optimum-rbln 0.9.3.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +505 -0
- optimum/rbln/__version__.py +34 -0
- optimum/rbln/cli.py +660 -0
- optimum/rbln/configuration_utils.py +968 -0
- optimum/rbln/diffusers/__init__.py +198 -0
- optimum/rbln/diffusers/configurations/__init__.py +37 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +10 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +73 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +84 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +64 -0
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +78 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +63 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +81 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +74 -0
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +34 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +316 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +117 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +363 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +156 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +176 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +159 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
- optimum/rbln/diffusers/modeling_diffusers.py +451 -0
- optimum/rbln/diffusers/models/__init__.py +64 -0
- optimum/rbln/diffusers/models/autoencoders/__init__.py +18 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +255 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +245 -0
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
- optimum/rbln/diffusers/models/autoencoders/vae.py +178 -0
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +211 -0
- optimum/rbln/diffusers/models/controlnet.py +281 -0
- optimum/rbln/diffusers/models/transformers/__init__.py +17 -0
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +160 -0
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +344 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +191 -0
- optimum/rbln/diffusers/models/unets/__init__.py +16 -0
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +408 -0
- optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
- optimum/rbln/diffusers/pipelines/__init__.py +113 -0
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
- optimum/rbln/diffusers/pipelines/controlnet/__init__.py +19 -0
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +139 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +669 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +640 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +825 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +837 -0
- optimum/rbln/diffusers/pipelines/cosmos/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +113 -0
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +425 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +128 -0
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +128 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py +23 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +207 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +34 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +32 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +17 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
- optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
- optimum/rbln/modeling.py +364 -0
- optimum/rbln/modeling_base.py +637 -0
- optimum/rbln/ops/__init__.py +19 -0
- optimum/rbln/ops/attn.py +455 -0
- optimum/rbln/ops/flash_attn.py +350 -0
- optimum/rbln/ops/kv_cache_update.py +29 -0
- optimum/rbln/ops/linear.py +32 -0
- optimum/rbln/ops/sliding_window_attn.py +111 -0
- optimum/rbln/transformers/__init__.py +340 -0
- optimum/rbln/transformers/configuration_generic.py +120 -0
- optimum/rbln/transformers/modeling_attention_utils.py +385 -0
- optimum/rbln/transformers/modeling_generic.py +280 -0
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/modeling_rope_utils.py +314 -0
- optimum/rbln/transformers/models/__init__.py +343 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py +17 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +47 -0
- optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +91 -0
- optimum/rbln/transformers/models/auto/__init__.py +31 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +267 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +162 -0
- optimum/rbln/transformers/models/bart/__init__.py +17 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +163 -0
- optimum/rbln/transformers/models/bart/configuration_bart.py +36 -0
- optimum/rbln/transformers/models/bart/modeling_bart.py +86 -0
- optimum/rbln/transformers/models/bert/__init__.py +16 -0
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/configuration_bert.py +46 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +148 -0
- optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +115 -0
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +526 -0
- optimum/rbln/transformers/models/clip/__init__.py +26 -0
- optimum/rbln/transformers/models/clip/configuration_clip.py +103 -0
- optimum/rbln/transformers/models/clip/modeling_clip.py +384 -0
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +218 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +84 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +361 -0
- optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
- optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
- optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
- optimum/rbln/transformers/models/decoderonly/__init__.py +27 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +300 -0
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +1224 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +823 -0
- optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
- optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
- optimum/rbln/transformers/models/distilbert/__init__.py +19 -0
- optimum/rbln/transformers/models/distilbert/configuration_distilbert.py +24 -0
- optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +51 -0
- optimum/rbln/transformers/models/dpt/__init__.py +16 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +24 -0
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +42 -0
- optimum/rbln/transformers/models/exaone/__init__.py +24 -0
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +42 -0
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +77 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +145 -0
- optimum/rbln/transformers/models/gemma/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +50 -0
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +27 -0
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +104 -0
- optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +109 -0
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +170 -0
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +611 -0
- optimum/rbln/transformers/models/gpt2/__init__.py +16 -0
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +50 -0
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +93 -0
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +55 -0
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
- optimum/rbln/transformers/models/idefics3/__init__.py +16 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +89 -0
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +497 -0
- optimum/rbln/transformers/models/llama/__init__.py +16 -0
- optimum/rbln/transformers/models/llama/configuration_llama.py +50 -0
- optimum/rbln/transformers/models/llama/llama_architecture.py +19 -0
- optimum/rbln/transformers/models/llama/modeling_llama.py +104 -0
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
- optimum/rbln/transformers/models/llava_next/__init__.py +16 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +69 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +493 -0
- optimum/rbln/transformers/models/midm/__init__.py +24 -0
- optimum/rbln/transformers/models/midm/configuration_midm.py +42 -0
- optimum/rbln/transformers/models/midm/midm_architecture.py +144 -0
- optimum/rbln/transformers/models/midm/modeling_midm.py +144 -0
- optimum/rbln/transformers/models/mistral/__init__.py +16 -0
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +50 -0
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +19 -0
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +115 -0
- optimum/rbln/transformers/models/opt/__init__.py +16 -0
- optimum/rbln/transformers/models/opt/configuration_opt.py +29 -0
- optimum/rbln/transformers/models/opt/modeling_opt.py +102 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +74 -0
- optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
- optimum/rbln/transformers/models/phi/__init__.py +16 -0
- optimum/rbln/transformers/models/phi/configuration_phi.py +50 -0
- optimum/rbln/transformers/models/phi/modeling_phi.py +92 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +115 -0
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +16 -0
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +50 -0
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +123 -0
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +111 -0
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +636 -0
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +220 -0
- optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
- optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
- optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
- optimum/rbln/transformers/models/resnet/__init__.py +23 -0
- optimum/rbln/transformers/models/resnet/configuration_resnet.py +42 -0
- optimum/rbln/transformers/models/resnet/modeling_resnet.py +99 -0
- optimum/rbln/transformers/models/roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/roberta/configuration_roberta.py +33 -0
- optimum/rbln/transformers/models/roberta/modeling_roberta.py +72 -0
- optimum/rbln/transformers/models/seq2seq/__init__.py +16 -0
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +71 -0
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +477 -0
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +527 -0
- optimum/rbln/transformers/models/siglip/__init__.py +16 -0
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +76 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +199 -0
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
- optimum/rbln/transformers/models/t5/__init__.py +17 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +36 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +130 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +264 -0
- optimum/rbln/transformers/models/time_series_transformer/__init__.py +26 -0
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +41 -0
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +435 -0
- optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +337 -0
- optimum/rbln/transformers/models/vit/__init__.py +19 -0
- optimum/rbln/transformers/models/vit/configuration_vit.py +24 -0
- optimum/rbln/transformers/models/vit/modeling_vit.py +44 -0
- optimum/rbln/transformers/models/wav2vec2/__init__.py +16 -0
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +38 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +104 -0
- optimum/rbln/transformers/models/whisper/__init__.py +17 -0
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +72 -0
- optimum/rbln/transformers/models/whisper/generation_whisper.py +159 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +475 -0
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +349 -0
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +32 -0
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +82 -0
- optimum/rbln/transformers/utils/__init__.py +0 -0
- optimum/rbln/transformers/utils/rbln_quantization.py +589 -0
- optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
- optimum/rbln/utils/__init__.py +16 -0
- optimum/rbln/utils/decorator_utils.py +86 -0
- optimum/rbln/utils/deprecation.py +213 -0
- optimum/rbln/utils/hub.py +94 -0
- optimum/rbln/utils/import_utils.py +170 -0
- optimum/rbln/utils/logging.py +110 -0
- optimum/rbln/utils/model_utils.py +63 -0
- optimum/rbln/utils/runtime_utils.py +249 -0
- optimum/rbln/utils/save_utils.py +102 -0
- optimum/rbln/utils/submodule.py +152 -0
- optimum_rbln-0.9.3.post1.dist-info/METADATA +124 -0
- optimum_rbln-0.9.3.post1.dist-info/RECORD +264 -0
- optimum_rbln-0.9.3.post1.dist-info/WHEEL +4 -0
- optimum_rbln-0.9.3.post1.dist-info/entry_points.txt +2 -0
- optimum_rbln-0.9.3.post1.dist-info/licenses/LICENSE +201 -0
|
@@ -0,0 +1,220 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import Tuple
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn as nn
|
|
6
|
+
from transformers import PreTrainedModel
|
|
7
|
+
|
|
8
|
+
from ..decoderonly.decoderonly_architecture import DecoderOnlyWrapper, apply_rotary_pos_emb
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class Qwen2_5_VisionTransformerWrapper(nn.Module):
|
|
12
|
+
def __init__(self, model: torch.nn.Module):
|
|
13
|
+
super().__init__()
|
|
14
|
+
self._original_mod = model
|
|
15
|
+
self.fullatt_block_indexes = model.fullatt_block_indexes
|
|
16
|
+
self.merger = model.merger
|
|
17
|
+
window_seq_len = (model.window_size // model.patch_size) ** 2
|
|
18
|
+
self.blocks = self.wrap_vision_blocks(model.blocks, window_seq_len)
|
|
19
|
+
|
|
20
|
+
def wrap_vision_blocks(self, blocks: torch.nn.ModuleList, window_seq_len: int):
|
|
21
|
+
wrapped_blocks = []
|
|
22
|
+
for i, block in enumerate(blocks):
|
|
23
|
+
is_full_attn = True if i in self.fullatt_block_indexes else False
|
|
24
|
+
wrapped_blocks.append(Qwen2_5_VLVisionBlock(block, is_full_attn, window_seq_len))
|
|
25
|
+
return nn.ModuleList(wrapped_blocks)
|
|
26
|
+
|
|
27
|
+
def forward(
|
|
28
|
+
self,
|
|
29
|
+
hidden_states: torch.Tensor,
|
|
30
|
+
full_attn_masks: torch.Tensor,
|
|
31
|
+
window_attn_masks: torch.Tensor,
|
|
32
|
+
cos: torch.Tensor,
|
|
33
|
+
sin: torch.Tensor,
|
|
34
|
+
):
|
|
35
|
+
full_attn_masks = (1 - full_attn_masks) * torch.finfo(torch.float32).min
|
|
36
|
+
window_attn_masks = (1 - window_attn_masks) * torch.finfo(torch.float32).min
|
|
37
|
+
|
|
38
|
+
for i, block in enumerate(self.blocks):
|
|
39
|
+
attn_masks = full_attn_masks if i in self.fullatt_block_indexes else window_attn_masks
|
|
40
|
+
hidden_states = block(hidden_states, attn_masks, [cos, sin])
|
|
41
|
+
|
|
42
|
+
hidden_states = self.merger(hidden_states)
|
|
43
|
+
|
|
44
|
+
return hidden_states
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class Qwen2_5_VLVisionBlock(torch.nn.Module):
|
|
48
|
+
def __init__(self, model: torch.nn.Module, is_full_attn: bool, window_seq_len: int):
|
|
49
|
+
super().__init__()
|
|
50
|
+
self._origin_model = model
|
|
51
|
+
self.norm1 = model.norm1
|
|
52
|
+
self.norm2 = model.norm2
|
|
53
|
+
|
|
54
|
+
if is_full_attn:
|
|
55
|
+
self.attn = Qwen2_5_VLVisionFullAttention(model.attn)
|
|
56
|
+
else:
|
|
57
|
+
self.attn = Qwen2_5_VLVisionWindowAttention(model.attn, window_seq_len)
|
|
58
|
+
self.mlp = model.mlp
|
|
59
|
+
|
|
60
|
+
def forward(
|
|
61
|
+
self,
|
|
62
|
+
hidden_states: torch.Tensor,
|
|
63
|
+
attn_masks: torch.Tensor,
|
|
64
|
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
|
65
|
+
) -> torch.Tensor:
|
|
66
|
+
hidden_states = hidden_states + self.attn(
|
|
67
|
+
self.norm1(hidden_states),
|
|
68
|
+
attn_masks,
|
|
69
|
+
position_embeddings,
|
|
70
|
+
)
|
|
71
|
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
|
72
|
+
return hidden_states
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class Qwen2_5_VLVisionFullAttention(nn.Module):
|
|
76
|
+
def __init__(self, model: nn.Module) -> None:
|
|
77
|
+
super().__init__()
|
|
78
|
+
self._origin_model = model
|
|
79
|
+
self.num_heads = model.num_heads
|
|
80
|
+
self.head_dim = getattr(model, "head_dim", model.proj.in_features // model.num_heads)
|
|
81
|
+
self.qkv = model.qkv
|
|
82
|
+
self.proj = model.proj
|
|
83
|
+
|
|
84
|
+
def forward(
|
|
85
|
+
self,
|
|
86
|
+
hidden_states: torch.Tensor,
|
|
87
|
+
attn_masks: torch.Tensor,
|
|
88
|
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
|
89
|
+
) -> torch.Tensor:
|
|
90
|
+
seq_length = hidden_states.shape[0]
|
|
91
|
+
hidden_states = hidden_states.unsqueeze(0)
|
|
92
|
+
q, k, v = (
|
|
93
|
+
self.qkv(hidden_states).reshape(1, seq_length, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4).unbind(0)
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
cos, sin = position_embeddings
|
|
97
|
+
q, k = apply_rotary_pos_emb(q, k, cos, sin)
|
|
98
|
+
|
|
99
|
+
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
100
|
+
attn_weights = attn_weights + attn_masks
|
|
101
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
|
102
|
+
attn_output = torch.matmul(attn_weights, v)
|
|
103
|
+
attn_output = attn_output.transpose(1, 2)
|
|
104
|
+
attn_output = attn_output.reshape(1, seq_length, -1)
|
|
105
|
+
attn_output = self.proj(attn_output).squeeze(0)
|
|
106
|
+
|
|
107
|
+
return attn_output
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
class Qwen2_5_VLVisionWindowAttention(nn.Module):
|
|
111
|
+
def __init__(self, model: nn.Module, window_seq_len: int) -> None:
|
|
112
|
+
super().__init__()
|
|
113
|
+
self._origin_model = model
|
|
114
|
+
self.num_heads = model.num_heads
|
|
115
|
+
self.head_dim = getattr(model, "head_dim", model.proj.in_features // model.num_heads)
|
|
116
|
+
self.qkv = model.qkv
|
|
117
|
+
self.proj = model.proj
|
|
118
|
+
self.window_seq_len = window_seq_len
|
|
119
|
+
|
|
120
|
+
def forward(
|
|
121
|
+
self,
|
|
122
|
+
hidden_states: torch.Tensor,
|
|
123
|
+
attn_masks: torch.Tensor,
|
|
124
|
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
|
125
|
+
) -> torch.Tensor:
|
|
126
|
+
seq_length = hidden_states.shape[0]
|
|
127
|
+
num_windows = seq_length // self.window_seq_len
|
|
128
|
+
|
|
129
|
+
window_hidden_states = []
|
|
130
|
+
for i in range(0, seq_length, self.window_seq_len):
|
|
131
|
+
window_hidden_states.append(hidden_states[i : i + self.window_seq_len])
|
|
132
|
+
hidden_states = torch.stack(window_hidden_states)
|
|
133
|
+
|
|
134
|
+
q, k, v = (
|
|
135
|
+
self.qkv(hidden_states)
|
|
136
|
+
.reshape(num_windows, self.window_seq_len, 3, self.num_heads, -1)
|
|
137
|
+
.permute(2, 0, 3, 1, 4)
|
|
138
|
+
.unbind(0)
|
|
139
|
+
)
|
|
140
|
+
cos, sin = position_embeddings
|
|
141
|
+
cos = cos.reshape(num_windows, 1, seq_length // num_windows, -1)
|
|
142
|
+
sin = sin.reshape(num_windows, 1, seq_length // num_windows, -1)
|
|
143
|
+
q, k = apply_rotary_pos_emb(q, k, cos, sin)
|
|
144
|
+
|
|
145
|
+
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
146
|
+
|
|
147
|
+
attn_weights = attn_weights + attn_masks
|
|
148
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
|
149
|
+
attn_output = torch.matmul(attn_weights, v)
|
|
150
|
+
attn_output = attn_output.transpose(1, 2)
|
|
151
|
+
attn_output = attn_output.reshape(1, seq_length, -1)
|
|
152
|
+
attn_output = self.proj(attn_output).squeeze(0)
|
|
153
|
+
|
|
154
|
+
return attn_output
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
class Qwen2_5_VL_LanguageModelWrapper(DecoderOnlyWrapper):
|
|
158
|
+
def prepare_forward_args(self, *args):
|
|
159
|
+
args = list(args)
|
|
160
|
+
input_ids = None if self.rbln_config.use_inputs_embeds else args.pop(0)
|
|
161
|
+
inputs_embeds = args.pop(0) if self.rbln_config.use_inputs_embeds else None
|
|
162
|
+
cache_position = args.pop(0)
|
|
163
|
+
global_block_tables = args.pop(0)
|
|
164
|
+
local_block_tables = None
|
|
165
|
+
position_embeds = args.pop(0)
|
|
166
|
+
query_position = args.pop(0) if self.phase == "prefill" else None
|
|
167
|
+
position_ids = None
|
|
168
|
+
lora_int_id = None
|
|
169
|
+
attention_mask = args.pop(0) if self.rbln_config.use_attention_mask else None
|
|
170
|
+
past_key_values = args
|
|
171
|
+
|
|
172
|
+
if len(past_key_values) != 2 * self.num_hidden_layers:
|
|
173
|
+
raise ValueError(
|
|
174
|
+
f"Different past_key_values to model's config. {len(past_key_values)} != {2 * self.num_hidden_layers}"
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
# [key, value] * n_layer -> ( (key, value) ) * n_layer
|
|
178
|
+
# cache shape : batch, n_heads, 1, max_seq_len, head_dim
|
|
179
|
+
_past_key_values = []
|
|
180
|
+
for i in range(self.config.num_hidden_layers):
|
|
181
|
+
key_states = past_key_values[i * 2]
|
|
182
|
+
value_states = past_key_values[i * 2 + 1]
|
|
183
|
+
past_key_value = [key_states, value_states]
|
|
184
|
+
_past_key_values.append(past_key_value)
|
|
185
|
+
past_key_values = _past_key_values
|
|
186
|
+
|
|
187
|
+
return (
|
|
188
|
+
input_ids,
|
|
189
|
+
inputs_embeds,
|
|
190
|
+
cache_position,
|
|
191
|
+
global_block_tables,
|
|
192
|
+
local_block_tables,
|
|
193
|
+
query_position,
|
|
194
|
+
attention_mask,
|
|
195
|
+
position_ids,
|
|
196
|
+
lora_int_id,
|
|
197
|
+
past_key_values,
|
|
198
|
+
position_embeds,
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
def convert_to_rbln_class(self, model: PreTrainedModel, max_seq_len: int):
|
|
202
|
+
new_layers = []
|
|
203
|
+
|
|
204
|
+
for layer_idx, layer in enumerate(model.model.language_model.layers):
|
|
205
|
+
is_sliding = layer_idx in self.rbln_config.sliding_window_layers
|
|
206
|
+
new_self_attn = self.get_rbln_attn_class()(
|
|
207
|
+
self.get_attn_layer(layer), self.rbln_config, is_sliding=is_sliding
|
|
208
|
+
)
|
|
209
|
+
new_layer = self.get_rbln_layer_class()(layer, new_self_attn)
|
|
210
|
+
new_layers.append(new_layer)
|
|
211
|
+
|
|
212
|
+
new_model = self.get_rbln_model_class()(
|
|
213
|
+
model.model.language_model,
|
|
214
|
+
new_layers,
|
|
215
|
+
self.rbln_config,
|
|
216
|
+
use_learned_pos_emb=self.__class__._use_learned_pos_emb,
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
new_model = self.get_rbln_causal_lm_class()(model.model, new_model)
|
|
220
|
+
return new_model
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .configuration_qwen2_vl import (
|
|
16
|
+
RBLNQwen2VisionTransformerPretrainedModelConfig,
|
|
17
|
+
RBLNQwen2VLForConditionalGenerationConfig,
|
|
18
|
+
)
|
|
19
|
+
from .modeling_qwen2_vl import RBLNQwen2VisionTransformerPretrainedModel, RBLNQwen2VLForConditionalGeneration
|
|
@@ -0,0 +1,88 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import Any, Dict, List, Optional, Union
|
|
16
|
+
|
|
17
|
+
from ....configuration_utils import RBLNModelConfig
|
|
18
|
+
from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class RBLNQwen2VLForConditionalGenerationConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
|
22
|
+
submodules = ["visual"]
|
|
23
|
+
|
|
24
|
+
def __init__(
|
|
25
|
+
self,
|
|
26
|
+
use_inputs_embeds: bool = True,
|
|
27
|
+
visual: Optional[RBLNModelConfig] = None,
|
|
28
|
+
**kwargs: Dict[str, Any],
|
|
29
|
+
):
|
|
30
|
+
"""
|
|
31
|
+
Args:
|
|
32
|
+
use_inputs_embeds (bool): Whether or not to use `inputs_embeds` as input. Defaults to `True`.
|
|
33
|
+
visual (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
|
|
34
|
+
kwargs: Additional arguments passed to the parent `RBLNDecoderOnlyModelForCausalLMConfig`.
|
|
35
|
+
|
|
36
|
+
Raises:
|
|
37
|
+
ValueError: If `use_inputs_embeds` is False.
|
|
38
|
+
ValueError: If the visual configuration is provided but contains invalid settings, such as an invalid max_seq_lens (e.g., not a positive integer or insufficient for the expected resolution).
|
|
39
|
+
ValueError: If visual is None and no default vision configuration can be inferred for the model architecture.
|
|
40
|
+
ValueError: If any inherited parameters violate constraints defined in the parent class, such as batch_size not being a positive integer, prefill_chunk_size not being divisible by 64, or max_seq_len not meeting requirements for Flash Attention.
|
|
41
|
+
"""
|
|
42
|
+
super().__init__(use_inputs_embeds=use_inputs_embeds, **kwargs)
|
|
43
|
+
if not self.use_inputs_embeds:
|
|
44
|
+
raise ValueError(
|
|
45
|
+
"RBLNQwen2VLForConditionalGenerationConfig does not allow `use_inputs_embeds` to be set to False, "
|
|
46
|
+
"as RBLNQwen2VLForConditionalGeneration accepts only `inputs_embeds` as input."
|
|
47
|
+
)
|
|
48
|
+
self.visual = visual
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class RBLNQwen2VisionTransformerPretrainedModelConfig(RBLNModelConfig):
|
|
52
|
+
def __init__(self, max_seq_lens: Union[int, List[int]] = None, **kwargs: Dict[str, Any]):
|
|
53
|
+
"""
|
|
54
|
+
Args:
|
|
55
|
+
max_seq_lens (Optional[Union[int, List[int]]]): Maximum sequence lengths for Vision
|
|
56
|
+
Transformer attention. Can be an integer or list of integers, each indicating
|
|
57
|
+
the number of patches in a sequence for an image or video. For example, an image
|
|
58
|
+
of 224x224 pixels with patch size 14 results in (224/14) * (224/14) = 256 patches,
|
|
59
|
+
so `max_seq_lens` must be at least 256. RBLN optimization runs inference per image
|
|
60
|
+
or video frame, so set `max_seq_lens` to match the maximum expected resolution to
|
|
61
|
+
optimize computation. If not provided, a `ValueError` is raised.
|
|
62
|
+
kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
63
|
+
|
|
64
|
+
Raises:
|
|
65
|
+
ValueError: If batch_size is not a positive integer.
|
|
66
|
+
ValueError: If `max_seq_lens` (or any value in the list) is not a positive integer.
|
|
67
|
+
ValueError: If `max_seq_lens` is insufficient for the expected image/video resolution.
|
|
68
|
+
ValueError: If `batch_size` (inherited from RBLNModelConfig) is not a positive integer.
|
|
69
|
+
|
|
70
|
+
Max Seq Lens:
|
|
71
|
+
Since `Qwen2VLForConditionalGeneration` performs inference on a per-image or per-frame basis,
|
|
72
|
+
`max_seq_lens` should be set based on the maximum expected resolution of the input images or video frames.
|
|
73
|
+
|
|
74
|
+
The value must be greater than or equal to the number of patches generated from the input image.
|
|
75
|
+
For example, a 224x224 image with a patch size of 14 results in (224 / 14) * (224 / 14) = 256 patches.
|
|
76
|
+
Therefore, `max_seq_lens` must be at least 256.
|
|
77
|
+
"""
|
|
78
|
+
super().__init__(**kwargs)
|
|
79
|
+
|
|
80
|
+
if max_seq_lens is not None:
|
|
81
|
+
if isinstance(max_seq_lens, int):
|
|
82
|
+
max_seq_lens = [max_seq_lens]
|
|
83
|
+
elif isinstance(max_seq_lens, list):
|
|
84
|
+
max_seq_lens.sort(reverse=True)
|
|
85
|
+
else:
|
|
86
|
+
raise ValueError("'max_seq_lens' must be specified.")
|
|
87
|
+
|
|
88
|
+
self.max_seq_lens = max_seq_lens
|