optimum-rbln 0.9.3.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +505 -0
- optimum/rbln/__version__.py +34 -0
- optimum/rbln/cli.py +660 -0
- optimum/rbln/configuration_utils.py +968 -0
- optimum/rbln/diffusers/__init__.py +198 -0
- optimum/rbln/diffusers/configurations/__init__.py +37 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
- optimum/rbln/diffusers/modeling_diffusers.py +451 -0
- optimum/rbln/diffusers/models/__init__.py +64 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
- optimum/rbln/diffusers/models/controlnet.py +281 -0
- optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
- optimum/rbln/diffusers/models/unets/__init__.py +16 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
- optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
- optimum/rbln/diffusers/pipelines/__init__.py +113 -0
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
- optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
- optimum/rbln/modeling.py +364 -0
- optimum/rbln/modeling_base.py +637 -0
- optimum/rbln/ops/__init__.py +19 -0
- optimum/rbln/ops/attn.py +455 -0
- optimum/rbln/ops/flash_attn.py +350 -0
- optimum/rbln/ops/kv_cache_update.py +29 -0
- optimum/rbln/ops/linear.py +32 -0
- optimum/rbln/ops/sliding_window_attn.py +111 -0
- optimum/rbln/transformers/__init__.py +340 -0
- optimum/rbln/transformers/configuration_generic.py +120 -0
- optimum/rbln/transformers/modeling_attention_utils.py +385 -0
- optimum/rbln/transformers/modeling_generic.py +280 -0
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/modeling_rope_utils.py +314 -0
- optimum/rbln/transformers/models/__init__.py +343 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
- optimum/rbln/transformers/models/auto/__init__.py +31 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
- optimum/rbln/transformers/models/bart/__init__.py +17 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
- optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
- optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
- optimum/rbln/transformers/models/bert/__init__.py +16 -0
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
- optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
- optimum/rbln/transformers/models/clip/__init__.py +26 -0
- optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
- optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
- optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
- optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
- optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
- optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
- optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
- optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
- optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
- optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
- optimum/rbln/transformers/models/dpt/__init__.py +16 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
- optimum/rbln/transformers/models/exaone/__init__.py +24 -0
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
- optimum/rbln/transformers/models/gemma/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
- optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
- optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
- optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
- optimum/rbln/transformers/models/llama/__init__.py +16 -0
- optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
- optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
- optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
- optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
- optimum/rbln/transformers/models/midm/__init__.py +24 -0
- optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
- optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
- optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
- optimum/rbln/transformers/models/mistral/__init__.py +16 -0
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
- optimum/rbln/transformers/models/opt/__init__.py +16 -0
- optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
- optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
- optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
- optimum/rbln/transformers/models/phi/__init__.py +16 -0
- optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
- optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
- optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
- optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
- optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
- optimum/rbln/transformers/models/resnet/__init__.py +23 -0
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
- optimum/rbln/transformers/models/roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
- optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
- optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
- optimum/rbln/transformers/models/siglip/__init__.py +16 -0
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
- optimum/rbln/transformers/models/t5/__init__.py +17 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
- optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
- optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
- optimum/rbln/transformers/models/vit/__init__.py +19 -0
- optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
- optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
- optimum/rbln/transformers/models/whisper/__init__.py +17 -0
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
- optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
- optimum/rbln/transformers/utils/__init__.py +0 -0
- optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
- optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
- optimum/rbln/utils/__init__.py +16 -0
- optimum/rbln/utils/decorator_utils.py +86 -0
- optimum/rbln/utils/deprecation.py +213 -0
- optimum/rbln/utils/hub.py +94 -0
- optimum/rbln/utils/import_utils.py +170 -0
- optimum/rbln/utils/logging.py +110 -0
- optimum/rbln/utils/model_utils.py +63 -0
- optimum/rbln/utils/runtime_utils.py +249 -0
- optimum/rbln/utils/save_utils.py +102 -0
- optimum/rbln/utils/submodule.py +152 -0
- optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
- optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
- optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
- optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
- optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
|
@@ -0,0 +1,384 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
from transformers import CLIPTextConfig, CLIPTextModel, CLIPVisionConfig, CLIPVisionModel
|
|
19
|
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
|
20
|
+
from transformers.models.clip.modeling_clip import CLIPTextModelOutput, CLIPVisionModelOutput
|
|
21
|
+
|
|
22
|
+
from ....configuration_utils import RBLNCompileConfig
|
|
23
|
+
from ....modeling import RBLNModel
|
|
24
|
+
from ....utils.logging import get_logger
|
|
25
|
+
from .configuration_clip import RBLNCLIPTextModelConfig, RBLNCLIPVisionModelConfig
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
logger = get_logger(__name__)
|
|
29
|
+
|
|
30
|
+
if TYPE_CHECKING:
|
|
31
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, CLIPTextModel, PreTrainedModel
|
|
32
|
+
|
|
33
|
+
from ....diffusers.modeling_diffusers import RBLNDiffusionMixin, RBLNDiffusionMixinConfig
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class _TextEncoder(torch.nn.Module):
|
|
37
|
+
def __init__(self, enc: "CLIPTextModel"):
|
|
38
|
+
super().__init__()
|
|
39
|
+
self.enc = enc
|
|
40
|
+
|
|
41
|
+
def forward(self, inp):
|
|
42
|
+
enc_out = self.enc(inp, output_hidden_states=True, return_dict=False)
|
|
43
|
+
return enc_out
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class RBLNCLIPTextModel(RBLNModel):
|
|
47
|
+
"""
|
|
48
|
+
RBLN optimized CLIP text encoder model.
|
|
49
|
+
|
|
50
|
+
This class provides hardware-accelerated inference for CLIP text encoders
|
|
51
|
+
on RBLN devices, supporting text encoding for multimodal tasks.
|
|
52
|
+
"""
|
|
53
|
+
|
|
54
|
+
_tp_support = False
|
|
55
|
+
|
|
56
|
+
@classmethod
|
|
57
|
+
def _wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNCLIPTextModelConfig) -> torch.nn.Module:
|
|
58
|
+
return _TextEncoder(model).eval()
|
|
59
|
+
|
|
60
|
+
@classmethod
|
|
61
|
+
def update_rbln_config_using_pipe(
|
|
62
|
+
cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
|
|
63
|
+
) -> "RBLNDiffusionMixinConfig":
|
|
64
|
+
return rbln_config
|
|
65
|
+
|
|
66
|
+
@classmethod
|
|
67
|
+
def _update_rbln_config(
|
|
68
|
+
cls,
|
|
69
|
+
preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
|
|
70
|
+
model: Optional["PreTrainedModel"] = None,
|
|
71
|
+
model_config: "CLIPTextConfig" = None,
|
|
72
|
+
rbln_config: Optional[RBLNCLIPTextModelConfig] = None,
|
|
73
|
+
) -> RBLNCLIPTextModelConfig:
|
|
74
|
+
input_info = [
|
|
75
|
+
(
|
|
76
|
+
"input_ids",
|
|
77
|
+
[
|
|
78
|
+
rbln_config.batch_size,
|
|
79
|
+
model_config.max_position_embeddings,
|
|
80
|
+
],
|
|
81
|
+
"int64",
|
|
82
|
+
),
|
|
83
|
+
]
|
|
84
|
+
|
|
85
|
+
rbln_config.set_compile_cfgs([RBLNCompileConfig(input_info=input_info)])
|
|
86
|
+
return rbln_config
|
|
87
|
+
|
|
88
|
+
def forward(self, input_ids: torch.LongTensor, return_dict: Optional[bool] = None, **kwargs) -> torch.FloatTensor:
|
|
89
|
+
"""
|
|
90
|
+
Forward pass for the RBLN-optimized CLIP text encoder model.
|
|
91
|
+
|
|
92
|
+
Args:
|
|
93
|
+
input_ids (torch.LongTensor): The input ids to the model.
|
|
94
|
+
return_dict (Optional[bool]): Whether to return a dictionary of outputs.
|
|
95
|
+
|
|
96
|
+
Returns:
|
|
97
|
+
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a CLIPTextModelOutput object.
|
|
98
|
+
"""
|
|
99
|
+
|
|
100
|
+
# To ignore using attention_mask, we override forward method.
|
|
101
|
+
output = super().forward(input_ids, return_dict=return_dict)
|
|
102
|
+
return output
|
|
103
|
+
|
|
104
|
+
def _prepare_output(self, output, return_dict):
|
|
105
|
+
# Prepare model output based on return_dict flag.
|
|
106
|
+
# This method can be overridden by subclasses to provide task-specific output handling.
|
|
107
|
+
|
|
108
|
+
if not return_dict:
|
|
109
|
+
return (output,) if not isinstance(output, (tuple, list)) else output
|
|
110
|
+
else:
|
|
111
|
+
return CLIPTextModelOutput(
|
|
112
|
+
text_embeds=output[0],
|
|
113
|
+
last_hidden_state=output[1],
|
|
114
|
+
hidden_states=output[2:],
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class RBLNCLIPTextModelWithProjection(RBLNCLIPTextModel):
|
|
119
|
+
"""
|
|
120
|
+
RBLN optimized CLIP text encoder model with projection layer.
|
|
121
|
+
|
|
122
|
+
This class extends RBLNCLIPTextModel with a projection layer for
|
|
123
|
+
multimodal embedding alignment tasks.
|
|
124
|
+
"""
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
class _VisionEncoder(torch.nn.Module):
|
|
128
|
+
def __init__(
|
|
129
|
+
self,
|
|
130
|
+
enc: CLIPVisionModel,
|
|
131
|
+
interpolate_pos_encoding: bool,
|
|
132
|
+
output_hidden_states: bool,
|
|
133
|
+
output_attentions: bool,
|
|
134
|
+
):
|
|
135
|
+
super().__init__()
|
|
136
|
+
self.enc = enc
|
|
137
|
+
self.interpolate_pos_encoding = interpolate_pos_encoding
|
|
138
|
+
self.output_hidden_states = output_hidden_states
|
|
139
|
+
self.output_attentions = output_attentions
|
|
140
|
+
|
|
141
|
+
def forward(self, inp):
|
|
142
|
+
enc_out = self.enc(
|
|
143
|
+
inp,
|
|
144
|
+
output_hidden_states=self.output_hidden_states,
|
|
145
|
+
interpolate_pos_encoding=self.interpolate_pos_encoding,
|
|
146
|
+
output_attentions=self.output_attentions,
|
|
147
|
+
return_dict=False,
|
|
148
|
+
)
|
|
149
|
+
return enc_out
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
class RBLNCLIPVisionModel(RBLNModel):
|
|
153
|
+
"""
|
|
154
|
+
RBLN optimized CLIP vision encoder model.
|
|
155
|
+
|
|
156
|
+
This class provides hardware-accelerated inference for CLIP vision encoders
|
|
157
|
+
on RBLN devices, supporting image encoding for multimodal tasks.
|
|
158
|
+
"""
|
|
159
|
+
|
|
160
|
+
_tp_support = False
|
|
161
|
+
|
|
162
|
+
@classmethod
|
|
163
|
+
def _wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNCLIPVisionModelConfig) -> torch.nn.Module:
|
|
164
|
+
wrapper_cfg = {
|
|
165
|
+
"interpolate_pos_encoding": rbln_config.interpolate_pos_encoding,
|
|
166
|
+
"output_hidden_states": rbln_config.output_hidden_states,
|
|
167
|
+
"output_attentions": rbln_config.output_attentions,
|
|
168
|
+
}
|
|
169
|
+
return _VisionEncoder(model, **wrapper_cfg).eval()
|
|
170
|
+
|
|
171
|
+
@classmethod
|
|
172
|
+
def update_rbln_config_using_pipe(
|
|
173
|
+
cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
|
|
174
|
+
) -> "RBLNDiffusionMixinConfig":
|
|
175
|
+
return rbln_config
|
|
176
|
+
|
|
177
|
+
@classmethod
|
|
178
|
+
def _update_rbln_config(
|
|
179
|
+
cls,
|
|
180
|
+
preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
|
|
181
|
+
model: Optional["PreTrainedModel"] = None,
|
|
182
|
+
model_config: "CLIPVisionConfig" = None,
|
|
183
|
+
rbln_config: Optional[RBLNCLIPVisionModelConfig] = None,
|
|
184
|
+
) -> RBLNCLIPVisionModelConfig:
|
|
185
|
+
if rbln_config.image_size is None:
|
|
186
|
+
rbln_config.image_size = getattr(model_config, "image_size", None)
|
|
187
|
+
|
|
188
|
+
if isinstance(rbln_config.image_size, int):
|
|
189
|
+
rbln_config.image_size = (rbln_config.image_size, rbln_config.image_size)
|
|
190
|
+
|
|
191
|
+
if rbln_config.image_size is None:
|
|
192
|
+
raise ValueError("`rbln_image_size` should be specified!")
|
|
193
|
+
|
|
194
|
+
if rbln_config.output_attentions is None:
|
|
195
|
+
rbln_config.output_attentions = getattr(model_config, "output_attentions", False)
|
|
196
|
+
|
|
197
|
+
if rbln_config.output_hidden_states is None:
|
|
198
|
+
rbln_config.output_hidden_states = getattr(model_config, "output_hidden_states", False)
|
|
199
|
+
|
|
200
|
+
rbln_compile_config = RBLNCompileConfig(
|
|
201
|
+
input_info=[
|
|
202
|
+
(
|
|
203
|
+
"pixel_values",
|
|
204
|
+
[
|
|
205
|
+
rbln_config.batch_size,
|
|
206
|
+
3,
|
|
207
|
+
rbln_config.image_height,
|
|
208
|
+
rbln_config.image_width,
|
|
209
|
+
],
|
|
210
|
+
"float32",
|
|
211
|
+
)
|
|
212
|
+
]
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
|
216
|
+
return rbln_config
|
|
217
|
+
|
|
218
|
+
def forward(
|
|
219
|
+
self,
|
|
220
|
+
pixel_values: torch.FloatTensor,
|
|
221
|
+
return_dict: bool = True,
|
|
222
|
+
output_attentions: Optional[bool] = None,
|
|
223
|
+
output_hidden_states: Optional[bool] = None,
|
|
224
|
+
interpolate_pos_encoding: bool = False,
|
|
225
|
+
**kwargs,
|
|
226
|
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
227
|
+
"""
|
|
228
|
+
Forward pass for the RBLN-optimized CLIP vision encoder model.
|
|
229
|
+
|
|
230
|
+
Args:
|
|
231
|
+
pixel_values (torch.Tensor): The pixel values to the model.
|
|
232
|
+
return_dict (bool): Whether to return a dictionary of outputs.
|
|
233
|
+
output_attentions (Optional[bool]): Whether to return attentions.
|
|
234
|
+
output_hidden_states (Optional[bool]): Whether to return hidden states.
|
|
235
|
+
interpolate_pos_encoding (bool): Whether to interpolate position encoding.
|
|
236
|
+
|
|
237
|
+
Returns:
|
|
238
|
+
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a BaseModelOutputWithPooling object.
|
|
239
|
+
"""
|
|
240
|
+
|
|
241
|
+
if len(kwargs) > 0 and any(value is not None for value in kwargs.values()):
|
|
242
|
+
logger.warning(
|
|
243
|
+
f"Currently, optimum-rbln does not support kwargs {kwargs.keys()} for {self.__class__.__name__}."
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
output_attentions = output_attentions if output_attentions is not None else self.rbln_config.output_attentions
|
|
247
|
+
output_hidden_states = (
|
|
248
|
+
output_hidden_states if output_hidden_states is not None else self.rbln_config.output_hidden_states
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
if output_attentions != self.rbln_config.output_attentions:
|
|
252
|
+
raise ValueError(
|
|
253
|
+
f"Variable output_attentions {output_attentions} is not equal to rbln_config.output_attentions {self.rbln_config.output_attentions} "
|
|
254
|
+
f"Please compile again with the correct argument."
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
if output_hidden_states != self.rbln_config.output_hidden_states:
|
|
258
|
+
raise ValueError(
|
|
259
|
+
f"Variable output_hidden_states {output_hidden_states} is not equal to rbln_config.output_hidden_states {self.rbln_config.output_hidden_states} "
|
|
260
|
+
f"Please compile again with the correct argument."
|
|
261
|
+
)
|
|
262
|
+
|
|
263
|
+
if interpolate_pos_encoding != self.rbln_config.interpolate_pos_encoding:
|
|
264
|
+
raise ValueError(
|
|
265
|
+
f"Variable interpolate_pos_encoding {interpolate_pos_encoding} is not equal to rbln_config.interpolate_pos_encoding {self.rbln_config.interpolate_pos_encoding} "
|
|
266
|
+
f"Please compile again with the correct argument."
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
output = super().forward(pixel_values, return_dict=return_dict)
|
|
270
|
+
return output
|
|
271
|
+
|
|
272
|
+
def _prepare_output(self, output, return_dict):
|
|
273
|
+
# Prepare model output based on return_dict flag.
|
|
274
|
+
# This method can be overridden by subclasses to provide task-specific output handling.
|
|
275
|
+
last_hidden_state = output.pop(0)
|
|
276
|
+
pooler_output = output.pop(0)
|
|
277
|
+
vision_config = self.config.vision_config if hasattr(self.config, "vision_config") else self.config
|
|
278
|
+
|
|
279
|
+
if self.rbln_config.output_hidden_states:
|
|
280
|
+
hidden_states = ()
|
|
281
|
+
num_hidden_layers = vision_config.num_hidden_layers
|
|
282
|
+
for _ in range(num_hidden_layers + 1):
|
|
283
|
+
hidden_states += (output.pop(0),)
|
|
284
|
+
else:
|
|
285
|
+
hidden_states = None
|
|
286
|
+
|
|
287
|
+
if self.rbln_config.output_attentions:
|
|
288
|
+
attentions = ()
|
|
289
|
+
num_hidden_layers = vision_config.num_hidden_layers
|
|
290
|
+
for _ in range(num_hidden_layers):
|
|
291
|
+
attentions += (output.pop(0),)
|
|
292
|
+
else:
|
|
293
|
+
attentions = None
|
|
294
|
+
|
|
295
|
+
if not return_dict:
|
|
296
|
+
return tuple(
|
|
297
|
+
item for item in (last_hidden_state, pooler_output, hidden_states, attentions) if item is not None
|
|
298
|
+
)
|
|
299
|
+
else:
|
|
300
|
+
return BaseModelOutputWithPooling(
|
|
301
|
+
last_hidden_state=last_hidden_state,
|
|
302
|
+
pooler_output=pooler_output,
|
|
303
|
+
hidden_states=hidden_states,
|
|
304
|
+
attentions=attentions,
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
|
|
308
|
+
class RBLNCLIPVisionModelWithProjection(RBLNCLIPVisionModel):
|
|
309
|
+
"""
|
|
310
|
+
RBLN optimized CLIP vision encoder model with projection layer.
|
|
311
|
+
|
|
312
|
+
This class extends RBLNCLIPVisionModel with a projection layer for
|
|
313
|
+
multimodal embedding alignment tasks.
|
|
314
|
+
"""
|
|
315
|
+
|
|
316
|
+
def forward(
|
|
317
|
+
self,
|
|
318
|
+
pixel_values: torch.FloatTensor,
|
|
319
|
+
return_dict: bool = True,
|
|
320
|
+
output_attentions: Optional[bool] = None,
|
|
321
|
+
output_hidden_states: Optional[bool] = None,
|
|
322
|
+
interpolate_pos_encoding: bool = False,
|
|
323
|
+
**kwargs,
|
|
324
|
+
) -> Union[Tuple, CLIPVisionModelOutput]:
|
|
325
|
+
"""
|
|
326
|
+
Forward pass for the RBLN-optimized CLIP vision encoder model with projection.
|
|
327
|
+
|
|
328
|
+
Args:
|
|
329
|
+
pixel_values (torch.Tensor): The pixel values to the model.
|
|
330
|
+
return_dict (bool): Whether to return a dictionary of outputs.
|
|
331
|
+
output_attentions (Optional[bool]): Whether to return attentions.
|
|
332
|
+
output_hidden_states (Optional[bool]): Whether to return hidden states.
|
|
333
|
+
interpolate_pos_encoding (bool): Whether to interpolate position encoding.
|
|
334
|
+
|
|
335
|
+
Returns:
|
|
336
|
+
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a CLIPVisionModelOutput object.
|
|
337
|
+
"""
|
|
338
|
+
|
|
339
|
+
return super().forward(
|
|
340
|
+
pixel_values=pixel_values,
|
|
341
|
+
return_dict=return_dict,
|
|
342
|
+
output_attentions=output_attentions,
|
|
343
|
+
output_hidden_states=output_hidden_states,
|
|
344
|
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
|
345
|
+
**kwargs,
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
def _prepare_output(self, output, return_dict):
|
|
349
|
+
# Prepare model output based on return_dict flag.
|
|
350
|
+
# This method can be overridden by subclasses to provide task-specific output handling.
|
|
351
|
+
|
|
352
|
+
image_embeds = output.pop(0) if isinstance(output, (tuple, list)) else output
|
|
353
|
+
last_hidden_state = output.pop(0)
|
|
354
|
+
|
|
355
|
+
vision_config = self.config.vision_config if hasattr(self.config, "vision_config") else self.config
|
|
356
|
+
|
|
357
|
+
if self.rbln_config.output_hidden_states:
|
|
358
|
+
hidden_states = ()
|
|
359
|
+
num_hidden_layers = vision_config.num_hidden_layers
|
|
360
|
+
for _ in range(num_hidden_layers + 1):
|
|
361
|
+
hidden_states += (output.pop(0),)
|
|
362
|
+
else:
|
|
363
|
+
hidden_states = None
|
|
364
|
+
|
|
365
|
+
if self.rbln_config.output_attentions:
|
|
366
|
+
attentions = ()
|
|
367
|
+
num_hidden_layers = vision_config.num_hidden_layers
|
|
368
|
+
for _ in range(num_hidden_layers):
|
|
369
|
+
attentions += (output.pop(0),)
|
|
370
|
+
else:
|
|
371
|
+
attentions = None
|
|
372
|
+
|
|
373
|
+
if not return_dict:
|
|
374
|
+
return tuple(
|
|
375
|
+
item for item in (image_embeds, last_hidden_state, hidden_states, attentions) if item is not None
|
|
376
|
+
)
|
|
377
|
+
|
|
378
|
+
else:
|
|
379
|
+
return CLIPVisionModelOutput(
|
|
380
|
+
image_embeds=image_embeds,
|
|
381
|
+
last_hidden_state=last_hidden_state,
|
|
382
|
+
hidden_states=hidden_states,
|
|
383
|
+
attentions=attentions,
|
|
384
|
+
)
|
|
@@ -0,0 +1,218 @@
|
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch import nn
|
|
5
|
+
from transformers import GemmaForCausalLM, GemmaModel
|
|
6
|
+
|
|
7
|
+
from ..decoderonly.decoderonly_architecture import RotaryEmbedding, apply_rotary_pos_emb
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def slice_and_unsqueeze_cos_sin(cos, sin, position_ids):
|
|
11
|
+
"""Slice cos[cache_position], sin[cache_position] vector for the query."""
|
|
12
|
+
cos = cos[position_ids[0]][None, None, None, :, :]
|
|
13
|
+
sin = sin[position_ids[0]][None, None, None, :, :]
|
|
14
|
+
|
|
15
|
+
return cos, sin
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class RBLNColPaliForRetrievalWrapper(nn.Module):
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
causal_lm: GemmaForCausalLM,
|
|
22
|
+
embedding_proj_layer: nn.Module,
|
|
23
|
+
max_seq_len: int,
|
|
24
|
+
output_hidden_states: bool = False,
|
|
25
|
+
):
|
|
26
|
+
super().__init__()
|
|
27
|
+
self.text_config = causal_lm.config.text_config
|
|
28
|
+
self.rotary_emb = self.get_rotary_emb(max_seq_len=max_seq_len)
|
|
29
|
+
|
|
30
|
+
self.output_hidden_states = output_hidden_states
|
|
31
|
+
self.language_model = self.convert_to_rbln_language_model(causal_lm.model.language_model, max_seq_len)
|
|
32
|
+
|
|
33
|
+
self.num_hidden_layers = getattr(self.text_config, "num_hidden_layers", None)
|
|
34
|
+
self.embedding_proj_layer = embedding_proj_layer
|
|
35
|
+
|
|
36
|
+
def get_rotary_emb(self, max_seq_len):
|
|
37
|
+
return RotaryEmbedding(config=self.text_config, max_seq_len_cached=max_seq_len)
|
|
38
|
+
|
|
39
|
+
def convert_to_rbln_language_model(self, gemma_model: GemmaModel, max_seq_len: int):
|
|
40
|
+
new_layers = []
|
|
41
|
+
for layer in gemma_model.layers:
|
|
42
|
+
new_self_attn = ColPaliAttention(
|
|
43
|
+
layer.self_attn,
|
|
44
|
+
)
|
|
45
|
+
new_layer = ColPaliLayer(layer, new_self_attn)
|
|
46
|
+
new_layers.append(new_layer)
|
|
47
|
+
|
|
48
|
+
new_model = ColPaliModel(
|
|
49
|
+
gemma_model,
|
|
50
|
+
new_layers,
|
|
51
|
+
output_hidden_states=self.output_hidden_states,
|
|
52
|
+
max_seq_len=max_seq_len,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
return new_model
|
|
56
|
+
|
|
57
|
+
def forward(self, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor):
|
|
58
|
+
attention_mask = (1.0 - attention_mask) * torch.finfo(torch.float32).min
|
|
59
|
+
attention_mask = attention_mask[:, None, None, None, :]
|
|
60
|
+
|
|
61
|
+
hidden_states, all_hidden_states = self.language_model(
|
|
62
|
+
inputs_embeds=inputs_embeds,
|
|
63
|
+
attention_mask=attention_mask,
|
|
64
|
+
rotary_emb=self.rotary_emb,
|
|
65
|
+
position_ids=position_ids,
|
|
66
|
+
)
|
|
67
|
+
embeddings = self.embedding_proj_layer(hidden_states)
|
|
68
|
+
|
|
69
|
+
if self.output_hidden_states:
|
|
70
|
+
return embeddings, all_hidden_states
|
|
71
|
+
else:
|
|
72
|
+
return embeddings
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class ColPaliModel(nn.Module):
|
|
76
|
+
def __init__(
|
|
77
|
+
self, model, layers: List["ColPaliLayer"], output_hidden_states: bool = False, max_seq_len: int = 2048
|
|
78
|
+
):
|
|
79
|
+
super().__init__()
|
|
80
|
+
self._original_mod = model
|
|
81
|
+
self.layers = nn.ModuleList(layers)
|
|
82
|
+
self.output_hidden_states = output_hidden_states
|
|
83
|
+
self.norm = self._original_mod.norm
|
|
84
|
+
self.hidden_size = self._original_mod.config.hidden_size
|
|
85
|
+
self.max_seq_len = max_seq_len
|
|
86
|
+
|
|
87
|
+
def forward(
|
|
88
|
+
self,
|
|
89
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
|
90
|
+
attention_mask: torch.Tensor = None,
|
|
91
|
+
rotary_emb: Optional[Union[nn.Module, torch.Tensor]] = None,
|
|
92
|
+
position_ids: Optional[torch.Tensor] = None,
|
|
93
|
+
):
|
|
94
|
+
hidden_states = inputs_embeds * self.hidden_size**0.5
|
|
95
|
+
|
|
96
|
+
cos, sin = rotary_emb(hidden_states, self.max_seq_len) # dtype carrier, max_seq_len
|
|
97
|
+
cos, sin = slice_and_unsqueeze_cos_sin(cos, sin, position_ids)
|
|
98
|
+
|
|
99
|
+
all_hidden_states = () if self.output_hidden_states else None
|
|
100
|
+
for layer in self.layers:
|
|
101
|
+
if self.output_hidden_states:
|
|
102
|
+
all_hidden_states += (hidden_states,)
|
|
103
|
+
|
|
104
|
+
hidden_states = layer(
|
|
105
|
+
hidden_states=hidden_states,
|
|
106
|
+
attention_mask=attention_mask,
|
|
107
|
+
cos=cos,
|
|
108
|
+
sin=sin,
|
|
109
|
+
)
|
|
110
|
+
hidden_states = self.norm(hidden_states)
|
|
111
|
+
|
|
112
|
+
if self.output_hidden_states:
|
|
113
|
+
all_hidden_states += (hidden_states,)
|
|
114
|
+
|
|
115
|
+
return hidden_states, all_hidden_states
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class ColPaliLayer(nn.Module):
|
|
119
|
+
def __init__(self, layer, self_attn: "ColPaliAttention"):
|
|
120
|
+
super().__init__()
|
|
121
|
+
self._original_mod = layer
|
|
122
|
+
self.self_attn = self_attn
|
|
123
|
+
self.mlp = layer.mlp
|
|
124
|
+
self.input_layernorm = layer.input_layernorm
|
|
125
|
+
self.post_attention_layernorm = layer.post_attention_layernorm
|
|
126
|
+
|
|
127
|
+
def forward(
|
|
128
|
+
self,
|
|
129
|
+
hidden_states: torch.Tensor,
|
|
130
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
131
|
+
cos: Optional[torch.Tensor] = None,
|
|
132
|
+
sin: Optional[torch.Tensor] = None,
|
|
133
|
+
) -> Tuple[torch.FloatTensor]:
|
|
134
|
+
residual = hidden_states
|
|
135
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
136
|
+
|
|
137
|
+
# Self Attention
|
|
138
|
+
hidden_states = self.self_attn(
|
|
139
|
+
hidden_states=hidden_states,
|
|
140
|
+
attention_mask=attention_mask,
|
|
141
|
+
cos=cos,
|
|
142
|
+
sin=sin,
|
|
143
|
+
)
|
|
144
|
+
hidden_states = residual + hidden_states
|
|
145
|
+
|
|
146
|
+
# Fully Connected
|
|
147
|
+
residual = hidden_states
|
|
148
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
149
|
+
hidden_states = self.mlp(hidden_states)
|
|
150
|
+
hidden_states = residual + hidden_states
|
|
151
|
+
|
|
152
|
+
return hidden_states
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
class ColPaliAttention(nn.Module):
|
|
156
|
+
def __init__(self, self_attn):
|
|
157
|
+
super().__init__()
|
|
158
|
+
self._original_mod = self_attn
|
|
159
|
+
self.num_heads = getattr(self._original_mod, "num_heads", None) or getattr(
|
|
160
|
+
self._original_mod.config, "num_attention_heads"
|
|
161
|
+
)
|
|
162
|
+
self.head_dim = self._original_mod.head_dim
|
|
163
|
+
self.scaling = self.head_dim**-0.5
|
|
164
|
+
|
|
165
|
+
if hasattr(self._original_mod, "num_key_value_heads"):
|
|
166
|
+
self.num_key_value_heads = self._original_mod.num_key_value_heads
|
|
167
|
+
elif hasattr(self._original_mod, "config") and hasattr(self._original_mod.config, "num_key_value_heads"):
|
|
168
|
+
self.num_key_value_heads = self._original_mod.config.num_key_value_heads
|
|
169
|
+
else:
|
|
170
|
+
self.num_key_value_heads = self.num_heads
|
|
171
|
+
|
|
172
|
+
self.__post_init__()
|
|
173
|
+
|
|
174
|
+
def __post_init__(self):
|
|
175
|
+
self.q_proj = self._original_mod.q_proj
|
|
176
|
+
self.k_proj = self._original_mod.k_proj
|
|
177
|
+
self.v_proj = self._original_mod.v_proj
|
|
178
|
+
self.o_proj = self._original_mod.o_proj
|
|
179
|
+
|
|
180
|
+
def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
181
|
+
query_states = self.q_proj(hidden_states)
|
|
182
|
+
key_states = self.k_proj(hidden_states)
|
|
183
|
+
value_states = self.v_proj(hidden_states)
|
|
184
|
+
|
|
185
|
+
return query_states, key_states, value_states
|
|
186
|
+
|
|
187
|
+
def forward(
|
|
188
|
+
self,
|
|
189
|
+
hidden_states: torch.Tensor,
|
|
190
|
+
attention_mask: torch.Tensor,
|
|
191
|
+
cos: Optional[torch.Tensor] = None,
|
|
192
|
+
sin: Optional[torch.Tensor] = None,
|
|
193
|
+
):
|
|
194
|
+
batch_size, query_length, _ = hidden_states.size()
|
|
195
|
+
|
|
196
|
+
query_states, key_states, value_states = self.projection(hidden_states=hidden_states)
|
|
197
|
+
|
|
198
|
+
query_states = query_states.view(batch_size, query_length, 1, self.num_heads, self.head_dim).transpose(1, 3)
|
|
199
|
+
key_states = key_states.view(batch_size, query_length, 1, self.num_key_value_heads, self.head_dim).transpose(
|
|
200
|
+
1, 3
|
|
201
|
+
)
|
|
202
|
+
value_states = value_states.view(
|
|
203
|
+
batch_size, query_length, 1, self.num_key_value_heads, self.head_dim
|
|
204
|
+
).transpose(1, 3)
|
|
205
|
+
|
|
206
|
+
if cos is not None and sin is not None:
|
|
207
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
208
|
+
|
|
209
|
+
attn_weights = torch.matmul(query_states, key_states.transpose(3, 4)) * self.scaling
|
|
210
|
+
attn_weights = attn_weights + attention_mask
|
|
211
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
|
212
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
|
213
|
+
attn_output = attn_output.transpose(1, 3)
|
|
214
|
+
|
|
215
|
+
attn_output = attn_output.reshape(batch_size, query_length, -1)
|
|
216
|
+
attn_output = self.o_proj(attn_output)
|
|
217
|
+
|
|
218
|
+
return attn_output
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
from typing import Any, List, Optional, Union
|
|
15
|
+
|
|
16
|
+
from ....configuration_utils import RBLNModelConfig
|
|
17
|
+
from ....utils.logging import get_logger
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
logger = get_logger(__name__)
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class RBLNColPaliForRetrievalConfig(RBLNModelConfig):
|
|
24
|
+
"""
|
|
25
|
+
Configuration class for RBLN ColPali models for document retrieval.
|
|
26
|
+
|
|
27
|
+
This class extends RBLNModelConfig with specific configurations for ColPali models,
|
|
28
|
+
including vision tower settings and multi-sequence length support.
|
|
29
|
+
|
|
30
|
+
Example usage:
|
|
31
|
+
```python
|
|
32
|
+
from optimum.rbln import RBLNColPaliForRetrieval, RBLNColPaliForRetrievalConfig
|
|
33
|
+
|
|
34
|
+
# Create a configuration object
|
|
35
|
+
config = RBLNColPaliForRetrievalConfig(
|
|
36
|
+
max_seq_lens=1152,
|
|
37
|
+
output_hidden_states=False,
|
|
38
|
+
tensor_parallel_size=4
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
# Use the configuration with from_pretrained
|
|
42
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
|
43
|
+
"vidore/colpali-v1.3-hf",
|
|
44
|
+
export=True,
|
|
45
|
+
rbln_config=config
|
|
46
|
+
)
|
|
47
|
+
```
|
|
48
|
+
"""
|
|
49
|
+
|
|
50
|
+
submodules = ["vision_tower"]
|
|
51
|
+
|
|
52
|
+
def __init__(
|
|
53
|
+
self,
|
|
54
|
+
batch_size: Optional[int] = None,
|
|
55
|
+
max_seq_lens: Union[int, List[int]] = None,
|
|
56
|
+
output_hidden_states: Optional[bool] = None,
|
|
57
|
+
vision_tower: Optional[RBLNModelConfig] = None,
|
|
58
|
+
**kwargs: Any,
|
|
59
|
+
):
|
|
60
|
+
"""
|
|
61
|
+
Args:
|
|
62
|
+
batch_size (Optional[int]): The batch size for the model.
|
|
63
|
+
vision_tower (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
|
|
64
|
+
max_seq_lens (Union[int, List[int]]): The maximum sequence lengths for the language model.
|
|
65
|
+
This can be multiple values, and the model will be compiled for each max_seq_len, allowing selection of the most appropriate max_seq_len at inference time.
|
|
66
|
+
output_hidden_states (Optional[bool]): Whether to output the hidden states of the language model.
|
|
67
|
+
vision_tower (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
|
|
68
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
69
|
+
Raises:
|
|
70
|
+
ValueError: If batch_size is not a positive integer.
|
|
71
|
+
"""
|
|
72
|
+
super().__init__(**kwargs)
|
|
73
|
+
self.batch_size = batch_size or 1
|
|
74
|
+
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
|
75
|
+
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
76
|
+
|
|
77
|
+
if self.batch_size != 1:
|
|
78
|
+
logger.warning("Ignore batch_size for ColPali vision tower. It will be set to 1.")
|
|
79
|
+
|
|
80
|
+
self.vision_tower = self.initialize_submodule_config(
|
|
81
|
+
submodule_config=vision_tower, batch_size=1, force_kwargs=True
|
|
82
|
+
)
|
|
83
|
+
self.max_seq_lens = max_seq_lens
|
|
84
|
+
self.output_hidden_states = output_hidden_states
|