optimum-rbln 0.9.3.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (264) hide show
  1. optimum/rbln/__init__.py +505 -0
  2. optimum/rbln/__version__.py +34 -0
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +968 -0
  5. optimum/rbln/diffusers/__init__.py +198 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +37 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +451 -0
  27. optimum/rbln/diffusers/models/__init__.py +64 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
  34. optimum/rbln/diffusers/models/controlnet.py +281 -0
  35. optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
  36. optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
  37. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
  38. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
  39. optimum/rbln/diffusers/models/unets/__init__.py +16 -0
  40. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
  41. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  42. optimum/rbln/diffusers/pipelines/__init__.py +113 -0
  43. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  44. optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
  45. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
  46. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
  47. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
  48. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
  49. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
  50. optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
  51. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
  52. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
  53. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
  54. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
  55. optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
  56. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
  57. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
  58. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
  59. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
  60. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
  61. optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
  62. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
  63. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
  64. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
  65. optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
  66. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
  67. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
  68. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
  69. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
  70. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
  71. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
  72. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
  73. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  74. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  75. optimum/rbln/modeling.py +364 -0
  76. optimum/rbln/modeling_base.py +637 -0
  77. optimum/rbln/ops/__init__.py +19 -0
  78. optimum/rbln/ops/attn.py +455 -0
  79. optimum/rbln/ops/flash_attn.py +350 -0
  80. optimum/rbln/ops/kv_cache_update.py +29 -0
  81. optimum/rbln/ops/linear.py +32 -0
  82. optimum/rbln/ops/sliding_window_attn.py +111 -0
  83. optimum/rbln/transformers/__init__.py +340 -0
  84. optimum/rbln/transformers/configuration_generic.py +120 -0
  85. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  86. optimum/rbln/transformers/modeling_generic.py +280 -0
  87. optimum/rbln/transformers/modeling_outputs.py +37 -0
  88. optimum/rbln/transformers/modeling_rope_utils.py +314 -0
  89. optimum/rbln/transformers/models/__init__.py +343 -0
  90. optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
  91. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
  92. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
  93. optimum/rbln/transformers/models/auto/__init__.py +31 -0
  94. optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
  95. optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
  96. optimum/rbln/transformers/models/bart/__init__.py +17 -0
  97. optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
  98. optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
  99. optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
  100. optimum/rbln/transformers/models/bert/__init__.py +16 -0
  101. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  102. optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
  103. optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
  104. optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
  105. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
  106. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
  107. optimum/rbln/transformers/models/clip/__init__.py +26 -0
  108. optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
  109. optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
  110. optimum/rbln/transformers/models/colpali/__init__.py +2 -0
  111. optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
  112. optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
  113. optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
  114. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  115. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  116. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  117. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  118. optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
  119. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
  120. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  121. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
  122. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  123. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  124. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  125. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
  126. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  127. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  128. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  129. optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
  130. optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
  131. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
  132. optimum/rbln/transformers/models/dpt/__init__.py +16 -0
  133. optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
  134. optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
  135. optimum/rbln/transformers/models/exaone/__init__.py +24 -0
  136. optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
  137. optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
  138. optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
  139. optimum/rbln/transformers/models/gemma/__init__.py +16 -0
  140. optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
  141. optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
  142. optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
  143. optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
  144. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
  145. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
  146. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  147. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
  148. optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
  149. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
  150. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
  151. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
  152. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  153. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  154. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  155. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  156. optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
  157. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
  158. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
  159. optimum/rbln/transformers/models/llama/__init__.py +16 -0
  160. optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
  161. optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
  162. optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
  163. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  164. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  165. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  166. optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
  167. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
  168. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
  169. optimum/rbln/transformers/models/midm/__init__.py +24 -0
  170. optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
  171. optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
  172. optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
  173. optimum/rbln/transformers/models/mistral/__init__.py +16 -0
  174. optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
  175. optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
  176. optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
  177. optimum/rbln/transformers/models/opt/__init__.py +16 -0
  178. optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
  179. optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
  180. optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
  181. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  182. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  183. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  184. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  185. optimum/rbln/transformers/models/phi/__init__.py +16 -0
  186. optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
  187. optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
  188. optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
  189. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  190. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  191. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  192. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  193. optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
  194. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
  195. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
  196. optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
  197. optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
  198. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
  199. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
  200. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
  201. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  202. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  203. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  204. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  205. optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
  206. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
  207. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
  208. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
  209. optimum/rbln/transformers/models/resnet/__init__.py +23 -0
  210. optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
  211. optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
  212. optimum/rbln/transformers/models/roberta/__init__.py +24 -0
  213. optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
  214. optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
  215. optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
  216. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
  217. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
  218. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
  219. optimum/rbln/transformers/models/siglip/__init__.py +16 -0
  220. optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
  221. optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
  222. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  223. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  224. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  225. optimum/rbln/transformers/models/t5/__init__.py +17 -0
  226. optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
  227. optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
  228. optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
  229. optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
  230. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
  231. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
  232. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
  233. optimum/rbln/transformers/models/vit/__init__.py +19 -0
  234. optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
  235. optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
  236. optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
  237. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
  238. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
  239. optimum/rbln/transformers/models/whisper/__init__.py +17 -0
  240. optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
  241. optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
  242. optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
  243. optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
  244. optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
  245. optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
  246. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
  247. optimum/rbln/transformers/utils/__init__.py +0 -0
  248. optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
  249. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  250. optimum/rbln/utils/__init__.py +16 -0
  251. optimum/rbln/utils/decorator_utils.py +86 -0
  252. optimum/rbln/utils/deprecation.py +213 -0
  253. optimum/rbln/utils/hub.py +94 -0
  254. optimum/rbln/utils/import_utils.py +170 -0
  255. optimum/rbln/utils/logging.py +110 -0
  256. optimum/rbln/utils/model_utils.py +63 -0
  257. optimum/rbln/utils/runtime_utils.py +249 -0
  258. optimum/rbln/utils/save_utils.py +102 -0
  259. optimum/rbln/utils/submodule.py +152 -0
  260. optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
  261. optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
  262. optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
  263. optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
  264. optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
@@ -0,0 +1,104 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from ....utils import logging
16
+ from ...models.decoderonly import RBLNDecoderOnlyModel, RBLNDecoderOnlyModelForCausalLM
17
+ from .gemma_architecture import GemmaWrapper
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class RBLNGemmaForCausalLM(RBLNDecoderOnlyModelForCausalLM):
24
+ """
25
+ The Gemma Model transformer with a language modeling head (linear layer) on top.
26
+ This model inherits from [`RBLNDecoderOnlyModelForCausalLM`]. Check the superclass documentation for the generic methods the library implements for all its models.
27
+
28
+ A class to convert and run pre-trained transformers based GemmaForCausalLM model on RBLN devices.
29
+ It implements the methods to convert a pre-trained transformers GemmaForCausalLM model into a RBLN transformer model by:
30
+
31
+ - transferring the checkpoint weights of the original into an optimized RBLN graph,
32
+ - compiling the resulting graph using the RBLN compiler.
33
+
34
+ **Configuration:**
35
+ This model uses [`RBLNGemmaForCausalLMConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
36
+ the `rbln_config` parameter should be an instance of [`RBLNGemmaForCausalLMConfig`] or a dictionary conforming to its structure.
37
+
38
+ See the [`RBLNGemmaForCausalLMConfig`] class for all available configuration options.
39
+
40
+ Examples:
41
+ ```python
42
+ from optimum.rbln import RBLNGemmaForCausalLM
43
+
44
+ # Simple usage using rbln_* arguments
45
+ # `max_seq_len` is automatically inferred from the model config
46
+ model = RBLNGemmaForCausalLM.from_pretrained(
47
+ "google/gemma-7b",
48
+ export=True,
49
+ rbln_batch_size=1,
50
+ rbln_tensor_parallel_size=4,
51
+ )
52
+
53
+
54
+ # Using a config dictionary
55
+ rbln_config = {
56
+ "batch_size": 1,
57
+ "max_seq_len": 4096,
58
+ "tensor_parallel_size": 4,
59
+ }
60
+ model = RBLNGemmaForCausalLM.from_pretrained(
61
+ "google/gemma-7b",
62
+ export=True,
63
+ rbln_config=rbln_config
64
+ )
65
+
66
+
67
+ # Using a RBLNGemmaForCausalLMConfig instance (recommended for type checking)
68
+ from optimum.rbln import RBLNGemmaForCausalLMConfig
69
+
70
+ config = RBLNGemmaForCausalLMConfig(
71
+ batch_size=1,
72
+ max_seq_len=4096,
73
+ tensor_parallel_size=4
74
+ )
75
+ model = RBLNGemmaForCausalLM.from_pretrained(
76
+ "google/gemma-7b",
77
+ export=True,
78
+ rbln_config=config
79
+ )
80
+ ```
81
+ """
82
+
83
+ _decoder_wrapper_cls = GemmaWrapper
84
+
85
+
86
+ class RBLNGemmaModel(RBLNDecoderOnlyModel):
87
+ """
88
+ The Gemma Model transformer without a language modeling head.
89
+ This model inherits from [`RBLNDecoderOnlyModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
90
+
91
+ A class to convert and run pre-trained transformers based GemmaModel model on RBLN devices.
92
+ It implements the methods to convert a pre-trained transformers GemmaModel model into a RBLN transformer model by:
93
+
94
+ - transferring the checkpoint weights of the original into an optimized RBLN graph,
95
+ - compiling the resulting graph using the RBLN compiler.
96
+
97
+ **Configuration:**
98
+ This model uses [`RBLNGemmaModelConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
99
+ the `rbln_config` parameter should be an instance of [`RBLNGemmaModelConfig`] or a dictionary conforming to its structure.
100
+
101
+ See the [`RBLNGemmaModelConfig`] class for all available configuration options.
102
+ """
103
+
104
+ _decoder_wrapper_cls = GemmaWrapper
@@ -0,0 +1,16 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_gemma3 import RBLNGemma3ForCausalLMConfig, RBLNGemma3ForConditionalGenerationConfig
16
+ from .modeling_gemma3 import RBLNGemma3ForCausalLM, RBLNGemma3ForConditionalGeneration
@@ -0,0 +1,109 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Any, Optional
15
+
16
+ from ....configuration_utils import RBLNModelConfig
17
+ from ....utils.logging import get_logger
18
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
19
+
20
+
21
+ logger = get_logger(__name__)
22
+
23
+
24
+ class RBLNGemma3ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
25
+ def __init__(
26
+ self,
27
+ use_position_ids: Optional[bool] = None,
28
+ use_attention_mask: Optional[bool] = None,
29
+ prefill_chunk_size: Optional[int] = None,
30
+ image_prefill_chunk_size: Optional[int] = None,
31
+ **kwargs: Any,
32
+ ):
33
+ """
34
+ Args:
35
+ use_position_ids (Optional[bool]): Whether or not to use `position_ids`, which is indices of positions of each input sequence tokens in the position embeddings.
36
+ use_attention_mask (Optional[bool]): Whether or not to use `attention_mask` to to avoid performing attention on padding token indices.
37
+ prefill_chunk_size (Optional[int]): The chunk size used during the prefill phase for
38
+ processing input sequences. Defaults to 256. Must be a positive integer
39
+ divisible by 64. Affects prefill performance and memory usage.
40
+ image_prefill_chunk_size (Optional[int]): The chunk size used during the prefill phase for
41
+ processing images. This config is used when `use_image_prefill` is True.
42
+ Currently, the `prefill_chunk_size` and `image_prefill_chunk_size` should be the same value.
43
+ kwargs: Additional arguments passed to the parent `RBLNDecoderOnlyModelForCausalLMConfig`.
44
+
45
+ Raises:
46
+ ValueError: If `use_attention_mask` or `use_position_ids` are False.
47
+ """
48
+ # use_attention_mask and use_position_ids are always True for Gemma3
49
+ use_attention_mask = use_attention_mask or True
50
+ use_position_ids = use_position_ids or True
51
+ prefill_chunk_size = prefill_chunk_size or 256
52
+
53
+ super().__init__(
54
+ prefill_chunk_size=prefill_chunk_size,
55
+ use_attention_mask=use_attention_mask,
56
+ use_position_ids=use_position_ids,
57
+ **kwargs,
58
+ )
59
+ self.image_prefill_chunk_size = image_prefill_chunk_size
60
+
61
+ @property
62
+ def use_image_prefill(self):
63
+ return self.image_prefill_chunk_size is not None
64
+
65
+ @property
66
+ def decoder_runtime_idx(self):
67
+ return 2 if self.use_image_prefill else 1
68
+
69
+
70
+ class RBLNGemma3ForConditionalGenerationConfig(RBLNModelConfig):
71
+ submodules = ["vision_tower", "language_model"]
72
+
73
+ def __init__(
74
+ self,
75
+ batch_size: Optional[int] = None,
76
+ vision_tower: Optional[RBLNModelConfig] = None,
77
+ language_model: Optional[RBLNModelConfig] = None,
78
+ **kwargs: Any,
79
+ ):
80
+ """
81
+ Args:
82
+ batch_size (Optional[int]): The batch size for inference. Defaults to 1.
83
+ vision_tower (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
84
+ language_model (Optional[RBLNModelConfig]): Configuration for the language model component.
85
+ kwargs: Additional arguments passed to the parent RBLNModelConfig.
86
+
87
+ Raises:
88
+ ValueError: If `batch_size` is not a positive integer.
89
+ """
90
+ super().__init__(**kwargs)
91
+ self.batch_size = batch_size or 1
92
+ if not isinstance(self.batch_size, int) or self.batch_size < 0:
93
+ raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
94
+
95
+ if self.batch_size != 1:
96
+ logger.warning("Ignore batch_size for Gemma3 vision tower. It will be set to 1.")
97
+
98
+ self.vision_tower = self.initialize_submodule_config(
99
+ submodule_config=vision_tower, batch_size=1, force_kwargs=True
100
+ )
101
+ self.language_model = self.initialize_submodule_config(submodule_config=language_model)
102
+
103
+ @property
104
+ def image_prefill_chunk_size(self):
105
+ return self.language_model.image_prefill_chunk_size
106
+
107
+ @property
108
+ def prefill_chunk_size(self):
109
+ return self.language_model.prefill_chunk_size
@@ -0,0 +1,170 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import copy
16
+ from typing import Optional, Tuple, Union
17
+
18
+ import torch
19
+ from transformers.models.gemma3.modeling_gemma3 import Gemma3RMSNorm
20
+
21
+ from ..decoderonly.decoderonly_architecture import (
22
+ DecoderOnlyAttention,
23
+ DecoderOnlyLayer,
24
+ DecoderOnlyModel,
25
+ DecoderOnlyWrapper,
26
+ RotaryEmbedding,
27
+ slice_and_unsqueeze_cos_sin,
28
+ )
29
+
30
+
31
+ class Gemma3ForCausalLMWrapper(DecoderOnlyWrapper):
32
+ def get_rotary_emb(self, max_seq_len):
33
+ rotary_emb_global = RotaryEmbedding(config=self.config, max_seq_len_cached=max_seq_len)
34
+
35
+ config = copy.deepcopy(self.config)
36
+ config.rope_theta = config.rope_local_base_freq
37
+ config.rope_scaling = {"rope_type": "default"}
38
+ rotary_emb_local = RotaryEmbedding(config=config, max_seq_len_cached=max_seq_len)
39
+
40
+ return (rotary_emb_global, rotary_emb_local)
41
+
42
+ def get_rbln_attn_class(self):
43
+ return Gemma3Attention
44
+
45
+ def get_rbln_layer_class(self):
46
+ return Gemma3DecoderLayer
47
+
48
+ def get_rbln_model_class(self):
49
+ return Gemma3TextModel
50
+
51
+
52
+ class Gemma3TextModel(DecoderOnlyModel):
53
+ # Different from DecoderOnlyModel, this model has global and local rotary embeddings.
54
+ def forward(
55
+ self,
56
+ input_ids: torch.Tensor = None,
57
+ inputs_embeds: torch.Tensor = None,
58
+ attention_mask: torch.Tensor = None,
59
+ cache_position: torch.Tensor = None,
60
+ position_ids: torch.Tensor = None,
61
+ query_position: torch.Tensor = None,
62
+ past_key_values: Tuple[Tuple[torch.Tensor]] = None,
63
+ rotary_emb: torch.nn.Module = None,
64
+ global_block_tables: Optional[torch.Tensor] = None,
65
+ local_block_tables: Optional[torch.Tensor] = None,
66
+ lora_int_id: Optional[torch.Tensor] = None,
67
+ ):
68
+ # retrieve input_ids and inputs_embeds
69
+ if (input_ids is None) ^ (inputs_embeds is not None):
70
+ raise ValueError(
71
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
72
+ )
73
+
74
+ # embed positions
75
+ if inputs_embeds is None:
76
+ inputs_embeds = self.get_embedding()(input_ids)
77
+
78
+ hidden_states = inputs_embeds
79
+
80
+ # Global Position Embeddings
81
+ cos_global, sin_global = rotary_emb[0](hidden_states, self.max_seq_len)
82
+ cos_global, sin_global = slice_and_unsqueeze_cos_sin(cos_global, sin_global, position_ids)
83
+
84
+ # Local Position Embeddings
85
+ cos_local, sin_local = rotary_emb[1](hidden_states, self.max_seq_len)
86
+ cos_local, sin_local = slice_and_unsqueeze_cos_sin(cos_local, sin_local, position_ids)
87
+
88
+ # (batch, seq_len) -> (batch,)
89
+ if self.attn_impl == "flash_attn":
90
+ seq_positions = cache_position[:, 0]
91
+ seq_positions = self.convert_sequence_positions_for_flash_attn(
92
+ seq_positions=seq_positions, max_seq_len=self.max_seq_len
93
+ )
94
+ else:
95
+ seq_positions = cache_position[:, :1]
96
+
97
+ sliding_cache_pos = self.get_local_cache_positions(position_ids, query_position)
98
+
99
+ for layer_idx, layer in enumerate(self.layers):
100
+ is_sliding = True if layer_idx in self.sliding_window_layers else False
101
+ hidden_states = layer(
102
+ hidden_states=hidden_states,
103
+ attention_mask=attention_mask,
104
+ seq_positions=sliding_cache_pos if is_sliding else seq_positions,
105
+ past_key_values=past_key_values,
106
+ cos=cos_local if is_sliding else cos_global,
107
+ sin=sin_local if is_sliding else sin_global,
108
+ block_tables=local_block_tables if is_sliding else global_block_tables,
109
+ lora_int_id=lora_int_id,
110
+ )
111
+
112
+ hidden_states = self.get_last_layernorm()(hidden_states)
113
+ return hidden_states
114
+
115
+
116
+ class Gemma3DecoderLayer(DecoderOnlyLayer):
117
+ def get_pre_feedforward_layernorm(self) -> Gemma3RMSNorm:
118
+ return self._original_mod.pre_feedforward_layernorm
119
+
120
+ def get_post_feedforward_layernorm(self) -> Gemma3RMSNorm:
121
+ return self._original_mod.post_feedforward_layernorm
122
+
123
+ def forward(
124
+ self,
125
+ hidden_states: torch.Tensor,
126
+ attention_mask: torch.Tensor,
127
+ seq_positions: Union[torch.LongTensor, Tuple[torch.LongTensor]],
128
+ past_key_values: Tuple[Tuple[torch.Tensor]],
129
+ cos: Optional[torch.Tensor] = None,
130
+ sin: Optional[torch.Tensor] = None,
131
+ block_tables: Optional[torch.Tensor] = None,
132
+ lora_int_id: Optional[torch.Tensor] = None,
133
+ ):
134
+ residual = hidden_states
135
+ hidden_states = self.get_pre_attention_layernorm()(hidden_states)
136
+
137
+ hidden_states = self.self_attn(
138
+ hidden_states=hidden_states,
139
+ attention_mask=attention_mask,
140
+ seq_positions=seq_positions,
141
+ past_key_values=past_key_values,
142
+ cos=cos,
143
+ sin=sin,
144
+ block_tables=block_tables,
145
+ lora_int_id=lora_int_id,
146
+ )
147
+ hidden_states = self.get_post_attention_layernorm()(hidden_states)
148
+ hidden_states = residual + hidden_states
149
+
150
+ # Fully Connected
151
+ residual = hidden_states
152
+ hidden_states = self.get_pre_feedforward_layernorm()(hidden_states)
153
+ hidden_states = self.forward_mlp(hidden_states, lora_int_id)
154
+ hidden_states = self.get_post_feedforward_layernorm()(hidden_states)
155
+ hidden_states = residual + hidden_states
156
+
157
+ return hidden_states
158
+
159
+
160
+ class Gemma3Attention(DecoderOnlyAttention):
161
+ def __post_init__(self):
162
+ self.q_proj = self._original_mod.q_proj
163
+ self.k_proj = self._original_mod.k_proj
164
+ self.v_proj = self._original_mod.v_proj
165
+ self.o_proj = self._original_mod.o_proj
166
+ self.q_norm = self._original_mod.q_norm
167
+ self.k_norm = self._original_mod.k_norm
168
+
169
+ def get_attn_scale(self):
170
+ return self._original_mod.config.query_pre_attn_scalar**-0.5
@@ -0,0 +1,245 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Optional
15
+
16
+ import rebel
17
+ import torch
18
+
19
+ from ...modeling_outputs import RBLNDecoderOnlyOutput, RBLNGemma3ForCausalLMOutput
20
+ from ..decoderonly.decoderonly_runtime_utils import RBLNPytorchRuntime
21
+ from ..decoderonly.modeling_decoderonly import RBLNRuntimeModel
22
+
23
+
24
+ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
25
+ def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
26
+ super().__init__(*args, **kwargs)
27
+ self.image_prefill = RBLNPytorchRuntime(image_prefill) # FIXME(taehoon)
28
+ self.prefill = RBLNPytorchRuntime(self.runtime) if self.phase == "prefill" else None # FIXME
29
+ self.decode = RBLNPytorchRuntime(self.runtime) if self.phase == "decode" else None
30
+
31
+ def _prepare_prefill_inputs(self, *args, **kwargs):
32
+ (
33
+ inputs,
34
+ cache_position,
35
+ chunked_attention_mask,
36
+ position_ids,
37
+ position_embed,
38
+ padded_cache_lengths,
39
+ query_length,
40
+ token_type_ids,
41
+ ) = super()._prepare_prefill_inputs(*args, **kwargs)
42
+
43
+ # chunked_attention_mask shape
44
+ chunked_attention_mask = torch.zeros(1, chunked_attention_mask.shape[-1], dtype=torch.float32)
45
+
46
+ # In case of Gemma3ForConditionalGeneration, the loop counter may not be a prefill_chunk_size,
47
+ # so we cannot guarantee that the last chunk starts at a position that is a multiple of prefill_chunk_size.
48
+ if self.rbln_config.use_image_prefill:
49
+ padding_size = self.rbln_config.image_prefill_chunk_size
50
+ inputs = torch.nn.functional.pad(inputs, (0, 0, 0, padding_size))
51
+ cache_position = torch.nn.functional.pad(cache_position, (0, padding_size))
52
+ position_ids = torch.nn.functional.pad(position_ids, (0, padding_size))
53
+ token_type_ids = torch.nn.functional.pad(token_type_ids, (0, padding_size), value=-1)
54
+
55
+ return (
56
+ inputs,
57
+ cache_position,
58
+ chunked_attention_mask,
59
+ position_ids,
60
+ position_embed,
61
+ padded_cache_lengths,
62
+ query_length,
63
+ token_type_ids,
64
+ )
65
+
66
+ def prefill_forward(
67
+ self,
68
+ inputs: torch.Tensor,
69
+ cache_position: torch.Tensor = None,
70
+ attention_mask: Optional[torch.Tensor] = None,
71
+ batch_idx: int = None,
72
+ block_tables: torch.Tensor = None,
73
+ is_external_block_tables: bool = None,
74
+ position_embed: Optional[torch.Tensor] = None,
75
+ token_type_ids: Optional[torch.Tensor] = None,
76
+ local_block_tables: Optional[torch.Tensor] = None,
77
+ lora_int_ids: Optional[torch.Tensor] = None,
78
+ ) -> torch.FloatTensor:
79
+ """
80
+ Performs chunked prefill for efficient KV-cache updates and memory optimization.
81
+ Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
82
+ and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
83
+ """
84
+ if self.rbln_config.use_lora and lora_int_ids is None:
85
+ if self.lora_int_ids is None:
86
+ raise ValueError(
87
+ "lora_int_id is required when using LoRA. "
88
+ "You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
89
+ )
90
+ if batch_idx is not None:
91
+ lora_int_ids = self.lora_int_ids[batch_idx : batch_idx + 1].clone()
92
+ else:
93
+ lora_int_ids = self.lora_int_ids.clone()
94
+
95
+ (
96
+ inputs,
97
+ cache_position,
98
+ chunked_attention_mask,
99
+ position_ids,
100
+ position_embed,
101
+ padded_cache_lengths,
102
+ query_length,
103
+ token_type_ids,
104
+ ) = self._prepare_prefill_inputs(
105
+ inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
106
+ )
107
+
108
+ step = 0
109
+ while step < query_length:
110
+ if self.rbln_config.use_image_prefill:
111
+ # Check if the prefill chunk is an image prefill
112
+ is_image_prefill = torch.all(
113
+ token_type_ids[:, step : step + self.rbln_config.image_prefill_chunk_size] == 1
114
+ )
115
+ # Check if the prefill chunk is a text prefill which have image_tokens in it.
116
+ is_text_prefill_with_image_tokens = not is_image_prefill and torch.any(
117
+ token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
118
+ )
119
+ else:
120
+ is_image_prefill, is_text_prefill_with_image_tokens = False, False
121
+
122
+ # Check if the prefill chunk is the last chunk
123
+ is_last_chunk = step + self.rbln_config.prefill_chunk_size >= query_length
124
+
125
+ input_chunk = inputs[:, step : step + self.rbln_config.prefill_chunk_size]
126
+ cache_pos_chunk = (
127
+ cache_position[:, step : step + self.rbln_config.prefill_chunk_size] + padded_cache_lengths
128
+ )
129
+ position_ids_chunk = position_ids[:, step : step + self.rbln_config.prefill_chunk_size]
130
+
131
+ # if text_prefill end with image_tokens, we only treat the text part.
132
+ num_processed_tokens = self.rbln_config.prefill_chunk_size
133
+ current_padded_cache_lengths = 0
134
+ if is_text_prefill_with_image_tokens:
135
+ first_image_token_idx = torch.where(
136
+ token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
137
+ )[1][0]
138
+ num_processed_tokens = first_image_token_idx.item()
139
+ current_padded_cache_lengths = self.rbln_config.prefill_chunk_size - num_processed_tokens
140
+ if is_last_chunk:
141
+ num_processed_tokens = query_length - step
142
+
143
+ chunked_attention_mask[
144
+ :, step + padded_cache_lengths : step + num_processed_tokens + padded_cache_lengths
145
+ ] = 1
146
+ query_position = torch.tensor(num_processed_tokens - 1, dtype=torch.int16)
147
+
148
+ if is_image_prefill:
149
+ logits = self.image_prefill(
150
+ input_chunk,
151
+ cache_pos_chunk,
152
+ block_tables,
153
+ local_block_tables,
154
+ query_position,
155
+ chunked_attention_mask,
156
+ position_ids_chunk,
157
+ lora_int_ids if self.rbln_config.use_lora else None,
158
+ )
159
+ else:
160
+ logits = self.prefill(
161
+ input_chunk,
162
+ cache_pos_chunk,
163
+ block_tables,
164
+ local_block_tables,
165
+ query_position,
166
+ chunked_attention_mask,
167
+ position_ids_chunk,
168
+ lora_int_ids if self.rbln_config.use_lora else None,
169
+ )
170
+
171
+ padded_cache_lengths += current_padded_cache_lengths
172
+ step += num_processed_tokens
173
+
174
+ if not is_external_block_tables:
175
+ self.dec_attn_mask[batch_idx : batch_idx + 1] = chunked_attention_mask
176
+
177
+ return RBLNGemma3ForCausalLMOutput(
178
+ logits=logits, padded_cache_lengths=padded_cache_lengths, attention_mask=chunked_attention_mask
179
+ )
180
+
181
+ def decode_forward(
182
+ self,
183
+ inputs: torch.Tensor,
184
+ cache_position: torch.Tensor = None,
185
+ block_tables: torch.Tensor = None,
186
+ is_external_block_tables: bool = None,
187
+ attention_mask: Optional[torch.Tensor] = None,
188
+ position_embed: Optional[torch.Tensor] = None,
189
+ position_ids: Optional[torch.Tensor] = None,
190
+ local_block_tables: Optional[torch.Tensor] = None,
191
+ lora_int_ids: Optional[torch.Tensor] = None,
192
+ ) -> torch.FloatTensor:
193
+ if self.rbln_config.use_lora and lora_int_ids is None:
194
+ if self.lora_int_ids is None:
195
+ raise ValueError(
196
+ "lora_int_id is required when using LoRA. "
197
+ "You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
198
+ )
199
+
200
+ lora_int_ids = self.lora_int_ids
201
+
202
+ if lora_int_ids is not None and lora_int_ids.shape[0] != self.batch_size:
203
+ raise ValueError(f"lora_int_ids size mismatch: got {lora_int_ids.shape[0]}, expected {self.batch_size}.")
204
+
205
+ batch_size = inputs.shape[0]
206
+ if batch_size != self.batch_size:
207
+ raise RuntimeError(
208
+ f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
209
+ )
210
+
211
+ if batch_size != cache_position.shape[0]:
212
+ raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
213
+
214
+ # FIXME(taehoon): how to handle pos_attn_mask with external block tables
215
+ if is_external_block_tables:
216
+ if attention_mask is None:
217
+ raise ValueError("attention_mask should be provided with external block tables.")
218
+ if local_block_tables is None:
219
+ raise ValueError("local_block_tables should be provided with external block tables.")
220
+ else:
221
+ local_block_tables = (
222
+ local_block_tables
223
+ if local_block_tables is not None
224
+ else torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, -1)
225
+ )
226
+ if self.rbln_config.use_attention_mask and attention_mask is None:
227
+ for b_idx in range(batch_size):
228
+ decoding_step = cache_position[b_idx].item()
229
+ if not (0 <= decoding_step < self.dec_attn_mask.shape[-1]):
230
+ raise ValueError(
231
+ f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
232
+ )
233
+ self.dec_attn_mask[b_idx, decoding_step] = 1
234
+
235
+ attention_mask = self.dec_attn_mask
236
+
237
+ if self.batch_size < block_tables.shape[0]:
238
+ block_tables = block_tables[: self.batch_size]
239
+
240
+ if attention_mask is not None and self.batch_size < attention_mask.shape[0]:
241
+ attention_mask = attention_mask[: self.batch_size]
242
+
243
+ logits = self.decode(inputs, cache_position, block_tables, local_block_tables, attention_mask, position_ids)
244
+
245
+ return RBLNDecoderOnlyOutput(logits=logits)