optimum-rbln 0.9.3.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (264) hide show
  1. optimum/rbln/__init__.py +505 -0
  2. optimum/rbln/__version__.py +34 -0
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +968 -0
  5. optimum/rbln/diffusers/__init__.py +198 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +37 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +451 -0
  27. optimum/rbln/diffusers/models/__init__.py +64 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
  34. optimum/rbln/diffusers/models/controlnet.py +281 -0
  35. optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
  36. optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
  37. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
  38. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
  39. optimum/rbln/diffusers/models/unets/__init__.py +16 -0
  40. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
  41. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  42. optimum/rbln/diffusers/pipelines/__init__.py +113 -0
  43. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  44. optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
  45. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
  46. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
  47. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
  48. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
  49. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
  50. optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
  51. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
  52. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
  53. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
  54. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
  55. optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
  56. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
  57. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
  58. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
  59. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
  60. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
  61. optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
  62. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
  63. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
  64. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
  65. optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
  66. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
  67. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
  68. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
  69. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
  70. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
  71. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
  72. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
  73. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  74. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  75. optimum/rbln/modeling.py +364 -0
  76. optimum/rbln/modeling_base.py +637 -0
  77. optimum/rbln/ops/__init__.py +19 -0
  78. optimum/rbln/ops/attn.py +455 -0
  79. optimum/rbln/ops/flash_attn.py +350 -0
  80. optimum/rbln/ops/kv_cache_update.py +29 -0
  81. optimum/rbln/ops/linear.py +32 -0
  82. optimum/rbln/ops/sliding_window_attn.py +111 -0
  83. optimum/rbln/transformers/__init__.py +340 -0
  84. optimum/rbln/transformers/configuration_generic.py +120 -0
  85. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  86. optimum/rbln/transformers/modeling_generic.py +280 -0
  87. optimum/rbln/transformers/modeling_outputs.py +37 -0
  88. optimum/rbln/transformers/modeling_rope_utils.py +314 -0
  89. optimum/rbln/transformers/models/__init__.py +343 -0
  90. optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
  91. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
  92. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
  93. optimum/rbln/transformers/models/auto/__init__.py +31 -0
  94. optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
  95. optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
  96. optimum/rbln/transformers/models/bart/__init__.py +17 -0
  97. optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
  98. optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
  99. optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
  100. optimum/rbln/transformers/models/bert/__init__.py +16 -0
  101. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  102. optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
  103. optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
  104. optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
  105. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
  106. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
  107. optimum/rbln/transformers/models/clip/__init__.py +26 -0
  108. optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
  109. optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
  110. optimum/rbln/transformers/models/colpali/__init__.py +2 -0
  111. optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
  112. optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
  113. optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
  114. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  115. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  116. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  117. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  118. optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
  119. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
  120. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  121. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
  122. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  123. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  124. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  125. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
  126. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  127. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  128. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  129. optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
  130. optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
  131. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
  132. optimum/rbln/transformers/models/dpt/__init__.py +16 -0
  133. optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
  134. optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
  135. optimum/rbln/transformers/models/exaone/__init__.py +24 -0
  136. optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
  137. optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
  138. optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
  139. optimum/rbln/transformers/models/gemma/__init__.py +16 -0
  140. optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
  141. optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
  142. optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
  143. optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
  144. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
  145. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
  146. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  147. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
  148. optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
  149. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
  150. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
  151. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
  152. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  153. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  154. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  155. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  156. optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
  157. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
  158. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
  159. optimum/rbln/transformers/models/llama/__init__.py +16 -0
  160. optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
  161. optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
  162. optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
  163. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  164. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  165. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  166. optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
  167. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
  168. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
  169. optimum/rbln/transformers/models/midm/__init__.py +24 -0
  170. optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
  171. optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
  172. optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
  173. optimum/rbln/transformers/models/mistral/__init__.py +16 -0
  174. optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
  175. optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
  176. optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
  177. optimum/rbln/transformers/models/opt/__init__.py +16 -0
  178. optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
  179. optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
  180. optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
  181. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  182. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  183. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  184. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  185. optimum/rbln/transformers/models/phi/__init__.py +16 -0
  186. optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
  187. optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
  188. optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
  189. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  190. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  191. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  192. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  193. optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
  194. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
  195. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
  196. optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
  197. optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
  198. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
  199. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
  200. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
  201. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  202. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  203. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  204. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  205. optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
  206. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
  207. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
  208. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
  209. optimum/rbln/transformers/models/resnet/__init__.py +23 -0
  210. optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
  211. optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
  212. optimum/rbln/transformers/models/roberta/__init__.py +24 -0
  213. optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
  214. optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
  215. optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
  216. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
  217. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
  218. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
  219. optimum/rbln/transformers/models/siglip/__init__.py +16 -0
  220. optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
  221. optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
  222. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  223. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  224. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  225. optimum/rbln/transformers/models/t5/__init__.py +17 -0
  226. optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
  227. optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
  228. optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
  229. optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
  230. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
  231. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
  232. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
  233. optimum/rbln/transformers/models/vit/__init__.py +19 -0
  234. optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
  235. optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
  236. optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
  237. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
  238. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
  239. optimum/rbln/transformers/models/whisper/__init__.py +17 -0
  240. optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
  241. optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
  242. optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
  243. optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
  244. optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
  245. optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
  246. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
  247. optimum/rbln/transformers/utils/__init__.py +0 -0
  248. optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
  249. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  250. optimum/rbln/utils/__init__.py +16 -0
  251. optimum/rbln/utils/decorator_utils.py +86 -0
  252. optimum/rbln/utils/deprecation.py +213 -0
  253. optimum/rbln/utils/hub.py +94 -0
  254. optimum/rbln/utils/import_utils.py +170 -0
  255. optimum/rbln/utils/logging.py +110 -0
  256. optimum/rbln/utils/model_utils.py +63 -0
  257. optimum/rbln/utils/runtime_utils.py +249 -0
  258. optimum/rbln/utils/save_utils.py +102 -0
  259. optimum/rbln/utils/submodule.py +152 -0
  260. optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
  261. optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
  262. optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
  263. optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
  264. optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
@@ -0,0 +1,16 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_idefics3 import RBLNIdefics3ForConditionalGenerationConfig, RBLNIdefics3VisionTransformerConfig
16
+ from .modeling_idefics3 import RBLNIdefics3ForConditionalGeneration, RBLNIdefics3VisionTransformer
@@ -0,0 +1,89 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Optional
16
+
17
+ from ....configuration_utils import RBLNModelConfig
18
+ from ....utils.logging import get_logger
19
+
20
+
21
+ logger = get_logger(__name__)
22
+
23
+
24
+ class RBLNIdefics3VisionTransformerConfig(RBLNModelConfig):
25
+ """
26
+ Configuration class for RBLNIdefics3VisionTransformer.
27
+
28
+ This configuration class stores the configuration parameters specific to
29
+ RBLN-optimized Idefics3 vision transformer.
30
+ """
31
+
32
+ def __init__(
33
+ self,
34
+ batch_size: Optional[int] = None,
35
+ **kwargs: Any,
36
+ ):
37
+ super().__init__(**kwargs)
38
+ self.batch_size = batch_size or 1
39
+ if not isinstance(self.batch_size, int) or self.batch_size < 0:
40
+ raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
41
+
42
+
43
+ class RBLNIdefics3ForConditionalGenerationConfig(RBLNModelConfig):
44
+ """
45
+ Configuration class for RBLNIdefics3ForConditionalGeneration models.
46
+
47
+ This class extends `RBLNModelConfig` to include settings specific to the Idefics3 vision-language model optimized for RBLN devices.
48
+ It allows configuration of the batch size and separate configurations for the vision and text submodules.
49
+
50
+ Attributes:
51
+ submodules (List[str]): List of submodules included in the model. Defaults to `["vision_model", "text_model"]`.
52
+ """
53
+
54
+ submodules = ["vision_model", "text_model"]
55
+
56
+ def __init__(
57
+ self,
58
+ batch_size: Optional[int] = None,
59
+ vision_model: Optional[RBLNModelConfig] = None,
60
+ text_model: Optional[RBLNModelConfig] = None,
61
+ **kwargs: Any,
62
+ ):
63
+ """
64
+ Args:
65
+ batch_size (Optional[int]): The batch size for inference. Defaults to 1.
66
+ vision_model (Optional[RBLNModelConfig]): Configuration for the vision transformer component.
67
+ This can include settings specific to the vision encoder, such as input resolution or other vision-related parameters.
68
+ If not provided, default settings will be used.
69
+ text_model (Optional[RBLNModelConfig]): Configuration for the text model component.
70
+ This can include settings specific to the language model, such as tensor parallelism or other text-related parameters.
71
+ If not provided, default settings will be used.
72
+ kwargs: Additional arguments passed to the parent `RBLNModelConfig`.
73
+
74
+ Raises:
75
+ ValueError: If `batch_size` is not a positive integer.
76
+ """
77
+
78
+ super().__init__(**kwargs)
79
+ self.batch_size = batch_size or 1
80
+ if not isinstance(self.batch_size, int) or self.batch_size < 0:
81
+ raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
82
+
83
+ if self.batch_size != 1:
84
+ logger.warning("Ignore batch_size for Idefics3 vision transformer. It will be set to 1.")
85
+
86
+ self.vision_model = self.initialize_submodule_config(
87
+ submodule_config=vision_model, batch_size=1, force_kwargs=True
88
+ )
89
+ self.text_model = self.initialize_submodule_config(submodule_config=text_model)
@@ -0,0 +1,497 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import importlib
16
+ import inspect
17
+ from pathlib import Path
18
+ from typing import TYPE_CHECKING, Any, Callable, Optional, Tuple, Union
19
+
20
+ import rebel
21
+ import torch
22
+ from transformers import (
23
+ AutoModelForVision2Seq,
24
+ Idefics3ForConditionalGeneration,
25
+ Idefics3VisionConfig,
26
+ Idefics3VisionTransformer,
27
+ PretrainedConfig,
28
+ PreTrainedModel,
29
+ )
30
+ from transformers.modeling_outputs import BaseModelOutput
31
+ from transformers.modeling_utils import no_init_weights
32
+ from transformers.models.idefics3.modeling_idefics3 import Idefics3CausalLMOutputWithPast, Idefics3VisionEmbeddings
33
+
34
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
35
+ from ....modeling import RBLNModel
36
+ from ....utils.runtime_utils import RBLNPytorchRuntime
37
+ from ...modeling_outputs import RBLNDecoderOnlyOutput
38
+ from ..decoderonly.generation_decoderonly import RBLNDecoderOnlyGenerationMixin
39
+
40
+
41
+ if TYPE_CHECKING:
42
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer
43
+
44
+
45
+ class RBLNRuntimeVisionModel(RBLNPytorchRuntime):
46
+ mandatory_members = ["main_input_name"]
47
+
48
+ def __init__(
49
+ self,
50
+ runtime: rebel.Runtime,
51
+ config: Idefics3VisionConfig,
52
+ **kwargs: Any,
53
+ ) -> None:
54
+ super().__init__(runtime, **kwargs)
55
+ self.patch_size = config.patch_size
56
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
57
+
58
+ def forward(
59
+ self,
60
+ pixel_values,
61
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
62
+ return_dict: Optional[bool] = None,
63
+ **kwargs,
64
+ ):
65
+ batch_size = pixel_values.size(0)
66
+ if patch_attention_mask is None:
67
+ patch_size = self.patch_size
68
+ patch_attention_mask = torch.ones(
69
+ (
70
+ batch_size,
71
+ pixel_values.size(2) // patch_size,
72
+ pixel_values.size(3) // patch_size,
73
+ )
74
+ )
75
+ patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device)
76
+
77
+ hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
78
+
79
+ return super().forward(hidden_states.contiguous(), **kwargs)
80
+
81
+
82
+ class RBLNIdefics3VisionTransformer(RBLNModel):
83
+ _tp_support = False
84
+
85
+ def __post_init__(self, **kwargs):
86
+ artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
87
+ with no_init_weights():
88
+ self.embeddings = Idefics3VisionEmbeddings(self.config)
89
+ self.embeddings.load_state_dict(artifacts["embeddings"])
90
+ self.model = RBLNRuntimeVisionModel(
91
+ self.model[0], main_input_name="pixel_values", config=self.config, embeddings=self.embeddings
92
+ )
93
+
94
+ @classmethod
95
+ def save_torch_artifacts(
96
+ cls,
97
+ model: "PreTrainedModel",
98
+ save_dir_path: Path,
99
+ subfolder: str,
100
+ rbln_config: RBLNModelConfig,
101
+ ):
102
+ # If you are unavoidably running on a CPU rather than an RBLN device,
103
+ # store the torch tensor, weight, etc. in this function.
104
+
105
+ save_dict = {}
106
+ save_dict["embeddings"] = model.get_input_embeddings().state_dict()
107
+ torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
108
+
109
+ def get_input_embeddings(self):
110
+ return self.embeddings
111
+
112
+ @classmethod
113
+ def _wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNModelConfig) -> torch.nn.Module:
114
+ class Idefics3VisionTransformerWrapper(torch.nn.Module):
115
+ def __init__(self, model: "Idefics3VisionTransformer"):
116
+ super().__init__()
117
+ self.encoder = model.encoder
118
+ self.post_layernorm = model.post_layernorm
119
+
120
+ def forward(self, hidden_states, patch_attention_mask: Optional[torch.BoolTensor] = None):
121
+ encoder_outputs = self.encoder(
122
+ inputs_embeds=hidden_states,
123
+ attention_mask=patch_attention_mask,
124
+ )
125
+ last_hidden_state = encoder_outputs[0]
126
+ last_hidden_state = self.post_layernorm(last_hidden_state)
127
+ return last_hidden_state
128
+
129
+ return Idefics3VisionTransformerWrapper(model).eval()
130
+
131
+ @classmethod
132
+ def _update_rbln_config(
133
+ cls,
134
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
135
+ model: Optional["PreTrainedModel"] = None,
136
+ model_config: Optional["PretrainedConfig"] = None,
137
+ rbln_config: Optional[RBLNModelConfig] = None,
138
+ ) -> RBLNModelConfig:
139
+ input_info = [
140
+ (
141
+ "hidden_states",
142
+ [
143
+ rbln_config.batch_size,
144
+ (model_config.image_size // model_config.patch_size) ** 2,
145
+ model_config.hidden_size,
146
+ ],
147
+ "float32",
148
+ ),
149
+ ]
150
+
151
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
152
+ rbln_config.set_compile_cfgs([rbln_compile_config])
153
+ return rbln_config
154
+
155
+ def forward(
156
+ self,
157
+ pixel_values,
158
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
159
+ return_dict: Optional[bool] = None,
160
+ **kwargs,
161
+ ) -> Union[Tuple, BaseModelOutput]:
162
+ last_hidden_state_size = [
163
+ pixel_values.shape[0],
164
+ (self.config.image_size // self.config.patch_size) ** 2,
165
+ self.config.hidden_size,
166
+ ]
167
+ last_hidden_state = torch.empty(size=last_hidden_state_size, dtype=torch.float32, device="cpu")
168
+ for i in range(pixel_values.shape[0]):
169
+ if patch_attention_mask is not None:
170
+ batch_attention_mask = patch_attention_mask[i : i + 1,]
171
+ else:
172
+ batch_attention_mask = None
173
+
174
+ self.model(
175
+ pixel_values[i : i + 1,],
176
+ batch_attention_mask,
177
+ out=last_hidden_state[i : i + 1,],
178
+ return_dict=False,
179
+ )
180
+ if not return_dict:
181
+ return (last_hidden_state,)
182
+ else:
183
+ return BaseModelOutput(last_hidden_state=last_hidden_state)
184
+
185
+
186
+ class RBLNIdefics3ForConditionalGeneration(RBLNModel, RBLNDecoderOnlyGenerationMixin):
187
+ """
188
+ RBLNIdefics3ForConditionalGeneration is a multi-modal model that integrates vision and language processing capabilities,
189
+ optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
190
+
191
+ This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
192
+
193
+ Important Note:
194
+ This model includes a Large Language Model (LLM) as a submodule. For optimal performance, it is highly recommended to use
195
+ tensor parallelism for the language model. This can be achieved by using the `rbln_config` parameter in the
196
+ `from_pretrained` method. Refer to the `from_pretrained` documentation and the RBLNIdefics3ForConditionalGenerationConfig class for details.
197
+
198
+ Examples:
199
+ ```python
200
+ from optimum.rbln import RBLNIdefics3ForConditionalGeneration
201
+
202
+ model = RBLNIdefics3ForConditionalGeneration.from_pretrained(
203
+ "HuggingFaceM4/idefics3-8b",
204
+ export=True,
205
+ rbln_config={
206
+ "vision_model": {
207
+ "device": 0,
208
+ },
209
+ "text_model": {
210
+ "batch_size": 1,
211
+ "max_seq_len": 131_072,
212
+ "tensor_parallel_size": 8,
213
+ "use_inputs_embeds": True,
214
+ "attn_impl": "flash_attn",
215
+ "kvcache_partition_len": 16_384,
216
+ "device": [0, 1, 2, 3, 4, 5, 6, 7],
217
+ },
218
+ },
219
+ )
220
+
221
+ model.save_pretrained("compiled-idefics3-8b")
222
+ ```
223
+ """
224
+
225
+ auto_model_class = AutoModelForVision2Seq
226
+ _rbln_submodules = [{"name": "vision_model"}, {"name": "text_model"}]
227
+ _rbln_submodule_prefix = "model"
228
+
229
+ def __getattr__(self, __name: str) -> Any:
230
+ def redirect(func):
231
+ return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
232
+
233
+ val = getattr(Idefics3ForConditionalGeneration, __name)
234
+
235
+ if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
236
+ return redirect(val)
237
+ return val
238
+
239
+ def can_generate(self):
240
+ return True
241
+
242
+ @classmethod
243
+ def _reconstruct_model_if_needed(cls, model: "PreTrainedModel"):
244
+ with no_init_weights():
245
+ model_cls_name = model.model.text_model.__class__.__name__
246
+ causal_model_cls_name = model_cls_name.replace("Model", "ForCausalLM")
247
+ causal_model_cls = getattr(importlib.import_module("transformers"), causal_model_cls_name)
248
+ new_text_model = causal_model_cls(model.model.text_model.config)
249
+
250
+ new_text_model.lm_head = model.lm_head
251
+ new_text_model.model = model.model.text_model
252
+ model.model.text_model = new_text_model
253
+ model.lm_head = None
254
+ del model.lm_head
255
+ return model
256
+
257
+ def __post_init__(self, **kwargs):
258
+ self.vision_model = self.rbln_submodules[0]
259
+ self.connector = self.model[0]
260
+ self.text_model = self.rbln_submodules[1]
261
+
262
+ def get_attn_impl(self) -> str:
263
+ return self.rbln_config.text_model.attn_impl
264
+
265
+ def get_kvcache_num_blocks(self) -> int:
266
+ return self.rbln_config.text_model.kvcache_num_blocks
267
+
268
+ def get_input_embeddings(self):
269
+ return self.text_model.get_input_embeddings()
270
+
271
+ @classmethod
272
+ def _wrap_model_if_needed(cls, model, rbln_config):
273
+ return model.model.connector
274
+
275
+ @classmethod
276
+ def _update_rbln_config(
277
+ cls,
278
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
279
+ model: Optional["PreTrainedModel"] = None,
280
+ model_config: Optional["PretrainedConfig"] = None,
281
+ rbln_config: Optional[RBLNModelConfig] = None,
282
+ ) -> RBLNModelConfig:
283
+ input_info = [
284
+ (
285
+ "image_hidden_states",
286
+ [
287
+ rbln_config.vision_model.batch_size,
288
+ (model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2,
289
+ model_config.vision_config.hidden_size,
290
+ ],
291
+ "float32",
292
+ ),
293
+ ]
294
+
295
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
296
+ rbln_config.set_compile_cfgs([rbln_compile_config])
297
+
298
+ return rbln_config
299
+
300
+ def prepare_inputs_for_generation(
301
+ self,
302
+ input_ids,
303
+ attention_mask=None,
304
+ inputs_embeds=None,
305
+ cache_position=None,
306
+ pixel_values=None,
307
+ pixel_attention_mask=None,
308
+ image_hidden_states=None,
309
+ generate_idx=None,
310
+ **kwargs,
311
+ ):
312
+ is_prefill_phase = generate_idx is None
313
+ model_inputs = {}
314
+
315
+ if is_prefill_phase:
316
+ generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
317
+ cache_position = None
318
+ pixel_values = pixel_values
319
+ pixel_attention_mask = pixel_attention_mask
320
+ else:
321
+ if inputs_embeds is not None:
322
+ raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
323
+
324
+ pixel_values = None
325
+ pixel_attention_mask = None
326
+ input_ids = input_ids[:, -1:]
327
+ cache_position = generate_idx
328
+ generate_idx = generate_idx + 1
329
+ model_inputs.update({"input_ids": input_ids})
330
+
331
+ if inputs_embeds is not None:
332
+ if self.rbln_config.use_inputs_embeds:
333
+ model_inputs.update({"inputs_embeds": inputs_embeds})
334
+ else:
335
+ raise ValueError(
336
+ "The specifying inputs_embeds is only supported when using a compiled RBLN model with 'rbln_use_inputs_embeds' set to True."
337
+ )
338
+ else:
339
+ model_inputs.update({"input_ids": input_ids})
340
+
341
+ model_inputs.update(
342
+ {
343
+ "attention_mask": attention_mask,
344
+ "pixel_values": pixel_values,
345
+ "pixel_attention_mask": pixel_attention_mask,
346
+ "image_hidden_states": image_hidden_states,
347
+ "cache_position": cache_position,
348
+ "generate_idx": generate_idx,
349
+ }
350
+ )
351
+ return model_inputs
352
+
353
+ def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
354
+ model_kwargs["generate_idx"] = outputs.generate_idx
355
+ return model_kwargs
356
+
357
+ def inputs_merger(
358
+ self,
359
+ input_ids: torch.LongTensor,
360
+ inputs_embeds: Optional[torch.Tensor],
361
+ image_hidden_states: Optional[torch.Tensor],
362
+ ):
363
+ num_images, _, vision_hidden_size = image_hidden_states.shape
364
+ special_image_token_mask = input_ids == self.config.image_token_id
365
+ new_inputs_embeds = inputs_embeds.clone()
366
+ reshaped_image_hidden_states = image_hidden_states.view(-1, vision_hidden_size)
367
+ reshaped_image_hidden_states = reshaped_image_hidden_states.to(inputs_embeds.device, inputs_embeds.dtype)
368
+ new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states
369
+ return new_inputs_embeds
370
+
371
+ def _preprocess_prefill(
372
+ self,
373
+ input_ids: torch.LongTensor = None,
374
+ inputs_embeds: Optional[torch.FloatTensor] = None,
375
+ pixel_values: Optional[torch.FloatTensor] = None,
376
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
377
+ image_hidden_states: Optional[torch.FloatTensor] = None,
378
+ **kwargs,
379
+ ):
380
+ if input_ids is not None:
381
+ batch_size, _ = input_ids.shape
382
+ elif inputs_embeds is not None:
383
+ batch_size, _, _ = inputs_embeds.shape
384
+ else:
385
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
386
+
387
+ if inputs_embeds is not None and input_ids is None:
388
+ raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.")
389
+
390
+ if inputs_embeds is None:
391
+ inputs_embeds = self.get_input_embeddings()(input_ids).to(self.device)
392
+
393
+ if pixel_values is not None and image_hidden_states is not None:
394
+ raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
395
+
396
+ elif pixel_values is not None:
397
+ batch_size, num_images, num_channels, height, width = pixel_values.shape
398
+ pixel_values = pixel_values.to(dtype=self.dtype)
399
+ pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
400
+
401
+ nb_values_per_image = pixel_values.shape[1:].numel()
402
+ real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
403
+ pixel_values = pixel_values[real_images_inds].contiguous()
404
+
405
+ if pixel_attention_mask is None:
406
+ pixel_attention_mask = torch.ones(
407
+ size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
408
+ dtype=torch.bool,
409
+ device=pixel_values.device,
410
+ )
411
+ else:
412
+ pixel_attention_mask = pixel_attention_mask.view(
413
+ batch_size * num_images, *pixel_attention_mask.shape[2:]
414
+ )
415
+ pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
416
+
417
+ patch_size = self.config.vision_config.patch_size
418
+ patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
419
+ patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
420
+ patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
421
+
422
+ image_hidden_states = self.vision_model(
423
+ pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, return_dict=True
424
+ ).last_hidden_state
425
+
426
+ connector_output_size = [
427
+ image_hidden_states.shape[0],
428
+ image_hidden_states.shape[1] // self.config.scale_factor**2,
429
+ self.config.text_config.hidden_size,
430
+ ]
431
+ connector_outputs = torch.empty(size=connector_output_size, dtype=torch.float32, device="cpu")
432
+ for i in range(image_hidden_states.shape[0]):
433
+ self.connector(image_hidden_states[i : i + 1,], out=connector_outputs[i : i + 1,])
434
+ image_hidden_states = connector_outputs
435
+
436
+ elif image_hidden_states is not None:
437
+ image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
438
+
439
+ if inputs_embeds is not None and image_hidden_states is not None:
440
+ inputs_embeds = self.inputs_merger(
441
+ input_ids=input_ids,
442
+ inputs_embeds=inputs_embeds,
443
+ image_hidden_states=image_hidden_states,
444
+ )
445
+
446
+ return inputs_embeds
447
+
448
+ def forward(
449
+ self,
450
+ input_ids: torch.LongTensor = None,
451
+ attention_mask: Optional[torch.Tensor] = None,
452
+ inputs_embeds: Optional[torch.FloatTensor] = None,
453
+ pixel_values: Optional[torch.FloatTensor] = None,
454
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
455
+ image_hidden_states: Optional[torch.FloatTensor] = None,
456
+ cache_position: torch.Tensor = None,
457
+ generate_idx: Optional[torch.Tensor] = None,
458
+ return_dict: Optional[bool] = None,
459
+ **kwargs,
460
+ ) -> Union[Tuple, Idefics3CausalLMOutputWithPast]:
461
+ # Prefill
462
+ if cache_position is None:
463
+ inputs_embeds = self._preprocess_prefill(
464
+ input_ids, inputs_embeds, pixel_values, pixel_attention_mask, image_hidden_states
465
+ )
466
+ logits = []
467
+ inputs = inputs_embeds if inputs_embeds is not None else input_ids
468
+ batch_size = inputs.shape[0]
469
+
470
+ for b_idx in range(batch_size):
471
+ cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
472
+ output = self.text_model.prefill_decoder(
473
+ input_ids=inputs[b_idx : b_idx + 1] if inputs_embeds is None else None,
474
+ inputs_embeds=inputs[b_idx : b_idx + 1] if inputs_embeds is not None else None,
475
+ attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
476
+ cache_position=cache_position,
477
+ batch_idx=b_idx,
478
+ )
479
+ logits.append(output.logits)
480
+
481
+ logits = torch.cat(logits, dim=0)
482
+
483
+ # Decoder
484
+ else:
485
+ logits = self.text_model.decoder(
486
+ input_ids=input_ids,
487
+ inputs_embeds=inputs_embeds,
488
+ cache_position=cache_position,
489
+ ).logits
490
+
491
+ if not return_dict:
492
+ return logits, generate_idx
493
+ else:
494
+ return RBLNDecoderOnlyOutput(
495
+ logits=logits,
496
+ generate_idx=generate_idx,
497
+ )
@@ -0,0 +1,16 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_llama import RBLNLlamaForCausalLMConfig, RBLNLlamaModelConfig
16
+ from .modeling_llama import RBLNLlamaForCausalLM, RBLNLlamaModel
@@ -0,0 +1,50 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelConfig, RBLNDecoderOnlyModelForCausalLMConfig
16
+
17
+
18
+ class RBLNLlamaForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
19
+ """
20
+ Configuration class for RBLN Llama models.
21
+
22
+ This class is an alias of RBLNDecoderOnlyModelForCausalLMConfig.
23
+
24
+ Example usage:
25
+ ```python
26
+ from optimum.rbln import RBLNLlamaForCausalLM, RBLNLlamaForCausalLMConfig
27
+
28
+ # Create a configuration object
29
+ config = RBLNLlamaForCausalLMConfig(
30
+ batch_size=1,
31
+ max_seq_len=4096,
32
+ tensor_parallel_size=4
33
+ )
34
+
35
+ # Use the configuration with from_pretrained
36
+ model = RBLNLlamaForCausalLM.from_pretrained(
37
+ "meta-llama/Llama-2-7b-hf",
38
+ export=True,
39
+ rbln_config=config
40
+ )
41
+ ```
42
+ """
43
+
44
+
45
+ class RBLNLlamaModelConfig(RBLNDecoderOnlyModelConfig):
46
+ """
47
+ Configuration class for RBLN Llama models.
48
+
49
+ This class is an alias of RBLNDecoderOnlyModelConfig.
50
+ """
@@ -0,0 +1,19 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from ...models.decoderonly.decoderonly_architecture import DecoderOnlyWrapper
16
+
17
+
18
+ class LlamaWrapper(DecoderOnlyWrapper):
19
+ pass