optimum-rbln 0.9.3.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +505 -0
- optimum/rbln/__version__.py +34 -0
- optimum/rbln/cli.py +660 -0
- optimum/rbln/configuration_utils.py +968 -0
- optimum/rbln/diffusers/__init__.py +198 -0
- optimum/rbln/diffusers/configurations/__init__.py +37 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
- optimum/rbln/diffusers/modeling_diffusers.py +451 -0
- optimum/rbln/diffusers/models/__init__.py +64 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
- optimum/rbln/diffusers/models/controlnet.py +281 -0
- optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
- optimum/rbln/diffusers/models/unets/__init__.py +16 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
- optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
- optimum/rbln/diffusers/pipelines/__init__.py +113 -0
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
- optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
- optimum/rbln/modeling.py +364 -0
- optimum/rbln/modeling_base.py +637 -0
- optimum/rbln/ops/__init__.py +19 -0
- optimum/rbln/ops/attn.py +455 -0
- optimum/rbln/ops/flash_attn.py +350 -0
- optimum/rbln/ops/kv_cache_update.py +29 -0
- optimum/rbln/ops/linear.py +32 -0
- optimum/rbln/ops/sliding_window_attn.py +111 -0
- optimum/rbln/transformers/__init__.py +340 -0
- optimum/rbln/transformers/configuration_generic.py +120 -0
- optimum/rbln/transformers/modeling_attention_utils.py +385 -0
- optimum/rbln/transformers/modeling_generic.py +280 -0
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/modeling_rope_utils.py +314 -0
- optimum/rbln/transformers/models/__init__.py +343 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
- optimum/rbln/transformers/models/auto/__init__.py +31 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
- optimum/rbln/transformers/models/bart/__init__.py +17 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
- optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
- optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
- optimum/rbln/transformers/models/bert/__init__.py +16 -0
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
- optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
- optimum/rbln/transformers/models/clip/__init__.py +26 -0
- optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
- optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
- optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
- optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
- optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
- optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
- optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
- optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
- optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
- optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
- optimum/rbln/transformers/models/dpt/__init__.py +16 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
- optimum/rbln/transformers/models/exaone/__init__.py +24 -0
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
- optimum/rbln/transformers/models/gemma/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
- optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
- optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
- optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
- optimum/rbln/transformers/models/llama/__init__.py +16 -0
- optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
- optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
- optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
- optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
- optimum/rbln/transformers/models/midm/__init__.py +24 -0
- optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
- optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
- optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
- optimum/rbln/transformers/models/mistral/__init__.py +16 -0
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
- optimum/rbln/transformers/models/opt/__init__.py +16 -0
- optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
- optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
- optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
- optimum/rbln/transformers/models/phi/__init__.py +16 -0
- optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
- optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
- optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
- optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
- optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
- optimum/rbln/transformers/models/resnet/__init__.py +23 -0
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
- optimum/rbln/transformers/models/roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
- optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
- optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
- optimum/rbln/transformers/models/siglip/__init__.py +16 -0
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
- optimum/rbln/transformers/models/t5/__init__.py +17 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
- optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
- optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
- optimum/rbln/transformers/models/vit/__init__.py +19 -0
- optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
- optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
- optimum/rbln/transformers/models/whisper/__init__.py +17 -0
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
- optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
- optimum/rbln/transformers/utils/__init__.py +0 -0
- optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
- optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
- optimum/rbln/utils/__init__.py +16 -0
- optimum/rbln/utils/decorator_utils.py +86 -0
- optimum/rbln/utils/deprecation.py +213 -0
- optimum/rbln/utils/hub.py +94 -0
- optimum/rbln/utils/import_utils.py +170 -0
- optimum/rbln/utils/logging.py +110 -0
- optimum/rbln/utils/model_utils.py +63 -0
- optimum/rbln/utils/runtime_utils.py +249 -0
- optimum/rbln/utils/save_utils.py +102 -0
- optimum/rbln/utils/submodule.py +152 -0
- optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
- optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
- optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
- optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
- optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .configuration_idefics3 import RBLNIdefics3ForConditionalGenerationConfig, RBLNIdefics3VisionTransformerConfig
|
|
16
|
+
from .modeling_idefics3 import RBLNIdefics3ForConditionalGeneration, RBLNIdefics3VisionTransformer
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import Any, Optional
|
|
16
|
+
|
|
17
|
+
from ....configuration_utils import RBLNModelConfig
|
|
18
|
+
from ....utils.logging import get_logger
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
logger = get_logger(__name__)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class RBLNIdefics3VisionTransformerConfig(RBLNModelConfig):
|
|
25
|
+
"""
|
|
26
|
+
Configuration class for RBLNIdefics3VisionTransformer.
|
|
27
|
+
|
|
28
|
+
This configuration class stores the configuration parameters specific to
|
|
29
|
+
RBLN-optimized Idefics3 vision transformer.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(
|
|
33
|
+
self,
|
|
34
|
+
batch_size: Optional[int] = None,
|
|
35
|
+
**kwargs: Any,
|
|
36
|
+
):
|
|
37
|
+
super().__init__(**kwargs)
|
|
38
|
+
self.batch_size = batch_size or 1
|
|
39
|
+
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
|
40
|
+
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class RBLNIdefics3ForConditionalGenerationConfig(RBLNModelConfig):
|
|
44
|
+
"""
|
|
45
|
+
Configuration class for RBLNIdefics3ForConditionalGeneration models.
|
|
46
|
+
|
|
47
|
+
This class extends `RBLNModelConfig` to include settings specific to the Idefics3 vision-language model optimized for RBLN devices.
|
|
48
|
+
It allows configuration of the batch size and separate configurations for the vision and text submodules.
|
|
49
|
+
|
|
50
|
+
Attributes:
|
|
51
|
+
submodules (List[str]): List of submodules included in the model. Defaults to `["vision_model", "text_model"]`.
|
|
52
|
+
"""
|
|
53
|
+
|
|
54
|
+
submodules = ["vision_model", "text_model"]
|
|
55
|
+
|
|
56
|
+
def __init__(
|
|
57
|
+
self,
|
|
58
|
+
batch_size: Optional[int] = None,
|
|
59
|
+
vision_model: Optional[RBLNModelConfig] = None,
|
|
60
|
+
text_model: Optional[RBLNModelConfig] = None,
|
|
61
|
+
**kwargs: Any,
|
|
62
|
+
):
|
|
63
|
+
"""
|
|
64
|
+
Args:
|
|
65
|
+
batch_size (Optional[int]): The batch size for inference. Defaults to 1.
|
|
66
|
+
vision_model (Optional[RBLNModelConfig]): Configuration for the vision transformer component.
|
|
67
|
+
This can include settings specific to the vision encoder, such as input resolution or other vision-related parameters.
|
|
68
|
+
If not provided, default settings will be used.
|
|
69
|
+
text_model (Optional[RBLNModelConfig]): Configuration for the text model component.
|
|
70
|
+
This can include settings specific to the language model, such as tensor parallelism or other text-related parameters.
|
|
71
|
+
If not provided, default settings will be used.
|
|
72
|
+
kwargs: Additional arguments passed to the parent `RBLNModelConfig`.
|
|
73
|
+
|
|
74
|
+
Raises:
|
|
75
|
+
ValueError: If `batch_size` is not a positive integer.
|
|
76
|
+
"""
|
|
77
|
+
|
|
78
|
+
super().__init__(**kwargs)
|
|
79
|
+
self.batch_size = batch_size or 1
|
|
80
|
+
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
|
81
|
+
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
82
|
+
|
|
83
|
+
if self.batch_size != 1:
|
|
84
|
+
logger.warning("Ignore batch_size for Idefics3 vision transformer. It will be set to 1.")
|
|
85
|
+
|
|
86
|
+
self.vision_model = self.initialize_submodule_config(
|
|
87
|
+
submodule_config=vision_model, batch_size=1, force_kwargs=True
|
|
88
|
+
)
|
|
89
|
+
self.text_model = self.initialize_submodule_config(submodule_config=text_model)
|
|
@@ -0,0 +1,497 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import importlib
|
|
16
|
+
import inspect
|
|
17
|
+
from pathlib import Path
|
|
18
|
+
from typing import TYPE_CHECKING, Any, Callable, Optional, Tuple, Union
|
|
19
|
+
|
|
20
|
+
import rebel
|
|
21
|
+
import torch
|
|
22
|
+
from transformers import (
|
|
23
|
+
AutoModelForVision2Seq,
|
|
24
|
+
Idefics3ForConditionalGeneration,
|
|
25
|
+
Idefics3VisionConfig,
|
|
26
|
+
Idefics3VisionTransformer,
|
|
27
|
+
PretrainedConfig,
|
|
28
|
+
PreTrainedModel,
|
|
29
|
+
)
|
|
30
|
+
from transformers.modeling_outputs import BaseModelOutput
|
|
31
|
+
from transformers.modeling_utils import no_init_weights
|
|
32
|
+
from transformers.models.idefics3.modeling_idefics3 import Idefics3CausalLMOutputWithPast, Idefics3VisionEmbeddings
|
|
33
|
+
|
|
34
|
+
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
35
|
+
from ....modeling import RBLNModel
|
|
36
|
+
from ....utils.runtime_utils import RBLNPytorchRuntime
|
|
37
|
+
from ...modeling_outputs import RBLNDecoderOnlyOutput
|
|
38
|
+
from ..decoderonly.generation_decoderonly import RBLNDecoderOnlyGenerationMixin
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
if TYPE_CHECKING:
|
|
42
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class RBLNRuntimeVisionModel(RBLNPytorchRuntime):
|
|
46
|
+
mandatory_members = ["main_input_name"]
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
runtime: rebel.Runtime,
|
|
51
|
+
config: Idefics3VisionConfig,
|
|
52
|
+
**kwargs: Any,
|
|
53
|
+
) -> None:
|
|
54
|
+
super().__init__(runtime, **kwargs)
|
|
55
|
+
self.patch_size = config.patch_size
|
|
56
|
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
|
57
|
+
|
|
58
|
+
def forward(
|
|
59
|
+
self,
|
|
60
|
+
pixel_values,
|
|
61
|
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
|
62
|
+
return_dict: Optional[bool] = None,
|
|
63
|
+
**kwargs,
|
|
64
|
+
):
|
|
65
|
+
batch_size = pixel_values.size(0)
|
|
66
|
+
if patch_attention_mask is None:
|
|
67
|
+
patch_size = self.patch_size
|
|
68
|
+
patch_attention_mask = torch.ones(
|
|
69
|
+
(
|
|
70
|
+
batch_size,
|
|
71
|
+
pixel_values.size(2) // patch_size,
|
|
72
|
+
pixel_values.size(3) // patch_size,
|
|
73
|
+
)
|
|
74
|
+
)
|
|
75
|
+
patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device)
|
|
76
|
+
|
|
77
|
+
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
|
78
|
+
|
|
79
|
+
return super().forward(hidden_states.contiguous(), **kwargs)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class RBLNIdefics3VisionTransformer(RBLNModel):
|
|
83
|
+
_tp_support = False
|
|
84
|
+
|
|
85
|
+
def __post_init__(self, **kwargs):
|
|
86
|
+
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
|
87
|
+
with no_init_weights():
|
|
88
|
+
self.embeddings = Idefics3VisionEmbeddings(self.config)
|
|
89
|
+
self.embeddings.load_state_dict(artifacts["embeddings"])
|
|
90
|
+
self.model = RBLNRuntimeVisionModel(
|
|
91
|
+
self.model[0], main_input_name="pixel_values", config=self.config, embeddings=self.embeddings
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
@classmethod
|
|
95
|
+
def save_torch_artifacts(
|
|
96
|
+
cls,
|
|
97
|
+
model: "PreTrainedModel",
|
|
98
|
+
save_dir_path: Path,
|
|
99
|
+
subfolder: str,
|
|
100
|
+
rbln_config: RBLNModelConfig,
|
|
101
|
+
):
|
|
102
|
+
# If you are unavoidably running on a CPU rather than an RBLN device,
|
|
103
|
+
# store the torch tensor, weight, etc. in this function.
|
|
104
|
+
|
|
105
|
+
save_dict = {}
|
|
106
|
+
save_dict["embeddings"] = model.get_input_embeddings().state_dict()
|
|
107
|
+
torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
|
|
108
|
+
|
|
109
|
+
def get_input_embeddings(self):
|
|
110
|
+
return self.embeddings
|
|
111
|
+
|
|
112
|
+
@classmethod
|
|
113
|
+
def _wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNModelConfig) -> torch.nn.Module:
|
|
114
|
+
class Idefics3VisionTransformerWrapper(torch.nn.Module):
|
|
115
|
+
def __init__(self, model: "Idefics3VisionTransformer"):
|
|
116
|
+
super().__init__()
|
|
117
|
+
self.encoder = model.encoder
|
|
118
|
+
self.post_layernorm = model.post_layernorm
|
|
119
|
+
|
|
120
|
+
def forward(self, hidden_states, patch_attention_mask: Optional[torch.BoolTensor] = None):
|
|
121
|
+
encoder_outputs = self.encoder(
|
|
122
|
+
inputs_embeds=hidden_states,
|
|
123
|
+
attention_mask=patch_attention_mask,
|
|
124
|
+
)
|
|
125
|
+
last_hidden_state = encoder_outputs[0]
|
|
126
|
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
|
127
|
+
return last_hidden_state
|
|
128
|
+
|
|
129
|
+
return Idefics3VisionTransformerWrapper(model).eval()
|
|
130
|
+
|
|
131
|
+
@classmethod
|
|
132
|
+
def _update_rbln_config(
|
|
133
|
+
cls,
|
|
134
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
135
|
+
model: Optional["PreTrainedModel"] = None,
|
|
136
|
+
model_config: Optional["PretrainedConfig"] = None,
|
|
137
|
+
rbln_config: Optional[RBLNModelConfig] = None,
|
|
138
|
+
) -> RBLNModelConfig:
|
|
139
|
+
input_info = [
|
|
140
|
+
(
|
|
141
|
+
"hidden_states",
|
|
142
|
+
[
|
|
143
|
+
rbln_config.batch_size,
|
|
144
|
+
(model_config.image_size // model_config.patch_size) ** 2,
|
|
145
|
+
model_config.hidden_size,
|
|
146
|
+
],
|
|
147
|
+
"float32",
|
|
148
|
+
),
|
|
149
|
+
]
|
|
150
|
+
|
|
151
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
|
152
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
|
153
|
+
return rbln_config
|
|
154
|
+
|
|
155
|
+
def forward(
|
|
156
|
+
self,
|
|
157
|
+
pixel_values,
|
|
158
|
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
|
159
|
+
return_dict: Optional[bool] = None,
|
|
160
|
+
**kwargs,
|
|
161
|
+
) -> Union[Tuple, BaseModelOutput]:
|
|
162
|
+
last_hidden_state_size = [
|
|
163
|
+
pixel_values.shape[0],
|
|
164
|
+
(self.config.image_size // self.config.patch_size) ** 2,
|
|
165
|
+
self.config.hidden_size,
|
|
166
|
+
]
|
|
167
|
+
last_hidden_state = torch.empty(size=last_hidden_state_size, dtype=torch.float32, device="cpu")
|
|
168
|
+
for i in range(pixel_values.shape[0]):
|
|
169
|
+
if patch_attention_mask is not None:
|
|
170
|
+
batch_attention_mask = patch_attention_mask[i : i + 1,]
|
|
171
|
+
else:
|
|
172
|
+
batch_attention_mask = None
|
|
173
|
+
|
|
174
|
+
self.model(
|
|
175
|
+
pixel_values[i : i + 1,],
|
|
176
|
+
batch_attention_mask,
|
|
177
|
+
out=last_hidden_state[i : i + 1,],
|
|
178
|
+
return_dict=False,
|
|
179
|
+
)
|
|
180
|
+
if not return_dict:
|
|
181
|
+
return (last_hidden_state,)
|
|
182
|
+
else:
|
|
183
|
+
return BaseModelOutput(last_hidden_state=last_hidden_state)
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
class RBLNIdefics3ForConditionalGeneration(RBLNModel, RBLNDecoderOnlyGenerationMixin):
|
|
187
|
+
"""
|
|
188
|
+
RBLNIdefics3ForConditionalGeneration is a multi-modal model that integrates vision and language processing capabilities,
|
|
189
|
+
optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
|
|
190
|
+
|
|
191
|
+
This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
|
192
|
+
|
|
193
|
+
Important Note:
|
|
194
|
+
This model includes a Large Language Model (LLM) as a submodule. For optimal performance, it is highly recommended to use
|
|
195
|
+
tensor parallelism for the language model. This can be achieved by using the `rbln_config` parameter in the
|
|
196
|
+
`from_pretrained` method. Refer to the `from_pretrained` documentation and the RBLNIdefics3ForConditionalGenerationConfig class for details.
|
|
197
|
+
|
|
198
|
+
Examples:
|
|
199
|
+
```python
|
|
200
|
+
from optimum.rbln import RBLNIdefics3ForConditionalGeneration
|
|
201
|
+
|
|
202
|
+
model = RBLNIdefics3ForConditionalGeneration.from_pretrained(
|
|
203
|
+
"HuggingFaceM4/idefics3-8b",
|
|
204
|
+
export=True,
|
|
205
|
+
rbln_config={
|
|
206
|
+
"vision_model": {
|
|
207
|
+
"device": 0,
|
|
208
|
+
},
|
|
209
|
+
"text_model": {
|
|
210
|
+
"batch_size": 1,
|
|
211
|
+
"max_seq_len": 131_072,
|
|
212
|
+
"tensor_parallel_size": 8,
|
|
213
|
+
"use_inputs_embeds": True,
|
|
214
|
+
"attn_impl": "flash_attn",
|
|
215
|
+
"kvcache_partition_len": 16_384,
|
|
216
|
+
"device": [0, 1, 2, 3, 4, 5, 6, 7],
|
|
217
|
+
},
|
|
218
|
+
},
|
|
219
|
+
)
|
|
220
|
+
|
|
221
|
+
model.save_pretrained("compiled-idefics3-8b")
|
|
222
|
+
```
|
|
223
|
+
"""
|
|
224
|
+
|
|
225
|
+
auto_model_class = AutoModelForVision2Seq
|
|
226
|
+
_rbln_submodules = [{"name": "vision_model"}, {"name": "text_model"}]
|
|
227
|
+
_rbln_submodule_prefix = "model"
|
|
228
|
+
|
|
229
|
+
def __getattr__(self, __name: str) -> Any:
|
|
230
|
+
def redirect(func):
|
|
231
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
|
232
|
+
|
|
233
|
+
val = getattr(Idefics3ForConditionalGeneration, __name)
|
|
234
|
+
|
|
235
|
+
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
|
236
|
+
return redirect(val)
|
|
237
|
+
return val
|
|
238
|
+
|
|
239
|
+
def can_generate(self):
|
|
240
|
+
return True
|
|
241
|
+
|
|
242
|
+
@classmethod
|
|
243
|
+
def _reconstruct_model_if_needed(cls, model: "PreTrainedModel"):
|
|
244
|
+
with no_init_weights():
|
|
245
|
+
model_cls_name = model.model.text_model.__class__.__name__
|
|
246
|
+
causal_model_cls_name = model_cls_name.replace("Model", "ForCausalLM")
|
|
247
|
+
causal_model_cls = getattr(importlib.import_module("transformers"), causal_model_cls_name)
|
|
248
|
+
new_text_model = causal_model_cls(model.model.text_model.config)
|
|
249
|
+
|
|
250
|
+
new_text_model.lm_head = model.lm_head
|
|
251
|
+
new_text_model.model = model.model.text_model
|
|
252
|
+
model.model.text_model = new_text_model
|
|
253
|
+
model.lm_head = None
|
|
254
|
+
del model.lm_head
|
|
255
|
+
return model
|
|
256
|
+
|
|
257
|
+
def __post_init__(self, **kwargs):
|
|
258
|
+
self.vision_model = self.rbln_submodules[0]
|
|
259
|
+
self.connector = self.model[0]
|
|
260
|
+
self.text_model = self.rbln_submodules[1]
|
|
261
|
+
|
|
262
|
+
def get_attn_impl(self) -> str:
|
|
263
|
+
return self.rbln_config.text_model.attn_impl
|
|
264
|
+
|
|
265
|
+
def get_kvcache_num_blocks(self) -> int:
|
|
266
|
+
return self.rbln_config.text_model.kvcache_num_blocks
|
|
267
|
+
|
|
268
|
+
def get_input_embeddings(self):
|
|
269
|
+
return self.text_model.get_input_embeddings()
|
|
270
|
+
|
|
271
|
+
@classmethod
|
|
272
|
+
def _wrap_model_if_needed(cls, model, rbln_config):
|
|
273
|
+
return model.model.connector
|
|
274
|
+
|
|
275
|
+
@classmethod
|
|
276
|
+
def _update_rbln_config(
|
|
277
|
+
cls,
|
|
278
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
279
|
+
model: Optional["PreTrainedModel"] = None,
|
|
280
|
+
model_config: Optional["PretrainedConfig"] = None,
|
|
281
|
+
rbln_config: Optional[RBLNModelConfig] = None,
|
|
282
|
+
) -> RBLNModelConfig:
|
|
283
|
+
input_info = [
|
|
284
|
+
(
|
|
285
|
+
"image_hidden_states",
|
|
286
|
+
[
|
|
287
|
+
rbln_config.vision_model.batch_size,
|
|
288
|
+
(model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2,
|
|
289
|
+
model_config.vision_config.hidden_size,
|
|
290
|
+
],
|
|
291
|
+
"float32",
|
|
292
|
+
),
|
|
293
|
+
]
|
|
294
|
+
|
|
295
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
|
296
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
|
297
|
+
|
|
298
|
+
return rbln_config
|
|
299
|
+
|
|
300
|
+
def prepare_inputs_for_generation(
|
|
301
|
+
self,
|
|
302
|
+
input_ids,
|
|
303
|
+
attention_mask=None,
|
|
304
|
+
inputs_embeds=None,
|
|
305
|
+
cache_position=None,
|
|
306
|
+
pixel_values=None,
|
|
307
|
+
pixel_attention_mask=None,
|
|
308
|
+
image_hidden_states=None,
|
|
309
|
+
generate_idx=None,
|
|
310
|
+
**kwargs,
|
|
311
|
+
):
|
|
312
|
+
is_prefill_phase = generate_idx is None
|
|
313
|
+
model_inputs = {}
|
|
314
|
+
|
|
315
|
+
if is_prefill_phase:
|
|
316
|
+
generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
|
|
317
|
+
cache_position = None
|
|
318
|
+
pixel_values = pixel_values
|
|
319
|
+
pixel_attention_mask = pixel_attention_mask
|
|
320
|
+
else:
|
|
321
|
+
if inputs_embeds is not None:
|
|
322
|
+
raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
|
|
323
|
+
|
|
324
|
+
pixel_values = None
|
|
325
|
+
pixel_attention_mask = None
|
|
326
|
+
input_ids = input_ids[:, -1:]
|
|
327
|
+
cache_position = generate_idx
|
|
328
|
+
generate_idx = generate_idx + 1
|
|
329
|
+
model_inputs.update({"input_ids": input_ids})
|
|
330
|
+
|
|
331
|
+
if inputs_embeds is not None:
|
|
332
|
+
if self.rbln_config.use_inputs_embeds:
|
|
333
|
+
model_inputs.update({"inputs_embeds": inputs_embeds})
|
|
334
|
+
else:
|
|
335
|
+
raise ValueError(
|
|
336
|
+
"The specifying inputs_embeds is only supported when using a compiled RBLN model with 'rbln_use_inputs_embeds' set to True."
|
|
337
|
+
)
|
|
338
|
+
else:
|
|
339
|
+
model_inputs.update({"input_ids": input_ids})
|
|
340
|
+
|
|
341
|
+
model_inputs.update(
|
|
342
|
+
{
|
|
343
|
+
"attention_mask": attention_mask,
|
|
344
|
+
"pixel_values": pixel_values,
|
|
345
|
+
"pixel_attention_mask": pixel_attention_mask,
|
|
346
|
+
"image_hidden_states": image_hidden_states,
|
|
347
|
+
"cache_position": cache_position,
|
|
348
|
+
"generate_idx": generate_idx,
|
|
349
|
+
}
|
|
350
|
+
)
|
|
351
|
+
return model_inputs
|
|
352
|
+
|
|
353
|
+
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
|
|
354
|
+
model_kwargs["generate_idx"] = outputs.generate_idx
|
|
355
|
+
return model_kwargs
|
|
356
|
+
|
|
357
|
+
def inputs_merger(
|
|
358
|
+
self,
|
|
359
|
+
input_ids: torch.LongTensor,
|
|
360
|
+
inputs_embeds: Optional[torch.Tensor],
|
|
361
|
+
image_hidden_states: Optional[torch.Tensor],
|
|
362
|
+
):
|
|
363
|
+
num_images, _, vision_hidden_size = image_hidden_states.shape
|
|
364
|
+
special_image_token_mask = input_ids == self.config.image_token_id
|
|
365
|
+
new_inputs_embeds = inputs_embeds.clone()
|
|
366
|
+
reshaped_image_hidden_states = image_hidden_states.view(-1, vision_hidden_size)
|
|
367
|
+
reshaped_image_hidden_states = reshaped_image_hidden_states.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
368
|
+
new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states
|
|
369
|
+
return new_inputs_embeds
|
|
370
|
+
|
|
371
|
+
def _preprocess_prefill(
|
|
372
|
+
self,
|
|
373
|
+
input_ids: torch.LongTensor = None,
|
|
374
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
375
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
376
|
+
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
|
377
|
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
|
378
|
+
**kwargs,
|
|
379
|
+
):
|
|
380
|
+
if input_ids is not None:
|
|
381
|
+
batch_size, _ = input_ids.shape
|
|
382
|
+
elif inputs_embeds is not None:
|
|
383
|
+
batch_size, _, _ = inputs_embeds.shape
|
|
384
|
+
else:
|
|
385
|
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
386
|
+
|
|
387
|
+
if inputs_embeds is not None and input_ids is None:
|
|
388
|
+
raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.")
|
|
389
|
+
|
|
390
|
+
if inputs_embeds is None:
|
|
391
|
+
inputs_embeds = self.get_input_embeddings()(input_ids).to(self.device)
|
|
392
|
+
|
|
393
|
+
if pixel_values is not None and image_hidden_states is not None:
|
|
394
|
+
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
|
|
395
|
+
|
|
396
|
+
elif pixel_values is not None:
|
|
397
|
+
batch_size, num_images, num_channels, height, width = pixel_values.shape
|
|
398
|
+
pixel_values = pixel_values.to(dtype=self.dtype)
|
|
399
|
+
pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
|
|
400
|
+
|
|
401
|
+
nb_values_per_image = pixel_values.shape[1:].numel()
|
|
402
|
+
real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
|
|
403
|
+
pixel_values = pixel_values[real_images_inds].contiguous()
|
|
404
|
+
|
|
405
|
+
if pixel_attention_mask is None:
|
|
406
|
+
pixel_attention_mask = torch.ones(
|
|
407
|
+
size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
|
|
408
|
+
dtype=torch.bool,
|
|
409
|
+
device=pixel_values.device,
|
|
410
|
+
)
|
|
411
|
+
else:
|
|
412
|
+
pixel_attention_mask = pixel_attention_mask.view(
|
|
413
|
+
batch_size * num_images, *pixel_attention_mask.shape[2:]
|
|
414
|
+
)
|
|
415
|
+
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
|
|
416
|
+
|
|
417
|
+
patch_size = self.config.vision_config.patch_size
|
|
418
|
+
patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
|
|
419
|
+
patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
|
|
420
|
+
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
|
|
421
|
+
|
|
422
|
+
image_hidden_states = self.vision_model(
|
|
423
|
+
pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, return_dict=True
|
|
424
|
+
).last_hidden_state
|
|
425
|
+
|
|
426
|
+
connector_output_size = [
|
|
427
|
+
image_hidden_states.shape[0],
|
|
428
|
+
image_hidden_states.shape[1] // self.config.scale_factor**2,
|
|
429
|
+
self.config.text_config.hidden_size,
|
|
430
|
+
]
|
|
431
|
+
connector_outputs = torch.empty(size=connector_output_size, dtype=torch.float32, device="cpu")
|
|
432
|
+
for i in range(image_hidden_states.shape[0]):
|
|
433
|
+
self.connector(image_hidden_states[i : i + 1,], out=connector_outputs[i : i + 1,])
|
|
434
|
+
image_hidden_states = connector_outputs
|
|
435
|
+
|
|
436
|
+
elif image_hidden_states is not None:
|
|
437
|
+
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
|
|
438
|
+
|
|
439
|
+
if inputs_embeds is not None and image_hidden_states is not None:
|
|
440
|
+
inputs_embeds = self.inputs_merger(
|
|
441
|
+
input_ids=input_ids,
|
|
442
|
+
inputs_embeds=inputs_embeds,
|
|
443
|
+
image_hidden_states=image_hidden_states,
|
|
444
|
+
)
|
|
445
|
+
|
|
446
|
+
return inputs_embeds
|
|
447
|
+
|
|
448
|
+
def forward(
|
|
449
|
+
self,
|
|
450
|
+
input_ids: torch.LongTensor = None,
|
|
451
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
452
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
453
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
454
|
+
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
|
455
|
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
|
456
|
+
cache_position: torch.Tensor = None,
|
|
457
|
+
generate_idx: Optional[torch.Tensor] = None,
|
|
458
|
+
return_dict: Optional[bool] = None,
|
|
459
|
+
**kwargs,
|
|
460
|
+
) -> Union[Tuple, Idefics3CausalLMOutputWithPast]:
|
|
461
|
+
# Prefill
|
|
462
|
+
if cache_position is None:
|
|
463
|
+
inputs_embeds = self._preprocess_prefill(
|
|
464
|
+
input_ids, inputs_embeds, pixel_values, pixel_attention_mask, image_hidden_states
|
|
465
|
+
)
|
|
466
|
+
logits = []
|
|
467
|
+
inputs = inputs_embeds if inputs_embeds is not None else input_ids
|
|
468
|
+
batch_size = inputs.shape[0]
|
|
469
|
+
|
|
470
|
+
for b_idx in range(batch_size):
|
|
471
|
+
cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
|
|
472
|
+
output = self.text_model.prefill_decoder(
|
|
473
|
+
input_ids=inputs[b_idx : b_idx + 1] if inputs_embeds is None else None,
|
|
474
|
+
inputs_embeds=inputs[b_idx : b_idx + 1] if inputs_embeds is not None else None,
|
|
475
|
+
attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
|
|
476
|
+
cache_position=cache_position,
|
|
477
|
+
batch_idx=b_idx,
|
|
478
|
+
)
|
|
479
|
+
logits.append(output.logits)
|
|
480
|
+
|
|
481
|
+
logits = torch.cat(logits, dim=0)
|
|
482
|
+
|
|
483
|
+
# Decoder
|
|
484
|
+
else:
|
|
485
|
+
logits = self.text_model.decoder(
|
|
486
|
+
input_ids=input_ids,
|
|
487
|
+
inputs_embeds=inputs_embeds,
|
|
488
|
+
cache_position=cache_position,
|
|
489
|
+
).logits
|
|
490
|
+
|
|
491
|
+
if not return_dict:
|
|
492
|
+
return logits, generate_idx
|
|
493
|
+
else:
|
|
494
|
+
return RBLNDecoderOnlyOutput(
|
|
495
|
+
logits=logits,
|
|
496
|
+
generate_idx=generate_idx,
|
|
497
|
+
)
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .configuration_llama import RBLNLlamaForCausalLMConfig, RBLNLlamaModelConfig
|
|
16
|
+
from .modeling_llama import RBLNLlamaForCausalLM, RBLNLlamaModel
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelConfig, RBLNDecoderOnlyModelForCausalLMConfig
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class RBLNLlamaForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
|
19
|
+
"""
|
|
20
|
+
Configuration class for RBLN Llama models.
|
|
21
|
+
|
|
22
|
+
This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
|
|
23
|
+
|
|
24
|
+
Example usage:
|
|
25
|
+
```python
|
|
26
|
+
from optimum.rbln import RBLNLlamaForCausalLM, RBLNLlamaForCausalLMConfig
|
|
27
|
+
|
|
28
|
+
# Create a configuration object
|
|
29
|
+
config = RBLNLlamaForCausalLMConfig(
|
|
30
|
+
batch_size=1,
|
|
31
|
+
max_seq_len=4096,
|
|
32
|
+
tensor_parallel_size=4
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
# Use the configuration with from_pretrained
|
|
36
|
+
model = RBLNLlamaForCausalLM.from_pretrained(
|
|
37
|
+
"meta-llama/Llama-2-7b-hf",
|
|
38
|
+
export=True,
|
|
39
|
+
rbln_config=config
|
|
40
|
+
)
|
|
41
|
+
```
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class RBLNLlamaModelConfig(RBLNDecoderOnlyModelConfig):
|
|
46
|
+
"""
|
|
47
|
+
Configuration class for RBLN Llama models.
|
|
48
|
+
|
|
49
|
+
This class is an alias of RBLNDecoderOnlyModelConfig.
|
|
50
|
+
"""
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from ...models.decoderonly.decoderonly_architecture import DecoderOnlyWrapper
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class LlamaWrapper(DecoderOnlyWrapper):
|
|
19
|
+
pass
|