optimum-rbln 0.9.3.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +505 -0
- optimum/rbln/__version__.py +34 -0
- optimum/rbln/cli.py +660 -0
- optimum/rbln/configuration_utils.py +968 -0
- optimum/rbln/diffusers/__init__.py +198 -0
- optimum/rbln/diffusers/configurations/__init__.py +37 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
- optimum/rbln/diffusers/modeling_diffusers.py +451 -0
- optimum/rbln/diffusers/models/__init__.py +64 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
- optimum/rbln/diffusers/models/controlnet.py +281 -0
- optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
- optimum/rbln/diffusers/models/unets/__init__.py +16 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
- optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
- optimum/rbln/diffusers/pipelines/__init__.py +113 -0
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
- optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
- optimum/rbln/modeling.py +364 -0
- optimum/rbln/modeling_base.py +637 -0
- optimum/rbln/ops/__init__.py +19 -0
- optimum/rbln/ops/attn.py +455 -0
- optimum/rbln/ops/flash_attn.py +350 -0
- optimum/rbln/ops/kv_cache_update.py +29 -0
- optimum/rbln/ops/linear.py +32 -0
- optimum/rbln/ops/sliding_window_attn.py +111 -0
- optimum/rbln/transformers/__init__.py +340 -0
- optimum/rbln/transformers/configuration_generic.py +120 -0
- optimum/rbln/transformers/modeling_attention_utils.py +385 -0
- optimum/rbln/transformers/modeling_generic.py +280 -0
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/modeling_rope_utils.py +314 -0
- optimum/rbln/transformers/models/__init__.py +343 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
- optimum/rbln/transformers/models/auto/__init__.py +31 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
- optimum/rbln/transformers/models/bart/__init__.py +17 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
- optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
- optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
- optimum/rbln/transformers/models/bert/__init__.py +16 -0
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
- optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
- optimum/rbln/transformers/models/clip/__init__.py +26 -0
- optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
- optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
- optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
- optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
- optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
- optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
- optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
- optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
- optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
- optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
- optimum/rbln/transformers/models/dpt/__init__.py +16 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
- optimum/rbln/transformers/models/exaone/__init__.py +24 -0
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
- optimum/rbln/transformers/models/gemma/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
- optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
- optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
- optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
- optimum/rbln/transformers/models/llama/__init__.py +16 -0
- optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
- optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
- optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
- optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
- optimum/rbln/transformers/models/midm/__init__.py +24 -0
- optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
- optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
- optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
- optimum/rbln/transformers/models/mistral/__init__.py +16 -0
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
- optimum/rbln/transformers/models/opt/__init__.py +16 -0
- optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
- optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
- optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
- optimum/rbln/transformers/models/phi/__init__.py +16 -0
- optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
- optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
- optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
- optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
- optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
- optimum/rbln/transformers/models/resnet/__init__.py +23 -0
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
- optimum/rbln/transformers/models/roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
- optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
- optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
- optimum/rbln/transformers/models/siglip/__init__.py +16 -0
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
- optimum/rbln/transformers/models/t5/__init__.py +17 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
- optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
- optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
- optimum/rbln/transformers/models/vit/__init__.py +19 -0
- optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
- optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
- optimum/rbln/transformers/models/whisper/__init__.py +17 -0
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
- optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
- optimum/rbln/transformers/utils/__init__.py +0 -0
- optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
- optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
- optimum/rbln/utils/__init__.py +16 -0
- optimum/rbln/utils/decorator_utils.py +86 -0
- optimum/rbln/utils/deprecation.py +213 -0
- optimum/rbln/utils/hub.py +94 -0
- optimum/rbln/utils/import_utils.py +170 -0
- optimum/rbln/utils/logging.py +110 -0
- optimum/rbln/utils/model_utils.py +63 -0
- optimum/rbln/utils/runtime_utils.py +249 -0
- optimum/rbln/utils/save_utils.py +102 -0
- optimum/rbln/utils/submodule.py +152 -0
- optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
- optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
- optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
- optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
- optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
|
@@ -0,0 +1,361 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import bisect
|
|
16
|
+
from pathlib import Path
|
|
17
|
+
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
from transformers import PretrainedConfig, PreTrainedModel
|
|
21
|
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
|
22
|
+
from transformers.modeling_utils import no_init_weights
|
|
23
|
+
from transformers.models.colpali.modeling_colpali import ColPaliForRetrievalOutput
|
|
24
|
+
from transformers.models.paligemma.modeling_paligemma import PaliGemmaMultiModalProjector
|
|
25
|
+
|
|
26
|
+
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
27
|
+
from ....modeling import RBLNModel
|
|
28
|
+
from ...utils.rbln_runtime_wrapper import LoopProcessor
|
|
29
|
+
from .colpali_architecture import RBLNColPaliForRetrievalWrapper
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
if TYPE_CHECKING:
|
|
33
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class LoopVisionTower(LoopProcessor):
|
|
37
|
+
def __init__(self, vision_tower: "RBLNModel"):
|
|
38
|
+
super().__init__(model=vision_tower.model[0])
|
|
39
|
+
|
|
40
|
+
def _get_batch_size(self, pixel_values, **kwargs):
|
|
41
|
+
return pixel_values.shape[0]
|
|
42
|
+
|
|
43
|
+
def _prepare_inputs_for_iteration(self, index, common_inputs, pixel_values, **kwargs):
|
|
44
|
+
pixel_values_item = pixel_values[index : index + 1]
|
|
45
|
+
out_buffer = kwargs["out"][index : index + 1]
|
|
46
|
+
return ([pixel_values_item], {"out": out_buffer})
|
|
47
|
+
|
|
48
|
+
def _process_outputs(self, outputs: list, **kwargs) -> "BaseModelOutputWithPooling":
|
|
49
|
+
return BaseModelOutputWithPooling(
|
|
50
|
+
last_hidden_state=kwargs["out"],
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class LoopLanguageModel(LoopProcessor):
|
|
55
|
+
def __init__(self, language_model: RBLNModel, rbln_config: RBLNModelConfig):
|
|
56
|
+
super().__init__(model=language_model)
|
|
57
|
+
self.rbln_config = rbln_config
|
|
58
|
+
|
|
59
|
+
def _get_batch_size(self, inputs_embeds, **kwargs):
|
|
60
|
+
return inputs_embeds.shape[0]
|
|
61
|
+
|
|
62
|
+
def _prepare_inputs_before_loop(self, *, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor, **kwargs):
|
|
63
|
+
input_len = inputs_embeds.shape[1]
|
|
64
|
+
idx = bisect.bisect_left(self.rbln_config.max_seq_lens, input_len)
|
|
65
|
+
if idx == len(self.rbln_config.max_seq_lens):
|
|
66
|
+
raise ValueError(
|
|
67
|
+
f"Required seq_len({input_len}) is larger than available max_seq_lens({self.rbln_config.max_seq_lens})."
|
|
68
|
+
)
|
|
69
|
+
max_seq_len = self.rbln_config.max_seq_lens[idx]
|
|
70
|
+
padded_inputs_embed = torch.nn.functional.pad(inputs_embeds, (0, 0, 0, max_seq_len - input_len))
|
|
71
|
+
padded_attn_mask = torch.nn.functional.pad(attention_mask, (0, max_seq_len - input_len)).to(torch.float32)
|
|
72
|
+
padded_position_ids = torch.arange(max_seq_len, dtype=torch.int32).view(1, -1)
|
|
73
|
+
|
|
74
|
+
return {
|
|
75
|
+
"padded_inputs_embed": padded_inputs_embed,
|
|
76
|
+
"padded_attn_mask": padded_attn_mask,
|
|
77
|
+
"padded_position_ids": padded_position_ids,
|
|
78
|
+
}
|
|
79
|
+
|
|
80
|
+
def _prepare_inputs_for_iteration(self, index: int, common_inputs, *args, **kwargs):
|
|
81
|
+
item_kwargs = {
|
|
82
|
+
"inputs_embeds": common_inputs["padded_inputs_embed"][index : index + 1],
|
|
83
|
+
"attention_mask": common_inputs["padded_attn_mask"][index : index + 1],
|
|
84
|
+
"position_ids": common_inputs["padded_position_ids"],
|
|
85
|
+
"out": [tensor[index : index + 1] for tensor in kwargs["out"]],
|
|
86
|
+
}
|
|
87
|
+
return ([], item_kwargs)
|
|
88
|
+
|
|
89
|
+
def _process_outputs(self, outputs: list, **kwargs):
|
|
90
|
+
if self.rbln_config.output_hidden_states:
|
|
91
|
+
return kwargs["out"][0], tuple(kwargs["out"][1:])
|
|
92
|
+
else:
|
|
93
|
+
return kwargs["out"]
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class RBLNColPaliForRetrieval(RBLNModel):
|
|
97
|
+
"""
|
|
98
|
+
The ColPali Model transformer for document retrieval using vision-language models.
|
|
99
|
+
This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
|
100
|
+
|
|
101
|
+
A class to convert and run pre-trained transformers based `ColPaliForRetrieval` model on RBLN devices.
|
|
102
|
+
It implements the methods to convert a pre-trained transformers `ColPaliForRetrieval` model into a RBLN transformer model by:
|
|
103
|
+
|
|
104
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
|
105
|
+
- compiling the resulting graph using the RBLN compiler.
|
|
106
|
+
|
|
107
|
+
**Configuration:**
|
|
108
|
+
This model uses [`RBLNColPaliForRetrievalConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
|
109
|
+
the `rbln_config` parameter should be an instance of [`RBLNColPaliForRetrievalConfig`] or a dictionary conforming to its structure.
|
|
110
|
+
|
|
111
|
+
See the [`RBLNColPaliForRetrievalConfig`] class for all available configuration options.
|
|
112
|
+
|
|
113
|
+
Examples:
|
|
114
|
+
```python
|
|
115
|
+
from optimum.rbln import RBLNColPaliForRetrieval
|
|
116
|
+
|
|
117
|
+
# Simple usage using rbln_* arguments
|
|
118
|
+
# `max_seq_lens` is automatically inferred from the model config
|
|
119
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
|
120
|
+
"vidore/colpali-v1.3-hf",
|
|
121
|
+
export=True,
|
|
122
|
+
rbln_max_seq_lens=1152,
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
# Using a config dictionary
|
|
126
|
+
rbln_config = {
|
|
127
|
+
"max_seq_lens": 1152,
|
|
128
|
+
"output_hidden_states": False,
|
|
129
|
+
}
|
|
130
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
|
131
|
+
"vidore/colpali-v1.3-hf",
|
|
132
|
+
export=True,
|
|
133
|
+
rbln_config=rbln_config
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
# Using a RBLNColPaliForRetrievalConfig instance (recommended for type checking)
|
|
137
|
+
from optimum.rbln import RBLNColPaliForRetrievalConfig
|
|
138
|
+
|
|
139
|
+
config = RBLNColPaliForRetrievalConfig(
|
|
140
|
+
max_seq_lens=1152,
|
|
141
|
+
output_hidden_states=False,
|
|
142
|
+
tensor_parallel_size=4
|
|
143
|
+
)
|
|
144
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
|
145
|
+
"vidore/colpali-v1.3-hf",
|
|
146
|
+
export=True,
|
|
147
|
+
rbln_config=config
|
|
148
|
+
)
|
|
149
|
+
```
|
|
150
|
+
"""
|
|
151
|
+
|
|
152
|
+
auto_model_class = None
|
|
153
|
+
_rbln_submodules = [
|
|
154
|
+
{"name": "vision_tower"},
|
|
155
|
+
]
|
|
156
|
+
|
|
157
|
+
def __post_init__(self, **kwargs):
|
|
158
|
+
self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
|
|
159
|
+
self.language_model = LoopLanguageModel(self.model[0], self.rbln_config)
|
|
160
|
+
|
|
161
|
+
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
|
162
|
+
self.embed_tokens = self._create_embedding_layer()
|
|
163
|
+
self.embed_tokens.load_state_dict(artifacts["embed_tokens"])
|
|
164
|
+
self.multi_modal_projector = self._create_multi_modal_projector()
|
|
165
|
+
self.multi_modal_projector.load_state_dict(artifacts["multi_modal_projector"])
|
|
166
|
+
|
|
167
|
+
return super().__post_init__(**kwargs)
|
|
168
|
+
|
|
169
|
+
def _create_embedding_layer(self):
|
|
170
|
+
with no_init_weights():
|
|
171
|
+
embed_tokens = torch.nn.Embedding(
|
|
172
|
+
self.config.text_config.vocab_size,
|
|
173
|
+
self.config.text_config.hidden_size,
|
|
174
|
+
self.config.text_config.pad_token_id,
|
|
175
|
+
)
|
|
176
|
+
return embed_tokens
|
|
177
|
+
|
|
178
|
+
def _create_multi_modal_projector(self):
|
|
179
|
+
with no_init_weights():
|
|
180
|
+
multi_modal_projector = PaliGemmaMultiModalProjector(self.config.vlm_config)
|
|
181
|
+
return multi_modal_projector
|
|
182
|
+
|
|
183
|
+
@classmethod
|
|
184
|
+
def _wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
|
|
185
|
+
return RBLNColPaliForRetrievalWrapper(
|
|
186
|
+
causal_lm=model.vlm,
|
|
187
|
+
embedding_proj_layer=model.embedding_proj_layer,
|
|
188
|
+
max_seq_len=max(rbln_config.max_seq_lens),
|
|
189
|
+
output_hidden_states=rbln_config.output_hidden_states,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
@classmethod
|
|
193
|
+
def save_torch_artifacts(
|
|
194
|
+
cls,
|
|
195
|
+
model: "PreTrainedModel",
|
|
196
|
+
save_dir_path: Path,
|
|
197
|
+
subfolder: str,
|
|
198
|
+
rbln_config: RBLNModelConfig,
|
|
199
|
+
):
|
|
200
|
+
save_dict = {}
|
|
201
|
+
save_dict["embed_tokens"] = model.vlm.get_input_embeddings().state_dict()
|
|
202
|
+
save_dict["multi_modal_projector"] = model.vlm.multi_modal_projector.state_dict()
|
|
203
|
+
torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
|
|
204
|
+
|
|
205
|
+
@classmethod
|
|
206
|
+
def _update_rbln_config(
|
|
207
|
+
cls,
|
|
208
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
209
|
+
model: Optional["PreTrainedModel"] = None,
|
|
210
|
+
model_config: Optional["PretrainedConfig"] = None,
|
|
211
|
+
rbln_config: Optional[RBLNModelConfig] = None,
|
|
212
|
+
) -> RBLNModelConfig:
|
|
213
|
+
hidden_size = model_config.vlm_config.text_config.hidden_size
|
|
214
|
+
if rbln_config.max_seq_lens is None:
|
|
215
|
+
rbln_config.max_seq_lens = [model_config.vlm_config.text_config.max_position_embeddings]
|
|
216
|
+
if isinstance(rbln_config.max_seq_lens, int):
|
|
217
|
+
rbln_config.max_seq_lens = [rbln_config.max_seq_lens]
|
|
218
|
+
rbln_config.max_seq_lens = sorted(set(rbln_config.max_seq_lens))
|
|
219
|
+
|
|
220
|
+
if rbln_config.output_hidden_states is None:
|
|
221
|
+
rbln_config.output_hidden_states = model_config.vlm_config.text_config.output_hidden_states
|
|
222
|
+
|
|
223
|
+
input_infos = []
|
|
224
|
+
for max_seq_len in rbln_config.max_seq_lens:
|
|
225
|
+
input_info = [
|
|
226
|
+
("inputs_embeds", [rbln_config.vision_tower.batch_size, max_seq_len, hidden_size], "float32"),
|
|
227
|
+
("attention_mask", [rbln_config.vision_tower.batch_size, max_seq_len], "float32"),
|
|
228
|
+
("position_ids", [rbln_config.vision_tower.batch_size, max_seq_len], "int32"),
|
|
229
|
+
]
|
|
230
|
+
input_infos.append(input_info)
|
|
231
|
+
|
|
232
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_infos)
|
|
233
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
|
234
|
+
|
|
235
|
+
return rbln_config
|
|
236
|
+
|
|
237
|
+
@classmethod
|
|
238
|
+
def _reconstruct_model_if_needed(cls, model: "PreTrainedModel"):
|
|
239
|
+
if hasattr(model, "vlm"):
|
|
240
|
+
model.vision_tower = model.vlm.vision_tower
|
|
241
|
+
del model.vlm.model.vision_tower
|
|
242
|
+
return model
|
|
243
|
+
return model
|
|
244
|
+
|
|
245
|
+
def get_image_features(self, pixel_values: torch.Tensor):
|
|
246
|
+
# Projects the last hidden state from the vision model into language model space.
|
|
247
|
+
# Args:
|
|
248
|
+
# pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
|
249
|
+
# The tensors corresponding to the input images.
|
|
250
|
+
# Returns:
|
|
251
|
+
# image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
|
252
|
+
|
|
253
|
+
vision_output_size = [
|
|
254
|
+
pixel_values.shape[0],
|
|
255
|
+
self.config.vlm_config.vision_config.num_image_tokens,
|
|
256
|
+
self.config.vlm_config.vision_config.hidden_size,
|
|
257
|
+
]
|
|
258
|
+
vision_output = torch.empty(size=vision_output_size, dtype=torch.float32, device="cpu")
|
|
259
|
+
self.vision_tower(pixel_values, out=vision_output)
|
|
260
|
+
image_features = self.multi_modal_projector(vision_output)
|
|
261
|
+
image_features = image_features / (self.config.text_config.hidden_size**0.5)
|
|
262
|
+
return image_features
|
|
263
|
+
|
|
264
|
+
def _preprocess_inputs(
|
|
265
|
+
self,
|
|
266
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
267
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
268
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
269
|
+
**kwargs,
|
|
270
|
+
):
|
|
271
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
272
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
273
|
+
|
|
274
|
+
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
|
|
275
|
+
if input_ids is not None and self.config.vlm_config.image_token_index >= self.config.text_config.vocab_size:
|
|
276
|
+
special_image_mask = input_ids == self.config.vlm_config.image_token_index
|
|
277
|
+
llm_input_ids = input_ids.clone()
|
|
278
|
+
llm_input_ids[special_image_mask] = 0
|
|
279
|
+
else:
|
|
280
|
+
llm_input_ids = input_ids
|
|
281
|
+
|
|
282
|
+
if inputs_embeds is None:
|
|
283
|
+
inputs_embeds = self.embed_tokens(llm_input_ids)
|
|
284
|
+
|
|
285
|
+
# Merge text and images
|
|
286
|
+
image_features = None
|
|
287
|
+
if pixel_values is not None:
|
|
288
|
+
image_features = self.get_image_features(pixel_values)
|
|
289
|
+
special_image_mask = (input_ids == self.config.vlm_config.image_token_index).unsqueeze(-1)
|
|
290
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
|
291
|
+
|
|
292
|
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
293
|
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
|
294
|
+
|
|
295
|
+
return inputs_embeds, image_features
|
|
296
|
+
|
|
297
|
+
def forward(
|
|
298
|
+
self,
|
|
299
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
300
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
301
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
302
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
303
|
+
output_attentions: Optional[bool] = None,
|
|
304
|
+
output_hidden_states: Optional[bool] = None,
|
|
305
|
+
return_dict: Optional[bool] = None,
|
|
306
|
+
**kwargs,
|
|
307
|
+
) -> Union[Tuple, ColPaliForRetrievalOutput]:
|
|
308
|
+
if pixel_values is not None:
|
|
309
|
+
pixel_values = pixel_values.to(dtype=self.dtype)
|
|
310
|
+
|
|
311
|
+
if output_attentions:
|
|
312
|
+
raise ValueError("output_attentions is not supported for RBLNColPaliForRetrieval")
|
|
313
|
+
|
|
314
|
+
if output_hidden_states is not None and output_hidden_states != self.rbln_config.output_hidden_states:
|
|
315
|
+
raise ValueError(
|
|
316
|
+
f"Variable output_hidden_states {output_hidden_states} is not equal to rbln_config.output_hidden_states {self.rbln_config.output_hidden_states} "
|
|
317
|
+
f"Please compile again with the correct argument."
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
321
|
+
|
|
322
|
+
inputs_embeds, image_features = self._preprocess_inputs(
|
|
323
|
+
input_ids=input_ids, inputs_embeds=inputs_embeds, pixel_values=pixel_values
|
|
324
|
+
)
|
|
325
|
+
|
|
326
|
+
outputs = []
|
|
327
|
+
language_model_out_size = [inputs_embeds.shape[0], self.rbln_config.max_seq_lens[0], self.config.embedding_dim]
|
|
328
|
+
language_model_hidden_states_size = [
|
|
329
|
+
inputs_embeds.shape[0],
|
|
330
|
+
self.rbln_config.max_seq_lens[0],
|
|
331
|
+
self.rbln_config.max_seq_lens[0],
|
|
332
|
+
]
|
|
333
|
+
outputs.append(torch.empty(size=language_model_out_size, dtype=torch.float32, device="cpu"))
|
|
334
|
+
if self.rbln_config.output_hidden_states:
|
|
335
|
+
for i in range(self.config.vlm_config.text_config.num_hidden_layers + 1):
|
|
336
|
+
outputs.append(torch.empty(size=language_model_hidden_states_size, dtype=torch.float32, device="cpu"))
|
|
337
|
+
|
|
338
|
+
# Embedding_proj_layer is fused on the bottom of the language model.
|
|
339
|
+
self.language_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, out=outputs)
|
|
340
|
+
|
|
341
|
+
embeddings = outputs[0][:, : inputs_embeds.shape[1]]
|
|
342
|
+
hidden_states = (
|
|
343
|
+
None
|
|
344
|
+
if not self.rbln_config.output_hidden_states
|
|
345
|
+
else [tensor[0][:, : inputs_embeds.shape[1]] for tensor in outputs[1:]]
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
# L2 normalization
|
|
349
|
+
embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
|
350
|
+
|
|
351
|
+
if attention_mask is not None:
|
|
352
|
+
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
|
353
|
+
|
|
354
|
+
if not return_dict:
|
|
355
|
+
return (embeddings, hidden_states, image_features)
|
|
356
|
+
else:
|
|
357
|
+
return ColPaliForRetrievalOutput(
|
|
358
|
+
embeddings=embeddings,
|
|
359
|
+
hidden_states=hidden_states,
|
|
360
|
+
image_hidden_states=image_features,
|
|
361
|
+
)
|
|
@@ -0,0 +1,233 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import List, Optional, Tuple, Union
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
import torch.nn as nn
|
|
19
|
+
from transformers import PreTrainedModel
|
|
20
|
+
|
|
21
|
+
from optimum.rbln.transformers.models.decoderonly.decoderonly_architecture import (
|
|
22
|
+
DecoderOnlyLayer,
|
|
23
|
+
DecoderOnlyModel,
|
|
24
|
+
DecoderOnlyWrapper,
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
from .configuration_colqwen2 import (
|
|
28
|
+
RBLNColQwen2ForRetrievalConfig,
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def slice_and_unsqueeze_cos_sin(cos, sin, position_ids):
|
|
33
|
+
"""Slice cos[cache_position], sin[cache_position] vector for the query."""
|
|
34
|
+
cos = cos[position_ids[0]][None, None, None, :, :]
|
|
35
|
+
sin = sin[position_ids[0]][None, None, None, :, :]
|
|
36
|
+
|
|
37
|
+
return cos, sin
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class ColQwen2LanguageModelWrapper(DecoderOnlyWrapper):
|
|
41
|
+
def __init__(
|
|
42
|
+
self, model: PreTrainedModel, rbln_config: "RBLNColQwen2ForRetrievalConfig", use_rotary_emb: bool = True
|
|
43
|
+
):
|
|
44
|
+
model.config = (
|
|
45
|
+
model.config.vlm_config.text_config if hasattr(model.config, "vlm_config") else model.config.text_config
|
|
46
|
+
)
|
|
47
|
+
super().__init__(model, rbln_config, use_rotary_emb)
|
|
48
|
+
|
|
49
|
+
def get_decoder_layers(self, model: PreTrainedModel):
|
|
50
|
+
return model.language_model.layers
|
|
51
|
+
|
|
52
|
+
def convert_to_rbln_class(self, model: PreTrainedModel, max_seq_len: int):
|
|
53
|
+
new_layers = []
|
|
54
|
+
for layer_idx, layer in enumerate(self.get_decoder_layers(model)):
|
|
55
|
+
is_sliding = layer_idx in self.rbln_config.sliding_window_layers
|
|
56
|
+
new_self_attn = self.get_rbln_attn_class()(
|
|
57
|
+
self.get_attn_layer(layer),
|
|
58
|
+
self.rbln_config,
|
|
59
|
+
is_sliding=is_sliding,
|
|
60
|
+
)
|
|
61
|
+
new_layer = self.get_rbln_layer_class()(layer, new_self_attn)
|
|
62
|
+
new_layers.append(new_layer)
|
|
63
|
+
|
|
64
|
+
new_model = self.get_rbln_model_class()(
|
|
65
|
+
model.language_model,
|
|
66
|
+
new_layers,
|
|
67
|
+
self.rbln_config,
|
|
68
|
+
use_learned_pos_emb=self.__class__._use_learned_pos_emb,
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
# text_projection layer from model
|
|
72
|
+
self.embedding_proj_layer = (
|
|
73
|
+
model.embedding_proj_layer if hasattr(model, "embedding_proj_layer") else model.custom_text_proj
|
|
74
|
+
)
|
|
75
|
+
return new_model
|
|
76
|
+
|
|
77
|
+
def get_rbln_model_class(self):
|
|
78
|
+
return RBLNColQwen2LanguageModel
|
|
79
|
+
|
|
80
|
+
def prepare_forward_args(self, *args):
|
|
81
|
+
args = list(args)
|
|
82
|
+
input_ids = None if self.rbln_config.use_inputs_embeds else args.pop(0)
|
|
83
|
+
inputs_embeds = args.pop(0) if self.rbln_config.use_inputs_embeds else None
|
|
84
|
+
cache_position = args.pop(0)
|
|
85
|
+
global_block_tables = args.pop(0)
|
|
86
|
+
local_block_tables = None
|
|
87
|
+
position_embeds = args.pop(0)
|
|
88
|
+
position_ids = None
|
|
89
|
+
attention_mask = args.pop(0) if self.rbln_config.use_attention_mask else None
|
|
90
|
+
past_key_values = args
|
|
91
|
+
|
|
92
|
+
if len(past_key_values) != 2 * self.num_hidden_layers:
|
|
93
|
+
raise ValueError(
|
|
94
|
+
f"Different past_key_values to model's config. {len(past_key_values)} != {2 * self.num_hidden_layers}"
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
_past_key_values = []
|
|
98
|
+
for i in range(self.config.num_hidden_layers):
|
|
99
|
+
key_states = past_key_values[i * 2]
|
|
100
|
+
value_states = past_key_values[i * 2 + 1]
|
|
101
|
+
past_key_value = [key_states, value_states]
|
|
102
|
+
_past_key_values.append(past_key_value)
|
|
103
|
+
past_key_values = _past_key_values
|
|
104
|
+
|
|
105
|
+
return (
|
|
106
|
+
input_ids,
|
|
107
|
+
inputs_embeds,
|
|
108
|
+
cache_position,
|
|
109
|
+
global_block_tables,
|
|
110
|
+
local_block_tables,
|
|
111
|
+
attention_mask,
|
|
112
|
+
position_ids,
|
|
113
|
+
past_key_values,
|
|
114
|
+
position_embeds,
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
def forward(self, *args):
|
|
118
|
+
(
|
|
119
|
+
input_ids,
|
|
120
|
+
inputs_embeds,
|
|
121
|
+
cache_position,
|
|
122
|
+
global_block_tables,
|
|
123
|
+
local_block_tables,
|
|
124
|
+
attention_mask,
|
|
125
|
+
position_ids,
|
|
126
|
+
past_key_values,
|
|
127
|
+
rotary_emb,
|
|
128
|
+
) = self.prepare_forward_args(*args)
|
|
129
|
+
|
|
130
|
+
last_hidden_states = self.model(
|
|
131
|
+
input_ids=input_ids,
|
|
132
|
+
inputs_embeds=inputs_embeds,
|
|
133
|
+
attention_mask=attention_mask,
|
|
134
|
+
cache_position=cache_position,
|
|
135
|
+
position_ids=position_ids,
|
|
136
|
+
past_key_values=past_key_values,
|
|
137
|
+
rotary_emb=rotary_emb,
|
|
138
|
+
global_block_tables=global_block_tables,
|
|
139
|
+
local_block_tables=local_block_tables,
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
proj = self.embedding_proj_layer(last_hidden_states[0])
|
|
143
|
+
all_hidden_states = last_hidden_states[1] if self.rbln_config.output_hidden_states else None
|
|
144
|
+
|
|
145
|
+
if self.rbln_config.output_hidden_states:
|
|
146
|
+
return proj, all_hidden_states
|
|
147
|
+
else:
|
|
148
|
+
return proj
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
class RBLNColQwen2LanguageModel(DecoderOnlyModel):
|
|
152
|
+
def __init__(
|
|
153
|
+
self,
|
|
154
|
+
model,
|
|
155
|
+
layers: List["DecoderOnlyLayer"],
|
|
156
|
+
rbln_config: "RBLNColQwen2ForRetrievalConfig",
|
|
157
|
+
use_learned_pos_emb=None,
|
|
158
|
+
):
|
|
159
|
+
super().__init__(model, layers, rbln_config, use_learned_pos_emb)
|
|
160
|
+
|
|
161
|
+
self.output_hidden_states = rbln_config.output_hidden_states
|
|
162
|
+
|
|
163
|
+
def forward(
|
|
164
|
+
self,
|
|
165
|
+
input_ids: torch.Tensor = None,
|
|
166
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
|
167
|
+
attention_mask: torch.Tensor = None,
|
|
168
|
+
cache_position: torch.Tensor = None,
|
|
169
|
+
position_ids: torch.Tensor = None,
|
|
170
|
+
query_position: torch.Tensor = None,
|
|
171
|
+
past_key_values: Tuple[Tuple[torch.Tensor]] = None,
|
|
172
|
+
rotary_emb: Optional[Union[nn.Module, torch.Tensor]] = None,
|
|
173
|
+
global_block_tables: Optional[torch.Tensor] = None,
|
|
174
|
+
local_block_tables: Optional[torch.Tensor] = None,
|
|
175
|
+
lora_int_id: Optional[torch.Tensor] = None,
|
|
176
|
+
):
|
|
177
|
+
# retrieve input_ids and inputs_embeds
|
|
178
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
179
|
+
raise ValueError(
|
|
180
|
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
# embed positions
|
|
184
|
+
if inputs_embeds is None:
|
|
185
|
+
inputs_embeds = self.get_embedding()(input_ids)
|
|
186
|
+
|
|
187
|
+
hidden_states = inputs_embeds * self.hidden_multiplier
|
|
188
|
+
|
|
189
|
+
# get cos,sin vector if needed
|
|
190
|
+
position_ids = position_ids if position_ids is not None else cache_position
|
|
191
|
+
if rotary_emb is not None:
|
|
192
|
+
if isinstance(rotary_emb, torch.Tensor):
|
|
193
|
+
cos = rotary_emb[0]
|
|
194
|
+
sin = rotary_emb[1]
|
|
195
|
+
else:
|
|
196
|
+
cos, sin = rotary_emb(hidden_states, self.max_seq_len) # dtype carrier, max_seq_len
|
|
197
|
+
cos, sin = slice_and_unsqueeze_cos_sin(cos, sin, position_ids)
|
|
198
|
+
|
|
199
|
+
# Get sequence positions for flash attention
|
|
200
|
+
if self.attn_impl == "flash_attn":
|
|
201
|
+
seq_positions = cache_position[:, 0]
|
|
202
|
+
seq_positions = self.convert_sequence_positions_for_flash_attn(
|
|
203
|
+
seq_positions=seq_positions, max_seq_len=self.max_seq_len
|
|
204
|
+
)
|
|
205
|
+
else:
|
|
206
|
+
seq_positions = cache_position[:, :1]
|
|
207
|
+
|
|
208
|
+
# Get local cache positions for sliding window layers
|
|
209
|
+
if len(self.sliding_window_layers) > 0:
|
|
210
|
+
sliding_cache_pos = self.get_local_cache_positions(position_ids, query_position)
|
|
211
|
+
|
|
212
|
+
all_hidden_states = () if self.output_hidden_states else None
|
|
213
|
+
for layer_idx, layer in enumerate(self.layers):
|
|
214
|
+
if self.output_hidden_states:
|
|
215
|
+
all_hidden_states += (hidden_states,)
|
|
216
|
+
|
|
217
|
+
is_sliding = True if layer_idx in self.sliding_window_layers else False
|
|
218
|
+
hidden_states = layer(
|
|
219
|
+
hidden_states=hidden_states,
|
|
220
|
+
attention_mask=attention_mask,
|
|
221
|
+
seq_positions=sliding_cache_pos if is_sliding else seq_positions,
|
|
222
|
+
past_key_values=past_key_values,
|
|
223
|
+
cos=cos,
|
|
224
|
+
sin=sin,
|
|
225
|
+
block_tables=local_block_tables if is_sliding else global_block_tables,
|
|
226
|
+
lora_int_id=lora_int_id,
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
hidden_states = self.get_last_layernorm()(hidden_states)
|
|
230
|
+
if self.output_hidden_states:
|
|
231
|
+
all_hidden_states += (hidden_states,)
|
|
232
|
+
|
|
233
|
+
return hidden_states, all_hidden_states
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import Optional
|
|
16
|
+
|
|
17
|
+
from optimum.rbln.configuration_utils import RBLNModelConfig
|
|
18
|
+
|
|
19
|
+
from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelConfig
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class RBLNColQwen2ForRetrievalConfig(RBLNDecoderOnlyModelConfig):
|
|
23
|
+
"""
|
|
24
|
+
Configuration class for RBLN ColQwen2 models for document retrieval.
|
|
25
|
+
|
|
26
|
+
This class extends RBLNModelConfig with specific configurations for ColQwen2 models,
|
|
27
|
+
including vision tower settings and multi-sequence length support.
|
|
28
|
+
|
|
29
|
+
Example usage:
|
|
30
|
+
```python
|
|
31
|
+
from optimum.rbln import RBLNColQwen2ForRetrievalConfig, RBLNColQwen2ForRetrievalConfig
|
|
32
|
+
|
|
33
|
+
# Create a configuration object
|
|
34
|
+
config = RBLNColQwen2ForRetrievalConfig(
|
|
35
|
+
visual={
|
|
36
|
+
"max_seq_lens": 6400,
|
|
37
|
+
"device": 0,
|
|
38
|
+
},
|
|
39
|
+
max_seq_len=32_768,
|
|
40
|
+
tensor_parallel_size=4,
|
|
41
|
+
device=[0, 1, 2, 3],
|
|
42
|
+
output_hidden_states=False,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
# Use the configuration with from_pretrained
|
|
46
|
+
model = RBLNColQwen2ForRetrieval.from_pretrained(
|
|
47
|
+
"vidore/colqwen2-v1.0-hf",
|
|
48
|
+
export=True,
|
|
49
|
+
rbln_config=config
|
|
50
|
+
)
|
|
51
|
+
```
|
|
52
|
+
"""
|
|
53
|
+
|
|
54
|
+
submodules = ["visual"]
|
|
55
|
+
|
|
56
|
+
def __init__(
|
|
57
|
+
self,
|
|
58
|
+
visual: Optional[RBLNModelConfig] = None,
|
|
59
|
+
batch_size: Optional[int] = None,
|
|
60
|
+
use_inputs_embeds: bool = True,
|
|
61
|
+
output_hidden_states: Optional[bool] = False,
|
|
62
|
+
**kwargs,
|
|
63
|
+
):
|
|
64
|
+
super().__init__(use_inputs_embeds=use_inputs_embeds, **kwargs)
|
|
65
|
+
if not self.use_inputs_embeds:
|
|
66
|
+
raise ValueError(
|
|
67
|
+
"RBLNColQwen2ForRetrievalConfig does not allow `use_inputs_embeds` to be set to False, "
|
|
68
|
+
"as RBLNColQwen2ForRetrieval accepts only `inputs_embeds` as input."
|
|
69
|
+
)
|
|
70
|
+
if batch_size is not None and batch_size != 1:
|
|
71
|
+
raise ValueError("batch_size is not supported for RBLNColQwen2ForRetrievalConfig")
|
|
72
|
+
|
|
73
|
+
self.visual = visual
|
|
74
|
+
self.output_hidden_states = output_hidden_states
|