passagemath-gap-pkg-semigroups 10.6.30__cp311-cp311-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1158 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.cpython-311-darwin.so +0 -0
@@ -0,0 +1,1521 @@
1
+ #############################################################################
2
+ ##
3
+ #W standard/attributes/inverse.tst
4
+ #Y Copyright (C) 2015-2022 Wilf A. Wilson
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ #
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local D, I, S, T, W, acting, an, elts, es, f, foo, gens, h, iso, jid, n, reps
12
+ #@local small, x
13
+ gap> START_TEST("Semigroups package: standard/attributes/inverse.tst");
14
+ gap> LoadPackage("semigroups", false);;
15
+
16
+ #
17
+ gap> SEMIGROUPS.StartTest();
18
+
19
+ # attrinv: VagnerPrestonRepresentation, symmetric inv monoid 4 1/1
20
+ gap> S := InverseSemigroup([
21
+ > PartialPerm([2, 3, 4, 1]),
22
+ > PartialPerm([2, 1, 3, 4]),
23
+ > PartialPerm([1, 2, 3, 0])]);;
24
+ gap> Size(S);
25
+ 209
26
+ gap> Size(S) = Size(SymmetricInverseMonoid(4));
27
+ true
28
+ gap> iso := VagnerPrestonRepresentation(S);;
29
+ gap> DegreeOfPartialPermSemigroup(Range(iso));
30
+ 209
31
+
32
+ # attrinv: SameMinorantsSubgroup, symmetric inv monoid 5 1/2
33
+ gap> S := SymmetricInverseSemigroup(5);;
34
+ gap> h := HClass(S, One(S));
35
+ <Green's H-class: <identity partial perm on [ 1, 2, 3, 4, 5 ]>>
36
+ gap> SameMinorantsSubgroup(h);
37
+ [ <identity partial perm on [ 1, 2, 3, 4, 5 ]> ]
38
+ gap> h := HClass(S, PartialPerm([1, 2, 0, 0, 0]));
39
+ <Green's H-class: <identity partial perm on [ 1, 2 ]>>
40
+ gap> SameMinorantsSubgroup(h);
41
+ [ <identity partial perm on [ 1, 2 ]> ]
42
+ gap> h := HClass(S, MultiplicativeZero(S));
43
+ <Green's H-class: <empty partial perm>>
44
+ gap> SameMinorantsSubgroup(h);
45
+ [ <empty partial perm> ]
46
+
47
+ # attrinv: SameMinorantsSubgroup, error 2/2
48
+ gap> S := FullTransformationMonoid(5);;
49
+ gap> h := HClass(S, One(S));
50
+ <Green's H-class: IdentityTransformation>
51
+ gap> SameMinorantsSubgroup(h);
52
+ Error, the parent of the argument (a group H-class) must be an inverse semigro\
53
+ up
54
+
55
+ # attrinv: Minorants, error, 1
56
+ gap> S := SymmetricInverseMonoid(3);;
57
+ gap> f := PartialPerm([1, 2, 3, 4]);;
58
+ gap> Minorants(S, f);
59
+ Error, the 2nd argument (a mult. elt.) is not an element of the 1st argument (\
60
+ an inverse semigroup)
61
+ gap> f := PartialPerm([1, 2, 3]);;
62
+ gap> Set(Minorants(S, f));
63
+ [ <empty partial perm>, <identity partial perm on [ 1 ]>,
64
+ <identity partial perm on [ 2 ]>, <identity partial perm on [ 1, 2 ]>,
65
+ <identity partial perm on [ 3 ]>, <identity partial perm on [ 2, 3 ]>,
66
+ <identity partial perm on [ 1, 3 ]> ]
67
+ gap> NaturalPartialOrder(S);;
68
+ gap> Minorants(S, f);
69
+ [ <empty partial perm>, <identity partial perm on [ 1 ]>,
70
+ <identity partial perm on [ 2 ]>, <identity partial perm on [ 1, 2 ]>,
71
+ <identity partial perm on [ 3 ]>, <identity partial perm on [ 2, 3 ]>,
72
+ <identity partial perm on [ 1, 3 ]> ]
73
+ gap> f := PartialPerm([1, 3, 2]);;
74
+
75
+ # attrinv: Minorants, not idempotent, 2
76
+ gap> S := Semigroup([
77
+ > PartialPerm([1, 2, 3, 4], [1, 2, 3, 4]),
78
+ > PartialPerm([1, 2, 3], [2, 3, 1])]);;
79
+ gap> IsInverseSemigroup(S);
80
+ true
81
+ gap> Minorants(S, GeneratorsOfSemigroup(S)[2]);
82
+ [ ]
83
+ gap> S := Semigroup(S, rec(acting := false));;
84
+ gap> IsInverseSemigroup(S);
85
+ true
86
+ gap> Minorants(S, GeneratorsOfSemigroup(S)[1]);
87
+ [ <identity partial perm on [ 1, 2, 3 ]> ]
88
+
89
+ # attrinv: character tables of inverse acting semigroups
90
+ # Some random examples to test consistency of old code with new
91
+ gap> gens := [
92
+ > [PartialPerm([1, 2, 3, 4, 6, 8, 9], [1, 5, 3, 8, 9, 4, 10])],
93
+ > [PartialPerm([1, 2, 3, 4, 5, 6], [3, 8, 4, 6, 5, 7]),
94
+ > PartialPerm([1, 2, 3, 4, 5, 7], [1, 4, 3, 2, 7, 6]),
95
+ > PartialPerm([1, 2, 3, 5, 6, 8], [5, 7, 1, 4, 2, 6])],
96
+ > [PartialPerm([1, 2, 3, 5], [2, 1, 7, 3]),
97
+ > PartialPerm([1, 2, 4, 5, 6], [7, 3, 1, 4, 2]),
98
+ > PartialPerm([1, 2, 3, 4, 6], [7, 6, 5, 1, 2]),
99
+ > PartialPerm([1, 3, 6, 7], [6, 3, 1, 4])],
100
+ > [PartialPerm([1, 2, 3, 5], [1, 6, 4, 7]),
101
+ > PartialPerm([1, 2, 3, 6], [1, 6, 5, 2]),
102
+ > PartialPerm([1, 2, 3, 5, 6, 7], [4, 3, 5, 7, 1, 6]),
103
+ > PartialPerm([1, 2, 3, 4, 7], [6, 4, 2, 3, 1])],
104
+ > [PartialPerm([1, 2, 3, 5, 6], [5, 3, 7, 4, 1]),
105
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 1, 5, 7, 6, 2])],
106
+ > [PartialPerm([1, 2, 3, 4, 5, 6, 9], [1, 5, 9, 2, 6, 10, 7]),
107
+ > PartialPerm([1, 3, 4, 7, 8, 9], [9, 4, 1, 6, 2, 8]),
108
+ > PartialPerm([1, 2, 3, 4, 5, 9], [9, 3, 8, 2, 10, 7])],
109
+ > [PartialPerm([1, 2, 3, 4, 5], [6, 4, 1, 2, 7]),
110
+ > PartialPerm([1, 2, 3, 6], [3, 5, 7, 4]),
111
+ > PartialPerm([1, 2, 3, 4, 5, 6, 7], [1, 7, 9, 5, 2, 8, 4])],
112
+ > [PartialPerm([1, 2, 4], [3, 6, 2]),
113
+ > PartialPerm([1, 2, 3, 4], [6, 3, 2, 1]),
114
+ > PartialPerm([1, 2, 3, 6], [4, 6, 3, 1]),
115
+ > PartialPerm([1, 2, 3, 5, 6], [5, 6, 3, 2, 4])],
116
+ > [PartialPerm([1, 2, 3, 4], [3, 5, 1, 2]),
117
+ > PartialPerm([1, 2, 3, 4], [5, 4, 2, 1]),
118
+ > PartialPerm([1, 2, 4, 5], [3, 5, 1, 2])],
119
+ > [PartialPerm([1, 2, 3, 5], [4, 1, 2, 3])]];;
120
+ gap> S := List(gens, x -> InverseSemigroup(x, rec(acting := true)));
121
+ [ <inverse partial perm semigroup of rank 9 with 1 generator>,
122
+ <inverse partial perm semigroup of rank 8 with 3 generators>,
123
+ <inverse partial perm semigroup of rank 7 with 4 generators>,
124
+ <inverse partial perm semigroup of rank 7 with 4 generators>,
125
+ <inverse partial perm semigroup of rank 7 with 2 generators>,
126
+ <inverse partial perm semigroup of rank 10 with 3 generators>,
127
+ <inverse partial perm semigroup of rank 9 with 3 generators>,
128
+ <inverse partial perm semigroup of rank 6 with 4 generators>,
129
+ <inverse partial perm semigroup of rank 5 with 3 generators>,
130
+ <inverse partial perm semigroup of rank 5 with 1 generator> ]
131
+
132
+ #@if CompareVersionNumbers(ReplacedString(GAPInfo.Version, "dev", ""), "4.15")
133
+ gap> CharacterTableOfInverseSemigroup(S[1]);
134
+ [ [ [ 1, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, -1 ], [ 1, 1, 1, 1 ] ],
135
+ [ <identity partial perm on [ 1, 3, 4, 5, 8, 9, 10 ]>,
136
+ <identity partial perm on [ 1, 3, 4, 6, 8 ]>,
137
+ <identity partial perm on [ 1, 3, 4, 8 ]>, (1)(3)(4,8) ] ]
138
+ gap> CharacterTableOfInverseSemigroup(S[2]);
139
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
140
+ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
141
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
142
+ [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
143
+ [ 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
144
+ [ 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
145
+ [ 1, 1, 3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
146
+ [ 2, 4, 4, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
147
+ [ 3, 3, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
148
+ [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
149
+ [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0
150
+ ], [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0, 0, 0,
151
+ 0, 0, 0 ],
152
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
153
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
154
+ [ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, -1, 1, -1, 1, 0, 0, 0, 0 ]
155
+ , [ 38, 38, 40, 20, 18, 20, 8, 8, 8, 8, -1, -1, 6, 0, 2, 0, -1, 0, 0,
156
+ 0, 0 ],
157
+ [ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0 ],
158
+ [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 0, 3, -1, 0, 1, -1, 0, 0
159
+ ], [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 2, 3, 1, 0, 1, 1,
160
+ 0, 0 ],
161
+ [ 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 1, 1, 4, 2, 3, 1, 0, 2, 0, 1, 0 ],
162
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
163
+ [ <identity partial perm on [ 3, 4, 5, 6, 7, 8 ]>,
164
+ <identity partial perm on [ 1, 2, 3, 4, 6, 7 ]>,
165
+ <identity partial perm on [ 1, 2, 4, 5, 6, 7 ]>,
166
+ <identity partial perm on [ 1, 3, 5, 6, 8 ]>,
167
+ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
168
+ <identity partial perm on [ 1, 2, 4, 5, 7 ]>,
169
+ <identity partial perm on [ 1, 3, 6, 8 ]>,
170
+ <identity partial perm on [ 1, 3, 4, 7 ]>,
171
+ <identity partial perm on [ 2, 3, 5, 7 ]>,
172
+ <identity partial perm on [ 1, 2, 4, 6 ]>, (1)(2,4,6), (1)(2,6,4),
173
+ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3),
174
+ <identity partial perm on [ 2, 5, 7 ]>, (2)(5,7), (2,5,7),
175
+ <identity partial perm on [ 2, 5 ]>, (2,5),
176
+ <identity partial perm on [ 6 ]>, <empty partial perm> ] ]
177
+ gap> CharacterTableOfInverseSemigroup(S[3]);
178
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
179
+ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
180
+ [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
181
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
182
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
183
+ [ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
184
+ [ 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
185
+ [ 6, 6, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
186
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
187
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
188
+ [ 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
189
+ [ 10, 10, 6, 6, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
190
+ [ 10, 10, 6, 6, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
191
+ [ 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
192
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
193
+ [ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
194
+ <identity partial perm on [ 1, 2, 5, 6, 7 ]>,
195
+ <identity partial perm on [ 1, 2, 3, 7 ]>,
196
+ <identity partial perm on [ 1, 3, 6, 7 ]>,
197
+ <identity partial perm on [ 1, 5, 6, 7 ]>,
198
+ <identity partial perm on [ 2, 3, 4, 6 ]>,
199
+ <identity partial perm on [ 3, 6, 7 ]>,
200
+ <identity partial perm on [ 5, 6, 7 ]>,
201
+ <identity partial perm on [ 1, 3, 6 ]>, (1,6)(3),
202
+ <identity partial perm on [ 1, 5, 6 ]>,
203
+ <identity partial perm on [ 3, 7 ]>, (3,7),
204
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
205
+ gap> CharacterTableOfInverseSemigroup(S[4]);
206
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
207
+ [ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
208
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
209
+ [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
210
+ [ 4, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
211
+ [ 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
212
+ [ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
213
+ [ 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
214
+ [ 2, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
215
+ [ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
216
+ [ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
217
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
218
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
219
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
220
+ [ 15, 10, 10, 6, 6, 6, 6, 6, -2, 3, -1, 3, 0, 0, 1, -1, 0, 0 ],
221
+ [ 15, 10, 10, 6, 6, 6, 6, 6, 2, 3, 1, 3, 0, 0, 1, 1, 0, 0 ],
222
+ [ 6, 5, 5, 4, 4, 4, 4, 4, 0, 3, 1, 3, 0, 0, 2, 0, 1, 0 ],
223
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
224
+ [ <identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>,
225
+ <identity partial perm on [ 2, 3, 5, 6, 7 ]>,
226
+ <identity partial perm on [ 1, 2, 3, 4, 6 ]>,
227
+ <identity partial perm on [ 1, 2, 4, 7 ]>,
228
+ <identity partial perm on [ 1, 4, 6, 7 ]>,
229
+ <identity partial perm on [ 2, 3, 4, 7 ]>,
230
+ <identity partial perm on [ 1, 2, 4, 6 ]>,
231
+ <identity partial perm on [ 1, 2, 5, 6 ]>, (1,5)(2,6),
232
+ <identity partial perm on [ 1, 3, 6 ]>, (1)(3,6),
233
+ <identity partial perm on [ 2, 3, 4 ]>, (2,3,4), (2,4,3),
234
+ <identity partial perm on [ 1, 2 ]>, (1,2),
235
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
236
+ gap> CharacterTableOfInverseSemigroup(S[5]);
237
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
238
+ [ 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
239
+ , [ 19, 10, 4, 4, 1, 1, 1, 0, 0, 0, 0 ],
240
+ [ 19, 10, 4, 4, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
241
+ [ 19, 10, 4, 4, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
242
+ [ 15, 10, 6, 6, 3, 0, 0, 1, -1, 0, 0 ],
243
+ [ 15, 10, 6, 6, 3, 0, 0, 1, 1, 0, 0 ],
244
+ [ 6, 5, 4, 4, 3, 0, 0, 2, 0, 1, 0 ],
245
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
246
+ [ <identity partial perm on [ 1, 2, 3, 5, 6, 7 ]>,
247
+ <identity partial perm on [ 1, 3, 4, 5, 7 ]>,
248
+ <identity partial perm on [ 1, 2, 3, 6 ]>,
249
+ <identity partial perm on [ 1, 3, 5, 6 ]>,
250
+ <identity partial perm on [ 1, 2, 6 ]>, (1,2,6), (1,6,2),
251
+ <identity partial perm on [ 1, 3 ]>, (1,3),
252
+ <identity partial perm on [ 4 ]>, <empty partial perm> ] ]
253
+ gap> CharacterTableOfInverseSemigroup(S[6]);
254
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
255
+ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
256
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
257
+ [ 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
258
+ [ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
259
+ [ 2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
260
+ [ 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
261
+ [ 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
262
+ [ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
263
+ [ 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
264
+ [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
265
+ [ 3, 2, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
266
+ [ 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
267
+ [ 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
268
+ [ 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
269
+ [ 5, 3, 2, 2, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
270
+ [ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0 ]
271
+ , [ 8, 8, 12, 2, 4, 2, 6, 2, 4, 2, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0,
272
+ 0, 0 ],
273
+ [ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
274
+ [ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, -1, 0, 1, -1,
275
+ 0, 0 ],
276
+ [ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 0, 1, 1,
277
+ 0, 0 ],
278
+ [ 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 1, 0 ],
279
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
280
+ ],
281
+ [ <identity partial perm on [ 1, 2, 5, 6, 7, 9, 10 ]>,
282
+ <identity partial perm on [ 2, 3, 7, 8, 9, 10 ]>,
283
+ <identity partial perm on [ 1, 2, 4, 6, 8, 9 ]>,
284
+ <identity partial perm on [ 1, 5, 6, 7, 10 ]>,
285
+ <identity partial perm on [ 1, 3, 4, 7, 8 ]>,
286
+ <identity partial perm on [ 3, 7, 9, 10 ]>,
287
+ <identity partial perm on [ 1, 4, 8, 9 ]>,
288
+ <identity partial perm on [ 3, 4, 6, 9 ]>,
289
+ <identity partial perm on [ 1, 3, 4, 8 ]>,
290
+ <identity partial perm on [ 1, 4, 7, 8 ]>,
291
+ <identity partial perm on [ 2, 4, 6, 8 ]>,
292
+ <identity partial perm on [ 3, 6, 9 ]>,
293
+ <identity partial perm on [ 6, 8, 9 ]>,
294
+ <identity partial perm on [ 1, 3, 7 ]>,
295
+ <identity partial perm on [ 3, 4, 6 ]>,
296
+ <identity partial perm on [ 1, 2, 4 ]>,
297
+ <identity partial perm on [ 1, 3, 4 ]>, (1)(3,4), (1,3,4),
298
+ <identity partial perm on [ 1, 3 ]>, (1,3),
299
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
300
+ gap> CharacterTableOfInverseSemigroup(S[7]);
301
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
302
+ [ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
303
+ [ 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
304
+ [ 1, 1, -1, -E(4), E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
305
+ [ 1, 1, -1, E(4), -E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
306
+ [ 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
307
+ [ 6, 4, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
308
+ [ 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
309
+ [ 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
310
+ [ 3, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
311
+ [ 4, 2, -2, 0, 0, 2, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
312
+ [ 4, 2, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
313
+ [ 10, 4, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
314
+ [ 20, 10, -2, 0, 0, 10, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
315
+ [ 20, 10, 2, 0, 0, 10, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
316
+ [ 7, 5, 1, 1, 1, 5, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
317
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
318
+ [ <identity partial perm on [ 1, 2, 4, 5, 7, 8, 9 ]>,
319
+ <identity partial perm on [ 1, 2, 4, 5, 7 ]>, (1)(2,4)(5,7),
320
+ (1)(2,5,4,7), (1)(2,7,4,5), <identity partial perm on [ 1, 2, 4, 6, 7 ]>
321
+ , <identity partial perm on [ 1, 2, 4, 7 ]>,
322
+ <identity partial perm on [ 3, 4, 5, 7 ]>,
323
+ <identity partial perm on [ 2, 5, 7 ]>,
324
+ <identity partial perm on [ 3, 5, 7 ]>,
325
+ <identity partial perm on [ 2, 4, 6 ]>, (2,4)(6),
326
+ <identity partial perm on [ 3, 4, 5 ]>,
327
+ <identity partial perm on [ 2, 4 ]>, (2,4),
328
+ <identity partial perm on [ 7 ]>, <empty partial perm> ] ]
329
+ gap> CharacterTableOfInverseSemigroup(S[8]);
330
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
331
+ [ 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 4, 3, 1, -1, 1, 0, 0, 0, 0 ],
332
+ [ 14, 8, 6, 2, 0, -1, 0, 0, 0, 0 ], [ 7, 4, 3, 1, 1, 1, 0, 0, 0, 0 ],
333
+ [ 10, 6, 6, 3, -1, 0, 1, -1, 0, 0 ], [ 10, 6, 6, 3, 1, 0, 1, 1, 0, 0 ],
334
+ [ 5, 4, 4, 3, 1, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
335
+ [ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,
336
+ <identity partial perm on [ 1, 2, 3, 6 ]>,
337
+ <identity partial perm on [ 1, 2, 3, 5 ]>,
338
+ <identity partial perm on [ 2, 3, 6 ]>, (2)(3,6), (2,3,6),
339
+ <identity partial perm on [ 2, 3 ]>, (2,3),
340
+ <identity partial perm on [ 6 ]>, <empty partial perm> ] ]
341
+ gap> CharacterTableOfInverseSemigroup(S[9]);
342
+ [ [ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
343
+ [ 4, 0, 1, -1, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
344
+ [ 2, 0, 1, -1, 1, -1, 0, 0, 0, 0 ], [ 2, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
345
+ [ 4, -2, 2, 0, 0, 0, 1, -1, 0, 0 ], [ 4, 2, 2, 0, 0, 0, 1, 1, 0, 0 ],
346
+ [ 4, 0, 3, 1, 2, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
347
+ [ <identity partial perm on [ 1, 2, 3, 5 ]>, (1,5)(2,3),
348
+ <identity partial perm on [ 1, 3, 5 ]>, (1)(3,5),
349
+ <identity partial perm on [ 3, 4 ]>, (3,4),
350
+ <identity partial perm on [ 1, 3 ]>, (1,3),
351
+ <identity partial perm on [ 3 ]>, <empty partial perm> ] ]
352
+ gap> CharacterTableOfInverseSemigroup(S[10]);
353
+ [ [ [ 1, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 3, 2, 1, 0, 0 ],
354
+ [ 4, 3, 2, 1, 0 ], [ 1, 1, 1, 1, 1 ] ],
355
+ [ <identity partial perm on [ 1, 2, 3, 4 ]>,
356
+ <identity partial perm on [ 2, 3, 5 ]>,
357
+ <identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4 ]>,
358
+ <empty partial perm> ] ]
359
+ gap> CharacterTableOfInverseSemigroup(S[1]);
360
+ [ [ [ 1, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, -1 ], [ 1, 1, 1, 1 ] ],
361
+ [ <identity partial perm on [ 1, 3, 4, 5, 8, 9, 10 ]>,
362
+ <identity partial perm on [ 1, 3, 4, 6, 8 ]>,
363
+ <identity partial perm on [ 1, 3, 4, 8 ]>, (1)(3)(4,8) ] ]
364
+ gap> CharacterTableOfInverseSemigroup(S[2]);
365
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
366
+ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
367
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
368
+ [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
369
+ [ 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
370
+ [ 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
371
+ [ 1, 1, 3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
372
+ [ 2, 4, 4, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
373
+ [ 3, 3, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
374
+ [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
375
+ [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0
376
+ ], [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0, 0, 0,
377
+ 0, 0, 0 ],
378
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
379
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
380
+ [ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, -1, 1, -1, 1, 0, 0, 0, 0 ]
381
+ , [ 38, 38, 40, 20, 18, 20, 8, 8, 8, 8, -1, -1, 6, 0, 2, 0, -1, 0, 0,
382
+ 0, 0 ],
383
+ [ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0 ],
384
+ [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 0, 3, -1, 0, 1, -1, 0, 0
385
+ ], [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 2, 3, 1, 0, 1, 1,
386
+ 0, 0 ],
387
+ [ 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 1, 1, 4, 2, 3, 1, 0, 2, 0, 1, 0 ],
388
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
389
+ [ <identity partial perm on [ 3, 4, 5, 6, 7, 8 ]>,
390
+ <identity partial perm on [ 1, 2, 3, 4, 6, 7 ]>,
391
+ <identity partial perm on [ 1, 2, 4, 5, 6, 7 ]>,
392
+ <identity partial perm on [ 1, 3, 5, 6, 8 ]>,
393
+ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
394
+ <identity partial perm on [ 1, 2, 4, 5, 7 ]>,
395
+ <identity partial perm on [ 1, 3, 6, 8 ]>,
396
+ <identity partial perm on [ 1, 3, 4, 7 ]>,
397
+ <identity partial perm on [ 2, 3, 5, 7 ]>,
398
+ <identity partial perm on [ 1, 2, 4, 6 ]>, (1)(2,4,6), (1)(2,6,4),
399
+ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3),
400
+ <identity partial perm on [ 2, 5, 7 ]>, (2)(5,7), (2,5,7),
401
+ <identity partial perm on [ 2, 5 ]>, (2,5),
402
+ <identity partial perm on [ 6 ]>, <empty partial perm> ] ]
403
+ gap> CharacterTableOfInverseSemigroup(S[3]);
404
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
405
+ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
406
+ [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
407
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
408
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
409
+ [ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
410
+ [ 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
411
+ [ 6, 6, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
412
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
413
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
414
+ [ 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
415
+ [ 10, 10, 6, 6, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
416
+ [ 10, 10, 6, 6, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
417
+ [ 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
418
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
419
+ [ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
420
+ <identity partial perm on [ 1, 2, 5, 6, 7 ]>,
421
+ <identity partial perm on [ 1, 2, 3, 7 ]>,
422
+ <identity partial perm on [ 1, 3, 6, 7 ]>,
423
+ <identity partial perm on [ 1, 5, 6, 7 ]>,
424
+ <identity partial perm on [ 2, 3, 4, 6 ]>,
425
+ <identity partial perm on [ 3, 6, 7 ]>,
426
+ <identity partial perm on [ 5, 6, 7 ]>,
427
+ <identity partial perm on [ 1, 3, 6 ]>, (1,6)(3),
428
+ <identity partial perm on [ 1, 5, 6 ]>,
429
+ <identity partial perm on [ 3, 7 ]>, (3,7),
430
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
431
+ gap> CharacterTableOfInverseSemigroup(S[4]);
432
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
433
+ [ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
434
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
435
+ [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
436
+ [ 4, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
437
+ [ 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
438
+ [ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
439
+ [ 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
440
+ [ 2, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
441
+ [ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
442
+ [ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
443
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
444
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
445
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
446
+ [ 15, 10, 10, 6, 6, 6, 6, 6, -2, 3, -1, 3, 0, 0, 1, -1, 0, 0 ],
447
+ [ 15, 10, 10, 6, 6, 6, 6, 6, 2, 3, 1, 3, 0, 0, 1, 1, 0, 0 ],
448
+ [ 6, 5, 5, 4, 4, 4, 4, 4, 0, 3, 1, 3, 0, 0, 2, 0, 1, 0 ],
449
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
450
+ [ <identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>,
451
+ <identity partial perm on [ 2, 3, 5, 6, 7 ]>,
452
+ <identity partial perm on [ 1, 2, 3, 4, 6 ]>,
453
+ <identity partial perm on [ 1, 2, 4, 7 ]>,
454
+ <identity partial perm on [ 1, 4, 6, 7 ]>,
455
+ <identity partial perm on [ 2, 3, 4, 7 ]>,
456
+ <identity partial perm on [ 1, 2, 4, 6 ]>,
457
+ <identity partial perm on [ 1, 2, 5, 6 ]>, (1,5)(2,6),
458
+ <identity partial perm on [ 1, 3, 6 ]>, (1)(3,6),
459
+ <identity partial perm on [ 2, 3, 4 ]>, (2,3,4), (2,4,3),
460
+ <identity partial perm on [ 1, 2 ]>, (1,2),
461
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
462
+ gap> CharacterTableOfInverseSemigroup(S[5]);
463
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
464
+ [ 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
465
+ , [ 19, 10, 4, 4, 1, 1, 1, 0, 0, 0, 0 ],
466
+ [ 19, 10, 4, 4, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
467
+ [ 19, 10, 4, 4, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
468
+ [ 15, 10, 6, 6, 3, 0, 0, 1, -1, 0, 0 ],
469
+ [ 15, 10, 6, 6, 3, 0, 0, 1, 1, 0, 0 ],
470
+ [ 6, 5, 4, 4, 3, 0, 0, 2, 0, 1, 0 ],
471
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
472
+ [ <identity partial perm on [ 1, 2, 3, 5, 6, 7 ]>,
473
+ <identity partial perm on [ 1, 3, 4, 5, 7 ]>,
474
+ <identity partial perm on [ 1, 2, 3, 6 ]>,
475
+ <identity partial perm on [ 1, 3, 5, 6 ]>,
476
+ <identity partial perm on [ 1, 2, 6 ]>, (1,2,6), (1,6,2),
477
+ <identity partial perm on [ 1, 3 ]>, (1,3),
478
+ <identity partial perm on [ 4 ]>, <empty partial perm> ] ]
479
+ gap> CharacterTableOfInverseSemigroup(S[6]);
480
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
481
+ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
482
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
483
+ [ 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
484
+ [ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
485
+ [ 2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
486
+ [ 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
487
+ [ 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
488
+ [ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
489
+ [ 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
490
+ [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
491
+ [ 3, 2, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
492
+ [ 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
493
+ [ 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
494
+ [ 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
495
+ [ 5, 3, 2, 2, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
496
+ [ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0 ]
497
+ , [ 8, 8, 12, 2, 4, 2, 6, 2, 4, 2, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0,
498
+ 0, 0 ],
499
+ [ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
500
+ [ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, -1, 0, 1, -1,
501
+ 0, 0 ],
502
+ [ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 0, 1, 1,
503
+ 0, 0 ],
504
+ [ 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 1, 0 ],
505
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
506
+ ],
507
+ [ <identity partial perm on [ 1, 2, 5, 6, 7, 9, 10 ]>,
508
+ <identity partial perm on [ 2, 3, 7, 8, 9, 10 ]>,
509
+ <identity partial perm on [ 1, 2, 4, 6, 8, 9 ]>,
510
+ <identity partial perm on [ 1, 5, 6, 7, 10 ]>,
511
+ <identity partial perm on [ 1, 3, 4, 7, 8 ]>,
512
+ <identity partial perm on [ 3, 7, 9, 10 ]>,
513
+ <identity partial perm on [ 1, 4, 8, 9 ]>,
514
+ <identity partial perm on [ 3, 4, 6, 9 ]>,
515
+ <identity partial perm on [ 1, 3, 4, 8 ]>,
516
+ <identity partial perm on [ 1, 4, 7, 8 ]>,
517
+ <identity partial perm on [ 2, 4, 6, 8 ]>,
518
+ <identity partial perm on [ 3, 6, 9 ]>,
519
+ <identity partial perm on [ 6, 8, 9 ]>,
520
+ <identity partial perm on [ 1, 3, 7 ]>,
521
+ <identity partial perm on [ 3, 4, 6 ]>,
522
+ <identity partial perm on [ 1, 2, 4 ]>,
523
+ <identity partial perm on [ 1, 3, 4 ]>, (1)(3,4), (1,3,4),
524
+ <identity partial perm on [ 1, 3 ]>, (1,3),
525
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
526
+ gap> CharacterTableOfInverseSemigroup(S[7]);
527
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
528
+ [ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
529
+ [ 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
530
+ [ 1, 1, -1, -E(4), E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
531
+ [ 1, 1, -1, E(4), -E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
532
+ [ 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
533
+ [ 6, 4, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
534
+ [ 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
535
+ [ 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
536
+ [ 3, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
537
+ [ 4, 2, -2, 0, 0, 2, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
538
+ [ 4, 2, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
539
+ [ 10, 4, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
540
+ [ 20, 10, -2, 0, 0, 10, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
541
+ [ 20, 10, 2, 0, 0, 10, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
542
+ [ 7, 5, 1, 1, 1, 5, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
543
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
544
+ [ <identity partial perm on [ 1, 2, 4, 5, 7, 8, 9 ]>,
545
+ <identity partial perm on [ 1, 2, 4, 5, 7 ]>, (1)(2,4)(5,7),
546
+ (1)(2,5,4,7), (1)(2,7,4,5), <identity partial perm on [ 1, 2, 4, 6, 7 ]>
547
+ , <identity partial perm on [ 1, 2, 4, 7 ]>,
548
+ <identity partial perm on [ 3, 4, 5, 7 ]>,
549
+ <identity partial perm on [ 2, 5, 7 ]>,
550
+ <identity partial perm on [ 3, 5, 7 ]>,
551
+ <identity partial perm on [ 2, 4, 6 ]>, (2,4)(6),
552
+ <identity partial perm on [ 3, 4, 5 ]>,
553
+ <identity partial perm on [ 2, 4 ]>, (2,4),
554
+ <identity partial perm on [ 7 ]>, <empty partial perm> ] ]
555
+ gap> CharacterTableOfInverseSemigroup(S[8]);
556
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
557
+ [ 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 4, 3, 1, -1, 1, 0, 0, 0, 0 ],
558
+ [ 14, 8, 6, 2, 0, -1, 0, 0, 0, 0 ], [ 7, 4, 3, 1, 1, 1, 0, 0, 0, 0 ],
559
+ [ 10, 6, 6, 3, -1, 0, 1, -1, 0, 0 ], [ 10, 6, 6, 3, 1, 0, 1, 1, 0, 0 ],
560
+ [ 5, 4, 4, 3, 1, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
561
+ [ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,
562
+ <identity partial perm on [ 1, 2, 3, 6 ]>,
563
+ <identity partial perm on [ 1, 2, 3, 5 ]>,
564
+ <identity partial perm on [ 2, 3, 6 ]>, (2)(3,6), (2,3,6),
565
+ <identity partial perm on [ 2, 3 ]>, (2,3),
566
+ <identity partial perm on [ 6 ]>, <empty partial perm> ] ]
567
+ gap> CharacterTableOfInverseSemigroup(S[9]);
568
+ [ [ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
569
+ [ 4, 0, 1, -1, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
570
+ [ 2, 0, 1, -1, 1, -1, 0, 0, 0, 0 ], [ 2, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
571
+ [ 4, -2, 2, 0, 0, 0, 1, -1, 0, 0 ], [ 4, 2, 2, 0, 0, 0, 1, 1, 0, 0 ],
572
+ [ 4, 0, 3, 1, 2, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
573
+ [ <identity partial perm on [ 1, 2, 3, 5 ]>, (1,5)(2,3),
574
+ <identity partial perm on [ 1, 3, 5 ]>, (1)(3,5),
575
+ <identity partial perm on [ 3, 4 ]>, (3,4),
576
+ <identity partial perm on [ 1, 3 ]>, (1,3),
577
+ <identity partial perm on [ 3 ]>, <empty partial perm> ] ]
578
+ gap> CharacterTableOfInverseSemigroup(S[10]);
579
+ [ [ [ 1, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 3, 2, 1, 0, 0 ],
580
+ [ 4, 3, 2, 1, 0 ], [ 1, 1, 1, 1, 1 ] ],
581
+ [ <identity partial perm on [ 1, 2, 3, 4 ]>,
582
+ <identity partial perm on [ 2, 3, 5 ]>,
583
+ <identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4 ]>,
584
+ <empty partial perm> ] ]
585
+ #@else
586
+ gap> CharacterTableOfInverseSemigroup(S[1]);
587
+ [ [ [ 1, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, -1 ], [ 1, 1, 1, 1 ] ],
588
+ [ <identity partial perm on [ 1, 3, 4, 5, 8, 9, 10 ]>,
589
+ <identity partial perm on [ 1, 3, 4, 6, 8 ]>,
590
+ <identity partial perm on [ 1, 3, 4, 8 ]>, (1)(3)(4,8) ] ]
591
+ gap> CharacterTableOfInverseSemigroup(S[2]);
592
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
593
+ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
594
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
595
+ [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
596
+ [ 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
597
+ [ 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
598
+ [ 1, 1, 3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
599
+ [ 2, 4, 4, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
600
+ [ 3, 3, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
601
+ [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
602
+ [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0
603
+ ], [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0, 0, 0,
604
+ 0, 0, 0 ],
605
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
606
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
607
+ [ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, -1, 1, -1, 1, 0, 0, 0, 0 ]
608
+ , [ 38, 38, 40, 20, 18, 20, 8, 8, 8, 8, -1, -1, 6, 0, 2, 0, -1, 0, 0,
609
+ 0, 0 ],
610
+ [ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0 ],
611
+ [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 0, 3, -1, 0, 1, -1, 0, 0
612
+ ], [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 2, 3, 1, 0, 1, 1,
613
+ 0, 0 ],
614
+ [ 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 1, 1, 4, 2, 3, 1, 0, 2, 0, 1, 0 ],
615
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
616
+ [ <identity partial perm on [ 3, 4, 5, 6, 7, 8 ]>,
617
+ <identity partial perm on [ 1, 2, 3, 4, 6, 7 ]>,
618
+ <identity partial perm on [ 1, 2, 4, 5, 6, 7 ]>,
619
+ <identity partial perm on [ 1, 3, 5, 6, 8 ]>,
620
+ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
621
+ <identity partial perm on [ 1, 2, 4, 5, 7 ]>,
622
+ <identity partial perm on [ 1, 3, 6, 8 ]>,
623
+ <identity partial perm on [ 1, 3, 4, 7 ]>,
624
+ <identity partial perm on [ 2, 3, 5, 7 ]>,
625
+ <identity partial perm on [ 1, 2, 4, 6 ]>, (1)(2,4,6), (1)(2,6,4),
626
+ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3),
627
+ <identity partial perm on [ 2, 5, 7 ]>, (2)(5,7), (2,5,7),
628
+ <identity partial perm on [ 2, 5 ]>, (2,5),
629
+ <identity partial perm on [ 6 ]>, <empty partial perm> ] ]
630
+ gap> CharacterTableOfInverseSemigroup(S[3]);
631
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
632
+ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
633
+ [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
634
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
635
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
636
+ [ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
637
+ [ 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
638
+ [ 6, 6, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
639
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
640
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
641
+ [ 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
642
+ [ 10, 10, 6, 6, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
643
+ [ 10, 10, 6, 6, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
644
+ [ 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
645
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
646
+ [ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
647
+ <identity partial perm on [ 1, 2, 5, 6, 7 ]>,
648
+ <identity partial perm on [ 1, 2, 3, 7 ]>,
649
+ <identity partial perm on [ 1, 3, 6, 7 ]>,
650
+ <identity partial perm on [ 1, 5, 6, 7 ]>,
651
+ <identity partial perm on [ 2, 3, 4, 6 ]>,
652
+ <identity partial perm on [ 3, 6, 7 ]>,
653
+ <identity partial perm on [ 5, 6, 7 ]>,
654
+ <identity partial perm on [ 1, 3, 6 ]>, (1,6)(3),
655
+ <identity partial perm on [ 1, 5, 6 ]>,
656
+ <identity partial perm on [ 3, 7 ]>, (3,7),
657
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
658
+ gap> CharacterTableOfInverseSemigroup(S[4]);
659
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
660
+ [ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
661
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
662
+ [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
663
+ [ 4, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
664
+ [ 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
665
+ [ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
666
+ [ 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
667
+ [ 2, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
668
+ [ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
669
+ [ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
670
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
671
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
672
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
673
+ [ 15, 10, 10, 6, 6, 6, 6, 6, -2, 3, -1, 3, 0, 0, 1, -1, 0, 0 ],
674
+ [ 15, 10, 10, 6, 6, 6, 6, 6, 2, 3, 1, 3, 0, 0, 1, 1, 0, 0 ],
675
+ [ 6, 5, 5, 4, 4, 4, 4, 4, 0, 3, 1, 3, 0, 0, 2, 0, 1, 0 ],
676
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
677
+ [ <identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>,
678
+ <identity partial perm on [ 2, 3, 5, 6, 7 ]>,
679
+ <identity partial perm on [ 1, 2, 3, 4, 6 ]>,
680
+ <identity partial perm on [ 1, 2, 4, 7 ]>,
681
+ <identity partial perm on [ 1, 4, 6, 7 ]>,
682
+ <identity partial perm on [ 2, 3, 4, 7 ]>,
683
+ <identity partial perm on [ 1, 2, 4, 6 ]>,
684
+ <identity partial perm on [ 1, 2, 5, 6 ]>, (1,5)(2,6),
685
+ <identity partial perm on [ 1, 3, 6 ]>, (1)(3,6),
686
+ <identity partial perm on [ 2, 3, 4 ]>, (2,3,4), (2,4,3),
687
+ <identity partial perm on [ 1, 2 ]>, (1,2),
688
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
689
+ gap> CharacterTableOfInverseSemigroup(S[5]);
690
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
691
+ [ 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
692
+ , [ 19, 10, 4, 4, 1, 1, 1, 0, 0, 0, 0 ],
693
+ [ 19, 10, 4, 4, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
694
+ [ 19, 10, 4, 4, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
695
+ [ 15, 10, 6, 6, 3, 0, 0, 1, -1, 0, 0 ],
696
+ [ 15, 10, 6, 6, 3, 0, 0, 1, 1, 0, 0 ],
697
+ [ 6, 5, 4, 4, 3, 0, 0, 2, 0, 1, 0 ],
698
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
699
+ [ <identity partial perm on [ 1, 2, 3, 5, 6, 7 ]>,
700
+ <identity partial perm on [ 1, 3, 4, 5, 7 ]>,
701
+ <identity partial perm on [ 1, 2, 3, 6 ]>,
702
+ <identity partial perm on [ 1, 3, 5, 6 ]>,
703
+ <identity partial perm on [ 1, 2, 6 ]>, (1,2,6), (1,6,2),
704
+ <identity partial perm on [ 1, 3 ]>, (1,3),
705
+ <identity partial perm on [ 4 ]>, <empty partial perm> ] ]
706
+ gap> CharacterTableOfInverseSemigroup(S[6]);
707
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
708
+ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
709
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
710
+ [ 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
711
+ [ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
712
+ [ 2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
713
+ [ 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
714
+ [ 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
715
+ [ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
716
+ [ 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
717
+ [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
718
+ [ 3, 2, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
719
+ [ 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
720
+ [ 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
721
+ [ 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
722
+ [ 5, 3, 2, 2, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
723
+ [ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0 ]
724
+ , [ 8, 8, 12, 2, 4, 2, 6, 2, 4, 2, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0,
725
+ 0, 0 ],
726
+ [ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
727
+ [ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, -1, 0, 1, -1,
728
+ 0, 0 ],
729
+ [ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 0, 1, 1,
730
+ 0, 0 ],
731
+ [ 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 1, 0 ],
732
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
733
+ ],
734
+ [ <identity partial perm on [ 1, 2, 5, 6, 7, 9, 10 ]>,
735
+ <identity partial perm on [ 2, 3, 7, 8, 9, 10 ]>,
736
+ <identity partial perm on [ 1, 2, 4, 6, 8, 9 ]>,
737
+ <identity partial perm on [ 1, 5, 6, 7, 10 ]>,
738
+ <identity partial perm on [ 1, 3, 4, 7, 8 ]>,
739
+ <identity partial perm on [ 3, 7, 9, 10 ]>,
740
+ <identity partial perm on [ 1, 4, 8, 9 ]>,
741
+ <identity partial perm on [ 3, 4, 6, 9 ]>,
742
+ <identity partial perm on [ 1, 3, 4, 8 ]>,
743
+ <identity partial perm on [ 1, 4, 7, 8 ]>,
744
+ <identity partial perm on [ 2, 4, 6, 8 ]>,
745
+ <identity partial perm on [ 3, 6, 9 ]>,
746
+ <identity partial perm on [ 6, 8, 9 ]>,
747
+ <identity partial perm on [ 1, 3, 7 ]>,
748
+ <identity partial perm on [ 3, 4, 6 ]>,
749
+ <identity partial perm on [ 1, 2, 4 ]>,
750
+ <identity partial perm on [ 1, 3, 4 ]>, (1)(3,4), (1,3,4),
751
+ <identity partial perm on [ 1, 3 ]>, (1,3),
752
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
753
+ gap> CharacterTableOfInverseSemigroup(S[7]);
754
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
755
+ [ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
756
+ [ 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
757
+ [ 1, 1, -1, -E(4), E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
758
+ [ 1, 1, -1, E(4), -E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
759
+ [ 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
760
+ [ 6, 4, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
761
+ [ 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
762
+ [ 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
763
+ [ 3, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
764
+ [ 4, 2, -2, 0, 0, 2, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
765
+ [ 4, 2, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
766
+ [ 10, 4, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
767
+ [ 20, 10, -2, 0, 0, 10, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
768
+ [ 20, 10, 2, 0, 0, 10, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
769
+ [ 7, 5, 1, 1, 1, 5, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
770
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
771
+ [ <identity partial perm on [ 1, 2, 4, 5, 7, 8, 9 ]>,
772
+ <identity partial perm on [ 1, 2, 4, 5, 7 ]>, (1)(2,4)(5,7),
773
+ (1)(2,5,4,7), (1)(2,7,4,5), <identity partial perm on [ 1, 2, 4, 6, 7 ]>
774
+ , <identity partial perm on [ 1, 2, 4, 7 ]>,
775
+ <identity partial perm on [ 3, 4, 5, 7 ]>,
776
+ <identity partial perm on [ 2, 5, 7 ]>,
777
+ <identity partial perm on [ 3, 5, 7 ]>,
778
+ <identity partial perm on [ 2, 4, 6 ]>, (2,4)(6),
779
+ <identity partial perm on [ 3, 4, 5 ]>,
780
+ <identity partial perm on [ 2, 4 ]>, (2,4),
781
+ <identity partial perm on [ 7 ]>, <empty partial perm> ] ]
782
+ gap> CharacterTableOfInverseSemigroup(S[8]);
783
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
784
+ [ 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 4, 3, 1, -1, 1, 0, 0, 0, 0 ],
785
+ [ 14, 8, 6, 2, 0, -1, 0, 0, 0, 0 ], [ 7, 4, 3, 1, 1, 1, 0, 0, 0, 0 ],
786
+ [ 10, 6, 6, 3, -1, 0, 1, -1, 0, 0 ], [ 10, 6, 6, 3, 1, 0, 1, 1, 0, 0 ],
787
+ [ 5, 4, 4, 3, 1, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
788
+ [ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,
789
+ <identity partial perm on [ 1, 2, 3, 6 ]>,
790
+ <identity partial perm on [ 1, 2, 3, 5 ]>,
791
+ <identity partial perm on [ 2, 3, 6 ]>, (2)(3,6), (2,3,6),
792
+ <identity partial perm on [ 2, 3 ]>, (2,3),
793
+ <identity partial perm on [ 6 ]>, <empty partial perm> ] ]
794
+ gap> CharacterTableOfInverseSemigroup(S[9]);
795
+ [ [ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
796
+ [ 4, 0, 1, -1, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
797
+ [ 2, 0, 1, -1, 1, -1, 0, 0, 0, 0 ], [ 2, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
798
+ [ 4, -2, 2, 0, 0, 0, 1, -1, 0, 0 ], [ 4, 2, 2, 0, 0, 0, 1, 1, 0, 0 ],
799
+ [ 4, 0, 3, 1, 2, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
800
+ [ <identity partial perm on [ 1, 2, 3, 5 ]>, (1,5)(2,3),
801
+ <identity partial perm on [ 1, 3, 5 ]>, (1)(3,5),
802
+ <identity partial perm on [ 3, 4 ]>, (3,4),
803
+ <identity partial perm on [ 1, 3 ]>, (1,3),
804
+ <identity partial perm on [ 3 ]>, <empty partial perm> ] ]
805
+ gap> CharacterTableOfInverseSemigroup(S[10]);
806
+ [ [ [ 1, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 3, 2, 1, 0, 0 ],
807
+ [ 4, 3, 2, 1, 0 ], [ 1, 1, 1, 1, 1 ] ],
808
+ [ <identity partial perm on [ 1, 2, 3, 4 ]>,
809
+ <identity partial perm on [ 2, 3, 5 ]>,
810
+ <identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4 ]>,
811
+ <empty partial perm> ] ]
812
+ gap> CharacterTableOfInverseSemigroup(S[1]);
813
+ [ [ [ 1, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, -1 ], [ 1, 1, 1, 1 ] ],
814
+ [ <identity partial perm on [ 1, 3, 4, 5, 8, 9, 10 ]>,
815
+ <identity partial perm on [ 1, 3, 4, 6, 8 ]>,
816
+ <identity partial perm on [ 1, 3, 4, 8 ]>, (1)(3)(4,8) ] ]
817
+ gap> CharacterTableOfInverseSemigroup(S[2]);
818
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
819
+ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
820
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
821
+ [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
822
+ [ 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
823
+ [ 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
824
+ [ 1, 1, 3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
825
+ [ 2, 4, 4, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
826
+ [ 3, 3, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
827
+ [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
828
+ [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0
829
+ ], [ 4, 3, 3, 2, 1, 2, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0, 0, 0,
830
+ 0, 0, 0 ],
831
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
832
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
833
+ [ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, -1, 1, -1, 1, 0, 0, 0, 0 ]
834
+ , [ 38, 38, 40, 20, 18, 20, 8, 8, 8, 8, -1, -1, 6, 0, 2, 0, -1, 0, 0,
835
+ 0, 0 ],
836
+ [ 19, 19, 20, 10, 9, 10, 4, 4, 4, 4, 1, 1, 3, 1, 1, 1, 1, 0, 0, 0, 0 ],
837
+ [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 0, 3, -1, 0, 1, -1, 0, 0
838
+ ], [ 15, 15, 15, 10, 10, 10, 6, 6, 6, 6, 0, 0, 6, 2, 3, 1, 0, 1, 1,
839
+ 0, 0 ],
840
+ [ 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 1, 1, 4, 2, 3, 1, 0, 2, 0, 1, 0 ],
841
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
842
+ [ <identity partial perm on [ 3, 4, 5, 6, 7, 8 ]>,
843
+ <identity partial perm on [ 1, 2, 3, 4, 6, 7 ]>,
844
+ <identity partial perm on [ 1, 2, 4, 5, 6, 7 ]>,
845
+ <identity partial perm on [ 1, 3, 5, 6, 8 ]>,
846
+ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
847
+ <identity partial perm on [ 1, 2, 4, 5, 7 ]>,
848
+ <identity partial perm on [ 1, 3, 6, 8 ]>,
849
+ <identity partial perm on [ 1, 3, 4, 7 ]>,
850
+ <identity partial perm on [ 2, 3, 5, 7 ]>,
851
+ <identity partial perm on [ 1, 2, 4, 6 ]>, (1)(2,4,6), (1)(2,6,4),
852
+ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3),
853
+ <identity partial perm on [ 2, 5, 7 ]>, (2)(5,7), (2,5,7),
854
+ <identity partial perm on [ 2, 5 ]>, (2,5),
855
+ <identity partial perm on [ 6 ]>, <empty partial perm> ] ]
856
+ gap> CharacterTableOfInverseSemigroup(S[3]);
857
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
858
+ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
859
+ [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
860
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
861
+ [ 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
862
+ [ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
863
+ [ 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
864
+ [ 6, 6, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
865
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
866
+ [ 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
867
+ [ 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
868
+ [ 10, 10, 6, 6, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
869
+ [ 10, 10, 6, 6, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
870
+ [ 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
871
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
872
+ [ <identity partial perm on [ 1, 2, 3, 4, 7 ]>,
873
+ <identity partial perm on [ 1, 2, 5, 6, 7 ]>,
874
+ <identity partial perm on [ 1, 2, 3, 7 ]>,
875
+ <identity partial perm on [ 1, 3, 6, 7 ]>,
876
+ <identity partial perm on [ 1, 5, 6, 7 ]>,
877
+ <identity partial perm on [ 2, 3, 4, 6 ]>,
878
+ <identity partial perm on [ 3, 6, 7 ]>,
879
+ <identity partial perm on [ 5, 6, 7 ]>,
880
+ <identity partial perm on [ 1, 3, 6 ]>, (1,6)(3),
881
+ <identity partial perm on [ 1, 5, 6 ]>,
882
+ <identity partial perm on [ 3, 7 ]>, (3,7),
883
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
884
+ gap> CharacterTableOfInverseSemigroup(S[4]);
885
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
886
+ [ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
887
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
888
+ [ 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
889
+ [ 4, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
890
+ [ 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
891
+ [ 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
892
+ [ 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
893
+ [ 2, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
894
+ [ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],
895
+ [ 20, 10, 9, 4, 4, 3, 4, 4, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
896
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
897
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
898
+ [ 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
899
+ [ 15, 10, 10, 6, 6, 6, 6, 6, -2, 3, -1, 3, 0, 0, 1, -1, 0, 0 ],
900
+ [ 15, 10, 10, 6, 6, 6, 6, 6, 2, 3, 1, 3, 0, 0, 1, 1, 0, 0 ],
901
+ [ 6, 5, 5, 4, 4, 4, 4, 4, 0, 3, 1, 3, 0, 0, 2, 0, 1, 0 ],
902
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
903
+ [ <identity partial perm on [ 1, 3, 4, 5, 6, 7 ]>,
904
+ <identity partial perm on [ 2, 3, 5, 6, 7 ]>,
905
+ <identity partial perm on [ 1, 2, 3, 4, 6 ]>,
906
+ <identity partial perm on [ 1, 2, 4, 7 ]>,
907
+ <identity partial perm on [ 1, 4, 6, 7 ]>,
908
+ <identity partial perm on [ 2, 3, 4, 7 ]>,
909
+ <identity partial perm on [ 1, 2, 4, 6 ]>,
910
+ <identity partial perm on [ 1, 2, 5, 6 ]>, (1,5)(2,6),
911
+ <identity partial perm on [ 1, 3, 6 ]>, (1)(3,6),
912
+ <identity partial perm on [ 2, 3, 4 ]>, (2,3,4), (2,4,3),
913
+ <identity partial perm on [ 1, 2 ]>, (1,2),
914
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
915
+ gap> CharacterTableOfInverseSemigroup(S[5]);
916
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
917
+ [ 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 5, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
918
+ , [ 19, 10, 4, 4, 1, 1, 1, 0, 0, 0, 0 ],
919
+ [ 19, 10, 4, 4, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
920
+ [ 19, 10, 4, 4, 1, E(3)^2, E(3), 0, 0, 0, 0 ],
921
+ [ 15, 10, 6, 6, 3, 0, 0, 1, -1, 0, 0 ],
922
+ [ 15, 10, 6, 6, 3, 0, 0, 1, 1, 0, 0 ],
923
+ [ 6, 5, 4, 4, 3, 0, 0, 2, 0, 1, 0 ],
924
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
925
+ [ <identity partial perm on [ 1, 2, 3, 5, 6, 7 ]>,
926
+ <identity partial perm on [ 1, 3, 4, 5, 7 ]>,
927
+ <identity partial perm on [ 1, 2, 3, 6 ]>,
928
+ <identity partial perm on [ 1, 3, 5, 6 ]>,
929
+ <identity partial perm on [ 1, 2, 6 ]>, (1,2,6), (1,6,2),
930
+ <identity partial perm on [ 1, 3 ]>, (1,3),
931
+ <identity partial perm on [ 4 ]>, <empty partial perm> ] ]
932
+ gap> CharacterTableOfInverseSemigroup(S[6]);
933
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
934
+ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
935
+ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
936
+ [ 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
937
+ [ 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
938
+ [ 2, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
939
+ [ 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
940
+ [ 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
941
+ [ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
942
+ [ 2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
943
+ [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
944
+ [ 3, 2, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
945
+ [ 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
946
+ [ 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
947
+ [ 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
948
+ [ 5, 3, 2, 2, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
949
+ [ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0 ]
950
+ , [ 8, 8, 12, 2, 4, 2, 6, 2, 4, 2, 2, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0,
951
+ 0, 0 ],
952
+ [ 4, 4, 6, 1, 2, 1, 3, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
953
+ [ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, -1, 0, 1, -1,
954
+ 0, 0 ],
955
+ [ 21, 15, 15, 10, 10, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 0, 1, 1,
956
+ 0, 0 ],
957
+ [ 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 1, 0, 2, 0, 1, 0 ],
958
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
959
+ ],
960
+ [ <identity partial perm on [ 1, 2, 5, 6, 7, 9, 10 ]>,
961
+ <identity partial perm on [ 2, 3, 7, 8, 9, 10 ]>,
962
+ <identity partial perm on [ 1, 2, 4, 6, 8, 9 ]>,
963
+ <identity partial perm on [ 1, 5, 6, 7, 10 ]>,
964
+ <identity partial perm on [ 1, 3, 4, 7, 8 ]>,
965
+ <identity partial perm on [ 3, 7, 9, 10 ]>,
966
+ <identity partial perm on [ 1, 4, 8, 9 ]>,
967
+ <identity partial perm on [ 3, 4, 6, 9 ]>,
968
+ <identity partial perm on [ 1, 3, 4, 8 ]>,
969
+ <identity partial perm on [ 1, 4, 7, 8 ]>,
970
+ <identity partial perm on [ 2, 4, 6, 8 ]>,
971
+ <identity partial perm on [ 3, 6, 9 ]>,
972
+ <identity partial perm on [ 6, 8, 9 ]>,
973
+ <identity partial perm on [ 1, 3, 7 ]>,
974
+ <identity partial perm on [ 3, 4, 6 ]>,
975
+ <identity partial perm on [ 1, 2, 4 ]>,
976
+ <identity partial perm on [ 1, 3, 4 ]>, (1)(3,4), (1,3,4),
977
+ <identity partial perm on [ 1, 3 ]>, (1,3),
978
+ <identity partial perm on [ 1 ]>, <empty partial perm> ] ]
979
+ gap> CharacterTableOfInverseSemigroup(S[7]);
980
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
981
+ [ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
982
+ [ 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
983
+ [ 1, 1, -1, -E(4), E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
984
+ [ 1, 1, -1, E(4), -E(4), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
985
+ [ 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
986
+ [ 6, 4, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
987
+ [ 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
988
+ [ 5, 4, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
989
+ [ 3, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
990
+ [ 4, 2, -2, 0, 0, 2, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0 ],
991
+ [ 4, 2, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0 ],
992
+ [ 10, 4, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
993
+ [ 20, 10, -2, 0, 0, 10, 6, 6, 3, 3, 3, -1, 3, 1, -1, 0, 0 ],
994
+ [ 20, 10, 2, 0, 0, 10, 6, 6, 3, 3, 3, 1, 3, 1, 1, 0, 0 ],
995
+ [ 7, 5, 1, 1, 1, 5, 4, 4, 3, 3, 3, 1, 3, 2, 0, 1, 0 ],
996
+ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
997
+ [ <identity partial perm on [ 1, 2, 4, 5, 7, 8, 9 ]>,
998
+ <identity partial perm on [ 1, 2, 4, 5, 7 ]>, (1)(2,4)(5,7),
999
+ (1)(2,5,4,7), (1)(2,7,4,5), <identity partial perm on [ 1, 2, 4, 6, 7 ]>
1000
+ , <identity partial perm on [ 1, 2, 4, 7 ]>,
1001
+ <identity partial perm on [ 3, 4, 5, 7 ]>,
1002
+ <identity partial perm on [ 2, 5, 7 ]>,
1003
+ <identity partial perm on [ 3, 5, 7 ]>,
1004
+ <identity partial perm on [ 2, 4, 6 ]>, (2,4)(6),
1005
+ <identity partial perm on [ 3, 4, 5 ]>,
1006
+ <identity partial perm on [ 2, 4 ]>, (2,4),
1007
+ <identity partial perm on [ 7 ]>, <empty partial perm> ] ]
1008
+ gap> CharacterTableOfInverseSemigroup(S[8]);
1009
+ [ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
1010
+ [ 2, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 7, 4, 3, 1, -1, 1, 0, 0, 0, 0 ],
1011
+ [ 14, 8, 6, 2, 0, -1, 0, 0, 0, 0 ], [ 7, 4, 3, 1, 1, 1, 0, 0, 0, 0 ],
1012
+ [ 10, 6, 6, 3, -1, 0, 1, -1, 0, 0 ], [ 10, 6, 6, 3, 1, 0, 1, 1, 0, 0 ],
1013
+ [ 5, 4, 4, 3, 1, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
1014
+ [ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,
1015
+ <identity partial perm on [ 1, 2, 3, 6 ]>,
1016
+ <identity partial perm on [ 1, 2, 3, 5 ]>,
1017
+ <identity partial perm on [ 2, 3, 6 ]>, (2)(3,6), (2,3,6),
1018
+ <identity partial perm on [ 2, 3 ]>, (2,3),
1019
+ <identity partial perm on [ 6 ]>, <empty partial perm> ] ]
1020
+ gap> CharacterTableOfInverseSemigroup(S[9]);
1021
+ [ [ [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
1022
+ [ 4, 0, 1, -1, 0, 0, 0, 0, 0, 0 ], [ 4, 0, 1, 1, 0, 0, 0, 0, 0, 0 ],
1023
+ [ 2, 0, 1, -1, 1, -1, 0, 0, 0, 0 ], [ 2, 0, 1, 1, 1, 1, 0, 0, 0, 0 ],
1024
+ [ 4, -2, 2, 0, 0, 0, 1, -1, 0, 0 ], [ 4, 2, 2, 0, 0, 0, 1, 1, 0, 0 ],
1025
+ [ 4, 0, 3, 1, 2, 0, 2, 0, 1, 0 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],
1026
+ [ <identity partial perm on [ 1, 2, 3, 5 ]>, (1,5)(2,3),
1027
+ <identity partial perm on [ 1, 3, 5 ]>, (1)(3,5),
1028
+ <identity partial perm on [ 3, 4 ]>, (3,4),
1029
+ <identity partial perm on [ 1, 3 ]>, (1,3),
1030
+ <identity partial perm on [ 3 ]>, <empty partial perm> ] ]
1031
+ gap> CharacterTableOfInverseSemigroup(S[10]);
1032
+ [ [ [ 1, 0, 0, 0, 0 ], [ 2, 1, 0, 0, 0 ], [ 3, 2, 1, 0, 0 ],
1033
+ [ 4, 3, 2, 1, 0 ], [ 1, 1, 1, 1, 1 ] ],
1034
+ [ <identity partial perm on [ 1, 2, 3, 4 ]>,
1035
+ <identity partial perm on [ 2, 3, 5 ]>,
1036
+ <identity partial perm on [ 1, 4 ]>, <identity partial perm on [ 4 ]>,
1037
+ <empty partial perm> ] ]
1038
+ #@fi
1039
+
1040
+ # attrinv: NaturalPartialOrder (for a semigroup), works, 1/1
1041
+ gap> S := InverseSemigroup([Bipartition([[1, -3], [2, -1], [3, 4, -2, -4]]),
1042
+ > Bipartition([[1, -1], [2, -3], [3, -2], [4, -4]])]);
1043
+ <inverse block bijection semigroup of degree 4 with 2 generators>
1044
+ gap> S := AsSemigroup(IsTransformationSemigroup, S);
1045
+ <transformation semigroup of size 20, degree 20 with 3 generators>
1046
+ gap> n := Size(S);;
1047
+ gap> elts := Elements(S);;
1048
+ gap> NaturalPartialOrder(S);
1049
+ [ [ 2, 8, 9, 15, 16, 19 ], [ 9, 16, 19 ], [ 4, 9, 11 ], [ 9 ], [ 9, 16, 18 ],
1050
+ [ 5, 9, 10, 14, 16, 18 ], [ 9, 13, 20 ], [ 9 ], [ ], [ 9 ], [ 9 ],
1051
+ [ 9, 11, 13 ], [ 9 ], [ 9, 10, 16 ], [ 8, 9, 16 ], [ 9 ], [ 4, 9, 20 ],
1052
+ [ 9 ], [ 9 ], [ 9 ] ]
1053
+ gap> List([1 .. n],
1054
+ > i -> Filtered([1 .. n],
1055
+ > j -> i <> j and ForAny(Idempotents(S),
1056
+ > e -> e * elts[i] = elts[j])));
1057
+ [ [ 2, 8, 9, 15, 16, 19 ], [ 9, 16, 19 ], [ 4, 9, 11 ], [ 9 ], [ 9, 16, 18 ],
1058
+ [ 5, 9, 10, 14, 16, 18 ], [ 9, 13, 20 ], [ 9 ], [ ], [ 9 ], [ 9 ],
1059
+ [ 9, 11, 13 ], [ 9 ], [ 9, 10, 16 ], [ 8, 9, 16 ], [ 9 ], [ 4, 9, 20 ],
1060
+ [ 9 ], [ 9 ], [ 9 ] ]
1061
+ gap> last = last2;
1062
+ true
1063
+
1064
+ # attrinv: NaturalPartialOrder (for a semigroup), works, 2
1065
+ gap> S := Semigroup(SymmetricInverseMonoid(3), rec(acting := true));;
1066
+ gap> es := IdempotentGeneratedSubsemigroup(S);;
1067
+ gap> n := Size(es);;
1068
+ gap> elts := Elements(es);
1069
+ [ <empty partial perm>, <identity partial perm on [ 1 ]>,
1070
+ <identity partial perm on [ 2 ]>, <identity partial perm on [ 1, 2 ]>,
1071
+ <identity partial perm on [ 3 ]>, <identity partial perm on [ 2, 3 ]>,
1072
+ <identity partial perm on [ 1, 3 ]>, <identity partial perm on [ 1, 2, 3 ]>
1073
+ ]
1074
+ gap> NaturalPartialOrder(es);
1075
+ [ [ ], [ 1 ], [ 1 ], [ 1, 2, 3 ], [ 1 ], [ 1, 3, 5 ], [ 1, 2, 5 ],
1076
+ [ 1, 2, 3, 4, 5, 6, 7 ] ]
1077
+ gap> List([1 .. n],
1078
+ > i -> Filtered([1 .. n], j -> elts[j] = elts[j] * elts[i] and i <> j));
1079
+ [ [ ], [ 1 ], [ 1 ], [ 1, 2, 3 ], [ 1 ], [ 1, 3, 5 ], [ 1, 2, 5 ],
1080
+ [ 1, 2, 3, 4, 5, 6, 7 ] ]
1081
+ gap> last = last2;
1082
+ true
1083
+
1084
+ # attrinv: NaturalPartialOrder (for a semigroup), works, 3
1085
+ gap> S := Semigroup(SymmetricInverseMonoid(3), rec(acting := true));;
1086
+ gap> es := IdempotentGeneratedSubsemigroup(S);;
1087
+ gap> es := AsSemigroup(IsBlockBijectionSemigroup, es);;
1088
+ gap> n := Size(es);;
1089
+ gap> elts := Elements(es);;
1090
+ gap> NaturalPartialOrder(es);
1091
+ [ [ ], [ 1 ], [ 1 ], [ 1 ], [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3, 4 ],
1092
+ [ 1, 2, 3, 4, 5, 6, 7 ] ]
1093
+ gap> List([1 .. n],
1094
+ > i -> Filtered([1 .. n], j -> elts[j] = elts[j] * elts[i] and i <> j));
1095
+ [ [ ], [ 1 ], [ 1 ], [ 1 ], [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 3, 4 ],
1096
+ [ 1, 2, 3, 4, 5, 6, 7 ] ]
1097
+ gap> last = last2;
1098
+ true
1099
+
1100
+ # attrinv: NaturalPartialOrder (for a semigroup), error, 1/2
1101
+ gap> S := Semigroup(
1102
+ > [Matrix(IsTropicalMinPlusMatrix,
1103
+ > [[infinity, 0, infinity, 1, 1, infinity, 3, 2, 3],
1104
+ > [3, 1, 1, infinity, 1, 1, 1, 1, 1], [0, 3, 0, 1, 1, 3, 0, infinity, 1],
1105
+ > [0, 0, 1, infinity, infinity, 3, 3, 2, 1], [1, 1, 0, 3, 0, 3, 0, 0, 3],
1106
+ > [0, 2, 3, 1, 0, 0, infinity, 3, infinity],
1107
+ > [1, 2, 3, 3, 1, 2, infinity, infinity, 3],
1108
+ > [1, 1, infinity, 3, 3, 1, 1, 1, 1], [1, 2, 0, infinity, 0, 0, 1, 1, 2]],
1109
+ > 3)]);
1110
+ <commutative semigroup of 9x9 tropical min-plus matrices with 1 generator>
1111
+ gap> NaturalPartialOrder(S);
1112
+ Error, the argument (a semigroup) is not an inverse semigroup
1113
+
1114
+ # attrinv: NaturalPartialOrder (for a semigroup), error, 2/2
1115
+ gap> NaturalPartialOrder(FreeInverseSemigroup(2));
1116
+ Error, the argument (a semigroup) is not finite
1117
+
1118
+ # attrinv: NaturalLeqInverseSemigroup (for a semigroup), error, 1/2
1119
+ gap> S := Semigroup([
1120
+ > PBR(
1121
+ > [[-4, -3, -2, -1, 1, 4, 5, 6], [-6, -5, -4, -3, -2, 2, 6],
1122
+ > [-6, -4, -3, -1, 1, 2, 4, 5, 6], [-6, 2, 3, 4], [-4, -2, 3, 6],
1123
+ > [-6, -3, 1, 3, 4, 6]],
1124
+ > [[-5, -2, -1, 3, 4], [-5, -2, 1, 3, 5],
1125
+ > [-6, -4, -2, 2, 3, 4, 6], [-5, -3, -1, 2, 4, 6], [-6, -3, 1, 2, 3, 4, 6],
1126
+ > [-6, -3, 2, 6]]),
1127
+ > PBR(
1128
+ > [[-6, -5, -3, -2, -1, 3, 6], [-6, -2, 1, 2, 5], [-6, -5, -4, -1, 1, 6],
1129
+ > [-6, -5, -4, -2, -1, 2, 5], [-6, -2, -1, 1, 2, 4, 5], [-6, -5, 3, 4, 6]],
1130
+ > [[-2, 1, 2, 3, 5, 6], [-6, -5, -4, -3, -2, 1, 3, 5],
1131
+ > [-6, -4, -3, -1, 2, 5, 6], [-5, -2, 3, 4, 5],
1132
+ > [-6, -5, -4, -3, -2, 1, 2, 3, 5, 6], [-4, 2, 3, 4, 5, 6]])]);
1133
+ <pbr semigroup of degree 6 with 2 generators>
1134
+ gap> NaturalLeqInverseSemigroup(S);
1135
+ Error, the argument (a semigroup) is not an inverse semigroup
1136
+
1137
+ # attrinv: NaturalLeqInverseSemigroup (for a semigroup), error, 2/2
1138
+ gap> NaturalLeqInverseSemigroup(FreeInverseSemigroup(2));
1139
+ Error, the argument (a semigroup) is not finite
1140
+
1141
+ # attrinv: IsGreensDGreaterThanFunc (for an inverse op acting semigroup), 1/1
1142
+ gap> S := InverseSemigroup(
1143
+ > [Bipartition([[1, -3], [2, -1], [3, 4, 5, -2, -4, -5]]),
1144
+ > Bipartition([[1, -1], [2, -3], [3, -4], [4, 5, -2, -5]])]);
1145
+ <inverse block bijection semigroup of degree 5 with 2 generators>
1146
+ gap> Size(S);
1147
+ 39
1148
+ gap> foo := IsGreensDGreaterThanFunc(S);;
1149
+ gap> foo(S.1, S.2);
1150
+ false
1151
+ gap> foo(S.2, S.1);
1152
+ true
1153
+ gap> foo(S.1, S.1);
1154
+ false
1155
+
1156
+ # attrinv: PrimitiveIdempotents, inverse, 1/2
1157
+ gap> S := InverseSemigroup([PartialPerm([1, 2], [3, 1]),
1158
+ > PartialPerm([1, 2, 3], [1, 3, 4])]);;
1159
+ gap> Set(PrimitiveIdempotents(S));
1160
+ [ <identity partial perm on [ 1 ]>, <identity partial perm on [ 2 ]>,
1161
+ <identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]> ]
1162
+
1163
+ # attrinv: PrimitiveIdempotents, inverse, 2/2
1164
+ gap> S := InverseSemigroup(
1165
+ > [PartialPerm([1, 2, 3, 5, 6, 11, 12], [4, 3, 7, 5, 1, 11, 12]),
1166
+ > PartialPerm([1, 3, 4, 5, 6, 7, 11, 12], [6, 7, 5, 3, 1, 4, 11, 12]),
1167
+ > PartialPerm([11, 12], [12, 11])]);;
1168
+ gap> PrimitiveIdempotents(S);
1169
+ [ <identity partial perm on [ 11, 12 ]> ]
1170
+
1171
+ # attrinv: PrimitiveIdempotents, semigroup, error, 1/2
1172
+ gap> PrimitiveIdempotents(FreeSemigroup(2));
1173
+ Error, the argument (a semigroup) is not finite
1174
+
1175
+ # attrinv: PrimitiveIdempotents, semigroup, error, 2/2
1176
+ gap> PrimitiveIdempotents(FreeBand(2));
1177
+ Error, the argument (a semigroup) is not an inverse semigroup
1178
+
1179
+ # attrinv: PrimitiveIdempotents, transformation semigroups
1180
+ gap> S := InverseSemigroup([
1181
+ > Bipartition([[1, -1, -2], [2, 3, -3], [4, -4]]),
1182
+ > Bipartition([[1, 2, 3, -4], [4, -1, -2, -3]])]);
1183
+ <inverse block bijection semigroup of degree 4 with 2 generators>
1184
+ gap> PrimitiveIdempotents(S);
1185
+ [ <block bijection: [ 1, 2, 3, -1, -2, -3 ], [ 4, -4 ]> ]
1186
+ gap> S := AsSemigroup(IsTransformationSemigroup, S);
1187
+ <transformation semigroup of size 6, degree 7 with 3 generators>
1188
+ gap> PrimitiveIdempotents(S);
1189
+ [ Transformation( [ 4, 2, 4, 4, 4, 4, 4 ] ) ]
1190
+
1191
+ #
1192
+ gap> S := InverseSemigroup([
1193
+ > PartialPerm([1, 2, 3, 5], [2, 5, 4, 1]),
1194
+ > PartialPerm([1, 2, 4], [3, 4, 2]),
1195
+ > PartialPerm([1, 2, 3, 5], [1, 4, 3, 2])]);
1196
+ <inverse partial perm semigroup of rank 5 with 3 generators>
1197
+ gap> x := ShallowCopy(PrimitiveIdempotents(S));;
1198
+ gap> Sort(x);
1199
+ gap> x;
1200
+ [ <identity partial perm on [ 1 ]>, <identity partial perm on [ 2 ]>,
1201
+ <identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]>,
1202
+ <identity partial perm on [ 5 ]> ]
1203
+ gap> T := AsSemigroup(IsBlockBijectionSemigroup, S);
1204
+ <inverse block bijection semigroup of degree 6 with 3 generators>
1205
+ gap> x := ShallowCopy(PrimitiveIdempotents(T));;
1206
+ gap> Sort(x);
1207
+ gap> x;
1208
+ [ <block bijection: [ 1, 2, 3, 4, 6, -1, -2, -3, -4, -6 ], [ 5, -5 ]>,
1209
+ <block bijection: [ 1, 2, 3, 5, 6, -1, -2, -3, -5, -6 ], [ 4, -4 ]>,
1210
+ <block bijection: [ 1, 2, 4, 5, 6, -1, -2, -4, -5, -6 ], [ 3, -3 ]>,
1211
+ <block bijection: [ 1, 3, 4, 5, 6, -1, -3, -4, -5, -6 ], [ 2, -2 ]>,
1212
+ <block bijection: [ 1, -1 ], [ 2, 3, 4, 5, 6, -2, -3, -4, -5, -6 ]> ]
1213
+ gap> T := AsSemigroup(IsTransformationSemigroup, S);
1214
+ <transformation semigroup of degree 6 with 6 generators>
1215
+ gap> x := ShallowCopy(PrimitiveIdempotents(T));;
1216
+ gap> Sort(x);
1217
+ gap> x;
1218
+ [ Transformation( [ 1, 6, 6, 6, 6, 6 ] ),
1219
+ Transformation( [ 6, 2, 6, 6, 6, 6 ] ),
1220
+ Transformation( [ 6, 6, 3, 6, 6, 6 ] ),
1221
+ Transformation( [ 6, 6, 6, 4, 6, 6 ] ),
1222
+ Transformation( [ 6, 6, 6, 6, 5, 6 ] ) ]
1223
+
1224
+ # attrinv: IsJoinIrreducible, 1/4
1225
+ gap> S := InverseSemigroup([
1226
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
1227
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
1228
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
1229
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
1230
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
1231
+ gap> I := SemigroupIdeal(S,
1232
+ > PartialPerm([1, 3, 4, 5, 7], [1, 3, 4, 5, 7]));;
1233
+ gap> x := PartialPerm([1, 2, 4, 6], [2, 3, 1, 4]);;
1234
+ gap> x in S;
1235
+ true
1236
+ gap> IsJoinIrreducible(S, x);
1237
+ false
1238
+ gap> x in I;
1239
+ true
1240
+ gap> IsJoinIrreducible(S, RandomBipartition(1));
1241
+ Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (an\
1242
+ inverse semigroup)
1243
+ gap> IsJoinIrreducible(S, MultiplicativeZero(S));
1244
+ false
1245
+
1246
+ # attrinv: IsJoinIrreducible, 2/4
1247
+ gap> S := InverseSemigroup(
1248
+ > [PartialPerm([1, 2, 3, 5, 6, 11, 12], [4, 3, 7, 5, 1, 11, 12]),
1249
+ > PartialPerm([1, 3, 4, 5, 6, 7, 11, 12], [6, 7, 5, 3, 1, 4, 11, 12]),
1250
+ > PartialPerm([11, 12], [12, 11])]);;
1251
+ gap> IsJoinIrreducible(S, PrimitiveIdempotents(S)[1]);
1252
+ true
1253
+
1254
+ # attrinv: IsJoinIrreducible, 3/4
1255
+ gap> S := DualSymmetricInverseMonoid(3);
1256
+ <inverse block bijection monoid of degree 3 with 3 generators>
1257
+ gap> x := Bipartition([[1, 2, -1, -2], [3, -3]]);;
1258
+ gap> IsJoinIrreducible(S, x);
1259
+ true
1260
+
1261
+ # attrinv: IsJoinIrreducible, 4/4
1262
+ gap> S := InverseSemigroup([
1263
+ > PartialPerm([1, 2, 4, 6], [2, 1, 4, 6]),
1264
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
1265
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
1266
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
1267
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
1268
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
1269
+ gap> x := PartialPerm([1, 2, 4, 6], [2, 3, 1, 4]);;
1270
+ gap> IsJoinIrreducible(S, x);
1271
+ false
1272
+
1273
+ # attrinv: IsMajorantlyClosed, 1/1
1274
+ gap> S := DualSymmetricInverseMonoid(3);
1275
+ <inverse block bijection monoid of degree 3 with 3 generators>
1276
+ gap> Size(S);
1277
+ 25
1278
+ gap> T := InverseMonoid([Bipartition([[1, -1], [2, 3, -2, -3]]),
1279
+ > Bipartition([[1, -2], [2, 3, -1, -3]])]);
1280
+ <inverse block bijection monoid of degree 3 with 2 generators>
1281
+ gap> IsMajorantlyClosed(S, T);
1282
+ false
1283
+ gap> IsMajorantlyClosed(S, S);
1284
+ true
1285
+ gap> IsMajorantlyClosed(T, S);
1286
+ Error, the 2nd argument (an inverse semigroup) is not a subsemigroup of the 1s\
1287
+ t argument (an inverse semigroup)
1288
+ gap> IsMajorantlyClosed(S, Elements(T));
1289
+ false
1290
+ gap> IsMajorantlyClosed(S, Elements(S));
1291
+ true
1292
+ gap> IsMajorantlyClosed(T, Elements(S));
1293
+ Error, the 2nd argument (a mult. elt. coll) is not a subset of the 1st argumen\
1294
+ t (an inverse semigroup)
1295
+ gap> IsMajorantlyClosed(S, [One(S)]);
1296
+ true
1297
+
1298
+ # attrinv: JoinIrreducibleDClasses, partial perms, 1
1299
+ gap> S := InverseSemigroup([PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
1300
+ > PartialPerm([1, 3, 5], [5, 1, 3])]);;
1301
+ gap> JoinIrreducibleDClasses(S)[1] = DClass(S, PartialPerm([3], [3]));
1302
+ true
1303
+ gap> S := InverseSemigroup(S, rec(acting := false));;
1304
+ gap> JoinIrreducibleDClasses(S)[1] = DClass(S, PartialPerm([3], [3]));
1305
+ true
1306
+
1307
+ # attrinv: JoinIrreducibleDClasses, partial perms, 2
1308
+ gap> S := InverseSemigroup([PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
1309
+ > PartialPerm([1, 3, 5], [5, 1, 3])]);;
1310
+ gap> JoinIrreducibleDClasses(S)[1] = DClass(S, PartialPerm([3], [3]));
1311
+ true
1312
+
1313
+ # attrinv: JoinIrreducibleDClasses, partial perms, 3
1314
+ gap> S := Semigroup(
1315
+ > [PartialPerm([1, 2, 3, 4], [1, 2, 3, 4]),
1316
+ > PartialPerm([1, 2, 3], [2, 3, 1])]);;
1317
+ gap> IsInverseSemigroup(S);
1318
+ true
1319
+ gap> JoinIrreducibleDClasses(S) = DClasses(S);
1320
+ true
1321
+ gap> ForAll(DClassReps(S), x -> IsJoinIrreducible(S, x));
1322
+ true
1323
+
1324
+ # attrinv: JoinIrreducibleDClasses, partial perms, 4
1325
+ gap> S := Semigroup([
1326
+ > PartialPerm([1, 2, 3, 4, 5, 7, 6]),
1327
+ > PartialPerm([2, 1]),
1328
+ > PartialPerm([4, 5], [5, 4])]);;
1329
+ gap> D := JoinIrreducibleDClasses(S);;
1330
+ gap> reps := Filtered(DClassReps(S), x -> x <> MultiplicativeZero(S));;
1331
+ gap> Length(D) = Length(reps);
1332
+ true
1333
+ gap> Length(D);
1334
+ 3
1335
+ gap> ForAll(reps, x -> ForAny(D, d -> x in d));
1336
+ true
1337
+
1338
+ # attrinv: JoinIrreducibleDClasses, inverse op, 1/?
1339
+ gap> S := InverseMonoid([Bipartition([[1, 2, 5, -2, -3, -5], [3, 4, -1, -4]]),
1340
+ > Bipartition([[1, 4, -5], [2, 5, -1, -2, -3], [3, -4]])]);;
1341
+ gap> jid :=
1342
+ > [DClass(S, Bipartition([[1, 4, -1, -4], [2, 3, 5, -2, -3, -5]])),
1343
+ > DClass(S, Bipartition([[1, 2, 3, -1, -2, -3], [4, -4], [5, -5]]))];;
1344
+ gap> JoinIrreducibleDClasses(S) = jid or JoinIrreducibleDClasses(S) = Set(jid);
1345
+ true
1346
+
1347
+ # attrinv: MajorantClosure, 1/1
1348
+ gap> S := DualSymmetricInverseMonoid(3);
1349
+ <inverse block bijection monoid of degree 3 with 3 generators>
1350
+ gap> Size(S);
1351
+ 25
1352
+ gap> T := InverseMonoid([Bipartition([[1, -1], [2, 3, -2, -3]]),
1353
+ > Bipartition([[1, -2], [2, 3, -1, -3]])]);
1354
+ <inverse block bijection monoid of degree 3 with 2 generators>
1355
+ gap> MajorantClosure(S, T);
1356
+ [ <block bijection: [ 1, 2, 3, -1, -2, -3 ]>,
1357
+ <block bijection: [ 1, 3, -1, -3 ], [ 2, -2 ]>,
1358
+ <block bijection: [ 1, 3, -2, -3 ], [ 2, -1 ]>,
1359
+ <block bijection: [ 1, -1 ], [ 2, 3, -2, -3 ]>,
1360
+ <block bijection: [ 1, -2 ], [ 2, 3, -1, -3 ]>,
1361
+ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]>,
1362
+ <block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ]>,
1363
+ <block bijection: [ 1, 2, -1, -3 ], [ 3, -2 ]>,
1364
+ <block bijection: [ 1, 2, -1 ], [ 3, -2, -3 ]>,
1365
+ <block bijection: [ 1, 2, -2, -3 ], [ 3, -1 ]>,
1366
+ <block bijection: [ 1, 2, -2 ], [ 3, -1, -3 ]>,
1367
+ <block bijection: [ 1, 2, -3 ], [ 3, -1, -2 ]>,
1368
+ <block bijection: [ 1, 3, -1, -2 ], [ 2, -3 ]>,
1369
+ <block bijection: [ 1, 3, -1 ], [ 2, -2, -3 ]>,
1370
+ <block bijection: [ 1, 3, -2 ], [ 2, -1, -3 ]>,
1371
+ <block bijection: [ 1, 3, -3 ], [ 2, -1, -2 ]>,
1372
+ <block bijection: [ 1, -1, -2 ], [ 2, 3, -3 ]>,
1373
+ <block bijection: [ 1, -1, -3 ], [ 2, 3, -2 ]>,
1374
+ <block bijection: [ 1, -2, -3 ], [ 2, 3, -1 ]>,
1375
+ <block bijection: [ 1, -3 ], [ 2, 3, -1, -2 ]>,
1376
+ <block bijection: [ 1, -1 ], [ 2, -3 ], [ 3, -2 ]>,
1377
+ <block bijection: [ 1, -2 ], [ 2, -1 ], [ 3, -3 ]>,
1378
+ <block bijection: [ 1, -3 ], [ 2, -1 ], [ 3, -2 ]>,
1379
+ <block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]>,
1380
+ <block bijection: [ 1, -3 ], [ 2, -2 ], [ 3, -1 ]> ]
1381
+ gap> MajorantClosure(T, S);
1382
+ Error, the 2nd argument (a semigroup) is not a subset of the 1st argument (an \
1383
+ inverse semigroup)
1384
+ gap> MajorantClosure(S, Elements(T));
1385
+ [ <block bijection: [ 1, 2, 3, -1, -2, -3 ]>,
1386
+ <block bijection: [ 1, 3, -1, -3 ], [ 2, -2 ]>,
1387
+ <block bijection: [ 1, 3, -2, -3 ], [ 2, -1 ]>,
1388
+ <block bijection: [ 1, -1 ], [ 2, 3, -2, -3 ]>,
1389
+ <block bijection: [ 1, -2 ], [ 2, 3, -1, -3 ]>,
1390
+ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]>,
1391
+ <block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ]>,
1392
+ <block bijection: [ 1, 2, -1, -3 ], [ 3, -2 ]>,
1393
+ <block bijection: [ 1, 2, -1 ], [ 3, -2, -3 ]>,
1394
+ <block bijection: [ 1, 2, -2, -3 ], [ 3, -1 ]>,
1395
+ <block bijection: [ 1, 2, -2 ], [ 3, -1, -3 ]>,
1396
+ <block bijection: [ 1, 2, -3 ], [ 3, -1, -2 ]>,
1397
+ <block bijection: [ 1, 3, -1, -2 ], [ 2, -3 ]>,
1398
+ <block bijection: [ 1, 3, -1 ], [ 2, -2, -3 ]>,
1399
+ <block bijection: [ 1, 3, -2 ], [ 2, -1, -3 ]>,
1400
+ <block bijection: [ 1, 3, -3 ], [ 2, -1, -2 ]>,
1401
+ <block bijection: [ 1, -1, -2 ], [ 2, 3, -3 ]>,
1402
+ <block bijection: [ 1, -1, -3 ], [ 2, 3, -2 ]>,
1403
+ <block bijection: [ 1, -2, -3 ], [ 2, 3, -1 ]>,
1404
+ <block bijection: [ 1, -3 ], [ 2, 3, -1, -2 ]>,
1405
+ <block bijection: [ 1, -1 ], [ 2, -3 ], [ 3, -2 ]>,
1406
+ <block bijection: [ 1, -2 ], [ 2, -1 ], [ 3, -3 ]>,
1407
+ <block bijection: [ 1, -3 ], [ 2, -1 ], [ 3, -2 ]>,
1408
+ <block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]>,
1409
+ <block bijection: [ 1, -3 ], [ 2, -2 ], [ 3, -1 ]> ]
1410
+ gap> MajorantClosure(S, Elements(S)) = Elements(S);
1411
+ true
1412
+ gap> MajorantClosure(T, Elements(S));
1413
+ Error, the 2nd argument (a mult. elt. coll.) is not a subset of the 1st argume\
1414
+ nt (an inverse semigroup)
1415
+ gap> MajorantClosure(S, [One(S)]);
1416
+ [ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]> ]
1417
+
1418
+ # attrinv: RightCosetsOfInverseSemigroup, 1/2
1419
+ gap> S := InverseMonoid([PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
1420
+ > PartialPerm([1, 3, 5], [5, 1, 3])]);;
1421
+ gap> T := InverseSemigroup(
1422
+ > [PartialPerm([3], [4]), PartialPerm([1, 3, 5], [3, 5, 1])]);;
1423
+ gap> RightCosetsOfInverseSemigroup(S, T);
1424
+ Error, the 2nd argument (an inverse semigroup) must be majorantly closed
1425
+ gap> RightCosetsOfInverseSemigroup(S,
1426
+ > InverseSemigroup(MajorantClosure(S, T), rec(small := true)));
1427
+ [ [ <empty partial perm>, <identity partial perm on [ 1 ]>, [1,2], [1,3],
1428
+ [1,4], [1,5], [2,1], <identity partial perm on [ 2 ]>, [2,3], [2,4],
1429
+ [2,5], <identity partial perm on [ 1, 2 ]>, [2,5](1), [1,2,4], [2,1,3],
1430
+ [1,3][2,4], [1,4][2,5], [1,5][2,3], [3,1], [3,2],
1431
+ <identity partial perm on [ 3 ]>, [3,4], [3,5],
1432
+ <identity partial perm on [ 1, 3 ]>,
1433
+ <identity partial perm on [ 1, 2, 3 ]>, [3,1,2], [3,1,2,4], [1,3,5],
1434
+ [1,4][3,2], [1,4](3), [1,4][3,2,5], [3,1,5], [1,5][3,4], [4,1], [4,2],
1435
+ [4,3], <identity partial perm on [ 4 ]>, [4,5], [3,1][4,2], [3,1][4,5],
1436
+ [3,2](4), [4,1](3), <identity partial perm on [ 3, 4 ]>, [3,4,5],
1437
+ [4,3,5], [4,2,1], [2,1][4,5], <identity partial perm on [ 2, 4 ]>,
1438
+ [2,3][4,1], [2,3](4), [2,4,5], [2,5][4,3],
1439
+ <identity partial perm on [ 1, 2, 4 ]>,
1440
+ <identity partial perm on [ 1, 2, 3, 4 ]>, [1,2,4,5], [3,1,2,4,5],
1441
+ [4,2,1,3], [5,1], [5,2], [5,3], [5,4], <identity partial perm on [ 5 ]>,
1442
+ [4,1][5,2], [4,1](5), [5,4,2], [4,3][5,1], [5,4,3],
1443
+ <identity partial perm on [ 4, 5 ]>, [4,5,3], [5,3,1], [3,2][5,1],
1444
+ <identity partial perm on [ 3, 5 ]>, [3,4][5,2], [5,3,4], [3,5,1],
1445
+ [3,5,4], [5,4,2,1], <identity partial perm on [ 2, 4, 5 ]>,
1446
+ [4,1][5,2,3], [5,2](1), <identity partial perm on [ 1, 5 ]>,
1447
+ <identity partial perm on [ 1, 3, 5 ]>,
1448
+ <identity partial perm on [ 1, 2, 4, 5 ]>,
1449
+ <identity partial perm on [ 1, 2, 3, 4, 5 ]>, [1,2][5,4], [5,1,3],
1450
+ [1,3][5,4], (1,3,5), [5,4,2,1,3], [1,4](5), [1,5,3], (1,5,3) ] ]
1451
+ gap> T := InverseSemigroup([PartialPerm([1, 2, 4, 6, 8], [2, 10, 3, 5, 7]),
1452
+ > PartialPerm([1, 3, 4, 5, 6, 7, 8], [4, 7, 6, 9, 10, 1, 3])]);;
1453
+ gap> RightCosetsOfInverseSemigroup(S, T);
1454
+ Error, the 2nd argument (an inverse semigroup) must be a subsemigroup of the 1\
1455
+ st argument (an inverse semigroup)
1456
+
1457
+ # attrinv: RightCosetsOfInverseSemigroup, 2/2
1458
+ gap> S := InverseSemigroup([
1459
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
1460
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
1461
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
1462
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
1463
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
1464
+ gap> W := InverseSemigroup(MajorantClosure(S,
1465
+ > [PartialPerm([1, 2, 3, 4], [1, 2, 3, 4])]));
1466
+ <inverse partial perm semigroup of rank 7 with 5 generators>
1467
+ gap> Set(RightCosetsOfInverseSemigroup(S, W));
1468
+ [ [ <identity partial perm on [ 1, 2, 3, 4 ]>,
1469
+ <identity partial perm on [ 1, 2, 3, 4, 5 ]>,
1470
+ <identity partial perm on [ 1, 2, 3, 4, 6 ]>,
1471
+ <identity partial perm on [ 1, 2, 3, 4, 5, 6 ]>,
1472
+ <identity partial perm on [ 1, 2, 3, 4, 5, 7 ]> ], [ [2,5](1)(3)(4) ],
1473
+ [ [4,3,2,7](1) ], [ [2,1,3,4,6] ],
1474
+ [ [1,3,4,6](2), [5,1,3,4,6](2), [7,5,1,3,4,6](2) ], [ [1,3,5][4,7](2) ],
1475
+ [ [1,3,2,5](4) ], [ [3,2,1,4,6] ], [ [3,1,4,5](2) ],
1476
+ [ [4,3,1,5](2), [4,3,1,5,7](2), [6,4,3,1,5](2), [6,4,3,1,5,7](2) ],
1477
+ [ [1,5][2,4,3,6] ], [ [2,7][4,3,1,5] ], [ [2,7][3,1,5][4,6] ],
1478
+ [ [4,1,6](2)(3) ], [ [3,5][4,1,7](2), [4,1,7][6,3,5](2) ], [ [2,3,4,1,7] ],
1479
+ [ [3,1,7][4,2,6] ] ]
1480
+
1481
+ # attrinv: SupremumIdempotents, 1/1
1482
+ gap> SupremumIdempotentsNC([], PartialPerm([]));
1483
+ <empty partial perm>
1484
+ gap> SupremumIdempotentsNC([], Bipartition([[1], [-1]]));
1485
+ <bipartition: [ 1 ], [ -1 ]>
1486
+ gap> SupremumIdempotentsNC([], Bipartition([[1, -1]]));
1487
+ <block bijection: [ 1, -1 ]>
1488
+ gap> SupremumIdempotentsNC(Idempotents(DualSymmetricInverseMonoid(3)),
1489
+ > RandomBlockBijection(3));
1490
+ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]>
1491
+ gap> SupremumIdempotentsNC(Transformation([1, 1]), 1);
1492
+ Error, the argument is not a collection of partial perms, block bijections, or\
1493
+ partial perm bipartitions
1494
+
1495
+ # attrinv: InversesOfSemigroupElementNC, 1/1
1496
+ gap> S := InverseSemigroup(
1497
+ > [Bipartition([[1, 2, 4, -2, -3], [3, -4, -5], [5, -1]]),
1498
+ > Bipartition([[1, 2, 3, 4, 5, -1, -2, -3, -4, -5]]),
1499
+ > Bipartition([[1, 2, 3, 4, -2, -3], [5, -1, -4, -5]])]);;
1500
+ gap> x := Bipartition([[1, -3, -5], [2, 3, 4, 5, -1, -2, -4]]);;
1501
+ gap> InversesOfSemigroupElementNC(S, x);
1502
+ [ <block bijection: [ 1, 2, 4, -2, -3, -4, -5 ], [ 3, 5, -1 ]> ]
1503
+ gap> x in last;
1504
+ false
1505
+
1506
+ # attrinv: IdempotentGeneratedSubsemigroup
1507
+ gap> IdempotentGeneratedSubsemigroup(FreeInverseSemigroup(2));
1508
+ Error, no method found! For debugging hints type ?Recovery from NoMethodFound
1509
+ Error, no 4th choice method found for `IdempotentGeneratedSubsemigroup' on 1 a\
1510
+ rguments
1511
+ gap> S := InverseSemigroup([
1512
+ > PartialPerm([1, 2, 3, 4], [6, 2, 4, 3]),
1513
+ > PartialPerm([1, 2, 3, 5], [5, 6, 3, 2]),
1514
+ > PartialPerm([1, 2, 5], [3, 5, 4])]);;
1515
+ gap> S := IdempotentGeneratedSubsemigroup(S);;
1516
+ gap> HasIsIdempotentGenerated(S) and IsIdempotentGenerated(S);
1517
+ true
1518
+
1519
+ #
1520
+ gap> SEMIGROUPS.StopTest();
1521
+ gap> STOP_TEST("Semigroups package: standard/attributes/inverse.tst");