optimum-rbln 0.9.3.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (264) hide show
  1. optimum/rbln/__init__.py +505 -0
  2. optimum/rbln/__version__.py +34 -0
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +968 -0
  5. optimum/rbln/diffusers/__init__.py +198 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +37 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +451 -0
  27. optimum/rbln/diffusers/models/__init__.py +64 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
  34. optimum/rbln/diffusers/models/controlnet.py +281 -0
  35. optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
  36. optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
  37. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
  38. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
  39. optimum/rbln/diffusers/models/unets/__init__.py +16 -0
  40. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
  41. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  42. optimum/rbln/diffusers/pipelines/__init__.py +113 -0
  43. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  44. optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
  45. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
  46. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
  47. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
  48. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
  49. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
  50. optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
  51. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
  52. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
  53. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
  54. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
  55. optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
  56. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
  57. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
  58. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
  59. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
  60. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
  61. optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
  62. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
  63. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
  64. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
  65. optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
  66. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
  67. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
  68. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
  69. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
  70. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
  71. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
  72. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
  73. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  74. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  75. optimum/rbln/modeling.py +364 -0
  76. optimum/rbln/modeling_base.py +637 -0
  77. optimum/rbln/ops/__init__.py +19 -0
  78. optimum/rbln/ops/attn.py +455 -0
  79. optimum/rbln/ops/flash_attn.py +350 -0
  80. optimum/rbln/ops/kv_cache_update.py +29 -0
  81. optimum/rbln/ops/linear.py +32 -0
  82. optimum/rbln/ops/sliding_window_attn.py +111 -0
  83. optimum/rbln/transformers/__init__.py +340 -0
  84. optimum/rbln/transformers/configuration_generic.py +120 -0
  85. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  86. optimum/rbln/transformers/modeling_generic.py +280 -0
  87. optimum/rbln/transformers/modeling_outputs.py +37 -0
  88. optimum/rbln/transformers/modeling_rope_utils.py +314 -0
  89. optimum/rbln/transformers/models/__init__.py +343 -0
  90. optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
  91. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
  92. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
  93. optimum/rbln/transformers/models/auto/__init__.py +31 -0
  94. optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
  95. optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
  96. optimum/rbln/transformers/models/bart/__init__.py +17 -0
  97. optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
  98. optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
  99. optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
  100. optimum/rbln/transformers/models/bert/__init__.py +16 -0
  101. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  102. optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
  103. optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
  104. optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
  105. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
  106. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
  107. optimum/rbln/transformers/models/clip/__init__.py +26 -0
  108. optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
  109. optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
  110. optimum/rbln/transformers/models/colpali/__init__.py +2 -0
  111. optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
  112. optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
  113. optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
  114. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  115. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  116. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  117. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  118. optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
  119. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
  120. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  121. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
  122. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  123. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  124. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  125. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
  126. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  127. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  128. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  129. optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
  130. optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
  131. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
  132. optimum/rbln/transformers/models/dpt/__init__.py +16 -0
  133. optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
  134. optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
  135. optimum/rbln/transformers/models/exaone/__init__.py +24 -0
  136. optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
  137. optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
  138. optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
  139. optimum/rbln/transformers/models/gemma/__init__.py +16 -0
  140. optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
  141. optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
  142. optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
  143. optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
  144. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
  145. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
  146. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  147. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
  148. optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
  149. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
  150. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
  151. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
  152. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  153. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  154. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  155. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  156. optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
  157. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
  158. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
  159. optimum/rbln/transformers/models/llama/__init__.py +16 -0
  160. optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
  161. optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
  162. optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
  163. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  164. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  165. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  166. optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
  167. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
  168. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
  169. optimum/rbln/transformers/models/midm/__init__.py +24 -0
  170. optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
  171. optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
  172. optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
  173. optimum/rbln/transformers/models/mistral/__init__.py +16 -0
  174. optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
  175. optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
  176. optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
  177. optimum/rbln/transformers/models/opt/__init__.py +16 -0
  178. optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
  179. optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
  180. optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
  181. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  182. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  183. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  184. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  185. optimum/rbln/transformers/models/phi/__init__.py +16 -0
  186. optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
  187. optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
  188. optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
  189. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  190. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  191. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  192. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  193. optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
  194. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
  195. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
  196. optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
  197. optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
  198. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
  199. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
  200. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
  201. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  202. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  203. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  204. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  205. optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
  206. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
  207. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
  208. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
  209. optimum/rbln/transformers/models/resnet/__init__.py +23 -0
  210. optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
  211. optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
  212. optimum/rbln/transformers/models/roberta/__init__.py +24 -0
  213. optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
  214. optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
  215. optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
  216. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
  217. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
  218. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
  219. optimum/rbln/transformers/models/siglip/__init__.py +16 -0
  220. optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
  221. optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
  222. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  223. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  224. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  225. optimum/rbln/transformers/models/t5/__init__.py +17 -0
  226. optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
  227. optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
  228. optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
  229. optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
  230. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
  231. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
  232. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
  233. optimum/rbln/transformers/models/vit/__init__.py +19 -0
  234. optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
  235. optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
  236. optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
  237. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
  238. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
  239. optimum/rbln/transformers/models/whisper/__init__.py +17 -0
  240. optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
  241. optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
  242. optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
  243. optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
  244. optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
  245. optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
  246. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
  247. optimum/rbln/transformers/utils/__init__.py +0 -0
  248. optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
  249. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  250. optimum/rbln/utils/__init__.py +16 -0
  251. optimum/rbln/utils/decorator_utils.py +86 -0
  252. optimum/rbln/utils/deprecation.py +213 -0
  253. optimum/rbln/utils/hub.py +94 -0
  254. optimum/rbln/utils/import_utils.py +170 -0
  255. optimum/rbln/utils/logging.py +110 -0
  256. optimum/rbln/utils/model_utils.py +63 -0
  257. optimum/rbln/utils/runtime_utils.py +249 -0
  258. optimum/rbln/utils/save_utils.py +102 -0
  259. optimum/rbln/utils/submodule.py +152 -0
  260. optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
  261. optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
  262. optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
  263. optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
  264. optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
@@ -0,0 +1,16 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_llava_next import RBLNLlavaNextForConditionalGenerationConfig
16
+ from .modeling_llava_next import RBLNLlavaNextForConditionalGeneration
@@ -0,0 +1,69 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Optional
16
+
17
+ from ....configuration_utils import RBLNModelConfig
18
+ from ....utils.logging import get_logger
19
+
20
+
21
+ logger = get_logger(__name__)
22
+
23
+
24
+ class RBLNLlavaNextForConditionalGenerationConfig(RBLNModelConfig):
25
+ """
26
+ Configuration class for RBLNLlavaNextForConditionalGeneration.
27
+
28
+ This configuration class stores the configuration parameters specific to
29
+ RBLN-optimized LLaVA-Next models for multimodal conditional generation tasks
30
+ that combine vision and language processing capabilities.
31
+ """
32
+
33
+ submodules = ["vision_tower", "language_model"]
34
+
35
+ def __init__(
36
+ self,
37
+ batch_size: Optional[int] = None,
38
+ vision_tower: Optional[RBLNModelConfig] = None,
39
+ language_model: Optional[RBLNModelConfig] = None,
40
+ **kwargs: Any,
41
+ ):
42
+ """
43
+ Args:
44
+ batch_size (Optional[int]): The batch size for inference. Defaults to 1.
45
+ vision_tower (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
46
+ language_model (Optional[RBLNModelConfig]): Configuration for the language model component.
47
+ kwargs: Additional arguments passed to the parent RBLNModelConfig.
48
+
49
+ Raises:
50
+ ValueError: If `batch_size` is not a positive integer.
51
+ """
52
+ super().__init__(**kwargs)
53
+ self.batch_size = batch_size or 1
54
+ if not isinstance(self.batch_size, int) or self.batch_size < 0:
55
+ raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
56
+
57
+ if self.batch_size != 1:
58
+ logger.warning("Ignore batch_size for LlavaNext vision tower. It will be set to 1.")
59
+
60
+ self.vision_tower = self.initialize_submodule_config(
61
+ submodule_config=vision_tower,
62
+ batch_size=1, # vision_tower batch_size is always 1 in LlavaNext
63
+ output_hidden_states=True, # LlavaNext requires output_hidden_states to be True
64
+ force_kwargs=True,
65
+ )
66
+
67
+ self.language_model = self.initialize_submodule_config(
68
+ submodule_config=language_model,
69
+ )
@@ -0,0 +1,493 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import importlib
16
+ import inspect
17
+ from pathlib import Path
18
+ from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import torch
22
+ from transformers import AutoModelForVision2Seq, LlavaNextForConditionalGeneration, PretrainedConfig, PreTrainedModel
23
+ from transformers.modeling_outputs import BaseModelOutputWithPooling
24
+ from transformers.modeling_utils import no_init_weights
25
+ from transformers.models.llava_next.modeling_llava_next import (
26
+ get_anyres_image_grid_shape,
27
+ image_size_to_num_patches,
28
+ unpad_image,
29
+ )
30
+
31
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
32
+ from ....modeling import RBLNModel
33
+ from ....utils.logging import get_logger
34
+ from ...utils.rbln_runtime_wrapper import LoopProcessor
35
+ from ..decoderonly.generation_decoderonly import RBLNDecoderOnlyGenerationMixin
36
+ from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyOutput
37
+
38
+
39
+ logger = get_logger(__name__)
40
+
41
+ if TYPE_CHECKING:
42
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig
43
+
44
+
45
+ class LoopVisionTower(LoopProcessor):
46
+ def __init__(self, vision_tower: "RBLNModel"):
47
+ super().__init__(model=vision_tower.model[0])
48
+
49
+ def _get_batch_size(self, pixel_values, **kwargs):
50
+ return pixel_values.shape[0]
51
+
52
+ def _prepare_inputs_for_iteration(self, index, common_inputs, pixel_values, **kwargs):
53
+ pixel_values_item = pixel_values[index : index + 1]
54
+ out_buffer = [tensor[index : index + 1] for tensor in kwargs["out"]]
55
+ return ([pixel_values_item], {"out": out_buffer})
56
+
57
+ def _process_outputs(self, outputs: list, **kwargs) -> "BaseModelOutputWithPooling":
58
+ output = kwargs["out"]
59
+ last_hidden_states = output[0]
60
+ pooler_output = output[1]
61
+
62
+ if not output[2:]:
63
+ hidden_states = None
64
+ else:
65
+ hidden_states = tuple(output[2:])
66
+
67
+ return BaseModelOutputWithPooling(
68
+ last_hidden_state=last_hidden_states,
69
+ pooler_output=pooler_output,
70
+ hidden_states=hidden_states,
71
+ )
72
+
73
+
74
+ class LoopProjector(LoopProcessor):
75
+ def __init__(self, multi_modal_projector: "RBLNModel"):
76
+ super().__init__(model=multi_modal_projector)
77
+
78
+ def _get_batch_size(self, image_feature, **kwargs):
79
+ return image_feature.shape[0]
80
+
81
+ def _prepare_inputs_for_iteration(self, index, common_inputs, image_feature, **kwargs):
82
+ image_feature_item = image_feature[index : index + 1]
83
+ out_buffer = [tensor[index : index + 1] for tensor in kwargs["out"]]
84
+ return ([image_feature_item], {"out": out_buffer})
85
+
86
+ def _process_outputs(self, outputs: list, **kwargs):
87
+ output = kwargs["out"]
88
+ return output[0]
89
+
90
+
91
+ class RBLNLlavaNextForConditionalGeneration(RBLNModel, RBLNDecoderOnlyGenerationMixin):
92
+ """
93
+ RBLNLlavaNextForConditionalGeneration is a multi-modal model that combines vision and language processing capabilities,
94
+ optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
95
+
96
+ This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
97
+
98
+ Important Note:
99
+ This model includes a Large Language Model (LLM) as a submodule. For optimal performance, it is highly recommended to use
100
+ tensor parallelism for the language model. This can be achieved by using the `rbln_config` parameter in the
101
+ `from_pretrained` method. Refer to the `from_pretrained` documentation and the RBLNLlavaNextForConditionalGenerationConfig class for details.
102
+
103
+ Examples:
104
+ ```python
105
+ from optimum.rbln import RBLNLlavaNextForConditionalGeneration
106
+
107
+ model = RBLNLlavaNextForConditionalGeneration.from_pretrained(
108
+ "llava-hf/llava-v1.6-mistral-7b-hf",
109
+ export=True,
110
+ rbln_config={
111
+ "language_model": {
112
+ "tensor_parallel_size": 4,
113
+ "use_inputs_embeds": True, # In Llava-Next, language model must use inputs_embeds as input.
114
+ },
115
+ },
116
+ )
117
+
118
+ model.save_pretrained("compiled-llava-next-mistral-7b-hf")
119
+ ```
120
+ """
121
+
122
+ auto_model_class = AutoModelForVision2Seq
123
+ _rbln_submodules = [
124
+ {"name": "vision_tower"},
125
+ {"name": "language_model"},
126
+ ]
127
+
128
+ def __getattr__(self, __name: str) -> Any:
129
+ def redirect(func):
130
+ return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
131
+
132
+ val = getattr(LlavaNextForConditionalGeneration, __name)
133
+
134
+ if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
135
+ return redirect(val)
136
+ return val
137
+
138
+ def can_generate(self):
139
+ return True
140
+
141
+ @classmethod
142
+ def _reconstruct_model_if_needed(cls, model: "PreTrainedModel"):
143
+ with no_init_weights():
144
+ model_cls_name = model.model.language_model.__class__.__name__
145
+ causal_model_cls_name = model_cls_name.replace("Model", "ForCausalLM")
146
+ causal_model_cls = getattr(importlib.import_module("transformers"), causal_model_cls_name)
147
+ new_language_model = causal_model_cls(model.model.language_model.config)
148
+
149
+ new_language_model.lm_head = model.lm_head
150
+ new_language_model.model = model.model.language_model
151
+ model.model.language_model = new_language_model
152
+ model.lm_head = None
153
+ del model.lm_head
154
+ return model
155
+
156
+ @classmethod
157
+ def save_torch_artifacts(
158
+ cls,
159
+ model: "LlavaNextForConditionalGeneration",
160
+ save_dir_path: Path,
161
+ subfolder: str,
162
+ rbln_config: RBLNModelConfig,
163
+ ):
164
+ # If you are unavoidably running on a CPU rather than an RBLN device,
165
+ # store the torch tensor, weight, etc. in this function.
166
+ save_dict = {}
167
+ save_dict["image_newline"] = model.model.image_newline
168
+ torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
169
+
170
+ def __post_init__(self, **kwargs):
171
+ self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
172
+ self.language_model = self.rbln_submodules[1]
173
+ self.multi_modal_projector = LoopProjector(self.model[0])
174
+
175
+ artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
176
+ self.image_newline = artifacts["image_newline"]
177
+
178
+ # Copied from the original class
179
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
180
+ self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
181
+ return super().__post_init__(**kwargs)
182
+
183
+ def get_attn_impl(self) -> str:
184
+ return self.rbln_config.language_model.attn_impl
185
+
186
+ def get_kvcache_num_blocks(self) -> int:
187
+ return self.rbln_config.language_model.kvcache_num_blocks
188
+
189
+ def get_input_embeddings(self):
190
+ return self.language_model.get_input_embeddings()
191
+
192
+ @classmethod
193
+ def _wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
194
+ return model.multi_modal_projector
195
+
196
+ @classmethod
197
+ def _update_rbln_config(
198
+ cls,
199
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
200
+ model: Optional["PreTrainedModel"] = None,
201
+ model_config: Optional["PretrainedConfig"] = None,
202
+ rbln_config: Optional[RBLNModelConfig] = None,
203
+ ) -> RBLNModelConfig:
204
+ feature_size = model_config.vision_config.hidden_size
205
+
206
+ # Calculating `num_positions` : See CLIPVisionEmbeddings of transformers for more details.
207
+ num_positions = (model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2 + 1
208
+ if model_config.vision_feature_select_strategy == "default":
209
+ selected_image_feature_dim = num_positions - 1
210
+ else:
211
+ selected_image_feature_dim = num_positions
212
+
213
+ input_info = [
214
+ (
215
+ "image_features",
216
+ [rbln_config.vision_tower.batch_size, selected_image_feature_dim, feature_size],
217
+ "float32",
218
+ )
219
+ ]
220
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
221
+ rbln_config.set_compile_cfgs([rbln_compile_config])
222
+ return rbln_config
223
+
224
+ def prepare_inputs_for_generation(
225
+ self,
226
+ input_ids,
227
+ inputs_embeds=None,
228
+ pixel_values=None,
229
+ attention_mask=None,
230
+ cache_position=None,
231
+ image_sizes=None,
232
+ generate_idx=None,
233
+ **kwargs,
234
+ ):
235
+ is_prefill_phase = generate_idx is None
236
+ model_inputs = {}
237
+
238
+ if is_prefill_phase:
239
+ generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
240
+ cache_position = None
241
+ pixel_values = pixel_values
242
+ model_inputs.update({"image_sizes": image_sizes})
243
+ else:
244
+ if inputs_embeds is not None:
245
+ raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
246
+
247
+ pixel_values = None
248
+ input_ids = input_ids[:, -1:]
249
+ cache_position = generate_idx
250
+ generate_idx = generate_idx + 1
251
+ model_inputs.update({"input_ids": input_ids})
252
+
253
+ if inputs_embeds is not None:
254
+ if self.rbln_config.use_inputs_embeds:
255
+ model_inputs.update({"inputs_embeds": inputs_embeds})
256
+ else:
257
+ raise ValueError(
258
+ "The specifying inputs_embeds is only supported when using a compiled RBLN model with 'rbln_use_inputs_embeds' set to True."
259
+ )
260
+ else:
261
+ model_inputs.update({"input_ids": input_ids})
262
+
263
+ model_inputs.update(
264
+ {
265
+ "attention_mask": attention_mask,
266
+ "pixel_values": pixel_values,
267
+ "cache_position": cache_position,
268
+ "generate_idx": generate_idx,
269
+ }
270
+ )
271
+ return model_inputs
272
+
273
+ def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
274
+ # update generate_idx
275
+ model_kwargs["generate_idx"] = outputs.generate_idx
276
+ return model_kwargs
277
+
278
+ def get_image_features(
279
+ self,
280
+ pixel_values: torch.FloatTensor,
281
+ image_sizes: torch.Tensor,
282
+ vision_feature_layer: Union[int, List[int]],
283
+ vision_feature_select_strategy: str,
284
+ ):
285
+ # ! infer image_num_patches from image_sizes
286
+ image_num_patches = [
287
+ image_size_to_num_patches(
288
+ image_size=imsize,
289
+ grid_pinpoints=self.config.image_grid_pinpoints,
290
+ patch_size=self.config.vision_config.image_size,
291
+ )
292
+ for imsize in image_sizes
293
+ ]
294
+
295
+ # prepare out buffer for pre-allocation
296
+ vision_out_size = [
297
+ pixel_values.shape[0] * pixel_values.shape[1],
298
+ (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2 + 1,
299
+ self.config.vision_config.hidden_size,
300
+ ]
301
+ pooler_out_size = [pixel_values.shape[0] * pixel_values.shape[1], self.config.vision_config.hidden_size]
302
+ vision_out_buffer = []
303
+ for i in range(self.config.vision_config.num_hidden_layers + 2):
304
+ vision_out_buffer.append(torch.empty(size=vision_out_size, dtype=torch.float32, device="cpu"))
305
+ vision_out_buffer.insert(1, torch.empty(size=pooler_out_size, dtype=torch.float32, device="cpu"))
306
+
307
+ projector_out_size = [
308
+ pixel_values.shape[0] * pixel_values.shape[1],
309
+ (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2,
310
+ self.config.text_config.hidden_size,
311
+ ]
312
+ projector_out_buffer = [torch.empty(size=projector_out_size, dtype=torch.float32, device="cpu")]
313
+
314
+ if pixel_values.dim() == 5:
315
+ # stacked if input is (batch_size, num_patches, num_channels, height, width)
316
+ _pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
317
+ pixel_values = torch.cat(_pixel_values_list, dim=0)
318
+ elif pixel_values.dim() != 4:
319
+ # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
320
+ raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
321
+
322
+ image_features = self.vision_tower(pixel_values, output_hidden_states=True, out=vision_out_buffer)
323
+ # If we have one vision feature layer, return the corresponding hidden states,
324
+ # otherwise, select the hidden states of each feature layer and concatenate them
325
+ if isinstance(vision_feature_layer, int):
326
+ selected_image_feature = image_features.hidden_states[vision_feature_layer]
327
+ else:
328
+ hs_pool = [image_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
329
+ selected_image_feature = torch.cat(hs_pool, dim=-1)
330
+
331
+ if vision_feature_select_strategy == "default":
332
+ selected_image_feature = selected_image_feature[:, 1:]
333
+ elif vision_feature_select_strategy == "full":
334
+ selected_image_feature = selected_image_feature
335
+
336
+ image_features = self.multi_modal_projector(selected_image_feature, out=projector_out_buffer)
337
+ image_features = torch.split(image_features, image_num_patches, dim=0)
338
+ return image_features
339
+
340
+ def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
341
+ new_image_features = []
342
+ feature_lens = []
343
+ for image_idx, image_feature in enumerate(image_features):
344
+ if image_feature.shape[0] > 1:
345
+ base_image_feature = image_feature[0]
346
+ image_feature = image_feature[1:]
347
+ height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
348
+
349
+ num_patch_height, num_patch_width = get_anyres_image_grid_shape(
350
+ image_sizes[image_idx],
351
+ self.config.image_grid_pinpoints,
352
+ self.config.vision_config.image_size,
353
+ )
354
+
355
+ if (
356
+ np.prod(image_feature.shape) % (num_patch_height * num_patch_width * height * width) != 0
357
+ and vision_feature_select_strategy == "default"
358
+ ):
359
+ logger.warning_once(
360
+ "Image feature shape does not line up with the provided patch size. "
361
+ "You may be using the `default` vision_feature_select_strategy with a"
362
+ " visual encoder that does not have CLS."
363
+ )
364
+
365
+ image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
366
+ image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
367
+ image_feature = image_feature.flatten(1, 2).flatten(2, 3)
368
+ image_feature = unpad_image(image_feature, image_sizes[image_idx])
369
+ if image_newline is not None:
370
+ image_feature = torch.cat(
371
+ (
372
+ image_feature,
373
+ image_newline[:, None, None]
374
+ .expand(*image_feature.shape[:-1], 1)
375
+ .to(image_feature.device, image_feature.dtype),
376
+ ),
377
+ dim=-1,
378
+ )
379
+ image_feature = image_feature.flatten(1, 2).transpose(0, 1)
380
+ image_feature = torch.cat((base_image_feature, image_feature), dim=0)
381
+ else:
382
+ image_feature = image_feature[0]
383
+ if image_newline is not None:
384
+ image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
385
+ new_image_features.append(image_feature)
386
+ feature_lens.append(image_feature.size(0))
387
+ image_features = torch.cat(new_image_features, dim=0)
388
+ feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
389
+ return image_features, feature_lens
390
+
391
+ def _preprocess_prefill(
392
+ self,
393
+ input_ids: torch.LongTensor = None,
394
+ pixel_values: torch.FloatTensor = None,
395
+ image_sizes: Optional[torch.LongTensor] = None,
396
+ inputs_embeds: Optional[torch.FloatTensor] = None,
397
+ vision_feature_layer: Optional[int] = None,
398
+ vision_feature_select_strategy: Optional[str] = None,
399
+ **kwargs,
400
+ ):
401
+ vision_feature_layer = (
402
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
403
+ )
404
+
405
+ vision_feature_select_strategy = (
406
+ vision_feature_select_strategy
407
+ if vision_feature_select_strategy is not None
408
+ else self.config.vision_feature_select_strategy
409
+ )
410
+
411
+ if (input_ids is None) ^ (inputs_embeds is not None):
412
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
413
+
414
+ if pixel_values is not None and inputs_embeds is not None:
415
+ raise ValueError(
416
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
417
+ )
418
+
419
+ if inputs_embeds is None:
420
+ inputs_embeds = self.get_input_embeddings()(input_ids)
421
+
422
+ if pixel_values is not None and pixel_values.size(0) > 0:
423
+ image_features = self.get_image_features(
424
+ pixel_values,
425
+ image_sizes,
426
+ vision_feature_layer=vision_feature_layer,
427
+ vision_feature_select_strategy=vision_feature_select_strategy,
428
+ )
429
+
430
+ # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
431
+ image_features, feature_lens = self.pack_image_features(
432
+ image_features,
433
+ image_sizes,
434
+ vision_feature_select_strategy=vision_feature_select_strategy,
435
+ image_newline=self.image_newline,
436
+ )
437
+
438
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
439
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
440
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
441
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
442
+
443
+ return inputs_embeds
444
+
445
+ def forward(
446
+ self,
447
+ input_ids: torch.LongTensor = None,
448
+ attention_mask: torch.LongTensor = None,
449
+ pixel_values: torch.FloatTensor = None,
450
+ image_sizes: Optional[torch.LongTensor] = None,
451
+ inputs_embeds: Optional[torch.FloatTensor] = None,
452
+ cache_position: torch.Tensor = None,
453
+ generate_idx: Optional[torch.Tensor] = None,
454
+ return_dict: Optional[bool] = None,
455
+ **kwargs,
456
+ ) -> Union[Tuple, RBLNDecoderOnlyOutput]:
457
+ # Prefill
458
+ if cache_position is None:
459
+ inputs_embeds = self._preprocess_prefill(
460
+ input_ids=input_ids, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_sizes=image_sizes
461
+ )
462
+ logits = []
463
+ inputs = inputs_embeds if inputs_embeds is not None else input_ids
464
+ batch_size = inputs.shape[0]
465
+
466
+ for b_idx in range(batch_size):
467
+ cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
468
+ output = self.language_model.prefill_decoder(
469
+ input_ids=inputs[b_idx : b_idx + 1] if inputs_embeds is None else None,
470
+ inputs_embeds=inputs[b_idx : b_idx + 1] if inputs_embeds is not None else None,
471
+ attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
472
+ cache_position=cache_position,
473
+ batch_idx=b_idx,
474
+ )
475
+ logits.append(output.logits)
476
+
477
+ logits = torch.cat(logits, dim=0)
478
+
479
+ # Decoder
480
+ else:
481
+ logits = self.language_model.decoder(
482
+ input_ids=input_ids,
483
+ inputs_embeds=inputs_embeds,
484
+ cache_position=cache_position,
485
+ ).logits
486
+
487
+ if not return_dict:
488
+ return logits, generate_idx
489
+ else:
490
+ return RBLNDecoderOnlyOutput(
491
+ logits=logits,
492
+ generate_idx=generate_idx,
493
+ )
@@ -0,0 +1,24 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ from os import environ
17
+
18
+
19
+ this_path = os.path.abspath(__file__)
20
+ local_dir = "/" + os.path.join(*this_path.split("/")[:-1]) + "/hf_hub_cached"
21
+ environ["LOCAL_CACHE_ROOT_CUSTOM_CODE_MIDM"] = local_dir
22
+
23
+ from .configuration_midm import RBLNMidmLMHeadModelConfig
24
+ from .modeling_midm import RBLNMidmLMHeadModel
@@ -0,0 +1,42 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
16
+
17
+
18
+ class RBLNMidmLMHeadModelConfig(RBLNDecoderOnlyModelForCausalLMConfig):
19
+ """
20
+ Configuration class for MIDM models.
21
+
22
+ This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
23
+
24
+ Example usage:
25
+ ```python
26
+ from optimum.rbln import RBLNMidmLMHeadModel, RBLNMidmLMHeadModelConfig
27
+
28
+ # Create a configuration object
29
+ config = RBLNMidmLMHeadModelConfig(
30
+ batch_size=1,
31
+ max_seq_len=4096,
32
+ tensor_parallel_size=4
33
+ )
34
+
35
+ # Use the configuration with from_pretrained
36
+ model = RBLNMidmLMHeadModel.from_pretrained(
37
+ "KT-AI/midm-bitext-S-7B-inst-v1",
38
+ export=True,
39
+ rbln_config=config
40
+ )
41
+ ```
42
+ """