optimum-rbln 0.9.3.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (264) hide show
  1. optimum/rbln/__init__.py +505 -0
  2. optimum/rbln/__version__.py +34 -0
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +968 -0
  5. optimum/rbln/diffusers/__init__.py +198 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +37 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +451 -0
  27. optimum/rbln/diffusers/models/__init__.py +64 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
  34. optimum/rbln/diffusers/models/controlnet.py +281 -0
  35. optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
  36. optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
  37. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
  38. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
  39. optimum/rbln/diffusers/models/unets/__init__.py +16 -0
  40. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
  41. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  42. optimum/rbln/diffusers/pipelines/__init__.py +113 -0
  43. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  44. optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
  45. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
  46. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
  47. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
  48. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
  49. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
  50. optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
  51. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
  52. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
  53. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
  54. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
  55. optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
  56. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
  57. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
  58. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
  59. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
  60. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
  61. optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
  62. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
  63. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
  64. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
  65. optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
  66. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
  67. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
  68. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
  69. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
  70. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
  71. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
  72. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
  73. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  74. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  75. optimum/rbln/modeling.py +364 -0
  76. optimum/rbln/modeling_base.py +637 -0
  77. optimum/rbln/ops/__init__.py +19 -0
  78. optimum/rbln/ops/attn.py +455 -0
  79. optimum/rbln/ops/flash_attn.py +350 -0
  80. optimum/rbln/ops/kv_cache_update.py +29 -0
  81. optimum/rbln/ops/linear.py +32 -0
  82. optimum/rbln/ops/sliding_window_attn.py +111 -0
  83. optimum/rbln/transformers/__init__.py +340 -0
  84. optimum/rbln/transformers/configuration_generic.py +120 -0
  85. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  86. optimum/rbln/transformers/modeling_generic.py +280 -0
  87. optimum/rbln/transformers/modeling_outputs.py +37 -0
  88. optimum/rbln/transformers/modeling_rope_utils.py +314 -0
  89. optimum/rbln/transformers/models/__init__.py +343 -0
  90. optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
  91. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
  92. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
  93. optimum/rbln/transformers/models/auto/__init__.py +31 -0
  94. optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
  95. optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
  96. optimum/rbln/transformers/models/bart/__init__.py +17 -0
  97. optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
  98. optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
  99. optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
  100. optimum/rbln/transformers/models/bert/__init__.py +16 -0
  101. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  102. optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
  103. optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
  104. optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
  105. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
  106. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
  107. optimum/rbln/transformers/models/clip/__init__.py +26 -0
  108. optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
  109. optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
  110. optimum/rbln/transformers/models/colpali/__init__.py +2 -0
  111. optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
  112. optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
  113. optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
  114. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  115. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  116. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  117. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  118. optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
  119. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
  120. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  121. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
  122. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  123. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  124. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  125. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
  126. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  127. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  128. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  129. optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
  130. optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
  131. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
  132. optimum/rbln/transformers/models/dpt/__init__.py +16 -0
  133. optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
  134. optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
  135. optimum/rbln/transformers/models/exaone/__init__.py +24 -0
  136. optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
  137. optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
  138. optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
  139. optimum/rbln/transformers/models/gemma/__init__.py +16 -0
  140. optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
  141. optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
  142. optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
  143. optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
  144. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
  145. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
  146. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  147. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
  148. optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
  149. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
  150. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
  151. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
  152. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  153. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  154. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  155. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  156. optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
  157. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
  158. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
  159. optimum/rbln/transformers/models/llama/__init__.py +16 -0
  160. optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
  161. optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
  162. optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
  163. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  164. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  165. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  166. optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
  167. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
  168. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
  169. optimum/rbln/transformers/models/midm/__init__.py +24 -0
  170. optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
  171. optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
  172. optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
  173. optimum/rbln/transformers/models/mistral/__init__.py +16 -0
  174. optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
  175. optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
  176. optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
  177. optimum/rbln/transformers/models/opt/__init__.py +16 -0
  178. optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
  179. optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
  180. optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
  181. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  182. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  183. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  184. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  185. optimum/rbln/transformers/models/phi/__init__.py +16 -0
  186. optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
  187. optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
  188. optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
  189. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  190. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  191. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  192. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  193. optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
  194. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
  195. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
  196. optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
  197. optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
  198. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
  199. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
  200. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
  201. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  202. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  203. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  204. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  205. optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
  206. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
  207. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
  208. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
  209. optimum/rbln/transformers/models/resnet/__init__.py +23 -0
  210. optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
  211. optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
  212. optimum/rbln/transformers/models/roberta/__init__.py +24 -0
  213. optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
  214. optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
  215. optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
  216. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
  217. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
  218. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
  219. optimum/rbln/transformers/models/siglip/__init__.py +16 -0
  220. optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
  221. optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
  222. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  223. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  224. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  225. optimum/rbln/transformers/models/t5/__init__.py +17 -0
  226. optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
  227. optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
  228. optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
  229. optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
  230. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
  231. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
  232. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
  233. optimum/rbln/transformers/models/vit/__init__.py +19 -0
  234. optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
  235. optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
  236. optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
  237. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
  238. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
  239. optimum/rbln/transformers/models/whisper/__init__.py +17 -0
  240. optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
  241. optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
  242. optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
  243. optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
  244. optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
  245. optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
  246. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
  247. optimum/rbln/transformers/utils/__init__.py +0 -0
  248. optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
  249. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  250. optimum/rbln/utils/__init__.py +16 -0
  251. optimum/rbln/utils/decorator_utils.py +86 -0
  252. optimum/rbln/utils/deprecation.py +213 -0
  253. optimum/rbln/utils/hub.py +94 -0
  254. optimum/rbln/utils/import_utils.py +170 -0
  255. optimum/rbln/utils/logging.py +110 -0
  256. optimum/rbln/utils/model_utils.py +63 -0
  257. optimum/rbln/utils/runtime_utils.py +249 -0
  258. optimum/rbln/utils/save_utils.py +102 -0
  259. optimum/rbln/utils/submodule.py +152 -0
  260. optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
  261. optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
  262. optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
  263. optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
  264. optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
@@ -0,0 +1,513 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from pathlib import Path
17
+ from typing import TYPE_CHECKING, Any, Callable, Optional, Union
18
+
19
+ import torch
20
+ from transformers import (
21
+ AutoModelForVision2Seq,
22
+ PretrainedConfig,
23
+ PreTrainedModel,
24
+ Qwen2VLForConditionalGeneration,
25
+ )
26
+ from transformers.modeling_utils import no_init_weights
27
+ from transformers.models.qwen2_vl.modeling_qwen2_vl import (
28
+ PatchEmbed,
29
+ Qwen2VisionTransformerPretrainedModel,
30
+ Qwen2VLModel,
31
+ Qwen2VLRotaryEmbedding,
32
+ VisionRotaryEmbedding,
33
+ )
34
+
35
+ from ....configuration_utils import RBLNCompileConfig
36
+ from ....modeling import RBLNModel
37
+ from ....utils.logging import get_logger
38
+ from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyOutput
39
+ from .configuration_qwen2_vl import (
40
+ RBLNQwen2VisionTransformerPretrainedModelConfig,
41
+ RBLNQwen2VLForConditionalGenerationConfig,
42
+ )
43
+ from .qwen2_vl_architecture import Qwen2VisionTransformerWrapper, Qwen2VL_LanguageModelWrapper
44
+
45
+
46
+ logger = get_logger(__name__)
47
+
48
+ if TYPE_CHECKING:
49
+ from transformers import (
50
+ AutoFeatureExtractor,
51
+ AutoProcessor,
52
+ AutoTokenizer,
53
+ PretrainedConfig,
54
+ )
55
+
56
+
57
+ class RBLNQwen2VisionTransformerPretrainedModel(RBLNModel):
58
+ auto_model_class = None
59
+
60
+ def __post_init__(self, **kwargs):
61
+ self.transformer = self.model[0]
62
+ self.max_seq_lens = torch.tensor(sorted(self.rbln_config.max_seq_lens, reverse=False))
63
+ config = self.config
64
+
65
+ self.patch_size = config.spatial_patch_size
66
+ self.spatial_merge_size = config.spatial_merge_size
67
+ self.spatial_merge_unit = config.spatial_merge_size * config.spatial_merge_size
68
+ self.rotary_pos_emb = VisionRotaryEmbedding((config.embed_dim // config.num_heads) // 2)
69
+ with no_init_weights():
70
+ self.patch_embed = PatchEmbed(
71
+ patch_size=config.patch_size,
72
+ temporal_patch_size=config.temporal_patch_size,
73
+ in_channels=config.in_channels,
74
+ embed_dim=config.embed_dim,
75
+ ).eval()
76
+ artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
77
+ self.patch_embed.load_state_dict(artifacts["patch_embed"])
78
+
79
+ @classmethod
80
+ def save_torch_artifacts(
81
+ cls,
82
+ model: "Qwen2VLForConditionalGeneration",
83
+ save_dir_path: Path,
84
+ subfolder: str,
85
+ rbln_config: RBLNQwen2VisionTransformerPretrainedModelConfig,
86
+ ):
87
+ save_dict = {}
88
+ save_dict["patch_embed"] = model.patch_embed.state_dict()
89
+ torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
90
+
91
+ @classmethod
92
+ def _wrap_model_if_needed(
93
+ cls, model: "PreTrainedModel", rbln_config: RBLNQwen2VisionTransformerPretrainedModelConfig
94
+ ):
95
+ return Qwen2VisionTransformerWrapper(model).eval()
96
+
97
+ def __getattr__(self, __name: str) -> Any:
98
+ def redirect(func):
99
+ return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
100
+
101
+ val = getattr(Qwen2VisionTransformerPretrainedModel, __name)
102
+
103
+ if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
104
+ return redirect(val)
105
+ return val
106
+
107
+ @classmethod
108
+ def _update_rbln_config(
109
+ cls,
110
+ preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
111
+ model: Optional["PreTrainedModel"] = None,
112
+ model_config: "PretrainedConfig" = None,
113
+ rbln_config: Optional[RBLNQwen2VisionTransformerPretrainedModelConfig] = None,
114
+ ) -> RBLNQwen2VisionTransformerPretrainedModelConfig:
115
+ hidden_size = getattr(model_config, "embed_dim")
116
+ num_heads = getattr(model_config, "num_heads")
117
+ head_dim = hidden_size // num_heads
118
+
119
+ input_infos = []
120
+ for max_seq_len in rbln_config.max_seq_lens:
121
+ input_info = [
122
+ ("hidden_states", [max_seq_len, hidden_size], "float32"),
123
+ ("full_attn_masks", [1, 1, max_seq_len, max_seq_len], "float32"),
124
+ (
125
+ "cos",
126
+ [1, 1, max_seq_len, head_dim],
127
+ "float32",
128
+ ),
129
+ (
130
+ "sin",
131
+ [1, 1, max_seq_len, head_dim],
132
+ "float32",
133
+ ),
134
+ ]
135
+ input_infos.append(input_info)
136
+
137
+ rbln_compile_config = RBLNCompileConfig(input_info=input_infos)
138
+ rbln_config.set_compile_cfgs([rbln_compile_config])
139
+
140
+ return rbln_config
141
+
142
+ @staticmethod
143
+ def _pad_for_full_attn_layers(hidden_state, cos, sin, max_seq_len):
144
+ if hidden_state.shape[0] < max_seq_len:
145
+ full_padding_size = max_seq_len - hidden_state.shape[0]
146
+ full_padding_hidden = torch.zeros(
147
+ full_padding_size,
148
+ hidden_state.shape[-1],
149
+ dtype=hidden_state.dtype,
150
+ )
151
+ hidden_state_full_padded = torch.cat([hidden_state, full_padding_hidden], dim=0)
152
+ full_padding_pos = torch.zeros(
153
+ full_padding_size,
154
+ cos.shape[-1],
155
+ dtype=cos.dtype,
156
+ )
157
+ cos_full_padded = torch.cat([cos, full_padding_pos], dim=0)
158
+ sin_full_padded = torch.cat([sin, full_padding_pos], dim=0)
159
+ else:
160
+ hidden_state_full_padded = hidden_state
161
+ cos_full_padded = cos
162
+ sin_full_padded = sin
163
+
164
+ full_attn_masks = torch.ones(
165
+ 1,
166
+ 1,
167
+ max_seq_len,
168
+ max_seq_len,
169
+ dtype=torch.float32,
170
+ )
171
+
172
+ full_attn_masks[:, :, hidden_state.shape[0] : max_seq_len, :] = 0
173
+ full_attn_masks[:, :, :, hidden_state.shape[0] : max_seq_len] = 0
174
+ return hidden_state_full_padded, cos_full_padded, sin_full_padded, full_attn_masks
175
+
176
+ def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
177
+ # Processes a batch of images (or frames) through the vision transformer.
178
+ # Each image is handled independently for padding and attention mask generation.
179
+
180
+ hidden_states = self.patch_embed(hidden_states)
181
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
182
+ emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
183
+ position_embeddings = (emb.cos(), emb.sin())
184
+
185
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
186
+ dim=0,
187
+ dtype=torch.int32,
188
+ )
189
+ cu_seqlens = torch.nn.functional.pad(cu_seqlens, (1, 0), value=0)
190
+
191
+ num_images = len(cu_seqlens) - 1
192
+ output_hidden_states = []
193
+
194
+ # Process each image in the sequence
195
+ for i in range(num_images):
196
+ image_s, image_e = cu_seqlens[i], cu_seqlens[i + 1]
197
+
198
+ # Select the nearest higher max_seq_len from the available compiled models.
199
+ cu_seq_len = image_e - image_s
200
+ try:
201
+ cu_index = torch.searchsorted(self.max_seq_lens, cu_seq_len).item()
202
+ max_seq_len = self.max_seq_lens[cu_index]
203
+ except Exception:
204
+ raise ValueError(
205
+ f"Required seq_len({cu_seq_len}) is larger than available max_seq_lens({self.max_seq_lens.tolist()})."
206
+ )
207
+
208
+ # Padding for Full Attention Layers
209
+ hidden_state_full_padded, cos_full_padded, sin_full_padded, full_attn_masks = (
210
+ self._pad_for_full_attn_layers(
211
+ hidden_states[image_s:image_e],
212
+ position_embeddings[0][image_s:image_e],
213
+ position_embeddings[1][image_s:image_e],
214
+ max_seq_len,
215
+ )
216
+ )
217
+
218
+ # RBLN run with the compiled model
219
+ output = self.transformer(
220
+ hidden_state_full_padded,
221
+ full_attn_masks,
222
+ cos_full_padded[None, None, :, :],
223
+ sin_full_padded[None, None, :, :],
224
+ )
225
+ # Depadding
226
+ depadded_output = output[: cu_seq_len // self.spatial_merge_unit]
227
+ output_hidden_states.append(depadded_output)
228
+
229
+ hidden_states = torch.cat(output_hidden_states)
230
+ return hidden_states
231
+
232
+
233
+ class RBLNQwen2VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
234
+ """
235
+ RBLNQwen2VLForConditionalGeneration is a multi-modal model that integrates vision and language processing capabilities,
236
+ optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
237
+
238
+ This model inherits from [`RBLNDecoderOnlyModelForCausalLM`]. Check the superclass documentation for the generic methods the library implements for all its models.
239
+
240
+ Important Note:
241
+ This model includes a Large Language Model (LLM). For optimal performance, it is highly recommended to use
242
+ tensor parallelism for the language model. This can be achieved by using the `rbln_config` parameter in the
243
+ `from_pretrained` method. Refer to the `from_pretrained` documentation and the RBLNQwen2VLForConditionalGenerationConfig class for details.
244
+
245
+ Examples:
246
+ ```python
247
+ from optimum.rbln import RBLNQwen2VLForConditionalGeneration
248
+
249
+ model = RBLNQwen2VLForConditionalGeneration.from_pretrained(
250
+ "Qwen/Qwen2-VL-7B-Instruct",
251
+ export=True,
252
+ rbln_config={
253
+ "visual": {
254
+ "max_seq_lens": 6400,
255
+ "device": 0,
256
+ },
257
+ "tensor_parallel_size": 8,
258
+ "max_seq_len": 32_768,
259
+ "device": [0, 1, 2, 3, 4, 5, 6, 7],
260
+ },
261
+ )
262
+
263
+ model.save_pretrained("compiled-qwen2-vl-7b-instruct")
264
+ ```
265
+ """
266
+
267
+ auto_model_class = AutoModelForVision2Seq
268
+ _rbln_submodules = [
269
+ {"name": "visual"},
270
+ ]
271
+ _decoder_wrapper_cls = Qwen2VL_LanguageModelWrapper
272
+ _use_rotary_emb = False
273
+
274
+ def __post_init__(self, **kwargs):
275
+ super().__post_init__(**kwargs)
276
+ self.visual = self.rbln_submodules[0]
277
+ self.mrope_section = self.config.rope_scaling["mrope_section"]
278
+ self.rotary_emb = Qwen2VLRotaryEmbedding(self.config)
279
+ self.rope_deltas = torch.zeros(self.rbln_config.batch_size)
280
+
281
+ def can_generate(self):
282
+ return True
283
+
284
+ @classmethod
285
+ def _reconstruct_model_if_needed(cls, model: "PreTrainedModel"):
286
+ model.model.lm_head = model.lm_head
287
+ model.lm_head = None
288
+ del model.lm_head
289
+ return model
290
+
291
+ @classmethod
292
+ def get_input_info(
293
+ cls,
294
+ batch_size: int,
295
+ query_length: int,
296
+ rbln_config: RBLNQwen2VLForConditionalGenerationConfig,
297
+ model_config: PretrainedConfig,
298
+ ):
299
+ input_info = super().get_input_info(batch_size, query_length, rbln_config, model_config)
300
+ pos_idx = 3
301
+ input_info.insert(
302
+ pos_idx,
303
+ (
304
+ "position_emb",
305
+ [2, batch_size, 1, query_length, model_config.hidden_size // model_config.num_attention_heads],
306
+ "float32",
307
+ ),
308
+ )
309
+
310
+ return input_info
311
+
312
+ def prepare_inputs_for_generation(
313
+ self,
314
+ input_ids: torch.LongTensor,
315
+ generate_idx: Optional[torch.Tensor] = None,
316
+ attention_mask: Optional[torch.LongTensor] = None,
317
+ inputs_embeds: Optional[torch.Tensor] = None,
318
+ pixel_values=None,
319
+ pixel_values_videos=None,
320
+ image_grid_thw=None,
321
+ video_grid_thw=None,
322
+ **kwargs,
323
+ ):
324
+ model_inputs = super().prepare_inputs_for_generation(
325
+ input_ids,
326
+ generate_idx,
327
+ attention_mask,
328
+ inputs_embeds,
329
+ **kwargs,
330
+ )
331
+
332
+ is_prefill_phase = generate_idx is None
333
+ if is_prefill_phase:
334
+ model_inputs.update({"input_ids": input_ids})
335
+
336
+ model_inputs.update(
337
+ {
338
+ "pixel_values": pixel_values,
339
+ "pixel_values_videos": pixel_values_videos,
340
+ "image_grid_thw": image_grid_thw,
341
+ "video_grid_thw": video_grid_thw,
342
+ }
343
+ )
344
+
345
+ return model_inputs
346
+
347
+ def _get_position_embeddings(self, hidden_states, position_ids):
348
+ cos, sin = self.rotary_emb(hidden_states, position_ids)
349
+ mrope_section = self.mrope_section * 2
350
+ cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
351
+ sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
352
+ return torch.stack([cos, sin])
353
+
354
+ def _preprocess_prefill(
355
+ self,
356
+ input_ids: torch.LongTensor = None,
357
+ attention_mask: torch.Tensor = None,
358
+ pixel_values: torch.Tensor = None,
359
+ pixel_values_videos: torch.FloatTensor = None,
360
+ image_grid_thw: torch.LongTensor = None,
361
+ video_grid_thw: torch.LongTensor = None,
362
+ ):
363
+ batch_size = input_ids.shape[0]
364
+ inputs_embeds = self.embed_tokens(input_ids)
365
+
366
+ if pixel_values is not None:
367
+ image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
368
+ n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
369
+ n_image_features = image_embeds.shape[0]
370
+ if n_image_tokens != n_image_features:
371
+ raise ValueError(
372
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
373
+ )
374
+
375
+ mask = input_ids == self.config.image_token_id
376
+ mask_unsqueezed = mask.unsqueeze(-1)
377
+ mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
378
+
379
+ image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
380
+ inputs_embeds = inputs_embeds.masked_scatter(mask_expanded, image_embeds)
381
+
382
+ if pixel_values_videos is not None:
383
+ video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
384
+ n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
385
+ n_video_features = video_embeds.shape[0]
386
+ if n_video_tokens != n_video_features:
387
+ raise ValueError(
388
+ f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
389
+ )
390
+
391
+ mask = input_ids == self.config.video_token_id
392
+ mask_unsqueezed = mask.unsqueeze(-1)
393
+ mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
394
+ inputs_embeds = inputs_embeds.masked_scatter(mask_expanded, video_embeds)
395
+
396
+ max_inputs_len = input_ids.shape[1]
397
+
398
+ head_dim = getattr(self.config, "head_dim", None) or self.config.hidden_size // self.config.num_attention_heads
399
+ all_position_embeds = torch.zeros(2, batch_size, 1, max_inputs_len, head_dim)
400
+ all_rope_deltas = []
401
+
402
+ image_token_id = self.config.image_token_id
403
+ video_token_id = self.config.video_token_id
404
+ vision_start_token_id = self.config.vision_start_token_id
405
+ image_idx, video_idx = 0, 0
406
+
407
+ for b_idx in range(batch_size):
408
+ input_id = input_ids[b_idx : b_idx + 1][:, attention_mask[b_idx].bool()]
409
+ vision_start_indices = torch.argwhere(input_id == vision_start_token_id).squeeze(1)
410
+ vision_tokens = input_id[0][vision_start_indices + 1]
411
+ image_nums = (vision_tokens == image_token_id).sum()
412
+ video_nums = (vision_tokens == video_token_id).sum()
413
+ position_ids, rope_deltas = Qwen2VLModel.get_rope_index(
414
+ self,
415
+ input_id,
416
+ image_grid_thw[image_idx : image_idx + image_nums] if image_grid_thw is not None else None,
417
+ video_grid_thw[video_idx : video_idx + video_nums] if video_grid_thw is not None else None,
418
+ )
419
+ image_idx += image_nums
420
+ video_idx += video_nums
421
+
422
+ position_embed = self._get_position_embeddings(inputs_embeds, position_ids)
423
+ mask_indices = torch.nonzero(attention_mask[b_idx], as_tuple=True)[0]
424
+ all_position_embeds[:, b_idx : b_idx + 1].index_copy_(dim=-2, index=mask_indices, source=position_embed)
425
+ all_rope_deltas.append(rope_deltas)
426
+
427
+ rope_deltas = torch.stack(all_rope_deltas)
428
+
429
+ return inputs_embeds, all_position_embeds, rope_deltas
430
+
431
+ def _preprocess_decoder(
432
+ self,
433
+ input_ids: torch.LongTensor = None,
434
+ cache_position: torch.LongTensor = None,
435
+ ):
436
+ if self.rbln_config.batch_size != cache_position.shape[0]:
437
+ raise RuntimeError(
438
+ f"Cache position size mismatch: got {cache_position.shape[0]}, expected {self.rbln_config.batch_size}."
439
+ )
440
+
441
+ inputs_embeds = self.embed_tokens(input_ids)
442
+ position_embeds = []
443
+ for b_idx in range(self.rbln_config.batch_size):
444
+ delta = cache_position[b_idx] + self.rope_deltas[b_idx]
445
+ position_ids = torch.arange(1).view(1, -1)
446
+ position_ids = position_ids.add(delta)
447
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
448
+ position_embed = self._get_position_embeddings(torch.zeros(1, dtype=torch.float32), position_ids)
449
+ position_embeds.append(position_embed)
450
+
451
+ position_embeds = torch.cat(position_embeds, dim=1)
452
+
453
+ return inputs_embeds, position_embeds
454
+
455
+ def forward(
456
+ self,
457
+ input_ids: Optional[torch.LongTensor] = None,
458
+ inputs_embeds: Optional[torch.FloatTensor] = None,
459
+ attention_mask: Optional[torch.Tensor] = None,
460
+ pixel_values: Optional[torch.Tensor] = None,
461
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
462
+ image_grid_thw: Optional[torch.LongTensor] = None,
463
+ video_grid_thw: Optional[torch.LongTensor] = None,
464
+ cache_position: Optional[torch.LongTensor] = None,
465
+ generate_idx: Optional[torch.Tensor] = None,
466
+ return_dict: Optional[bool] = None,
467
+ **kwargs,
468
+ ) -> RBLNDecoderOnlyOutput:
469
+ # Prefill
470
+ if cache_position is None:
471
+ inputs_embeds, position_embed, rope_deltas = self._preprocess_prefill(
472
+ input_ids,
473
+ attention_mask,
474
+ pixel_values,
475
+ pixel_values_videos,
476
+ image_grid_thw,
477
+ video_grid_thw,
478
+ )
479
+
480
+ self.rope_deltas = rope_deltas
481
+ batch_size = inputs_embeds.shape[0]
482
+
483
+ logits = []
484
+ for b_idx in range(batch_size):
485
+ cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
486
+
487
+ output = self.prefill_decoder(
488
+ inputs_embeds=inputs_embeds[b_idx : b_idx + 1],
489
+ attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
490
+ cache_position=cache_position,
491
+ batch_idx=b_idx,
492
+ position_embed=position_embed[:, b_idx : b_idx + 1],
493
+ )
494
+ logits.append(output.logits)
495
+ logits = torch.cat(logits, dim=0)
496
+
497
+ # Decoder
498
+ else:
499
+ inputs_embeds, position_embed = self._preprocess_decoder(input_ids, cache_position)
500
+ output = self.decoder(
501
+ inputs_embeds=inputs_embeds,
502
+ cache_position=cache_position,
503
+ position_embed=position_embed,
504
+ )
505
+ logits = output.logits
506
+
507
+ if not return_dict:
508
+ return logits, generate_idx
509
+ else:
510
+ return RBLNDecoderOnlyOutput(
511
+ logits=logits,
512
+ generate_idx=generate_idx,
513
+ )
@@ -0,0 +1,165 @@
1
+ import math
2
+ from typing import Tuple
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from transformers import PreTrainedModel
7
+
8
+ from ..decoderonly.decoderonly_architecture import (
9
+ DecoderOnlyWrapper,
10
+ apply_rotary_pos_emb,
11
+ )
12
+
13
+
14
+ class Qwen2VisionTransformerWrapper(nn.Module):
15
+ def __init__(self, model: torch.nn.Module):
16
+ super().__init__()
17
+ self._original_mod = model
18
+ self.merger = model.merger
19
+ self.blocks = self.wrap_vision_blocks(model.blocks)
20
+
21
+ def wrap_vision_blocks(self, blocks: torch.nn.ModuleList):
22
+ wrapped_blocks = []
23
+ for i, block in enumerate(blocks):
24
+ wrapped_blocks.append(Qwen2VLVisionBlock(block))
25
+ return nn.ModuleList(wrapped_blocks)
26
+
27
+ def forward(
28
+ self,
29
+ hidden_states: torch.Tensor,
30
+ full_attn_masks: torch.Tensor,
31
+ cos: torch.Tensor,
32
+ sin: torch.Tensor,
33
+ ):
34
+ full_attn_masks = (1 - full_attn_masks) * torch.finfo(torch.float32).min
35
+
36
+ for block in self.blocks:
37
+ hidden_states = block(hidden_states, full_attn_masks, [cos, sin])
38
+
39
+ return self.merger(hidden_states)
40
+
41
+
42
+ class Qwen2VLVisionBlock(torch.nn.Module):
43
+ def __init__(self, model: torch.nn.Module):
44
+ super().__init__()
45
+ self._origin_model = model
46
+ self.norm1 = model.norm1
47
+ self.norm2 = model.norm2
48
+
49
+ self.attn = VisionAttention(model.attn)
50
+ self.mlp = model.mlp
51
+
52
+ def forward(
53
+ self,
54
+ hidden_states: torch.Tensor,
55
+ attn_masks: torch.Tensor,
56
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
57
+ ) -> torch.Tensor:
58
+ hidden_states = hidden_states + self.attn(
59
+ self.norm1(hidden_states),
60
+ attn_masks,
61
+ position_embeddings,
62
+ )
63
+ hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
64
+ return hidden_states
65
+
66
+
67
+ class VisionAttention(nn.Module):
68
+ def __init__(self, model: nn.Module) -> None:
69
+ super().__init__()
70
+ self._origin_model = model
71
+ self.num_heads = model.num_heads
72
+ self.head_dim = getattr(model, "head_dim", model.proj.in_features // model.num_heads)
73
+ self.qkv = model.qkv
74
+ self.proj = model.proj
75
+
76
+ def forward(
77
+ self,
78
+ hidden_states: torch.Tensor,
79
+ attn_masks: torch.Tensor,
80
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
81
+ ) -> torch.Tensor:
82
+ seq_length = hidden_states.shape[0]
83
+ hidden_states = hidden_states.unsqueeze(0)
84
+ q, k, v = (
85
+ self.qkv(hidden_states).reshape(1, seq_length, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4).unbind(0)
86
+ )
87
+
88
+ cos, sin = position_embeddings
89
+ q, k = apply_rotary_pos_emb(q, k, cos, sin)
90
+
91
+ attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim)
92
+ attn_weights = attn_weights + attn_masks
93
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
94
+ attn_output = torch.matmul(attn_weights, v)
95
+ attn_output = attn_output.transpose(1, 2)
96
+ attn_output = attn_output.reshape(1, seq_length, -1)
97
+ attn_output = self.proj(attn_output).squeeze(0)
98
+
99
+ return attn_output
100
+
101
+
102
+ class Qwen2VL_LanguageModelWrapper(DecoderOnlyWrapper):
103
+ def prepare_forward_args(self, *args):
104
+ args = list(args)
105
+ input_ids = None if self.rbln_config.use_inputs_embeds else args.pop(0)
106
+ inputs_embeds = args.pop(0) if self.rbln_config.use_inputs_embeds else None
107
+ cache_position = args.pop(0)
108
+ global_block_tables = args.pop(0)
109
+ local_block_tables = None
110
+ position_embeds = args.pop(0)
111
+ query_position = args.pop(0) if self.phase == "prefill" else None
112
+ position_ids = None
113
+ attention_mask = args.pop(0) if self.rbln_config.use_attention_mask else None
114
+ lora_int_id = args.pop(0) if self.rbln_config.lora_config else None
115
+ past_key_values = args
116
+
117
+ if len(past_key_values) != 2 * self.num_hidden_layers:
118
+ raise ValueError(
119
+ f"Different past_key_values to model's config. {len(past_key_values)} != {2 * self.num_hidden_layers}"
120
+ )
121
+
122
+ # [key, value] * n_layer -> ( (key, value) ) * n_layer
123
+ # cache shape : batch, n_heads, 1, max_seq_len, head_dim
124
+ _past_key_values = []
125
+ for i in range(self.config.num_hidden_layers):
126
+ key_states = past_key_values[i * 2]
127
+ value_states = past_key_values[i * 2 + 1]
128
+ past_key_value = [key_states, value_states]
129
+ _past_key_values.append(past_key_value)
130
+ past_key_values = _past_key_values
131
+
132
+ return (
133
+ input_ids,
134
+ inputs_embeds,
135
+ cache_position,
136
+ global_block_tables,
137
+ local_block_tables,
138
+ query_position,
139
+ attention_mask,
140
+ position_ids,
141
+ lora_int_id,
142
+ past_key_values,
143
+ position_embeds,
144
+ )
145
+
146
+ def convert_to_rbln_class(self, model: PreTrainedModel, max_seq_len: int):
147
+ new_layers = []
148
+
149
+ for layer_idx, layer in enumerate(model.model.language_model.layers):
150
+ is_sliding = layer_idx in self.rbln_config.sliding_window_layers
151
+ new_self_attn = self.get_rbln_attn_class()(
152
+ self.get_attn_layer(layer), self.rbln_config, is_sliding=is_sliding
153
+ )
154
+ new_layer = self.get_rbln_layer_class()(layer, new_self_attn)
155
+ new_layers.append(new_layer)
156
+
157
+ new_model = self.get_rbln_model_class()(
158
+ model.model.language_model,
159
+ new_layers,
160
+ self.rbln_config,
161
+ use_learned_pos_emb=self.__class__._use_learned_pos_emb,
162
+ )
163
+
164
+ new_model = self.get_rbln_causal_lm_class()(model.model, new_model)
165
+ return new_model
@@ -0,0 +1,16 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_qwen3 import RBLNQwen3ForCausalLMConfig, RBLNQwen3ModelConfig
16
+ from .modeling_qwen3 import RBLNQwen3ForCausalLM, RBLNQwen3Model