 6, 8, -4 ],
|
|
1369
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1370
|
+
<bipartition: [ 1, -1, -7 ], [ 2, 3, 4, 5, 6, 7, -3, -4, -5, -6, -8 ],
|
|
1371
|
+
[ 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -7 ], [ 4 ],
|
|
1372
|
+
[ 6, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
1373
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
|
|
1374
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1375
|
+
<bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
|
|
1376
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1377
|
+
<bipartition: [ 1, 2, 3, 4, 5, 7 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
|
|
1378
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1379
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ], [ -4, -5 ],
|
|
1380
|
+
[ -7 ], [ -8 ]>,
|
|
1381
|
+
<bipartition: [ 1, 2, 3, 5, 6, 7, 8 ], [ 4 ], [ -1, -2, -3, -6 ],
|
|
1382
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1383
|
+
<bipartition: [ 1, 2, 3, 4, 5, 7, 8 ], [ 6 ], [ -1, -2, -3, -6 ],
|
|
1384
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1385
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, 8 ], [ 7 ], [ -1, -2, -3, -6 ],
|
|
1386
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1387
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
1388
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1389
|
+
<bipartition: [ 1, 5, 7, 8 ], [ 2, 3, 4 ], [ 6 ], [ -1, -2, -3, -6 ],
|
|
1390
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1391
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
|
|
1392
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1393
|
+
<bipartition: [ 1, 2, 3, 4, 7, -3, -4, -5, -6, -8 ], [ 5, -1, -7 ],
|
|
1394
|
+
[ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -7 ], [ 6 ], [ 7 ],
|
|
1395
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1396
|
+
<bipartition: [ 1, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 6, -1, -7 ],
|
|
1397
|
+
[ 7 ], [ -2 ]>,
|
|
1398
|
+
<bipartition: [ 1, 8, -1, -7 ], [ 2, 3, 4, 5, -3, -4, -5, -6, -8 ],
|
|
1399
|
+
[ 6, 7 ], [ -2 ]>,
|
|
1400
|
+
<bipartition: [ 1, 5, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 6, 7 ],
|
|
1401
|
+
[ 8, -1, -7 ], [ -2 ]>,
|
|
1402
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2 ],
|
|
1403
|
+
[ 7, -1, -7 ], [ -2 ]>,
|
|
1404
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -5, -7 ], [ 5, 7, -4, -6, -8 ],
|
|
1405
|
+
[ -2 ]>,
|
|
1406
|
+
<bipartition: [ 1, 3, 4, 6, 7, -1, -7 ], [ 2, 5, 8, -3, -4, -5, -6, -8 ],
|
|
1407
|
+
[ -2 ]>,
|
|
1408
|
+
<bipartition: [ 1, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 4, -1, -7 ],
|
|
1409
|
+
[ 6, 7 ], [ -2 ]>,
|
|
1410
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -7 ], [ 3, 8, -3, -4, -5, -6, -8 ],
|
|
1411
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -3, -4, -5, -6, -8 ],
|
|
1412
|
+
[ 2, 7, -1, -7 ], [ 6 ], [ -2 ]>,
|
|
1413
|
+
<bipartition: [ 1, 5, 6, 7, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
|
|
1414
|
+
[ 8 ], [ -2 ]>,
|
|
1415
|
+
<bipartition: [ 1, 7, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, -1, -7 ],
|
|
1416
|
+
[ 4 ], [ -2 ]>,
|
|
1417
|
+
<bipartition: [ 1, 2, 4, 7, 8, -1, -7 ], [ 3, 5, 6, -3, -4, -5, -6, -8 ],
|
|
1418
|
+
[ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -3, -4, -5, -6, -8 ],
|
|
1419
|
+
[ 5, 7, 8, -1, -7 ], [ -2 ]>,
|
|
1420
|
+
<bipartition: [ 1, 2, 5, 6, 7, -7 ], [ 3, 8 ], [ 4 ], [ -1, -2 ],
|
|
1421
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1422
|
+
<bipartition: [ 1, 4, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -4, -7 ], [ -3 ],
|
|
1423
|
+
[ -6, -8 ]>, <bipartition: [ 1, 8 ], [ 2, 3, 4, 5, -7 ], [ 6, 7 ],
|
|
1424
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1425
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2, 7, -7 ], [ -1, -2 ],
|
|
1426
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1427
|
+
<bipartition: [ 1, -2, -5 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -4, -6 ], [ 8 ],
|
|
1428
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -2, -5 ], [ 4 ],
|
|
1429
|
+
[ 6, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
1430
|
+
<bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5, 6, -1, -3, -4, -6 ], [ 4 ],
|
|
1431
|
+
[ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -2, -5 ],
|
|
1432
|
+
[ 5, 7, 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
1433
|
+
<bipartition: [ 1, 5, -1, -3, -4, -6 ], [ 2, 3, 4, 6, 7 ], [ 8, -2, -5 ],
|
|
1434
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ],
|
|
1435
|
+
[ 7, -2, -5 ], [ -7, -8 ]>,
|
|
1436
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -2, -5 ], [ 7, 8, -1, -3, -4, -6 ],
|
|
1437
|
+
[ -7, -8 ]>,
|
|
1438
|
+
<bipartition: [ 1, 3, 4, 5, 7, -2, -5 ], [ 2, -1, -3, -4, -6 ], [ 6 ],
|
|
1439
|
+
[ 8 ], [ -7, -8 ]>,
|
|
1440
|
+
<bipartition: [ 1, 3, 4, 6, 7, -2, -5 ], [ 2, 5, 8, -1, -3, -4, -6 ],
|
|
1441
|
+
[ -7, -8 ]>,
|
|
1442
|
+
<bipartition: [ 1, -1, -3, -4, -6 ], [ 2, 3, 4, 5, 6, 7, -2, -5 ], [ 8 ],
|
|
1443
|
+
[ -7, -8 ]>,
|
|
1444
|
+
<bipartition: [ 1, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 6, 7 ],
|
|
1445
|
+
[ -7, -8 ]>,
|
|
1446
|
+
<bipartition: [ 1, 6, 7, 8, -2, -5 ], [ 2, 3, 5, -1, -3, -4, -6 ], [ 4 ],
|
|
1447
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8 ], [ 2, 7, -7 ], [ 6 ],
|
|
1448
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1449
|
+
<bipartition: [ 1, 7, 8 ], [ 2, 3, 5, 6, -7 ], [ 4 ], [ -1, -2 ],
|
|
1450
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1451
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6 ], [ 5, 7, 8, -7 ], [ -1, -2 ],
|
|
1452
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1453
|
+
<bipartition: [ 1, 2, 3, 4, 8, -1, -3, -4, -6 ], [ 5, -2, -5 ], [ 6, 7 ],
|
|
1454
|
+
[ -7, -8 ]>, <bipartition: [ 1, 4, -5 ], [ 2, 7, 8, -1, -2, -4, -7 ],
|
|
1455
|
+
[ 3, 5, 6 ], [ -3 ], [ -6, -8 ]>,
|
|
1456
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8 ], [ 5, 6, -7 ], [ -1, -2 ],
|
|
1457
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1458
|
+
<bipartition: [ 1, 2, 3, 4, 7 ], [ 5, -7 ], [ 6, 8 ], [ -1, -2 ],
|
|
1459
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1460
|
+
<bipartition: [ 1, 7, 8, -7 ], [ 2, 3, 5, 6 ], [ 4 ], [ -1, -2 ],
|
|
1461
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1462
|
+
<bipartition: [ 1, 2, 4, 5, 7 ], [ 3, -7 ], [ 6, 8 ], [ -1, -2 ],
|
|
1463
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1464
|
+
<bipartition: [ 1, 3, 4, -7 ], [ 2, 5, 6, 7, 8 ], [ -1, -2 ],
|
|
1465
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1466
|
+
<bipartition: [ 1, 2, 4, 7, 8 ], [ 3, 5, 6, -7 ], [ -1, -2 ],
|
|
1467
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1468
|
+
<bipartition: [ 1, 5, -7 ], [ 2, 3, 4, 6, 7, 8 ], [ -1, -2 ],
|
|
1469
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1470
|
+
<bipartition: [ 1, 4, 5, 8 ], [ 2, 3, 6, -7 ], [ 7 ], [ -1, -2 ],
|
|
1471
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1472
|
+
<bipartition: [ 1, 8, -7 ], [ 2, 3, 4, 5 ], [ 6, 7 ], [ -1, -2 ],
|
|
1473
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1474
|
+
<bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7 ], [ 8, -7 ], [ -1, -2 ],
|
|
1475
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1476
|
+
<bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
|
|
1477
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1478
|
+
<bipartition: [ 1, 4, -7 ], [ 2, 3, 5, 6, 7, 8 ], [ -1, -2 ],
|
|
1479
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1480
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
|
|
1481
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1482
|
+
<bipartition: [ 1, 5, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 6, 7, 8, -4, -8 ],
|
|
1483
|
+
[ -7 ]>, <bipartition: [ 1, 5, 6, 7, -2, -4 ], [ 2, 3, 4, -1, -6 ],
|
|
1484
|
+
[ 8 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
1485
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -6 ], [ 5, 7, -2, -4 ],
|
|
1486
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1487
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -1, -6 ], [ 5, 7, -2, -4 ],
|
|
1488
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1489
|
+
<bipartition: [ 1, 5, 8, -2, -4 ], [ 2, 3, 4, -1, -6 ], [ 6, 7 ],
|
|
1490
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1491
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -6 ], [ 2, 4, 7, -2, -4 ],
|
|
1492
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1493
|
+
<bipartition: [ 1, 2, 3, 4, -1, -6 ], [ 5, 6, 7, -2, -4 ], [ 8 ],
|
|
1494
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1495
|
+
<bipartition: [ 1, 4, -2, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6 ],
|
|
1496
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1497
|
+
<bipartition: [ 1, 2, 3, 4, 7, -7 ], [ 5 ], [ 6, 8 ], [ -1, -2 ],
|
|
1498
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1499
|
+
<bipartition: [ 1, 2, 6, 7, 8, -7 ], [ 3, 4, 5 ], [ -1, -2 ],
|
|
1500
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1501
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -2, -4, -7 ], [ 3, -5 ], [ 6, 8 ],
|
|
1502
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1503
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
|
|
1504
|
+
, [ -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, 8, -7 ],
|
|
1505
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1506
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -7 ], [ 5, 6 ], [ -1, -2 ],
|
|
1507
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1508
|
+
<bipartition: [ 1, 3, 4, 5, 8 ], [ 2, 7 ], [ 6 ], [ -1, -2, -3, -6 ],
|
|
1509
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1510
|
+
<bipartition: [ 1, 2, 3, 4, 8 ], [ 5 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
|
|
1511
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1512
|
+
<bipartition: [ 1, 2, 3, 4, -7 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2 ],
|
|
1513
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1514
|
+
<bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -3, -5, -8 ], [ 6, 8 ],
|
|
1515
|
+
[ -2, -6, -7 ]>,
|
|
1516
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ],
|
|
1517
|
+
[ -2, -6, -7 ]>,
|
|
1518
|
+
<bipartition: [ 1, 3, 4, -1, -3, -5, -8 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
|
|
1519
|
+
[ -2, -6, -7 ]>,
|
|
1520
|
+
<bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -3, -5, -8 ],
|
|
1521
|
+
[ -2, -6, -7 ]>,
|
|
1522
|
+
<bipartition: [ 1, 5, -1, -3, -5, -8 ], [ 2, 3, 4, 6, 7, 8, -4 ],
|
|
1523
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -5, -8 ],
|
|
1524
|
+
[ 5, 7, -4 ], [ -2, -6, -7 ]>,
|
|
1525
|
+
<bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 6, 7 ],
|
|
1526
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -8 ],
|
|
1527
|
+
[ 2, 4, 7, -4 ], [ -2, -6, -7 ]>,
|
|
1528
|
+
<bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
|
|
1529
|
+
[ -2, -6, -7 ]>,
|
|
1530
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -3, -5, -8 ],
|
|
1531
|
+
[ -2, -6, -7 ]>,
|
|
1532
|
+
<bipartition: [ 1, 5, -1, -3, -5, -8 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
|
|
1533
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
|
|
1534
|
+
[ 2 ], [ 7, -4 ], [ -2, -6, -7 ]>,
|
|
1535
|
+
<bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -3, -5, -8 ],
|
|
1536
|
+
[ -2, -6, -7 ]>,
|
|
1537
|
+
<bipartition: [ 1, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
|
|
1538
|
+
[ -2, -6, -7 ]>,
|
|
1539
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -5, -8 ], [ 4 ],
|
|
1540
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -8 ],
|
|
1541
|
+
[ 2, 7, -4 ], [ 6 ], [ -2, -6, -7 ]>,
|
|
1542
|
+
<bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 8 ],
|
|
1543
|
+
[ -2, -6, -7 ]>,
|
|
1544
|
+
<bipartition: [ 1, 7, 8, -1, -3, -5, -8 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
|
|
1545
|
+
[ -2, -6, -7 ]>,
|
|
1546
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -5, -8 ], [ 5, 7, 8, -4 ],
|
|
1547
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -5, -8 ],
|
|
1548
|
+
[ 2, 5, 8, -4 ], [ -2, -6, -7 ]>,
|
|
1549
|
+
<bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -3, -5, -8 ], [ 6, 7 ],
|
|
1550
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -8 ],
|
|
1551
|
+
[ 2, 6, 8, -4 ], [ -2, -6, -7 ]>,
|
|
1552
|
+
<bipartition: [ 1, 4 ], [ 2, 3, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
|
|
1553
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1554
|
+
<bipartition: [ 1, 5, 6, 7, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
|
|
1555
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
|
|
1556
|
+
[ 5, 7, -1, -3, -6, -7 ], [ -2, -5, -8 ]>,
|
|
1557
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -3, -6, -7 ],
|
|
1558
|
+
[ -2, -5, -8 ]>,
|
|
1559
|
+
<bipartition: [ 1, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
|
|
1560
|
+
[ -2, -5, -8 ]>,
|
|
1561
|
+
<bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -3, -6, -7 ],
|
|
1562
|
+
[ -2, -5, -8 ]>,
|
|
1563
|
+
<bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -6, -7 ], [ 8 ],
|
|
1564
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1565
|
+
<bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
|
|
1566
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -7 ],
|
|
1567
|
+
[ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
1568
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -1, -7 ], [ 7, 8, -3, -4, -5, -6, -8 ],
|
|
1569
|
+
[ -2 ]>,
|
|
1570
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -7 ], [ 2, -3, -4, -5, -6, -8 ], [ 6 ],
|
|
1571
|
+
[ 8 ], [ -2 ]>,
|
|
1572
|
+
<bipartition: [ 1, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -7 ],
|
|
1573
|
+
[ 8 ], [ -2 ]>,
|
|
1574
|
+
<bipartition: [ 1, 6, 7, 8, -1, -7 ], [ 2, 3, 5, -3, -4, -5, -6, -8 ],
|
|
1575
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7 ], [ 3, 5 ], [ 6, 8 ],
|
|
1576
|
+
[ -1, -2, -3, -6 ], [ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1577
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
|
|
1578
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1579
|
+
<bipartition: [ 1, 2, 5, 6, 7 ], [ 3, 8 ], [ 4 ], [ -1, -2, -3, -6 ],
|
|
1580
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1581
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8 ], [ 2 ], [ -1, -2, -3, -6 ],
|
|
1582
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1583
|
+
<bipartition: [ 1, 2, 3, 4, 5, 7 ], [ 6 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
1584
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1585
|
+
<bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
1586
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1587
|
+
<bipartition: [ 1, 3, 4, 5, 7, 8 ], [ 2 ], [ 6 ], [ -1, -2, -3, -6 ],
|
|
1588
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1589
|
+
<bipartition: [ 1, 3, 4, 6, 7 ], [ 2, 5, 8 ], [ -1, -2, -3, -6 ],
|
|
1590
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1591
|
+
<bipartition: [ 1 ], [ 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
1592
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1593
|
+
<bipartition: [ 1, 6, 7, 8 ], [ 2, 3, 5 ], [ 4 ], [ -1, -2, -3, -6 ],
|
|
1594
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1595
|
+
<bipartition: [ 1, 2, 4, 5, 7 ], [ 3 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
|
|
1596
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1597
|
+
<bipartition: [ 1, 2, 4, 7, 8 ], [ 3, 5, 6 ], [ -1, -2, -3, -6 ],
|
|
1598
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1599
|
+
<bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7, 8 ], [ -1, -2, -3, -6 ],
|
|
1600
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1601
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6 ], [ 5, 7, 8 ], [ -1, -2, -3, -6 ],
|
|
1602
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1603
|
+
<bipartition: [ 1, 2, 3, 4, 5 ], [ 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
1604
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1605
|
+
<bipartition: [ 1, 2, 6, 7, 8 ], [ 3, 4, 5 ], [ -1, -2, -3, -6 ],
|
|
1606
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1607
|
+
<bipartition: [ 1, 3, 4, 5, 7 ], [ 2, 6, 8 ], [ -1, -2, -3, -6 ],
|
|
1608
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1609
|
+
<bipartition: [ 1, 5, 8 ], [ 2, 3, 4 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
|
|
1610
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1611
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -1, -7 ], [ 5, 7, -3, -4, -5, -6, -8 ],
|
|
1612
|
+
[ -2 ]>,
|
|
1613
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -7 ], [ 2, 4, 7, -3, -4, -5, -6, -8 ],
|
|
1614
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ],
|
|
1615
|
+
[ 2, 7, -1, -7 ], [ -2 ]>,
|
|
1616
|
+
<bipartition: [ 1, 3, 4, -1, -7 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ],
|
|
1617
|
+
[ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7, 8, -3, -4, -5, -6, -8 ],
|
|
1618
|
+
[ 3, 5, 6, -1, -7 ], [ -2 ]>,
|
|
1619
|
+
<bipartition: [ 1, 5, -1, -7 ], [ 2, 3, 4, 6, 7, 8, -3, -4, -5, -6, -8 ],
|
|
1620
|
+
[ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -3, -4, -5, -6, -8 ],
|
|
1621
|
+
[ 3, -1, -7 ], [ 6, 8 ], [ -2 ]>,
|
|
1622
|
+
<bipartition: [ 1, 2, 4, 7, -1, -3, -5, -7 ], [ 3, 5, -4, -6, -8 ],
|
|
1623
|
+
[ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -7 ],
|
|
1624
|
+
[ 3, 8, -4, -6, -8 ], [ 4 ], [ -2 ]>,
|
|
1625
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -3, -4, -5, -6, -8 ],
|
|
1626
|
+
[ 5, 7, -1, -7 ], [ -2 ]>,
|
|
1627
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -3, -4, -5, -6, -8 ], [ 5, 7, -1, -7 ],
|
|
1628
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2 ],
|
|
1629
|
+
[ 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
1630
|
+
<bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ], [ 2, 5, 8, -1, -7 ],
|
|
1631
|
+
[ -2 ]>,
|
|
1632
|
+
<bipartition: [ 1, 5, 8, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
|
|
1633
|
+
[ 6, 7 ], [ -2 ]>,
|
|
1634
|
+
<bipartition: [ 1, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 5, -1, -7 ],
|
|
1635
|
+
[ 6, 7 ], [ -2 ]>,
|
|
1636
|
+
<bipartition: [ 1, 3, 4, 5, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
|
|
1637
|
+
[ 6 ], [ -2 ]>, <bipartition: [ 1, 5, 6, 7, -3, -4, -5, -6, -8 ],
|
|
1638
|
+
[ 2, 3, 4, -1, -7 ], [ 8 ], [ -2 ]>,
|
|
1639
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -7 ], [ 2 ], [ 7 ], [ -1, -2 ],
|
|
1640
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1641
|
+
<bipartition: [ 1, 3, 5, 6, 8 ], [ 2, 4, 7, -7 ], [ -1, -2 ],
|
|
1642
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1643
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -2, -5 ], [ 5, 7, -1, -3, -4, -6 ],
|
|
1644
|
+
[ -7, -8 ]>,
|
|
1645
|
+
<bipartition: [ 1, 2, 5, 6, 7, -2, -5 ], [ 3, 8, -1, -3, -4, -6 ], [ 4 ],
|
|
1646
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -4, -6 ],
|
|
1647
|
+
[ 2, 7, -2, -5 ], [ 6 ], [ -7, -8 ]>,
|
|
1648
|
+
<bipartition: [ 1, 5, 6, 7, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 8 ],
|
|
1649
|
+
[ -7, -8 ]>,
|
|
1650
|
+
<bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 5, 6, -2, -5 ], [ 4 ],
|
|
1651
|
+
[ -7, -8 ]>,
|
|
1652
|
+
<bipartition: [ 1, 2, 4, 7, 8, -2, -5 ], [ 3, 5, 6, -1, -3, -4, -6 ],
|
|
1653
|
+
[ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -4, -6 ],
|
|
1654
|
+
[ 5, 7, 8, -2, -5 ], [ -7, -8 ]>,
|
|
1655
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2, 7, -2, -5 ],
|
|
1656
|
+
[ -7, -8 ]>,
|
|
1657
|
+
<bipartition: [ 1, 3, 4, -2, -5 ], [ 2, 6, 8, -1, -3, -4, -6 ], [ 5, 7 ],
|
|
1658
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -4, -6 ],
|
|
1659
|
+
[ 3, 5, 6, -2, -5 ], [ -7, -8 ]>,
|
|
1660
|
+
<bipartition: [ 1, 5, -2, -5 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -4, -6 ],
|
|
1661
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -4, -6 ],
|
|
1662
|
+
[ 3, -2, -5 ], [ 6, 8 ], [ -7, -8 ]>,
|
|
1663
|
+
<bipartition: [ 1, 5, -1, -3, -4, -6 ], [ 2, 3, 4, 6, 7, 8, -2, -5 ],
|
|
1664
|
+
[ -7, -8 ]>,
|
|
1665
|
+
<bipartition: [ 1, 2, 8, -1, -3, -4, -6 ], [ 3, 4, 5, 6, 7, -2, -5 ],
|
|
1666
|
+
[ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -4, -6 ],
|
|
1667
|
+
[ 5, 6, 7, -2, -5 ], [ 8 ], [ -7, -8 ]>,
|
|
1668
|
+
<bipartition: [ 1, 2, 3, 4, 8, -2, -5 ], [ 5, -1, -3, -4, -6 ], [ 6, 7 ],
|
|
1669
|
+
[ -7, -8 ]>,
|
|
1670
|
+
<bipartition: [ 1, 4, -2, -5 ], [ 2, 7, 8, -1, -3, -4, -6 ], [ 3, 5, 6 ],
|
|
1671
|
+
[ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -2, -5 ],
|
|
1672
|
+
[ 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
1673
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -4, -6 ], [ 5, 7, -2, -5 ]
|
|
1674
|
+
, [ -7, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -4, -6 ],
|
|
1675
|
+
[ 5, 7, -2, -5 ], [ -7, -8 ]>,
|
|
1676
|
+
<bipartition: [ 1, 5, 8, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 6, 7 ],
|
|
1677
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -4, -6 ],
|
|
1678
|
+
[ 5, 7, -2, -5 ], [ -7, -8 ]>,
|
|
1679
|
+
<bipartition: [ 1, 4, 5, 8, -2, -5 ], [ 2, 3, 6, -1, -3, -4, -6 ], [ 7 ],
|
|
1680
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -2, -5 ], [ 2 ],
|
|
1681
|
+
[ 4, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
1682
|
+
<bipartition: [ 1, 3, 4, 6, 7 ], [ 2, 5, 8, -7 ], [ -1, -2 ],
|
|
1683
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1684
|
+
<bipartition: [ 1, 5, 6, 7 ], [ 2, 3, 4, -7 ], [ 8 ], [ -1, -2 ],
|
|
1685
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1686
|
+
<bipartition: [ 1, -7 ], [ 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2 ],
|
|
1687
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1688
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -7 ], [ 4 ], [ 6 ], [ -1, -2 ],
|
|
1689
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1690
|
+
<bipartition: [ 1, 5, 8 ], [ 2, 3, 4, -7 ], [ 6, 7 ], [ -1, -2 ],
|
|
1691
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1692
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6 ], [ 7, -7 ], [ -1, -2 ],
|
|
1693
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1694
|
+
<bipartition: [ 1, 3, 4, 5, 7 ], [ 2, 6, 8, -7 ], [ -1, -2 ],
|
|
1695
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1696
|
+
<bipartition: [ 1, 3, 5, 6, 8, -7 ], [ 2, 4, 7 ], [ -1, -2 ],
|
|
1697
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1698
|
+
<bipartition: [ 1, 3, 4, -7 ], [ 2, 6, 8 ], [ 5, 7 ], [ -1, -2 ],
|
|
1699
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1700
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2, 7, -4, -8 ],
|
|
1701
|
+
[ -7 ]>,
|
|
1702
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4, -8 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ],
|
|
1703
|
+
[ -7 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -6 ], [ 3, 8, -2, -4 ],
|
|
1704
|
+
[ 4 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
1705
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -2, -4 ], [ 5, 7, 8, -1, -6 ],
|
|
1706
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1707
|
+
<bipartition: [ 1, 2, 4, 7, -1, -6 ], [ 3, 5, -2, -4 ], [ 6, 8 ],
|
|
1708
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1709
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -2, -4 ], [ 5, 7, -1, -6 ],
|
|
1710
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1711
|
+
<bipartition: [ 1, 2, 3, 4, 8, -1, -6 ], [ 5, -2, -4 ], [ 6, 7 ],
|
|
1712
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1713
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -1, -2, -4, -7 ], [ 6 ], [ 7, -5 ],
|
|
1714
|
+
[ -3 ], [ -6, -8 ]>,
|
|
1715
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8 ], [ 4 ], [ 6, -7 ], [ -1, -2 ],
|
|
1716
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1717
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8 ], [ 5, 6 ], [ -1, -2, -3, -6 ],
|
|
1718
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1719
|
+
<bipartition: [ 1, 2, 3, 4, 7 ], [ 5 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
|
|
1720
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1721
|
+
<bipartition: [ 1, 7, 8 ], [ 2, 3, 5, 6 ], [ 4 ], [ -1, -2, -3, -6 ],
|
|
1722
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1723
|
+
<bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -3, -5, -8 ], [ 6, 8 ],
|
|
1724
|
+
[ -2, -6, -7 ]>,
|
|
1725
|
+
<bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -3, -5, -8 ],
|
|
1726
|
+
[ -2, -6, -7 ]>,
|
|
1727
|
+
<bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -5, -8 ], [ 7 ],
|
|
1728
|
+
[ -2, -6, -7 ]>,
|
|
1729
|
+
<bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
|
|
1730
|
+
[ -2, -6, -7 ]>,
|
|
1731
|
+
<bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 3, 5, 6, 7, 8, -4 ],
|
|
1732
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
|
|
1733
|
+
[ 2, 7, -4 ], [ -2, -6, -7 ]>,
|
|
1734
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -3, -5, -8 ],
|
|
1735
|
+
[ -2, -6, -7 ]>,
|
|
1736
|
+
<bipartition: [ 1, 2, 4, 7, -1, -3, -5, -8 ], [ 3, 5, -4 ], [ 6, 8 ],
|
|
1737
|
+
[ -2, -6, -7 ]>,
|
|
1738
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -3, -5, -8 ],
|
|
1739
|
+
[ -2, -6, -7 ]>,
|
|
1740
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -3, -5, -8 ],
|
|
1741
|
+
[ -2, -6, -7 ]>,
|
|
1742
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -3, -5, -8 ],
|
|
1743
|
+
[ -2, -6, -7 ]>,
|
|
1744
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -3, -5, -8 ], [ 6 ], [ 8 ],
|
|
1745
|
+
[ -2, -6, -7 ]>,
|
|
1746
|
+
<bipartition: [ 1, -1, -3, -5, -8 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
|
|
1747
|
+
[ -2, -6, -7 ]>,
|
|
1748
|
+
<bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -3, -5, -8 ], [ 4 ],
|
|
1749
|
+
[ -2, -6, -7 ]>,
|
|
1750
|
+
<bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -3, -5, -8 ], [ 5, 7 ],
|
|
1751
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -8 ],
|
|
1752
|
+
[ 3, -4 ], [ 6, 8 ], [ -2, -6, -7 ]>,
|
|
1753
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -8 ], [ 5, 7, -4 ],
|
|
1754
|
+
[ -2, -6, -7 ]>,
|
|
1755
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -5, -8 ],
|
|
1756
|
+
[ -2, -6, -7 ]>,
|
|
1757
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ], [ 6 ],
|
|
1758
|
+
[ -2, -6, -7 ]>,
|
|
1759
|
+
<bipartition: [ 1, 5, 6, 7, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 8 ],
|
|
1760
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
|
|
1761
|
+
[ 5, 7, -1, -3, -5, -8 ], [ -2, -6, -7 ]>,
|
|
1762
|
+
<bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -3, -5, -8 ],
|
|
1763
|
+
[ -2, -6, -7 ]>,
|
|
1764
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -6, -7 ], [ 4 ],
|
|
1765
|
+
[ -2, -5, -8 ]>,
|
|
1766
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -6, -7 ], [ 5, 7, 8, -4 ],
|
|
1767
|
+
[ -2, -5, -8 ]>,
|
|
1768
|
+
<bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -3, -6, -7 ], [ 6, 8 ],
|
|
1769
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -6, -7 ],
|
|
1770
|
+
[ 5, 7, -4 ], [ -2, -5, -8 ]>,
|
|
1771
|
+
<bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -3, -6, -7 ], [ 6, 7 ],
|
|
1772
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -6, -7 ],
|
|
1773
|
+
[ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
1774
|
+
<bipartition: [ 1, 2, 4, 7, -1, -7 ], [ 3, 5, -3, -4, -5, -6, -8 ],
|
|
1775
|
+
[ 6, 8 ], [ -2 ]>,
|
|
1776
|
+
<bipartition: [ 1, 2, 3, 4, -1, -7 ], [ 5, 6, 7, -3, -4, -5, -6, -8 ],
|
|
1777
|
+
[ 8 ], [ -2 ]>,
|
|
1778
|
+
<bipartition: [ 1, 5, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -7 ],
|
|
1779
|
+
[ -2 ]>,
|
|
1780
|
+
<bipartition: [ 1, 2, 8, -3, -4, -5, -6, -8 ], [ 3, 4, 5, 6, 7, -1, -7 ],
|
|
1781
|
+
[ -2 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
|
|
1782
|
+
[ 5, 6, 7, -1, -7 ], [ 8 ], [ -2 ]>,
|
|
1783
|
+
<bipartition: [ 1, 2, 3, 4, 8, -1, -7 ], [ 5, -3, -4, -5, -6, -8 ],
|
|
1784
|
+
[ 6, 7 ], [ -2 ]>,
|
|
1785
|
+
<bipartition: [ 1, 4, -1, -7 ], [ 2, 7, 8, -3, -4, -5, -6, -8 ],
|
|
1786
|
+
[ 3, 5, 6 ], [ -2 ]>,
|
|
1787
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -7 ],
|
|
1788
|
+
[ 8, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
1789
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ], [ 5, 7, -1, -7 ]
|
|
1790
|
+
, [ -2 ]>,
|
|
1791
|
+
<bipartition: [ 1, 4, 5, 8, -1, -7 ], [ 2, 3, 6, -3, -4, -5, -6, -8 ],
|
|
1792
|
+
[ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -7 ], [ 2 ],
|
|
1793
|
+
[ 4, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
1794
|
+
<bipartition: [ 1, 4, 5, 8 ], [ 2, 3, 6 ], [ 7 ], [ -1, -2, -3, -6 ],
|
|
1795
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1796
|
+
<bipartition: [ 1, 8 ], [ 2, 3, 4, 5 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
|
|
1797
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1798
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2 ], [ 7 ], [ -1, -2, -3, -6 ],
|
|
1799
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1800
|
+
<bipartition: [ 1, 2, 8 ], [ 3, 4, 5, 6, 7 ], [ -1, -2, -3, -6 ],
|
|
1801
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1802
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
1803
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1804
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2, 7 ], [ -1, -2, -3, -6 ],
|
|
1805
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1806
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
|
|
1807
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1808
|
+
<bipartition: [ 1, 3, 4, 5, 6 ], [ 2, 7, 8 ], [ -1, -2, -3, -6 ],
|
|
1809
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1810
|
+
<bipartition: [ 1, 5, 6, 7 ], [ 2, 3, 4 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
1811
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1812
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
|
|
1813
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1814
|
+
<bipartition: [ 1, 3, 5, 6, 8 ], [ 2 ], [ 4, 7 ], [ -1, -2, -3, -6 ],
|
|
1815
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1816
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6 ], [ 7 ], [ -1, -2, -3, -6 ],
|
|
1817
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1818
|
+
<bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
1819
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1820
|
+
<bipartition: [ 1, 2, 3, 4, -3, -4, -5, -6, -8 ], [ 5, 6, 7, -1, -7 ],
|
|
1821
|
+
[ 8 ], [ -2 ]>,
|
|
1822
|
+
<bipartition: [ 1, 4, -1, -7 ], [ 2, 3, 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
|
|
1823
|
+
[ -2 ]>,
|
|
1824
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
|
|
1825
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, 5, 7, -3, -4, -5, -6, -8 ],
|
|
1826
|
+
[ 2, 6, 8, -1, -7 ], [ -2 ]>,
|
|
1827
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 6 ],
|
|
1828
|
+
[ 7, -1, -7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -5, -7 ],
|
|
1829
|
+
[ 5, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
|
|
1830
|
+
<bipartition: [ 1, 2, 6, 7, 8, -1, -3, -5, -7 ], [ 3, 4, 5, -4, -6, -8 ],
|
|
1831
|
+
[ -2 ]>,
|
|
1832
|
+
<bipartition: [ 1, 4, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 6, -4, -6, -8 ],
|
|
1833
|
+
[ 7 ], [ -2 ]>,
|
|
1834
|
+
<bipartition: [ 1, 8, -4, -6, -8 ], [ 2, 3, 4, 5, -1, -3, -5, -7 ],
|
|
1835
|
+
[ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
|
|
1836
|
+
[ 2 ], [ 7, -4, -6, -8 ], [ -2 ]>,
|
|
1837
|
+
<bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3, 5, -1, -7 ],
|
|
1838
|
+
[ 6, 8 ], [ -2 ]>,
|
|
1839
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -7 ], [ 3, -3, -4, -5, -6, -8 ],
|
|
1840
|
+
[ 6, 8 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -7 ],
|
|
1841
|
+
[ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
1842
|
+
<bipartition: [ 1, 3, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2, 4, 7, -1, -7 ],
|
|
1843
|
+
[ -2 ]>, <bipartition: [ 1, 2, 4, 7, -2, -5 ], [ 3, 5, -1, -3, -4, -6 ],
|
|
1844
|
+
[ 6, 8 ], [ -7, -8 ]>,
|
|
1845
|
+
<bipartition: [ 1, 2, 3, 4, -2, -5 ], [ 5, 6, 7, -1, -3, -4, -6 ], [ 8 ],
|
|
1846
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2 ],
|
|
1847
|
+
[ 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
1848
|
+
<bipartition: [ 1, 3, 4, 6, 7, -1, -3, -4, -6 ], [ 2, 5, 8, -2, -5 ],
|
|
1849
|
+
[ -7, -8 ]>,
|
|
1850
|
+
<bipartition: [ 1, 8, -1, -3, -4, -6 ], [ 2, 3, 4, 5, -2, -5 ], [ 6, 7 ],
|
|
1851
|
+
[ -7, -8 ]>,
|
|
1852
|
+
<bipartition: [ 1, 3, 4, 5, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ], [ 6 ],
|
|
1853
|
+
[ -7, -8 ]>,
|
|
1854
|
+
<bipartition: [ 1, 5, 6, 7, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 8 ],
|
|
1855
|
+
[ -7, -8 ]>,
|
|
1856
|
+
<bipartition: [ 1, 2, 3, 4, -1, -3, -4, -6 ], [ 5, 6, 7, -2, -5 ], [ 8 ],
|
|
1857
|
+
[ -7, -8 ]>,
|
|
1858
|
+
<bipartition: [ 1, 4, -2, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -4, -6 ],
|
|
1859
|
+
[ -7, -8 ]>,
|
|
1860
|
+
<bipartition: [ 1, 8, -2, -5 ], [ 2, 3, 4, 5, -1, -3, -4, -6 ], [ 6, 7 ],
|
|
1861
|
+
[ -7, -8 ]>,
|
|
1862
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ],
|
|
1863
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -4, -6 ],
|
|
1864
|
+
[ 2, 6, 8, -2, -5 ], [ -7, -8 ]>,
|
|
1865
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -4, -6 ], [ 6 ], [ 7, -2, -5 ],
|
|
1866
|
+
[ -7, -8 ]>,
|
|
1867
|
+
<bipartition: [ 1, 3, 4, 5, 7, -2, -5 ], [ 2, 6, 8, -1, -3, -4, -6 ],
|
|
1868
|
+
[ -7, -8 ]>,
|
|
1869
|
+
<bipartition: [ 1, 2, 3, 4, -1, -3, -4, -6 ], [ 5, 6, 7, 8, -2, -5 ],
|
|
1870
|
+
[ -7, -8 ]>,
|
|
1871
|
+
<bipartition: [ 1, 2, 4, 7, -1, -3, -4, -6 ], [ 3, 5, -2, -5 ], [ 6, 8 ],
|
|
1872
|
+
[ -7, -8 ]>,
|
|
1873
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -2, -5 ], [ 5, 6, -1, -3, -4, -6 ],
|
|
1874
|
+
[ -7, -8 ]>,
|
|
1875
|
+
<bipartition: [ 1, 2, 3, 4, 7, -2, -5 ], [ 5, -1, -3, -4, -6 ], [ 6, 8 ],
|
|
1876
|
+
[ -7, -8 ]>,
|
|
1877
|
+
<bipartition: [ 1, 2, 6, 7, 8, -2, -5 ], [ 3, 4, 5, -1, -3, -4, -6 ],
|
|
1878
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, -1, -3, -4, -6 ], [ 2, 6, 8 ],
|
|
1879
|
+
[ 5, 7, -2, -5 ], [ -7, -8 ]>,
|
|
1880
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -2, -5 ], [ 5, 7, -1, -3, -4, -6 ],
|
|
1881
|
+
[ -7, -8 ]>, <bipartition: [ 1, 5, -2, -5 ], [ 2, 3, 4, 6, 7 ],
|
|
1882
|
+
[ 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
1883
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -2, -5 ], [ 2, -1, -3, -4, -6 ],
|
|
1884
|
+
[ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -7 ], [ 5, 7 ],
|
|
1885
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1886
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -7 ], [ 7, 8 ], [ -1, -2 ],
|
|
1887
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1888
|
+
<bipartition: [ 1, 3, 4, 5, 7, -7 ], [ 2 ], [ 6 ], [ 8 ], [ -1, -2 ],
|
|
1889
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1890
|
+
<bipartition: [ 1, 2, 3, 4, -1, -2, -3, -5, -6 ], [ 5, 6, 7, -4, -8 ],
|
|
1891
|
+
[ 8 ], [ -7 ]>,
|
|
1892
|
+
<bipartition: [ 1, 4, -4, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
|
|
1893
|
+
[ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2 ],
|
|
1894
|
+
[ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
1895
|
+
<bipartition: [ 1, 2, 5, 6, 7, -2, -4 ], [ 3, 8, -1, -6 ], [ 4 ],
|
|
1896
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1897
|
+
<bipartition: [ 1, 3, 4, 5, 8, -1, -6 ], [ 2, 7, -2, -4 ], [ 6 ],
|
|
1898
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1899
|
+
<bipartition: [ 1, 7, 8, -1, -6 ], [ 2, 3, 5, 6, -2, -4 ], [ 4 ],
|
|
1900
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1901
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -6 ], [ 5, 7, 8, -2, -4 ],
|
|
1902
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1903
|
+
<bipartition: [ 1, 2, 3, 4, 7, -1, -6 ], [ 5, -2, -4 ], [ 6, 8 ],
|
|
1904
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1905
|
+
<bipartition: [ 1, 2, 6, 7, 8, -1, -6 ], [ 3, 4, 5, -2, -4 ],
|
|
1906
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1907
|
+
<bipartition: [ 1, 4, 5, 8, -1, -6 ], [ 2, 3, 6, -2, -4 ], [ 7 ],
|
|
1908
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1909
|
+
<bipartition: [ 1, 8, -2, -4 ], [ 2, 3, 4, 5, -1, -6 ], [ 6, 7 ],
|
|
1910
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1911
|
+
<bipartition: [ 1, 2, 4, 7, -2, -4 ], [ 3, 5, -1, -6 ], [ 6, 8 ],
|
|
1912
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1913
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -1, -6 ], [ 5, 6, -2, -4 ],
|
|
1914
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1915
|
+
<bipartition: [ 1, 7, 8, -2, -4 ], [ 2, 3, 5, 6, -1, -6 ], [ 4 ],
|
|
1916
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
1917
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6 ], [ 7, 8, -7 ], [ -1, -2 ],
|
|
1918
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1919
|
+
<bipartition: [ 1, 3, 4, 5, 7 ], [ 2, -7 ], [ 6 ], [ 8 ], [ -1, -2 ],
|
|
1920
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1921
|
+
<bipartition: [ 1, 6, 7, 8 ], [ 2, 3, 5, -7 ], [ 4 ], [ -1, -2 ],
|
|
1922
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
1923
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8 ], [ 4 ], [ 6 ], [ -1, -2, -3, -6 ],
|
|
1924
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1925
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -3, -5, -8 ],
|
|
1926
|
+
[ -2, -6, -7 ]>,
|
|
1927
|
+
<bipartition: [ 1, 2, 3, 4, -1, -3, -5, -8 ], [ 5, 6, 7, -4 ], [ 8 ],
|
|
1928
|
+
[ -2, -6, -7 ]>,
|
|
1929
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -8 ],
|
|
1930
|
+
[ -2, -6, -7 ]>,
|
|
1931
|
+
<bipartition: [ 1, 4, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 6, -4 ], [ 7 ],
|
|
1932
|
+
[ -2, -6, -7 ]>,
|
|
1933
|
+
<bipartition: [ 1, 2, 8, -1, -3, -5, -8 ], [ 3, 4, 5, 6, 7, -4 ],
|
|
1934
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -5, -8 ],
|
|
1935
|
+
[ 5, 6, 7, -4 ], [ 8 ], [ -2, -6, -7 ]>,
|
|
1936
|
+
<bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -3, -5, -8 ], [ 6, 7 ],
|
|
1937
|
+
[ -2, -6, -7 ]>,
|
|
1938
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -5, -8 ], [ 3, 5, 6 ],
|
|
1939
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ],
|
|
1940
|
+
[ 8, -1, -3, -5, -8 ], [ -2, -6, -7 ]>,
|
|
1941
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -5, -8 ], [ 5, 7, -4 ],
|
|
1942
|
+
[ -2, -6, -7 ]>,
|
|
1943
|
+
<bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -3, -5, -8 ],
|
|
1944
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -5, -8 ],
|
|
1945
|
+
[ 6 ], [ 7, -4 ], [ -2, -6, -7 ]>,
|
|
1946
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -5, -8 ], [ 6, 8 ],
|
|
1947
|
+
[ -2, -6, -7 ]>,
|
|
1948
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -6, -7 ],
|
|
1949
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -6, -7 ],
|
|
1950
|
+
[ 3, 8, -4 ], [ 4 ], [ -2, -5, -8 ]>,
|
|
1951
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ], [ 6 ],
|
|
1952
|
+
[ -2, -5, -8 ]>,
|
|
1953
|
+
<bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -3, -6, -7 ], [ 4 ],
|
|
1954
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -6, -7 ],
|
|
1955
|
+
[ 3, 5, 6, -4 ], [ -2, -5, -8 ]>,
|
|
1956
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -3, -6, -7 ],
|
|
1957
|
+
[ -2, -5, -8 ]>,
|
|
1958
|
+
<bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -3, -6, -7 ], [ 6, 8 ],
|
|
1959
|
+
[ -2, -5, -8 ]>,
|
|
1960
|
+
<bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -3, -6, -7 ],
|
|
1961
|
+
[ -2, -5, -8 ]>,
|
|
1962
|
+
<bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -6, -7 ], [ 7 ],
|
|
1963
|
+
[ -2, -5, -8 ]>,
|
|
1964
|
+
<bipartition: [ 1, 8, -1, -3, -6, -7 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
|
|
1965
|
+
[ -2, -5, -8 ]>,
|
|
1966
|
+
<bipartition: [ 1, 2, 4, 7, -1, -3, -6, -7 ], [ 3, 5, -4 ], [ 6, 8 ],
|
|
1967
|
+
[ -2, -5, -8 ]>,
|
|
1968
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -3, -6, -7 ],
|
|
1969
|
+
[ -2, -5, -8 ]>,
|
|
1970
|
+
<bipartition: [ 1, 7, 8, -1, -3, -6, -7 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
|
|
1971
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -6, -7 ],
|
|
1972
|
+
[ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
1973
|
+
<bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -6, -7 ],
|
|
1974
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1975
|
+
<bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -6, -7 ], [ 7 ],
|
|
1976
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1977
|
+
<bipartition: [ 1, 8, -1, -6, -7 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
|
|
1978
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
1979
|
+
<bipartition: [ 1, 2, 3, 4, 7, -1, -7 ], [ 5, -3, -4, -5, -6, -8 ],
|
|
1980
|
+
[ 6, 8 ], [ -2 ]>,
|
|
1981
|
+
<bipartition: [ 1, 2, 6, 7, 8, -1, -7 ], [ 3, 4, 5, -3, -4, -5, -6, -8 ],
|
|
1982
|
+
[ -2 ]>,
|
|
1983
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -7 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ],
|
|
1984
|
+
[ -2 ]>, <bipartition: [ 1, 2, 3, 4, -3, -4, -5, -6, -8 ],
|
|
1985
|
+
[ 5, 6, 7, 8, -1, -7 ], [ -2 ]>,
|
|
1986
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -1, -7 ], [ 5, 6, -3, -4, -5, -6, -8 ],
|
|
1987
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, -3, -4, -5, -6, -8 ], [ 2, 6, 8 ],
|
|
1988
|
+
[ 5, 7, -1, -7 ], [ -2 ]>,
|
|
1989
|
+
<bipartition: [ 1, 5, -1, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -3, -4, -5, -6, -8 ]
|
|
1990
|
+
, [ -2 ]>,
|
|
1991
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -7 ], [ 2, -3, -4, -5, -6, -8 ],
|
|
1992
|
+
[ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8 ], [ 2, 4, 7 ], [ -1, -2, -3, -6 ]
|
|
1993
|
+
, [ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
1994
|
+
<bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -7 ],
|
|
1995
|
+
[ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -5, -7 ],
|
|
1996
|
+
[ 5, 6, -4, -6, -8 ], [ -2 ]>,
|
|
1997
|
+
<bipartition: [ 1, 7, 8, -4, -6, -8 ], [ 2, 3, 5, 6, -1, -3, -5, -7 ],
|
|
1998
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4, -6, -8 ],
|
|
1999
|
+
[ 5, 7, 8, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2000
|
+
<bipartition: [ 1, 5, -1, -3, -5, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4, -6, -8 ]
|
|
2001
|
+
, [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -4, -6, -8 ],
|
|
2002
|
+
[ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2003
|
+
<bipartition: [ 1, 3, 5, 6, 8, -4, -6, -8 ], [ 2, 4, 7, -1, -3, -5, -7 ],
|
|
2004
|
+
[ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -7 ],
|
|
2005
|
+
[ 3, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
|
|
2006
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -1, -7 ], [ 6 ], [ 7, -3, -4, -5, -6, -8 ]
|
|
2007
|
+
, [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 8, -3, -4, -5, -6, -8 ],
|
|
2008
|
+
[ 5, -1, -7 ], [ 6, 7 ], [ -2 ]>,
|
|
2009
|
+
<bipartition: [ 1, 2, 4, 5, 7, -2, -5 ], [ 3, -1, -3, -4, -6 ], [ 6, 8 ],
|
|
2010
|
+
[ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -2, -5 ],
|
|
2011
|
+
[ 5, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
2012
|
+
<bipartition: [ 1, 3, 5, 6, 8, -2, -5 ], [ 2, 4, 7, -1, -3, -4, -6 ],
|
|
2013
|
+
[ -7, -8 ]>,
|
|
2014
|
+
<bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -5 ],
|
|
2015
|
+
[ -7, -8 ]>,
|
|
2016
|
+
<bipartition: [ 1, 4, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 6, -2, -5 ], [ 7 ],
|
|
2017
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -4, -6 ], [ 4 ],
|
|
2018
|
+
[ 6, -2, -5 ], [ -7, -8 ]>,
|
|
2019
|
+
<bipartition: [ 1, 3, 4, -1, -3, -4, -6 ], [ 2, 6, 8, -2, -5 ], [ 5, 7 ],
|
|
2020
|
+
[ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4 ], [ 5, 6, 7, -7 ], [ 8 ],
|
|
2021
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
2022
|
+
<bipartition: [ 1, 4, -7 ], [ 2, 7, 8 ], [ 3, 5, 6 ], [ -1, -2 ],
|
|
2023
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
2024
|
+
<bipartition: [ 1, 2, 4, 7, -1, -2, -3, -5, -6 ], [ 3, 5, -4, -8 ],
|
|
2025
|
+
[ 6, 8 ], [ -7 ]>,
|
|
2026
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -6 ], [ 3, -2, -4 ], [ 6, 8 ],
|
|
2027
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2028
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2 ], [ 7, -1, -6 ],
|
|
2029
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2030
|
+
<bipartition: [ 1, 3, 4, 6, 7, -1, -6 ], [ 2, 5, 8, -2, -4 ],
|
|
2031
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2032
|
+
<bipartition: [ 1, 3, 4, 5, 8, -2, -4 ], [ 2, 7, -1, -6 ], [ 6 ],
|
|
2033
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2034
|
+
<bipartition: [ 1, 5, 6, 7, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 8 ],
|
|
2035
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2036
|
+
<bipartition: [ 1, 2, 4, 7, 8, -1, -6 ], [ 3, 5, 6, -2, -4 ],
|
|
2037
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2038
|
+
<bipartition: [ 1, 5, -1, -6 ], [ 2, 3, 4, 6, 7 ], [ 8, -2, -4 ],
|
|
2039
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2040
|
+
<bipartition: [ 1, 5, 8, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 6, 7 ],
|
|
2041
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2042
|
+
<bipartition: [ 1, 3, 5, 6, 8, -2, -4 ], [ 2, 4, 7, -1, -6 ],
|
|
2043
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2044
|
+
<bipartition: [ 1, 2, 3, 4, 7, -2, -4 ], [ 5, -1, -6 ], [ 6, 8 ],
|
|
2045
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2046
|
+
<bipartition: [ 1, 2, 6, 7, 8, -2, -4 ], [ 3, 4, 5, -1, -6 ],
|
|
2047
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2048
|
+
<bipartition: [ 1, 4, 5, 8, -2, -4 ], [ 2, 3, 6, -1, -6 ], [ 7 ],
|
|
2049
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2050
|
+
<bipartition: [ 1, -2, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -6 ], [ 8 ],
|
|
2051
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2052
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -2, -4 ], [ 4 ], [ 6, -1, -6 ],
|
|
2053
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2054
|
+
<bipartition: [ 1, 2, 8, -7 ], [ 3, 4, 5, 6, 7 ], [ -1, -2 ],
|
|
2055
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
2056
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -7 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2 ],
|
|
2057
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
2058
|
+
<bipartition: [ 1, 4 ], [ 2, 7, 8, -7 ], [ 3, 5, 6 ], [ -1, -2 ],
|
|
2059
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
2060
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7 ], [ 8, -7 ], [ -1, -2 ],
|
|
2061
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
2062
|
+
<bipartition: [ 1, 3, 5, 6, 8 ], [ 2 ], [ 4, 7, -7 ], [ -1, -2 ],
|
|
2063
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
2064
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6 ], [ 7, 8 ], [ -1, -2, -3, -6 ],
|
|
2065
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
2066
|
+
<bipartition: [ 1, 3, 4, 5, 7 ], [ 2 ], [ 6 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
2067
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
2068
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -5, -8 ], [ 4 ], [ 6, -4 ],
|
|
2069
|
+
[ -2, -6, -7 ]>,
|
|
2070
|
+
<bipartition: [ 1, 2, 3, 4, -1, -3, -5, -8 ], [ 5, 6, 7, 8, -4 ],
|
|
2071
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, -1, -3, -5, -8 ], [ 2, 6, 8 ],
|
|
2072
|
+
[ 5, 7, -4 ], [ -2, -6, -7 ]>,
|
|
2073
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -3, -5, -8 ],
|
|
2074
|
+
[ -2, -6, -7 ]>,
|
|
2075
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -3, -5, -8 ],
|
|
2076
|
+
[ -2, -6, -7 ]>,
|
|
2077
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -6, -7 ], [ 6, 8 ],
|
|
2078
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
|
|
2079
|
+
[ 2 ], [ 7, -4 ], [ -2, -5, -8 ]>,
|
|
2080
|
+
<bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -3, -6, -7 ],
|
|
2081
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -6, -7 ],
|
|
2082
|
+
[ 2, 7, -4 ], [ 6 ], [ -2, -5, -8 ]>,
|
|
2083
|
+
<bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 8 ],
|
|
2084
|
+
[ -2, -5, -8 ]>,
|
|
2085
|
+
<bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -3, -6, -7 ],
|
|
2086
|
+
[ -2, -5, -8 ]>,
|
|
2087
|
+
<bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -3, -6, -7 ],
|
|
2088
|
+
[ -2, -5, -8 ]>,
|
|
2089
|
+
<bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 6, 7 ],
|
|
2090
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -6, -7 ],
|
|
2091
|
+
[ 2, 4, 7, -4 ], [ -2, -5, -8 ]>,
|
|
2092
|
+
<bipartition: [ 1, 2, 3, 4, 7, -1, -3, -6, -7 ], [ 5, -4 ], [ 6, 8 ],
|
|
2093
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -6, -7 ],
|
|
2094
|
+
[ 3, 4, 5, -4 ], [ -2, -5, -8 ]>,
|
|
2095
|
+
<bipartition: [ 1, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
|
|
2096
|
+
[ -2, -5, -8 ]>,
|
|
2097
|
+
<bipartition: [ 1, -1, -3, -6, -7 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
|
|
2098
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -6, -7 ],
|
|
2099
|
+
[ 4 ], [ 6, -4 ], [ -2, -5, -8 ]>,
|
|
2100
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -6, -7 ],
|
|
2101
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2102
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -6, -7 ], [ 4 ],
|
|
2103
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2104
|
+
<bipartition: [ 1, 7, 8, -1, -6, -7 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
|
|
2105
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2106
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -6, -7 ], [ 5, 7, 8, -4 ],
|
|
2107
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2108
|
+
<bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -6, -7 ],
|
|
2109
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -6, -7 ],
|
|
2110
|
+
[ 5, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
2111
|
+
<bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 6, 7 ],
|
|
2112
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2113
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -6, -7 ], [ 2, 4, 7, -4 ],
|
|
2114
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2115
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -3, -4, -5, -6, -8 ], [ 4 ],
|
|
2116
|
+
[ 6, -1, -7 ], [ -2 ]>,
|
|
2117
|
+
<bipartition: [ 1, 3, 4, -3, -4, -5, -6, -8 ], [ 2, 6, 8, -1, -7 ],
|
|
2118
|
+
[ 5, 7 ], [ -2 ]>,
|
|
2119
|
+
<bipartition: [ 1, -4, -6, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -5, -7 ],
|
|
2120
|
+
[ 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -4, -6, -8 ], [ 4 ],
|
|
2121
|
+
[ 6, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2122
|
+
<bipartition: [ 1, 3, 4, 6, 7, -4, -6, -8 ], [ 2, 5, 8, -1, -3, -5, -7 ],
|
|
2123
|
+
[ -2 ]>,
|
|
2124
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4, -6, -8 ], [ 3, 8, -1, -3, -5, -7 ],
|
|
2125
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -7 ],
|
|
2126
|
+
[ 2, 7, -4, -6, -8 ], [ 6 ], [ -2 ]>,
|
|
2127
|
+
<bipartition: [ 1, 5, 6, 7, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
|
|
2128
|
+
[ 8 ], [ -2 ]>,
|
|
2129
|
+
<bipartition: [ 1, 7, 8, -1, -3, -5, -7 ], [ 2, 3, 5, 6, -4, -6, -8 ],
|
|
2130
|
+
[ 4 ], [ -2 ]>,
|
|
2131
|
+
<bipartition: [ 1, 2, 4, 7, 8, -4, -6, -8 ], [ 3, 5, 6, -1, -3, -5, -7 ],
|
|
2132
|
+
[ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -5, -7 ],
|
|
2133
|
+
[ 5, 7, 8, -4, -6, -8 ], [ -2 ]>,
|
|
2134
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ], [ 2, 7, -4, -6, -8 ],
|
|
2135
|
+
[ -2 ]>,
|
|
2136
|
+
<bipartition: [ 1, 3, 4, -4, -6, -8 ], [ 2, 6, 8, -1, -3, -5, -7 ],
|
|
2137
|
+
[ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -5, -7 ],
|
|
2138
|
+
[ 3, 5, 6, -4, -6, -8 ], [ -2 ]>,
|
|
2139
|
+
<bipartition: [ 1, 5, -4, -6, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -5, -7 ],
|
|
2140
|
+
[ -2 ]>,
|
|
2141
|
+
<bipartition: [ 1, 2, 4, 7, -4, -6, -8 ], [ 3, 5, -1, -3, -5, -7 ],
|
|
2142
|
+
[ 6, 8 ], [ -2 ]>,
|
|
2143
|
+
<bipartition: [ 1, 2, 3, 4, 8, -4, -6, -8 ], [ 5, -1, -3, -5, -7 ],
|
|
2144
|
+
[ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -5, -7 ],
|
|
2145
|
+
[ 6 ], [ 7, -4, -6, -8 ], [ -2 ]>,
|
|
2146
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -2, -5 ], [ 6 ], [ 7, -1, -3, -4, -6 ],
|
|
2147
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -4, -6 ],
|
|
2148
|
+
[ 7, 8, -2, -5 ], [ -7, -8 ]>,
|
|
2149
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -3, -4, -6 ], [ 2, -2, -5 ], [ 6 ],
|
|
2150
|
+
[ 8 ], [ -7, -8 ]>,
|
|
2151
|
+
<bipartition: [ 1, 6, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 5, -2, -5 ], [ 4 ],
|
|
2152
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -2, -3, -5, -6 ],
|
|
2153
|
+
[ 5, -4, -8 ], [ 6, 8 ], [ -7 ]>,
|
|
2154
|
+
<bipartition: [ 1, 2, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 3, 4, 5, -4, -8 ],
|
|
2155
|
+
[ -7 ]>, <bipartition: [ 1, 4, 5, 8, -1, -2, -3, -5, -6 ],
|
|
2156
|
+
[ 2, 3, 6, -4, -8 ], [ 7 ], [ -7 ]>,
|
|
2157
|
+
<bipartition: [ 1, 8, -4, -8 ], [ 2, 3, 4, 5, -1, -2, -3, -5, -6 ],
|
|
2158
|
+
[ 6, 7 ], [ -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6 ], [ 6 ],
|
|
2159
|
+
[ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
2160
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -2, -4 ], [ 5, 7, -1, -6 ],
|
|
2161
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2162
|
+
<bipartition: [ 1, 3, 4, -2, -4 ], [ 2, 6, 8, -1, -6 ], [ 5, 7 ],
|
|
2163
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2164
|
+
<bipartition: [ 1, 5, -2, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6 ],
|
|
2165
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2166
|
+
<bipartition: [ 1, 2, 3, 4, 8, -2, -4 ], [ 5, -1, -6 ], [ 6, 7 ],
|
|
2167
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2168
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -2, -4 ], [ 5, 6, -1, -6 ],
|
|
2169
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2170
|
+
<bipartition: [ 1, 5, -2, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -6 ],
|
|
2171
|
+
[ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -2, -4 ],
|
|
2172
|
+
[ 5, 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
2173
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -2, -4 ], [ 7, 8, -1, -6 ],
|
|
2174
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2175
|
+
<bipartition: [ 1, 3, 4, 5, 7, -2, -4 ], [ 2, -1, -6 ], [ 6 ], [ 8 ],
|
|
2176
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2177
|
+
<bipartition: [ 1, -1, -6 ], [ 2, 3, 4, 5, 6, 7, -2, -4 ], [ 8 ],
|
|
2178
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2179
|
+
<bipartition: [ 1, 6, 7, 8, -2, -4 ], [ 2, 3, 5, -1, -6 ], [ 4 ],
|
|
2180
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2181
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8 ], [ 2, -7 ], [ -1, -2 ],
|
|
2182
|
+
[ -3, -6, -8 ], [ -4 ], [ -5 ]>,
|
|
2183
|
+
<bipartition: [ 1 ], [ 2, 3, 4 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
|
|
2184
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
2185
|
+
<bipartition: [ 1, 4 ], [ 2, 7, 8 ], [ 3, 5, 6 ], [ -1, -2, -3, -6 ],
|
|
2186
|
+
[ -4, -5 ], [ -7 ], [ -8 ]>,
|
|
2187
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -5, -8 ], [ 7, 8, -4 ],
|
|
2188
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -8 ],
|
|
2189
|
+
[ 2, -4 ], [ 6 ], [ 8 ], [ -2, -6, -7 ]>,
|
|
2190
|
+
<bipartition: [ 1, 6, 7, 8, -1, -3, -5, -8 ], [ 2, 3, 5, -4 ], [ 4 ],
|
|
2191
|
+
[ -2, -6, -7 ]>,
|
|
2192
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -3, -6, -7 ],
|
|
2193
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -6, -7 ],
|
|
2194
|
+
[ 3, -4 ], [ 6, 8 ], [ -2, -5, -8 ]>,
|
|
2195
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -6, -7 ], [ 5, 7, -4 ],
|
|
2196
|
+
[ -2, -5, -8 ]>,
|
|
2197
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ],
|
|
2198
|
+
[ -2, -5, -8 ]>,
|
|
2199
|
+
<bipartition: [ 1, 3, 4, -1, -3, -6, -7 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
|
|
2200
|
+
[ -2, -5, -8 ]>,
|
|
2201
|
+
<bipartition: [ 1, 5, -1, -3, -6, -7 ], [ 2, 3, 4, 6, 7, 8, -4 ],
|
|
2202
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -6, -7 ],
|
|
2203
|
+
[ 5, -4 ], [ 6, 7 ], [ -2, -5, -8 ]>,
|
|
2204
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -6, -7 ], [ 5, 6, -4 ],
|
|
2205
|
+
[ -2, -5, -8 ]>,
|
|
2206
|
+
<bipartition: [ 1, 5, -1, -3, -6, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
|
|
2207
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -6, -7 ],
|
|
2208
|
+
[ 5, 7, -4 ], [ -2, -5, -8 ]>,
|
|
2209
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -6, -7 ], [ 7, 8, -4 ],
|
|
2210
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -6, -7 ],
|
|
2211
|
+
[ 2, -4 ], [ 6 ], [ 8 ], [ -2, -5, -8 ]>,
|
|
2212
|
+
<bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
|
|
2213
|
+
[ -2, -5, -8 ]>,
|
|
2214
|
+
<bipartition: [ 1, 6, 7, 8, -1, -3, -6, -7 ], [ 2, 3, 5, -4 ], [ 4 ],
|
|
2215
|
+
[ -2, -5, -8 ]>,
|
|
2216
|
+
<bipartition: [ 1, -1, -6, -7 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
|
|
2217
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -6, -7 ],
|
|
2218
|
+
[ 4 ], [ 6, -4 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
2219
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -6, -7 ],
|
|
2220
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2221
|
+
<bipartition: [ 1, 3, 4, 6, 7, -1, -6, -7 ], [ 2, 5, 8, -4 ],
|
|
2222
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2223
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -6, -7 ], [ 3, 8, -4 ], [ 4 ],
|
|
2224
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2225
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -6, -7 ], [ 6 ],
|
|
2226
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2227
|
+
<bipartition: [ 1, 5, 6, 7, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
|
|
2228
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2229
|
+
<bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -6, -7 ], [ 4 ],
|
|
2230
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2231
|
+
<bipartition: [ 1, 2, 4, 7, 8, -1, -6, -7 ], [ 3, 5, 6, -4 ],
|
|
2232
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2233
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -6, -7 ],
|
|
2234
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2235
|
+
<bipartition: [ 1, 3, 4, -1, -6, -7 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
|
|
2236
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2237
|
+
<bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -6, -7 ],
|
|
2238
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2239
|
+
<bipartition: [ 1, 5, -1, -6, -7 ], [ 2, 3, 4, 6, 7, 8, -4 ],
|
|
2240
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2241
|
+
<bipartition: [ 1, 2, 4, 7, -1, -6, -7 ], [ 3, 5, -4 ], [ 6, 8 ],
|
|
2242
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2243
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -6, -7 ],
|
|
2244
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2245
|
+
<bipartition: [ 1, 2, 3, 4, 8, -1, -6, -7 ], [ 5, -4 ], [ 6, 7 ],
|
|
2246
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2247
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -3, -4, -5, -6, -8 ], [ 7, 8, -1, -7 ],
|
|
2248
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, 5, 7, -3, -4, -5, -6, -8 ],
|
|
2249
|
+
[ 2, -1, -7 ], [ 6 ], [ 8 ], [ -2 ]>,
|
|
2250
|
+
<bipartition: [ 1, 6, 7, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 5, -1, -7 ],
|
|
2251
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4, -6, -8 ],
|
|
2252
|
+
[ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2253
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -4, -6, -8 ], [ 7, 8, -1, -3, -5, -7 ],
|
|
2254
|
+
[ -2 ]>,
|
|
2255
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4, -6, -8 ], [ 2, -1, -3, -5, -7 ], [ 6 ],
|
|
2256
|
+
[ 8 ], [ -2 ]>,
|
|
2257
|
+
<bipartition: [ 1, -1, -3, -5, -7 ], [ 2, 3, 4, 5, 6, 7, -4, -6, -8 ],
|
|
2258
|
+
[ 8 ], [ -2 ]>,
|
|
2259
|
+
<bipartition: [ 1, 6, 7, 8, -4, -6, -8 ], [ 2, 3, 5, -1, -3, -5, -7 ],
|
|
2260
|
+
[ 4 ], [ -2 ]>,
|
|
2261
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
|
|
2262
|
+
[ 5, 7, -4, -6, -8 ], [ -2 ]>,
|
|
2263
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ], [ 2 ], [ 7, -1, -3, -5, -7 ]
|
|
2264
|
+
, [ -2 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -5, -7 ],
|
|
2265
|
+
[ 2, 5, 8, -4, -6, -8 ], [ -2 ]>,
|
|
2266
|
+
<bipartition: [ 1, 5, 8, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
|
|
2267
|
+
[ 6, 7 ], [ -2 ]>,
|
|
2268
|
+
<bipartition: [ 1, 8, -1, -3, -5, -7 ], [ 2, 3, 4, 5, -4, -6, -8 ],
|
|
2269
|
+
[ 6, 7 ], [ -2 ]>,
|
|
2270
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4, -6, -8 ], [ 2, 7, -1, -3, -5, -7 ],
|
|
2271
|
+
[ 6 ], [ -2 ]>,
|
|
2272
|
+
<bipartition: [ 1, 5, 6, 7, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
|
|
2273
|
+
[ 8 ], [ -2 ]>,
|
|
2274
|
+
<bipartition: [ 1, 2, 3, 4, -1, -3, -5, -7 ], [ 5, 6, 7, -4, -6, -8 ],
|
|
2275
|
+
[ 8 ], [ -2 ]>,
|
|
2276
|
+
<bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -7 ],
|
|
2277
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
|
|
2278
|
+
[ 2, 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2279
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -7 ], [ 2, 6, 8, -4, -6, -8 ],
|
|
2280
|
+
[ -2 ]>,
|
|
2281
|
+
<bipartition: [ 1, 2, 3, 4, 7, -4, -6, -8 ], [ 5, -1, -3, -5, -7 ],
|
|
2282
|
+
[ 6, 8 ], [ -2 ]>,
|
|
2283
|
+
<bipartition: [ 1, 2, 6, 7, 8, -4, -6, -8 ], [ 3, 4, 5, -1, -3, -5, -7 ],
|
|
2284
|
+
[ -2 ]>,
|
|
2285
|
+
<bipartition: [ 1, 4, 5, 8, -4, -6, -8 ], [ 2, 3, 6, -1, -3, -5, -7 ],
|
|
2286
|
+
[ 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -4, -6, -8 ],
|
|
2287
|
+
[ 5, 6, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2288
|
+
<bipartition: [ 1, 2, 8, -2, -5 ], [ 3, 4, 5, 6, 7, -1, -3, -4, -6 ],
|
|
2289
|
+
[ -7, -8 ]>,
|
|
2290
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -2, -5 ], [ 5, 6, 7, -1, -3, -4, -6 ],
|
|
2291
|
+
[ 8 ], [ -7, -8 ]>,
|
|
2292
|
+
<bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 7, 8, -2, -5 ], [ 3, 5, 6 ],
|
|
2293
|
+
[ -7, -8 ]>,
|
|
2294
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -4, -6 ],
|
|
2295
|
+
[ 8, -2, -5 ], [ -7, -8 ]>,
|
|
2296
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ], [ 4, 7, -2, -5 ],
|
|
2297
|
+
[ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -2, -3, -5, -6 ],
|
|
2298
|
+
[ 5, 6, -4, -8 ], [ -7 ]>,
|
|
2299
|
+
<bipartition: [ 1, 2, 5, 6, 7, -1, -2, -3, -5, -6 ], [ 3, 8, -4, -8 ],
|
|
2300
|
+
[ 4 ], [ -7 ]>,
|
|
2301
|
+
<bipartition: [ 1, 7, 8, -4, -8 ], [ 2, 3, 5, 6, -1, -2, -3, -5, -6 ],
|
|
2302
|
+
[ 4 ], [ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4, -8 ],
|
|
2303
|
+
[ 5, 7, 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2304
|
+
<bipartition: [ 1, 5, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 6, 7 ],
|
|
2305
|
+
[ 8, -4, -8 ], [ -7 ]>,
|
|
2306
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -4, -8 ], [ 5, 7, -1, -2, -3, -5, -6 ],
|
|
2307
|
+
[ -7 ]>,
|
|
2308
|
+
<bipartition: [ 1, 5, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 4, -4, -8 ],
|
|
2309
|
+
[ 6, 7 ], [ -7 ]>,
|
|
2310
|
+
<bipartition: [ 1, 3, 5, 6, 8, -4, -8 ], [ 2, 4, 7, -1, -2, -3, -5, -6 ],
|
|
2311
|
+
[ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2, 7, -1, -6 ],
|
|
2312
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2313
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -6 ], [ 2, 6, 8, -2, -4 ],
|
|
2314
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2315
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -1, -6 ], [ 4 ], [ 6, -2, -4 ],
|
|
2316
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2317
|
+
<bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 6, 8, -2, -4 ], [ 5, 7 ],
|
|
2318
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2319
|
+
<bipartition: [ 1, 2, 3, 4, -2, -4 ], [ 5, 6, 7, -1, -6 ], [ 8 ],
|
|
2320
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2321
|
+
<bipartition: [ 1, 2, 8, -1, -6 ], [ 3, 4, 5, 6, 7, -2, -4 ],
|
|
2322
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2323
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -1, -6 ], [ 5, 6, 7, -2, -4 ], [ 8 ],
|
|
2324
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2325
|
+
<bipartition: [ 1, 4, -2, -4 ], [ 2, 7, 8, -1, -6 ], [ 3, 5, 6 ],
|
|
2326
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2327
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -2, -4 ], [ 8, -1, -6 ],
|
|
2328
|
+
[ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -6 ],
|
|
2329
|
+
[ 5, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
2330
|
+
<bipartition: [ 1, 3, 5, 6, 8, -2, -4 ], [ 2 ], [ 4, 7, -1, -6 ],
|
|
2331
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2332
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
|
|
2333
|
+
[ -2, -6, -7 ]>,
|
|
2334
|
+
<bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
|
|
2335
|
+
[ -2, -6, -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -8 ], [ 2 ],
|
|
2336
|
+
[ 4, 7, -4 ], [ -2, -6, -7 ]>,
|
|
2337
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -6, -7 ], [ 6 ], [ 7, -4 ],
|
|
2338
|
+
[ -2, -5, -8 ]>,
|
|
2339
|
+
<bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
|
|
2340
|
+
[ -2, -5, -8 ]>,
|
|
2341
|
+
<bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
|
|
2342
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
|
|
2343
|
+
[ 2, 7, -4 ], [ -2, -5, -8 ]>,
|
|
2344
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -3, -6, -7 ],
|
|
2345
|
+
[ -2, -5, -8 ]>,
|
|
2346
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -3, -6, -7 ],
|
|
2347
|
+
[ -2, -5, -8 ]>,
|
|
2348
|
+
<bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -3, -6, -7 ], [ 5, 7 ],
|
|
2349
|
+
[ -2, -5, -8 ]>,
|
|
2350
|
+
<bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -6, -7 ],
|
|
2351
|
+
[ -2, -5, -8 ]>,
|
|
2352
|
+
<bipartition: [ 1, 2, 3, 4, -1, -3, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
|
|
2353
|
+
[ -2, -5, -8 ]>,
|
|
2354
|
+
<bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -6, -7 ],
|
|
2355
|
+
[ -2, -5, -8 ]>,
|
|
2356
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
|
|
2357
|
+
[ -2, -5, -8 ]>,
|
|
2358
|
+
<bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
|
|
2359
|
+
[ -2, -5, -8 ]>,
|
|
2360
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -6, -7 ], [ 8, -4 ],
|
|
2361
|
+
[ -2, -5, -8 ]>,
|
|
2362
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -3, -6, -7 ],
|
|
2363
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -6, -7 ], [ 2 ],
|
|
2364
|
+
[ 4, 7, -4 ], [ -2, -5, -8 ]>,
|
|
2365
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -6, -7 ], [ 5, 7, -4 ],
|
|
2366
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -6, -7 ],
|
|
2367
|
+
[ 7, 8, -4 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
2368
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -6, -7 ], [ 2, -4 ], [ 6 ], [ 8 ],
|
|
2369
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2370
|
+
<bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -6, -7 ], [ 8 ],
|
|
2371
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2372
|
+
<bipartition: [ 1, 6, 7, 8, -1, -6, -7 ], [ 2, 3, 5, -4 ], [ 4 ],
|
|
2373
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2374
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -6, -7 ], [ 6, 8 ],
|
|
2375
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
|
|
2376
|
+
[ 5, 7, -1, -6, -7 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
2377
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 7, -4 ],
|
|
2378
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2379
|
+
<bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -6, -7 ],
|
|
2380
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2381
|
+
<bipartition: [ 1, 5, 8, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
|
|
2382
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2383
|
+
<bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -6, -7 ], [ 6, 7 ],
|
|
2384
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2385
|
+
<bipartition: [ 1, 3, 4, 5, 8, -1, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
|
|
2386
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2387
|
+
<bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 8 ],
|
|
2388
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ],
|
|
2389
|
+
[ 2, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
2390
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -6, -7 ],
|
|
2391
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2392
|
+
<bipartition: [ 1, 2, 3, 4, 7, -1, -6, -7 ], [ 5, -4 ], [ 6, 8 ],
|
|
2393
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2394
|
+
<bipartition: [ 1, 2, 6, 7, 8, -1, -6, -7 ], [ 3, 4, 5, -4 ],
|
|
2395
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2396
|
+
<bipartition: [ 1, 4, 5, 8, -1, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
|
|
2397
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -6, -7 ],
|
|
2398
|
+
[ 5, 6, -4 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
2399
|
+
<bipartition: [ 1, 2, 8, -1, -7 ], [ 3, 4, 5, 6, 7, -3, -4, -5, -6, -8 ],
|
|
2400
|
+
[ -2 ]>,
|
|
2401
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -1, -7 ], [ 5, 6, 7, -3, -4, -5, -6, -8 ],
|
|
2402
|
+
[ 8 ], [ -2 ]>,
|
|
2403
|
+
<bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 7, 8, -1, -7 ],
|
|
2404
|
+
[ 3, 5, 6 ], [ -2 ]>,
|
|
2405
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -3, -4, -5, -6, -8 ],
|
|
2406
|
+
[ 8, -1, -7 ], [ -2 ]>,
|
|
2407
|
+
<bipartition: [ 1, 3, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2 ], [ 4, 7, -1, -7 ]
|
|
2408
|
+
, [ -2 ]>,
|
|
2409
|
+
<bipartition: [ 1, 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, -1, -3, -5, -7 ],
|
|
2410
|
+
[ 8 ], [ -2 ]>,
|
|
2411
|
+
<bipartition: [ 1, 5, -1, -3, -5, -7 ], [ 2, 3, 4, 6, 7, 8, -4, -6, -8 ],
|
|
2412
|
+
[ -2 ]>,
|
|
2413
|
+
<bipartition: [ 1, 2, 8, -1, -3, -5, -7 ], [ 3, 4, 5, 6, 7, -4, -6, -8 ],
|
|
2414
|
+
[ -2 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -5, -7 ],
|
|
2415
|
+
[ 5, 6, 7, -4, -6, -8 ], [ 8 ], [ -2 ]>,
|
|
2416
|
+
<bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 7, 8, -1, -3, -5, -7 ],
|
|
2417
|
+
[ 3, 5, 6 ], [ -2 ]>,
|
|
2418
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4, -6, -8 ],
|
|
2419
|
+
[ 8, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2420
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -5, -7 ], [ 5, 7, -4, -6, -8 ]
|
|
2421
|
+
, [ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8, -4, -6, -8 ], [ 2 ],
|
|
2422
|
+
[ 4, 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2423
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4, -6, -8 ], [ 3, -1, -3, -5, -7 ],
|
|
2424
|
+
[ 6, 8 ], [ -2 ]>,
|
|
2425
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4, -6, -8 ],
|
|
2426
|
+
[ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2427
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -7 ], [ 2, 4, 7, -4, -6, -8 ],
|
|
2428
|
+
[ -2 ]>,
|
|
2429
|
+
<bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 3, 5, 6, 7, 8, -4, -6, -8 ],
|
|
2430
|
+
[ -2 ]>, <bipartition: [ 1, 5, -4, -6, -8 ], [ 2, 3, 4, 6, 7 ],
|
|
2431
|
+
[ 8, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2432
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -5, -7 ], [ 4 ], [ 6, -4, -6, -8 ]
|
|
2433
|
+
, [ -2 ]>,
|
|
2434
|
+
<bipartition: [ 1, 2, 3, 4, -2, -5 ], [ 5, 6, 7, 8, -1, -3, -4, -6 ],
|
|
2435
|
+
[ -7, -8 ]>, <bipartition: [ 1, 3, 4, -2, -5 ], [ 2, 6, 8 ],
|
|
2436
|
+
[ 5, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
|
|
2437
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -4, -6 ], [ 2, -2, -5 ],
|
|
2438
|
+
[ -7, -8 ]>,
|
|
2439
|
+
<bipartition: [ 1, -4, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -2, -3, -5, -6 ],
|
|
2440
|
+
[ 8 ], [ -7 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -4, -8 ], [ 4 ],
|
|
2441
|
+
[ 6, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2442
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ],
|
|
2443
|
+
[ 7, -4, -8 ], [ -7 ]>,
|
|
2444
|
+
<bipartition: [ 1, 3, 4, 6, 7, -4, -8 ], [ 2, 5, 8, -1, -2, -3, -5, -6 ],
|
|
2445
|
+
[ -7 ]>,
|
|
2446
|
+
<bipartition: [ 1, 2, 5, 6, 7, -4, -8 ], [ 3, 8, -1, -2, -3, -5, -6 ],
|
|
2447
|
+
[ 4 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -3, -5, -6 ],
|
|
2448
|
+
[ 2, 7, -4, -8 ], [ 6 ], [ -7 ]>,
|
|
2449
|
+
<bipartition: [ 1, 5, 6, 7, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
|
|
2450
|
+
[ 8 ], [ -7 ]>,
|
|
2451
|
+
<bipartition: [ 1, 7, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, -4, -8 ],
|
|
2452
|
+
[ 4 ], [ -7 ]>,
|
|
2453
|
+
<bipartition: [ 1, 2, 4, 7, 8, -4, -8 ], [ 3, 5, 6, -1, -2, -3, -5, -6 ],
|
|
2454
|
+
[ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -2, -3, -5, -6 ],
|
|
2455
|
+
[ 5, 7, 8, -4, -8 ], [ -7 ]>,
|
|
2456
|
+
<bipartition: [ 1, 3, 4, -4, -8 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ],
|
|
2457
|
+
[ 5, 7 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -2, -3, -5, -6 ],
|
|
2458
|
+
[ 3, 5, 6, -4, -8 ], [ -7 ]>,
|
|
2459
|
+
<bipartition: [ 1, 5, -4, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -2, -3, -5, -6 ],
|
|
2460
|
+
[ -7 ]>,
|
|
2461
|
+
<bipartition: [ 1, 2, 4, 7, -4, -8 ], [ 3, 5, -1, -2, -3, -5, -6 ],
|
|
2462
|
+
[ 6, 8 ], [ -7 ]>,
|
|
2463
|
+
<bipartition: [ 1, 2, 3, 4, 6, 8, -1, -2, -3, -5, -6 ], [ 5, 7, -4, -8 ],
|
|
2464
|
+
[ -7 ]>,
|
|
2465
|
+
<bipartition: [ 1, 2, 3, 4, 8, -4, -8 ], [ 5, -1, -2, -3, -5, -6 ],
|
|
2466
|
+
[ 6, 7 ], [ -7 ]>,
|
|
2467
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -1, -6 ], [ 7, 8, -2, -4 ],
|
|
2468
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2469
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -6 ], [ 2, -2, -4 ], [ 6 ], [ 8 ],
|
|
2470
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2471
|
+
<bipartition: [ 1, 6, 7, 8, -1, -6 ], [ 2, 3, 5, -2, -4 ], [ 4 ],
|
|
2472
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2473
|
+
<bipartition: [ 1, 2, 3, 4, -1, -6 ], [ 5, 6, 7, 8, -2, -4 ],
|
|
2474
|
+
[ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 6, 8 ],
|
|
2475
|
+
[ 5, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
2476
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -2, -4 ], [ 2, -1, -6 ],
|
|
2477
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2478
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -5, -8 ], [ 2, -4 ],
|
|
2479
|
+
[ -2, -6, -7 ]>,
|
|
2480
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -3, -6, -7 ],
|
|
2481
|
+
[ -2, -5, -8 ]>,
|
|
2482
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -3, -6, -7 ], [ 6 ], [ 8 ],
|
|
2483
|
+
[ -2, -5, -8 ]>,
|
|
2484
|
+
<bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -3, -6, -7 ], [ 4 ],
|
|
2485
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -6, -7 ],
|
|
2486
|
+
[ 2, 6, 8, -4 ], [ -2, -5, -8 ]>,
|
|
2487
|
+
<bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -3, -6, -7 ],
|
|
2488
|
+
[ -2, -5, -8 ]>,
|
|
2489
|
+
<bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -3, -6, -7 ],
|
|
2490
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -6, -7 ],
|
|
2491
|
+
[ 2, -4 ], [ -2, -5, -8 ]>,
|
|
2492
|
+
<bipartition: [ 1, 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
|
|
2493
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2494
|
+
<bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -6, -7 ],
|
|
2495
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2496
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -6, -7 ], [ 8 ],
|
|
2497
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2498
|
+
<bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
|
|
2499
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2500
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -6, -7 ], [ 8, -4 ],
|
|
2501
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2502
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -6, -7 ],
|
|
2503
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2504
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 4, 7, -4 ],
|
|
2505
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2506
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -6, -7 ],
|
|
2507
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2508
|
+
<bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -4 ], [ 6, 8 ],
|
|
2509
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2510
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -6, -7 ], [ 5, 7, -4 ],
|
|
2511
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2512
|
+
<bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -6, -7 ],
|
|
2513
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2514
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6, -7 ],
|
|
2515
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2516
|
+
<bipartition: [ 1, 5, -1, -6, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
|
|
2517
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2518
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -6, -7 ],
|
|
2519
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2520
|
+
<bipartition: [ 1, 2, 3, 4, -1, -7 ], [ 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
|
|
2521
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, -1, -7 ], [ 2, 6, 8 ],
|
|
2522
|
+
[ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
|
|
2523
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -3, -4, -5, -6, -8 ], [ 2, -1, -7 ],
|
|
2524
|
+
[ -2 ]>,
|
|
2525
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4, -6, -8 ], [ 2, 6, 8, -1, -3, -5, -7 ],
|
|
2526
|
+
[ -2 ]>,
|
|
2527
|
+
<bipartition: [ 1, 2, 3, 4, -1, -3, -5, -7 ], [ 5, 6, 7, 8, -4, -6, -8 ],
|
|
2528
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, -1, -3, -5, -7 ], [ 2, 6, 8 ],
|
|
2529
|
+
[ 5, 7, -4, -6, -8 ], [ -2 ]>,
|
|
2530
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4, -6, -8 ], [ 2, -1, -3, -5, -7 ],
|
|
2531
|
+
[ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -4, -6, -8 ], [ 6 ],
|
|
2532
|
+
[ 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2533
|
+
<bipartition: [ 1, 2, 3, 4, 8, -1, -3, -5, -7 ], [ 5, -4, -6, -8 ],
|
|
2534
|
+
[ 6, 7 ], [ -2 ]>,
|
|
2535
|
+
<bipartition: [ 1, 3, 4, -1, -3, -5, -7 ], [ 2, 6, 8, -4, -6, -8 ],
|
|
2536
|
+
[ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -5, -7 ],
|
|
2537
|
+
[ 7, 8, -4, -6, -8 ], [ -2 ]>,
|
|
2538
|
+
<bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -7 ], [ 2, -4, -6, -8 ], [ 6 ],
|
|
2539
|
+
[ 8 ], [ -2 ]>,
|
|
2540
|
+
<bipartition: [ 1, 6, 7, 8, -1, -3, -5, -7 ], [ 2, 3, 5, -4, -6, -8 ],
|
|
2541
|
+
[ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4, -8 ],
|
|
2542
|
+
[ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2543
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4, -8 ], [ 2, -1, -2, -3, -5, -6 ], [ 6 ],
|
|
2544
|
+
[ 8 ], [ -7 ]>,
|
|
2545
|
+
<bipartition: [ 1, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 5, 6, 7, -4, -8 ],
|
|
2546
|
+
[ 8 ], [ -7 ]>,
|
|
2547
|
+
<bipartition: [ 1, 6, 7, 8, -4, -8 ], [ 2, 3, 5, -1, -2, -3, -5, -6 ],
|
|
2548
|
+
[ 4 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -3, -5, -6 ],
|
|
2549
|
+
[ 3, -4, -8 ], [ 6, 8 ], [ -7 ]>,
|
|
2550
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -2, -3, -5, -6 ],
|
|
2551
|
+
[ 5, 7, -4, -8 ], [ -7 ]>,
|
|
2552
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2 ], [ 7, -1, -2, -3, -5, -6 ]
|
|
2553
|
+
, [ -7 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -2, -3, -5, -6 ],
|
|
2554
|
+
[ 2, 5, 8, -4, -8 ], [ -7 ]>,
|
|
2555
|
+
<bipartition: [ 1, 5, 8, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
|
|
2556
|
+
[ 6, 7 ], [ -7 ]>,
|
|
2557
|
+
<bipartition: [ 1, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 5, -4, -8 ],
|
|
2558
|
+
[ 6, 7 ], [ -7 ]>,
|
|
2559
|
+
<bipartition: [ 1, 3, 4, 5, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
|
|
2560
|
+
[ 6 ], [ -7 ]>, <bipartition: [ 1, 5, 6, 7, -1, -2, -3, -5, -6 ],
|
|
2561
|
+
[ 2, 3, 4, -4, -8 ], [ 8 ], [ -7 ]>,
|
|
2562
|
+
<bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
|
|
2563
|
+
[ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -2, -3, -5, -6 ],
|
|
2564
|
+
[ 2, 6, 8, -4, -8 ], [ -7 ]>,
|
|
2565
|
+
<bipartition: [ 1, 2, 3, 4, 7, -4, -8 ], [ 5, -1, -2, -3, -5, -6 ],
|
|
2566
|
+
[ 6, 8 ], [ -7 ]>,
|
|
2567
|
+
<bipartition: [ 1, 2, 6, 7, 8, -4, -8 ], [ 3, 4, 5, -1, -2, -3, -5, -6 ],
|
|
2568
|
+
[ -7 ]>,
|
|
2569
|
+
<bipartition: [ 1, 4, 5, 8, -4, -8 ], [ 2, 3, 6, -1, -2, -3, -5, -6 ],
|
|
2570
|
+
[ 7 ], [ -7 ]>,
|
|
2571
|
+
<bipartition: [ 1, 2, 3, 4, 7, 8, -4, -8 ], [ 5, 6, -1, -2, -3, -5, -6 ],
|
|
2572
|
+
[ -7 ]>, <bipartition: [ 1, 2, 8, -2, -4 ], [ 3, 4, 5, 6, 7, -1, -6 ],
|
|
2573
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2574
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -2, -4 ], [ 5, 6, 7, -1, -6 ], [ 8 ],
|
|
2575
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2576
|
+
<bipartition: [ 1, 4, -1, -6 ], [ 2, 7, 8, -2, -4 ], [ 3, 5, 6 ],
|
|
2577
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2578
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -6 ], [ 8, -2, -4 ],
|
|
2579
|
+
[ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -6 ], [ 2 ],
|
|
2580
|
+
[ 4, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
2581
|
+
<bipartition: [ 1, 2, 8, -1, -3, -6, -7 ], [ 3, 4, 5, 6, 7, -4 ],
|
|
2582
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -6, -7 ],
|
|
2583
|
+
[ 5, 6, 7, -4 ], [ 8 ], [ -2, -5, -8 ]>,
|
|
2584
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -6, -7 ], [ 3, 5, 6 ],
|
|
2585
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ],
|
|
2586
|
+
[ 8, -1, -3, -6, -7 ], [ -2, -5, -8 ]>,
|
|
2587
|
+
<bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -3, -6, -7 ],
|
|
2588
|
+
[ -2, -5, -8 ]>,
|
|
2589
|
+
<bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -6, -7 ],
|
|
2590
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2591
|
+
<bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -6, -7 ],
|
|
2592
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2593
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -6, -7 ], [ 2, -4 ],
|
|
2594
|
+
[ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ],
|
|
2595
|
+
[ 6 ], [ 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
|
|
2596
|
+
<bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -6, -7 ], [ 6, 7 ],
|
|
2597
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2598
|
+
<bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -6, -7 ], [ 5, 7 ],
|
|
2599
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2600
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -6, -7 ],
|
|
2601
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2602
|
+
<bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -6, -7 ], [ 6 ], [ 8 ],
|
|
2603
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2604
|
+
<bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -6, -7 ], [ 4 ],
|
|
2605
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2606
|
+
<bipartition: [ 1, 2, 8, -4, -6, -8 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -7 ],
|
|
2607
|
+
[ -2 ]>,
|
|
2608
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, -1, -3, -5, -7 ],
|
|
2609
|
+
[ 8 ], [ -2 ]>,
|
|
2610
|
+
<bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 7, 8, -4, -6, -8 ],
|
|
2611
|
+
[ 3, 5, 6 ], [ -2 ]>,
|
|
2612
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -5, -7 ],
|
|
2613
|
+
[ 8, -4, -6, -8 ], [ -2 ]>,
|
|
2614
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -7 ], [ 2 ], [ 4, 7, -4, -6, -8 ]
|
|
2615
|
+
, [ -2 ]>,
|
|
2616
|
+
<bipartition: [ 1, 2, 3, 4, -4, -8 ], [ 5, 6, 7, -1, -2, -3, -5, -6 ],
|
|
2617
|
+
[ 8 ], [ -7 ]>,
|
|
2618
|
+
<bipartition: [ 1, 2, 8, -1, -2, -3, -5, -6 ], [ 3, 4, 5, 6, 7, -4, -8 ],
|
|
2619
|
+
[ -7 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
|
|
2620
|
+
[ 5, 6, 7, -4, -8 ], [ 8 ], [ -7 ]>,
|
|
2621
|
+
<bipartition: [ 1, 4, -4, -8 ], [ 2, 7, 8, -1, -2, -3, -5, -6 ],
|
|
2622
|
+
[ 3, 5, 6 ], [ -7 ]>,
|
|
2623
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4, -8 ],
|
|
2624
|
+
[ 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2625
|
+
<bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ], [ 5, 7, -4, -8 ]
|
|
2626
|
+
, [ -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -4, -8 ], [ 2 ],
|
|
2627
|
+
[ 4, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2628
|
+
<bipartition: [ 1, 2, 3, 4, 5, 8, -1, -2, -3, -5, -6 ], [ 6 ],
|
|
2629
|
+
[ 7, -4, -8 ], [ -7 ]>,
|
|
2630
|
+
<bipartition: [ 1, 2, 4, 5, 7, -4, -8 ], [ 3, -1, -2, -3, -5, -6 ],
|
|
2631
|
+
[ 6, 8 ], [ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4, -8 ],
|
|
2632
|
+
[ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2633
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2, 4, 7, -4, -8 ],
|
|
2634
|
+
[ -7 ]>,
|
|
2635
|
+
<bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, 7, 8, -4, -8 ],
|
|
2636
|
+
[ -7 ]>, <bipartition: [ 1, 5, -4, -8 ], [ 2, 3, 4, 6, 7 ],
|
|
2637
|
+
[ 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2638
|
+
<bipartition: [ 1, 2, 3, 5, 7, 8, -1, -2, -3, -5, -6 ], [ 4 ],
|
|
2639
|
+
[ 6, -4, -8 ], [ -7 ]>,
|
|
2640
|
+
<bipartition: [ 1, 2, 3, 4, -2, -4 ], [ 5, 6, 7, 8, -1, -6 ],
|
|
2641
|
+
[ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4, -2, -4 ], [ 2, 6, 8 ],
|
|
2642
|
+
[ 5, 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
|
|
2643
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -6 ], [ 2, -2, -4 ],
|
|
2644
|
+
[ -3, -5, -7 ], [ -8 ]>,
|
|
2645
|
+
<bipartition: [ 1, 2, 3, 4, -1, -3, -6, -7 ], [ 5, 6, 7, 8, -4 ],
|
|
2646
|
+
[ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, -1, -3, -6, -7 ], [ 2, 6, 8 ],
|
|
2647
|
+
[ 5, 7, -4 ], [ -2, -5, -8 ]>,
|
|
2648
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -3, -6, -7 ],
|
|
2649
|
+
[ -2, -5, -8 ]>,
|
|
2650
|
+
<bipartition: [ 1, 2, 8, -1, -6, -7 ], [ 3, 4, 5, 6, 7, -4 ],
|
|
2651
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2652
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
|
|
2653
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2654
|
+
<bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -6, -7 ], [ 3, 5, 6 ],
|
|
2655
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2656
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ], [ 8, -1, -6, -7 ],
|
|
2657
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2658
|
+
<bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -6, -7 ],
|
|
2659
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2660
|
+
<bipartition: [ 1, 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, 8, -1, -3, -5, -7 ],
|
|
2661
|
+
[ -2 ]>, <bipartition: [ 1, 3, 4, -4, -6, -8 ], [ 2, 6, 8 ],
|
|
2662
|
+
[ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
|
|
2663
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -5, -7 ], [ 2, -4, -6, -8 ],
|
|
2664
|
+
[ -2 ]>, <bipartition: [ 1, 2, 3, 4, -1, -2, -3, -5, -6 ],
|
|
2665
|
+
[ 5, 6, 7, 8, -4, -8 ], [ -7 ]>,
|
|
2666
|
+
<bipartition: [ 1, 3, 4, -1, -2, -3, -5, -6 ], [ 2, 6, 8 ], [ 5, 7, -4, -8 ]
|
|
2667
|
+
, [ -7 ]>,
|
|
2668
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4, -8 ], [ 2, -1, -2, -3, -5, -6 ],
|
|
2669
|
+
[ -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -4, -8 ], [ 6 ],
|
|
2670
|
+
[ 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2671
|
+
<bipartition: [ 1, 2, 3, 4, 8, -1, -2, -3, -5, -6 ], [ 5, -4, -8 ],
|
|
2672
|
+
[ 6, 7 ], [ -7 ]>,
|
|
2673
|
+
<bipartition: [ 1, 3, 4, -1, -2, -3, -5, -6 ], [ 2, 6, 8, -4, -8 ],
|
|
2674
|
+
[ 5, 7 ], [ -7 ]>,
|
|
2675
|
+
<bipartition: [ 1, 2, 3, 4, 5, 6, -1, -2, -3, -5, -6 ], [ 7, 8, -4, -8 ],
|
|
2676
|
+
[ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -2, -3, -5, -6 ],
|
|
2677
|
+
[ 2, -4, -8 ], [ 6 ], [ 8 ], [ -7 ]>,
|
|
2678
|
+
<bipartition: [ 1, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 5, -4, -8 ],
|
|
2679
|
+
[ 4 ], [ -7 ]>,
|
|
2680
|
+
<bipartition: [ 1, 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, 8, -4 ],
|
|
2681
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2682
|
+
<bipartition: [ 1, 3, 4, -1, -6, -7 ], [ 2, 6, 8 ], [ 5, 7, -4 ],
|
|
2683
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2684
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -6, -7 ],
|
|
2685
|
+
[ -2, -5, -8 ], [ -3 ]>,
|
|
2686
|
+
<bipartition: [ 1, 2, 8, -4, -8 ], [ 3, 4, 5, 6, 7, -1, -2, -3, -5, -6 ],
|
|
2687
|
+
[ -7 ]>,
|
|
2688
|
+
<bipartition: [ 1 ], [ 2, 3, 4, -4, -8 ], [ 5, 6, 7, -1, -2, -3, -5, -6 ],
|
|
2689
|
+
[ 8 ], [ -7 ]>,
|
|
2690
|
+
<bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 7, 8, -4, -8 ],
|
|
2691
|
+
[ 3, 5, 6 ], [ -7 ]>,
|
|
2692
|
+
<bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -2, -3, -5, -6 ],
|
|
2693
|
+
[ 8, -4, -8 ], [ -7 ]>,
|
|
2694
|
+
<bipartition: [ 1, 3, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ], [ 4, 7, -4, -8 ]
|
|
2695
|
+
, [ -7 ]>,
|
|
2696
|
+
<bipartition: [ 1, 2, 3, 4, -4, -8 ], [ 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
|
|
2697
|
+
[ -7 ]>, <bipartition: [ 1, 3, 4, -4, -8 ], [ 2, 6, 8 ],
|
|
2698
|
+
[ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
|
|
2699
|
+
<bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 2, -4, -8 ],
|
|
2700
|
+
[ -7 ]> ]
|
|
2701
|
+
gap> LClassReps(D);;
|
|
2702
|
+
gap> x := Bipartition([[1, 3, 4, 6, 7, -3, -4, -5, -6, -8],
|
|
2703
|
+
> [2, 5, 8, -1, -7], [-2]]);;
|
|
2704
|
+
gap> D := DClass(S, x);
|
|
2705
|
+
<Green's D-class: <bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ],
|
|
2706
|
+
[ 2, 5, 8, -1, -7 ], [ -2 ]>>
|
|
2707
|
+
gap> LClassReps(D);
|
|
2708
|
+
[ <bipartition: [ 1, 2, 4, 7, 8, -3, -4, -5, -6, -8 ], [ 3, 5, 6, -1, -7 ],
|
|
2709
|
+
[ -2 ]> ]
|
|
2710
|
+
gap> L := LClass(S, Bipartition([[1], [2, 4], [3, 6, -3, -4, -5, -6, -8],
|
|
2711
|
+
> [5, 7, 8, -1, -7], [-2]]));
|
|
2712
|
+
<Green's L-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -3, -4, -5, -6, -8 ]
|
|
2713
|
+
, [ 5, 7, 8, -1, -7 ], [ -2 ]>>
|
|
2714
|
+
gap> LL := LClassNC(S, Bipartition([[1, 3, 4, 6, 7, -3, -4, -5, -6, -8], [2,
|
|
2715
|
+
> 5, 8, -1, -7], [-2]]));
|
|
2716
|
+
<Green's L-class: <bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ],
|
|
2717
|
+
[ 2, 5, 8, -1, -7 ], [ -2 ]>>
|
|
2718
|
+
gap> LL = L;
|
|
2719
|
+
true
|
|
2720
|
+
gap> L = LL;
|
|
2721
|
+
true
|
|
2722
|
+
gap> Size(L);
|
|
2723
|
+
64
|
|
2724
|
+
gap> Size(LL);
|
|
2725
|
+
64
|
|
2726
|
+
gap> x := Bipartition([[1], [2, 4], [3, 6, 8, -1, -3, -5, -7],
|
|
2727
|
+
> [5, 7, -4, -6, -8], [-2]]);;
|
|
2728
|
+
gap> D := DClass(RClassNC(S, x));
|
|
2729
|
+
<Green's D-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
|
|
2730
|
+
[ 5, 7, -4, -6, -8 ], [ -2 ]>>
|
|
2731
|
+
gap> GroupHClass(D);
|
|
2732
|
+
fail
|
|
2733
|
+
gap> IsRegularDClass(D);
|
|
2734
|
+
false
|
|
2735
|
+
gap> D := DClass(S, x);
|
|
2736
|
+
<Green's D-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
|
|
2737
|
+
[ 5, 7, -4, -6, -8 ], [ -2 ]>>
|
|
2738
|
+
gap> IsRegularDClass(D);
|
|
2739
|
+
false
|
|
2740
|
+
gap> x := Bipartition([[1, 7, 8, -2, -5], [2, 3, 5, 6, -1, -3, -4, -6],
|
|
2741
|
+
> [4], [-7, -8]]);;
|
|
2742
|
+
gap> IsRegularDClass(DClass(S, x));
|
|
2743
|
+
false
|
|
2744
|
+
gap> NrRegularDClasses(S);
|
|
2745
|
+
4
|
|
2746
|
+
gap> First(DClasses(S), IsRegularDClass);
|
|
2747
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
|
|
2748
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
|
|
2749
|
+
gap> Size(last);
|
|
2750
|
+
12078
|
|
2751
|
+
gap> GroupHClass(last2);
|
|
2752
|
+
<Green's H-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
|
|
2753
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
|
|
2754
|
+
gap> StructureDescription(last);
|
|
2755
|
+
"1"
|
|
2756
|
+
gap> D := First(DClasses(S), IsRegularDClass);
|
|
2757
|
+
<Green's D-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
|
|
2758
|
+
[ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
|
|
2759
|
+
gap> NrRClasses(D);
|
|
2760
|
+
99
|
|
2761
|
+
gap> NrLClasses(D);
|
|
2762
|
+
122
|
|
2763
|
+
gap> R := PrincipalFactor(D);
|
|
2764
|
+
<Rees 0-matrix semigroup 99x122 over 1>
|
|
2765
|
+
gap> Length(Idempotents(S, 1));
|
|
2766
|
+
11209
|
|
2767
|
+
gap> Length(Idempotents(S, 0));
|
|
2768
|
+
4218
|
|
2769
|
+
gap> NrIdempotents(S);
|
|
2770
|
+
15529
|
|
2771
|
+
gap> last2 + last3;
|
|
2772
|
+
15427
|
|
2773
|
+
gap> Length(Idempotents(S, 2));
|
|
2774
|
+
102
|
|
2775
|
+
gap> NrRClasses(D);
|
|
2776
|
+
99
|
|
2777
|
+
gap> NrDClasses(S);
|
|
2778
|
+
190
|
|
2779
|
+
gap> PartialOrderOfDClasses(S);
|
|
2780
|
+
<immutable digraph with 190 vertices, 642 edges>
|
|
2781
|
+
gap> StructureDescriptionMaximalSubgroups(S);
|
|
2782
|
+
[ "1", "C2" ]
|
|
2783
|
+
gap> (IsActingSemigroup(S)
|
|
2784
|
+
> and StructureDescriptionSchutzenbergerGroups(S) = ["1", "C2"])
|
|
2785
|
+
> or not IsActingSemigroup(S);
|
|
2786
|
+
true
|
|
2787
|
+
|
|
2788
|
+
# BipartitionTest27: IsomorphismPermGroup for a block bijection group
|
|
2789
|
+
gap> S := Semigroup(
|
|
2790
|
+
> Bipartition([[1, 2, -3], [3, -4], [4, -8], [5, -1, -2],
|
|
2791
|
+
> [6, -5], [7, -6], [8, -7]]),
|
|
2792
|
+
> Bipartition([[1, 2, -7], [3, -1, -2], [4, -8], [5, -4],
|
|
2793
|
+
> [6, -5], [7, -3], [8, -6]]), rec(acting := true));;
|
|
2794
|
+
gap> iso := IsomorphismPermGroup(S);;
|
|
2795
|
+
gap> inv := InverseGeneralMapping(iso);;
|
|
2796
|
+
gap> ForAll(S, x -> x ^ iso in Range(iso));
|
|
2797
|
+
true
|
|
2798
|
+
gap> ForAll(S, x -> (x ^ iso) ^ inv = x);
|
|
2799
|
+
true
|
|
2800
|
+
|
|
2801
|
+
#
|
|
2802
|
+
gap> SEMIGROUPS.StopTest();
|
|
2803
|
+
gap> STOP_TEST("Semigroups package: extreme/bipart.tst");
|