optimum-rbln 0.9.3.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (264) hide show
  1. optimum/rbln/__init__.py +505 -0
  2. optimum/rbln/__version__.py +34 -0
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +968 -0
  5. optimum/rbln/diffusers/__init__.py +198 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +37 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +451 -0
  27. optimum/rbln/diffusers/models/__init__.py +64 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
  34. optimum/rbln/diffusers/models/controlnet.py +281 -0
  35. optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
  36. optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
  37. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
  38. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
  39. optimum/rbln/diffusers/models/unets/__init__.py +16 -0
  40. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
  41. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  42. optimum/rbln/diffusers/pipelines/__init__.py +113 -0
  43. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  44. optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
  45. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
  46. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
  47. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
  48. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
  49. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
  50. optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
  51. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
  52. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
  53. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
  54. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
  55. optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
  56. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
  57. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
  58. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
  59. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
  60. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
  61. optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
  62. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
  63. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
  64. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
  65. optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
  66. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
  67. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
  68. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
  69. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
  70. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
  71. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
  72. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
  73. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  74. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  75. optimum/rbln/modeling.py +364 -0
  76. optimum/rbln/modeling_base.py +637 -0
  77. optimum/rbln/ops/__init__.py +19 -0
  78. optimum/rbln/ops/attn.py +455 -0
  79. optimum/rbln/ops/flash_attn.py +350 -0
  80. optimum/rbln/ops/kv_cache_update.py +29 -0
  81. optimum/rbln/ops/linear.py +32 -0
  82. optimum/rbln/ops/sliding_window_attn.py +111 -0
  83. optimum/rbln/transformers/__init__.py +340 -0
  84. optimum/rbln/transformers/configuration_generic.py +120 -0
  85. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  86. optimum/rbln/transformers/modeling_generic.py +280 -0
  87. optimum/rbln/transformers/modeling_outputs.py +37 -0
  88. optimum/rbln/transformers/modeling_rope_utils.py +314 -0
  89. optimum/rbln/transformers/models/__init__.py +343 -0
  90. optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
  91. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
  92. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
  93. optimum/rbln/transformers/models/auto/__init__.py +31 -0
  94. optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
  95. optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
  96. optimum/rbln/transformers/models/bart/__init__.py +17 -0
  97. optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
  98. optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
  99. optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
  100. optimum/rbln/transformers/models/bert/__init__.py +16 -0
  101. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  102. optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
  103. optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
  104. optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
  105. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
  106. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
  107. optimum/rbln/transformers/models/clip/__init__.py +26 -0
  108. optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
  109. optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
  110. optimum/rbln/transformers/models/colpali/__init__.py +2 -0
  111. optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
  112. optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
  113. optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
  114. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  115. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  116. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  117. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  118. optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
  119. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
  120. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  121. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
  122. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  123. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  124. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  125. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
  126. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  127. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  128. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  129. optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
  130. optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
  131. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
  132. optimum/rbln/transformers/models/dpt/__init__.py +16 -0
  133. optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
  134. optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
  135. optimum/rbln/transformers/models/exaone/__init__.py +24 -0
  136. optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
  137. optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
  138. optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
  139. optimum/rbln/transformers/models/gemma/__init__.py +16 -0
  140. optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
  141. optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
  142. optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
  143. optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
  144. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
  145. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
  146. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  147. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
  148. optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
  149. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
  150. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
  151. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
  152. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  153. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  154. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  155. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  156. optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
  157. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
  158. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
  159. optimum/rbln/transformers/models/llama/__init__.py +16 -0
  160. optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
  161. optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
  162. optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
  163. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  164. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  165. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  166. optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
  167. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
  168. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
  169. optimum/rbln/transformers/models/midm/__init__.py +24 -0
  170. optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
  171. optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
  172. optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
  173. optimum/rbln/transformers/models/mistral/__init__.py +16 -0
  174. optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
  175. optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
  176. optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
  177. optimum/rbln/transformers/models/opt/__init__.py +16 -0
  178. optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
  179. optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
  180. optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
  181. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  182. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  183. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  184. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  185. optimum/rbln/transformers/models/phi/__init__.py +16 -0
  186. optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
  187. optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
  188. optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
  189. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  190. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  191. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  192. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  193. optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
  194. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
  195. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
  196. optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
  197. optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
  198. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
  199. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
  200. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
  201. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  202. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  203. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  204. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  205. optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
  206. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
  207. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
  208. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
  209. optimum/rbln/transformers/models/resnet/__init__.py +23 -0
  210. optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
  211. optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
  212. optimum/rbln/transformers/models/roberta/__init__.py +24 -0
  213. optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
  214. optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
  215. optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
  216. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
  217. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
  218. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
  219. optimum/rbln/transformers/models/siglip/__init__.py +16 -0
  220. optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
  221. optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
  222. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  223. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  224. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  225. optimum/rbln/transformers/models/t5/__init__.py +17 -0
  226. optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
  227. optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
  228. optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
  229. optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
  230. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
  231. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
  232. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
  233. optimum/rbln/transformers/models/vit/__init__.py +19 -0
  234. optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
  235. optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
  236. optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
  237. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
  238. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
  239. optimum/rbln/transformers/models/whisper/__init__.py +17 -0
  240. optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
  241. optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
  242. optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
  243. optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
  244. optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
  245. optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
  246. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
  247. optimum/rbln/transformers/utils/__init__.py +0 -0
  248. optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
  249. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  250. optimum/rbln/utils/__init__.py +16 -0
  251. optimum/rbln/utils/decorator_utils.py +86 -0
  252. optimum/rbln/utils/deprecation.py +213 -0
  253. optimum/rbln/utils/hub.py +94 -0
  254. optimum/rbln/utils/import_utils.py +170 -0
  255. optimum/rbln/utils/logging.py +110 -0
  256. optimum/rbln/utils/model_utils.py +63 -0
  257. optimum/rbln/utils/runtime_utils.py +249 -0
  258. optimum/rbln/utils/save_utils.py +102 -0
  259. optimum/rbln/utils/submodule.py +152 -0
  260. optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
  261. optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
  262. optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
  263. optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
  264. optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
@@ -0,0 +1,104 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from ....utils import logging
16
+ from ...models.decoderonly import RBLNDecoderOnlyModel, RBLNDecoderOnlyModelForCausalLM
17
+ from .llama_architecture import LlamaWrapper
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class RBLNLlamaForCausalLM(RBLNDecoderOnlyModelForCausalLM):
24
+ """
25
+ The Llama Model transformer with a language modeling head (linear layer) on top.
26
+ This model inherits from [`RBLNDecoderOnlyModelForCausalLM`]. Check the superclass documentation for the generic methods the library implements for all its models.
27
+
28
+ A class to convert and run pre-trained transformers based LlamaForCausalLM model on RBLN devices.
29
+ It implements the methods to convert a pre-trained transformers LlamaForCausalLM model into a RBLN transformer model by:
30
+
31
+ - transferring the checkpoint weights of the original into an optimized RBLN graph,
32
+ - compiling the resulting graph using the RBLN compiler.
33
+
34
+ **Configuration:**
35
+ This model uses [`RBLNLlamaForCausalLMConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
36
+ the `rbln_config` parameter should be an instance of [`RBLNLlamaForCausalLMConfig`] or a dictionary conforming to its structure.
37
+
38
+ See the [`RBLNLlamaForCausalLMConfig`] class for all available configuration options.
39
+
40
+ Examples:
41
+ ```python
42
+ from optimum.rbln import RBLNLlamaForCausalLM
43
+
44
+ # Simple usage using rbln_* arguments
45
+ # `max_seq_len` is automatically inferred from the model config
46
+ model = RBLNLlamaForCausalLM.from_pretrained(
47
+ "meta-llama/Llama-2-7b-hf",
48
+ export=True,
49
+ rbln_batch_size=1,
50
+ rbln_tensor_parallel_size=4,
51
+ )
52
+
53
+
54
+ # Using a config dictionary
55
+ rbln_config = {
56
+ "batch_size": 1,
57
+ "max_seq_len": 4096,
58
+ "tensor_parallel_size": 4,
59
+ }
60
+ model = RBLNLlamaForCausalLM.from_pretrained(
61
+ "meta-llama/Llama-2-7b-hf",
62
+ export=True,
63
+ rbln_config=rbln_config
64
+ )
65
+
66
+
67
+ # Using a RBLNLlamaForCausalLMConfig instance (recommended for type checking)
68
+ from optimum.rbln import RBLNLlamaForCausalLMConfig
69
+
70
+ config = RBLNLlamaForCausalLMConfig(
71
+ batch_size=1,
72
+ max_seq_len=4096,
73
+ tensor_parallel_size=4
74
+ )
75
+ model = RBLNLlamaForCausalLM.from_pretrained(
76
+ "meta-llama/Llama-2-7b-hf",
77
+ export=True,
78
+ rbln_config=config
79
+ )
80
+ ```
81
+ """
82
+
83
+ _decoder_wrapper_cls = LlamaWrapper
84
+
85
+
86
+ class RBLNLlamaModel(RBLNDecoderOnlyModel):
87
+ """
88
+ The Llama Model transformer outputting raw hidden-states without any specific head on top.
89
+ This model inherits from [`RBLNDecoderOnlyModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
90
+
91
+ A class to convert and run pre-trained transformers based LlamaModel on RBLN devices.
92
+ It implements the methods to convert a pre-trained transformers LlamaModel into a RBLN transformer model by:
93
+
94
+ - transferring the checkpoint weights of the original into an optimized RBLN graph,
95
+ - compiling the resulting graph using the RBLN compiler.
96
+
97
+ **Configuration:**
98
+ This model uses [`RBLNLlamaModelConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
99
+ the `rbln_config` parameter should be an instance of [`RBLNLlamaModelConfig`] or a dictionary conforming to its structure.
100
+
101
+ See the [`RBLNLlamaModelConfig`] class for all available configuration options.
102
+ """
103
+
104
+ _decoder_wrapper_cls = LlamaWrapper
@@ -0,0 +1,16 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_llava import RBLNLlavaForConditionalGenerationConfig
16
+ from .modeling_llava import RBLNLlavaForConditionalGeneration
@@ -0,0 +1,72 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Optional
16
+
17
+ from ....configuration_utils import RBLNModelConfig
18
+ from ....utils.logging import get_logger
19
+
20
+
21
+ logger = get_logger(__name__)
22
+
23
+
24
+ class RBLNLlavaForConditionalGenerationConfig(RBLNModelConfig):
25
+ """
26
+ Configuration class for RBLNLlavaForConditionalGenerationConfig.
27
+
28
+ This configuration class stores the configuration parameters specific to
29
+ RBLN-optimized LLaVA models for multimodal conditional generation tasks
30
+ that combine vision and language processing capabilities.
31
+ """
32
+
33
+ submodules = ["vision_tower", "language_model"]
34
+
35
+ def __init__(
36
+ self,
37
+ batch_size: Optional[int] = None,
38
+ vision_tower: Optional[RBLNModelConfig] = None,
39
+ language_model: Optional[RBLNModelConfig] = None,
40
+ **kwargs: Any,
41
+ ):
42
+ """
43
+ Args:
44
+ batch_size (Optional[int]): The batch size for inference. Defaults to 1.
45
+ vision_tower (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
46
+ This can include settings specific to the vision encoder, such as input resolution or other vision-related parameters.
47
+ If not provided, default settings will be used.
48
+ language_model (Optional[RBLNModelConfig]): Configuration for the language model component.
49
+ This can include settings specific to the language model, such as tensor parallelism or other text-related parameters.
50
+ If not provided, default settings will be used.
51
+ kwargs: Additional arguments passed to the parent RBLNModelConfig.
52
+
53
+ Raises:
54
+ ValueError: If `batch_size` is not a positive integer.
55
+ """
56
+ super().__init__(**kwargs)
57
+ self.batch_size = batch_size or 1
58
+ if not isinstance(self.batch_size, int) or self.batch_size < 0:
59
+ raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
60
+
61
+ if self.batch_size != 1:
62
+ logger.warning("Ignore batch_size for Llava vision tower. It will be set to 1.")
63
+
64
+ self.vision_tower = self.initialize_submodule_config(
65
+ submodule_config=vision_tower,
66
+ batch_size=1, # vision_tower batch_size is always 1 in Llava
67
+ force_kwargs=True,
68
+ )
69
+
70
+ self.language_model = self.initialize_submodule_config(
71
+ submodule_config=language_model,
72
+ )
@@ -0,0 +1,490 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import importlib
16
+ import inspect
17
+ from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
18
+
19
+ import torch
20
+ from transformers import AutoModelForImageTextToText, LlavaForConditionalGeneration, PretrainedConfig, PreTrainedModel
21
+ from transformers.modeling_outputs import BaseModelOutputWithPooling
22
+ from transformers.modeling_utils import no_init_weights
23
+ from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
24
+
25
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
26
+ from ....modeling import RBLNModel
27
+ from ....utils.logging import get_logger
28
+ from ...modeling_outputs import RBLNDecoderOnlyOutput
29
+ from ...utils.rbln_runtime_wrapper import LoopProcessor
30
+ from ..decoderonly.generation_decoderonly import RBLNDecoderOnlyGenerationMixin
31
+
32
+
33
+ logger = get_logger(__name__)
34
+
35
+ if TYPE_CHECKING:
36
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig
37
+
38
+
39
+ class LoopVisionTower(LoopProcessor):
40
+ def __init__(self, vision_tower):
41
+ # FIXME: need to know RBLNModel or RuntimeWrapper
42
+ if hasattr(vision_tower.model, "runtime"):
43
+ super().__init__(model=vision_tower)
44
+ else:
45
+ super().__init__(model=vision_tower.model[0])
46
+
47
+ self.rbln_config = vision_tower.rbln_config
48
+
49
+ def _get_batch_size(self, pixel_values, **kwargs):
50
+ return pixel_values.shape[0]
51
+
52
+ def _prepare_inputs_for_iteration(self, index, common_inputs, pixel_values, **kwargs):
53
+ pixel_values_item = pixel_values[index : index + 1]
54
+ if "image_sizes" in kwargs and kwargs["image_sizes"] is not None:
55
+ ret_val = [pixel_values_item, kwargs["image_sizes"][index : index + 1]]
56
+ else:
57
+ ret_val = [pixel_values_item]
58
+
59
+ out_buffer = [tensor[index : index + 1] for tensor in kwargs["out"]] if "out" in kwargs else None
60
+ return (ret_val, {"out": out_buffer})
61
+
62
+ def _process_outputs(self, outputs: list, **kwargs) -> "BaseModelOutputWithPooling":
63
+ # when use another Wrapper
64
+ if hasattr(self.rbln_config, "max_image_size"):
65
+ last_hidden_states = [output.last_hidden_state for output in outputs]
66
+ last_hidden_states = torch.cat(last_hidden_states, dim=1)
67
+ hidden_states = tuple(
68
+ torch.cat(
69
+ [output.hidden_states[layer_idx] for output in outputs],
70
+ dim=1,
71
+ )
72
+ for layer_idx in range(len(outputs[0].hidden_states))
73
+ )
74
+ else:
75
+ output = kwargs["out"]
76
+ last_hidden_states = output[0]
77
+
78
+ if not output[2:]:
79
+ hidden_states = None
80
+ else:
81
+ hidden_states = tuple(output[2:])
82
+
83
+ return BaseModelOutputWithPooling(
84
+ last_hidden_state=last_hidden_states,
85
+ pooler_output=None,
86
+ hidden_states=hidden_states,
87
+ )
88
+
89
+
90
+ class LoopProjector(LoopProcessor):
91
+ def __init__(self, multi_modal_projector: "RBLNModel", rbln_config=None):
92
+ super().__init__(model=multi_modal_projector)
93
+ self.rbln_config = rbln_config
94
+
95
+ def _get_batch_size(self, image_feature, **kwargs):
96
+ return image_feature.shape[0]
97
+
98
+ def _prepare_inputs_for_iteration(self, index, common_inputs, image_feature, **kwargs):
99
+ image_feature_item = image_feature[index : index + 1]
100
+ if hasattr(self.rbln_config.vision_tower, "max_image_size"):
101
+ out_buffer = [
102
+ tensor[:, index * image_feature.shape[1] : (index + 1) * image_feature.shape[1], :]
103
+ for tensor in kwargs["out"]
104
+ ]
105
+ else:
106
+ out_buffer = [tensor[index : index + 1] for tensor in kwargs["out"]]
107
+ return ([image_feature_item], {"out": out_buffer})
108
+
109
+ def _process_outputs(self, outputs: list, **kwargs):
110
+ output = kwargs["out"]
111
+ return output[0]
112
+
113
+
114
+ class RBLNLlavaForConditionalGeneration(RBLNModel, RBLNDecoderOnlyGenerationMixin):
115
+ """
116
+ RBLNLlavaForConditionalGeneration is a multi-modal model that combines vision and language processing capabilities,
117
+ optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
118
+ This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
119
+
120
+ Important Note:
121
+ This model includes a Large Language Model (LLM) as a submodule. For optimal performance, it is highly recommended to use
122
+ tensor parallelism for the language model. This can be achieved by using the `rbln_config` parameter in the
123
+ `from_pretrained` method. Refer to the `from_pretrained` documentation and the RBLNLlavaForConditionalGeneration class for details.
124
+ Examples:
125
+ ```python
126
+ from optimum.rbln import RBLNLlavaForConditionalGeneration
127
+ model = RBLNLlavaForConditionalGeneration.from_pretrained(
128
+ "llava-hf/llava-1.5-7b-hf",
129
+ export=True,
130
+ rbln_config={
131
+ "vision_tower": {"output_hidden_states": True},
132
+ "language_model": {
133
+ "tensor_parallel_size": 4,
134
+ "use_inputs_embeds": True, # In Llava, language model must use inputs_embeds as input.
135
+ },
136
+ },
137
+ )
138
+ model.save_pretrained("compiled-llava-1.5-7b-hf")
139
+
140
+ # Using a RBLNLlavaForConditionalGenerationConfig instance (recommended for type checking)
141
+ from optimum.rbln import RBLNLlavaForConditionalGenerationConfig
142
+ vision_config = RBLNCLIPVisionModelConfig(
143
+ batch_size=1,
144
+ output_hidden_states=True
145
+ )
146
+ language_model_config = RBLNLlamaForCausalLMConfig(
147
+ batch_size=1,
148
+ max_seq_len=4096,
149
+ use_inputs_embeds=True,
150
+ tensor_parallel_size=4
151
+ )
152
+ llava_config = RBLNLlavaForConditionalGenerationConfig(
153
+ batch_size=1,
154
+ vision_tower=vision_config,
155
+ language_model=language_model_config
156
+ )
157
+ model = RBLNLlavaForConditionalGeneration.from_pretrained(
158
+ "llava-hf/llava-1.5-7b-hf",
159
+ export=True,
160
+ rbln_config=llava_config
161
+ )
162
+ ```
163
+ """
164
+
165
+ auto_model_class = AutoModelForImageTextToText
166
+ _rbln_submodules = [
167
+ {"name": "vision_tower"},
168
+ {"name": "language_model"},
169
+ ]
170
+
171
+ def __getattr__(self, __name: str) -> Any:
172
+ def redirect(func):
173
+ return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
174
+
175
+ val = getattr(LlavaForConditionalGeneration, __name)
176
+
177
+ if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
178
+ return redirect(val)
179
+ return val
180
+
181
+ def can_generate(self):
182
+ return True
183
+
184
+ @classmethod
185
+ def _reconstruct_model_if_needed(cls, model: "PreTrainedModel"):
186
+ with no_init_weights():
187
+ model_cls_name = model.model.language_model.__class__.__name__
188
+ causal_model_cls_name = model_cls_name.replace("Model", "ForCausalLM")
189
+ causal_model_cls = getattr(importlib.import_module("transformers"), causal_model_cls_name)
190
+ new_language_model = causal_model_cls(model.model.language_model.config)
191
+
192
+ new_language_model.lm_head = model.lm_head
193
+ new_language_model.model = model.model.language_model
194
+ model.model.language_model = new_language_model
195
+ model.lm_head = None
196
+ del model.lm_head
197
+ return model
198
+
199
+ def __post_init__(self, **kwargs):
200
+ self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
201
+ self.language_model = self.rbln_submodules[1]
202
+ self.multi_modal_projector = LoopProjector(self.model[0], rbln_config=self.rbln_config)
203
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
204
+ return super().__post_init__(**kwargs)
205
+
206
+ def get_attn_impl(self) -> str:
207
+ return self.rbln_config.language_model.attn_impl
208
+
209
+ def get_kvcache_num_blocks(self) -> int:
210
+ return self.rbln_config.language_model.kvcache_num_blocks
211
+
212
+ def get_input_embeddings(self):
213
+ return self.language_model.get_input_embeddings()
214
+
215
+ @classmethod
216
+ def _wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
217
+ return model.multi_modal_projector
218
+
219
+ @classmethod
220
+ def _update_rbln_config(
221
+ cls,
222
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
223
+ model: Optional["PreTrainedModel"] = None,
224
+ model_config: Optional["PretrainedConfig"] = None,
225
+ rbln_config: Optional[RBLNModelConfig] = None,
226
+ ) -> RBLNModelConfig:
227
+ # support for pixtral that needs padding
228
+ if hasattr(rbln_config.vision_tower, "max_image_size"):
229
+ num_positions = (rbln_config.vision_tower.max_image_size[0] // model_config.vision_config.patch_size) * (
230
+ rbln_config.vision_tower.max_image_size[1] // model_config.vision_config.patch_size
231
+ )
232
+ selected_image_feature_dim = num_positions
233
+
234
+ else:
235
+ num_positions = (model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2 + 1
236
+ if model_config.vision_feature_select_strategy == "default":
237
+ selected_image_feature_dim = num_positions - 1
238
+ else:
239
+ selected_image_feature_dim = num_positions
240
+
241
+ input_info = [
242
+ (
243
+ "image_features",
244
+ [
245
+ 1,
246
+ selected_image_feature_dim,
247
+ model_config.vision_config.hidden_size,
248
+ ],
249
+ "float32",
250
+ )
251
+ ]
252
+
253
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
254
+ rbln_config.set_compile_cfgs([rbln_compile_config])
255
+ return rbln_config
256
+
257
+ def prepare_inputs_for_generation(
258
+ self,
259
+ input_ids,
260
+ inputs_embeds=None,
261
+ pixel_values=None,
262
+ attention_mask=None,
263
+ cache_position=None,
264
+ image_sizes=None,
265
+ generate_idx=None,
266
+ **kwargs,
267
+ ):
268
+ is_prefill_phase = generate_idx is None
269
+ model_inputs = {}
270
+
271
+ if is_prefill_phase:
272
+ generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
273
+ cache_position = None
274
+ pixel_values = pixel_values
275
+ model_inputs.update({"image_sizes": image_sizes})
276
+ else:
277
+ if inputs_embeds is not None:
278
+ raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
279
+
280
+ pixel_values = None
281
+ input_ids = input_ids[:, -1:]
282
+ cache_position = generate_idx
283
+ generate_idx = generate_idx + 1
284
+ model_inputs.update({"input_ids": input_ids})
285
+
286
+ if inputs_embeds is not None:
287
+ if self.rbln_config.use_inputs_embeds:
288
+ model_inputs.update({"inputs_embeds": inputs_embeds})
289
+ else:
290
+ raise ValueError(
291
+ "The specifying inputs_embeds is only supported when using a compiled RBLN model with 'rbln_use_inputs_embeds' set to True."
292
+ )
293
+ else:
294
+ model_inputs.update({"input_ids": input_ids})
295
+
296
+ model_inputs.update(
297
+ {
298
+ "attention_mask": attention_mask,
299
+ "pixel_values": pixel_values,
300
+ "cache_position": cache_position,
301
+ "generate_idx": generate_idx,
302
+ }
303
+ )
304
+ return model_inputs
305
+
306
+ def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
307
+ model_kwargs["generate_idx"] = outputs.generate_idx
308
+ return model_kwargs
309
+
310
+ def get_image_features(
311
+ self,
312
+ pixel_values: torch.FloatTensor,
313
+ vision_feature_layer: Union[int, List[int]],
314
+ vision_feature_select_strategy: str,
315
+ **kwargs,
316
+ ):
317
+ if vision_feature_select_strategy not in ["default", "full"]:
318
+ raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
319
+
320
+ kwargs = {k: v for k, v in kwargs.items() if v is not None}
321
+
322
+ # prepare out buffer for pre-allocation
323
+ if hasattr(self.rbln_config.vision_tower, "max_image_size"):
324
+ vision_out_size = [
325
+ pixel_values.shape[0],
326
+ (self.rbln_config.vision_tower.max_image_size[0] // self.config.vision_config.patch_size)
327
+ * (self.rbln_config.vision_tower.max_image_size[1] // self.config.vision_config.patch_size),
328
+ self.config.vision_config.hidden_size,
329
+ ]
330
+ pooler_out_size = None
331
+ else:
332
+ vision_out_size = [
333
+ pixel_values.shape[0],
334
+ (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2 + 1,
335
+ self.config.vision_config.hidden_size,
336
+ ]
337
+ pooler_out_size = [pixel_values.shape[0], self.config.vision_config.hidden_size]
338
+
339
+ vision_out_buffer = []
340
+ for i in range(self.config.vision_config.num_hidden_layers + 2):
341
+ vision_out_buffer.append(torch.empty(size=vision_out_size, dtype=torch.float32, device="cpu"))
342
+ if pooler_out_size is not None:
343
+ vision_out_buffer.insert(1, torch.empty(size=pooler_out_size, dtype=torch.float32, device="cpu"))
344
+
345
+ image_outputs = self.vision_tower(pixel_values, output_hidden_states=True, out=vision_out_buffer, **kwargs)
346
+
347
+ if isinstance(vision_feature_layer, int):
348
+ selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
349
+ if vision_feature_select_strategy == "default":
350
+ selected_image_feature = selected_image_feature[:, 1:]
351
+ else:
352
+ hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
353
+ if vision_feature_select_strategy == "default":
354
+ hs_pool = [hs[:, 1:] for hs in hs_pool]
355
+ selected_image_feature = torch.cat(hs_pool, dim=-1)
356
+
357
+ if hasattr(self.rbln_config.vision_tower, "max_image_size"):
358
+ num_real_patches = selected_image_feature.shape[1]
359
+ max_patches = (self.rbln_config.vision_tower.max_image_size[0] // self.config.vision_config.patch_size) * (
360
+ self.rbln_config.vision_tower.max_image_size[1] // self.config.vision_config.patch_size
361
+ )
362
+
363
+ chunks = []
364
+ for i in range(0, num_real_patches, max_patches):
365
+ chunk = selected_image_feature[:, i : i + max_patches, :]
366
+ chunk_size = chunk.shape[1]
367
+
368
+ if chunk_size < max_patches:
369
+ padding_tensor = torch.zeros(
370
+ (selected_image_feature.shape[0], max_patches - chunk_size, selected_image_feature.shape[2]),
371
+ dtype=selected_image_feature.dtype,
372
+ )
373
+ chunk = torch.cat([chunk, padding_tensor], dim=1)
374
+ chunks.append(chunk)
375
+
376
+ split_features = torch.cat(chunks, dim=0)
377
+ num_chunks = len(chunks)
378
+ projector_out_size = [1, max_patches * num_chunks, self.config.text_config.hidden_size]
379
+ projector_out_buffer = [torch.empty(size=projector_out_size, dtype=torch.float32, device="cpu")]
380
+ projected_features = self.multi_modal_projector(split_features, out=projector_out_buffer)
381
+ projected_features = projected_features.view(
382
+ selected_image_feature.shape[0], num_chunks * max_patches, self.config.text_config.hidden_size
383
+ )
384
+ image_features = projected_features[:, :num_real_patches, :]
385
+ else:
386
+ projector_out_size = [
387
+ pixel_values.shape[0] * pixel_values.shape[1],
388
+ (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2,
389
+ self.config.text_config.hidden_size,
390
+ ]
391
+ projector_out_buffer = [torch.empty(size=projector_out_size, dtype=torch.float32, device="cpu")]
392
+ image_features = self.multi_modal_projector(selected_image_feature, out=projector_out_buffer)
393
+
394
+ return image_features
395
+
396
+ def _preprocess_prefill(
397
+ self,
398
+ input_ids: Optional[torch.LongTensor] = None,
399
+ pixel_values: Optional[torch.FloatTensor] = None,
400
+ inputs_embeds: Optional[torch.FloatTensor] = None,
401
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
402
+ vision_feature_select_strategy: Optional[str] = None,
403
+ return_dict: Optional[bool] = None,
404
+ image_sizes: Optional[torch.Tensor] = None,
405
+ **lm_kwargs,
406
+ ):
407
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
408
+ vision_feature_layer = (
409
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
410
+ )
411
+ vision_feature_select_strategy = (
412
+ vision_feature_select_strategy
413
+ if vision_feature_select_strategy is not None
414
+ else self.config.vision_feature_select_strategy
415
+ )
416
+
417
+ if (input_ids is None) ^ (inputs_embeds is not None):
418
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
419
+
420
+ if pixel_values is not None and inputs_embeds is not None:
421
+ raise ValueError(
422
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
423
+ )
424
+
425
+ if inputs_embeds is None:
426
+ inputs_embeds = self.get_input_embeddings()(input_ids)
427
+
428
+ if pixel_values is not None:
429
+ image_features = self.get_image_features(
430
+ pixel_values=pixel_values,
431
+ vision_feature_layer=vision_feature_layer,
432
+ vision_feature_select_strategy=vision_feature_select_strategy,
433
+ image_sizes=image_sizes,
434
+ )
435
+
436
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
437
+ special_image_mask = special_image_mask.expand_as(inputs_embeds)
438
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
439
+
440
+ return inputs_embeds
441
+
442
+ def forward(
443
+ self,
444
+ input_ids: Optional[torch.LongTensor] = None,
445
+ pixel_values: Optional[torch.FloatTensor] = None,
446
+ attention_mask: Optional[torch.Tensor] = None,
447
+ inputs_embeds: Optional[torch.FloatTensor] = None,
448
+ return_dict: Optional[bool] = None,
449
+ cache_position: Optional[torch.LongTensor] = None,
450
+ image_sizes: Optional[torch.Tensor] = None,
451
+ generate_idx: Optional[torch.Tensor] = None,
452
+ **kwargs,
453
+ ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
454
+ # Prefill
455
+ if cache_position is None:
456
+ inputs_embeds = self._preprocess_prefill(
457
+ input_ids=input_ids, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_sizes=image_sizes
458
+ )
459
+ logits = []
460
+ inputs = inputs_embeds if inputs_embeds is not None else input_ids
461
+ batch_size = inputs.shape[0]
462
+
463
+ for b_idx in range(batch_size):
464
+ cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
465
+ output = self.language_model.prefill_decoder(
466
+ input_ids=inputs[b_idx : b_idx + 1] if inputs_embeds is None else None,
467
+ inputs_embeds=inputs[b_idx : b_idx + 1] if inputs_embeds is not None else None,
468
+ attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
469
+ cache_position=cache_position,
470
+ batch_idx=b_idx,
471
+ )
472
+ logits.append(output.logits)
473
+
474
+ logits = torch.cat(logits, dim=0)
475
+
476
+ # Decoder
477
+ else:
478
+ logits = self.language_model.decoder(
479
+ input_ids=input_ids,
480
+ inputs_embeds=inputs_embeds,
481
+ cache_position=cache_position,
482
+ ).logits
483
+
484
+ if not return_dict:
485
+ return logits, generate_idx
486
+ else:
487
+ return RBLNDecoderOnlyOutput(
488
+ logits=logits,
489
+ generate_idx=generate_idx,
490
+ )