onnxruntime-directml 1.20.0__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6508 -0
- onnxruntime/__init__.py +78 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +174 -0
- onnxruntime/backend/backend_rep.py +53 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1108 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +150 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +17 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +16 -0
- onnxruntime/quantization/base_quantizer.py +532 -0
- onnxruntime/quantization/calibrate.py +1245 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +307 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +387 -0
- onnxruntime/quantization/fusions/__init__.py +3 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +135 -0
- onnxruntime/quantization/matmul_4bits_quantizer.py +1480 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +240 -0
- onnxruntime/quantization/onnx_model.py +580 -0
- onnxruntime/quantization/onnx_quantizer.py +1008 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +258 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +166 -0
- onnxruntime/quantization/operators/lstm.py +117 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +100 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1187 -0
- onnxruntime/quantization/quant_utils.py +891 -0
- onnxruntime/quantization/quantize.py +748 -0
- onnxruntime/quantization/registry.py +106 -0
- onnxruntime/quantization/shape_inference.py +187 -0
- onnxruntime/quantization/tensor_quant_overrides.py +516 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +377 -0
- onnxruntime/tools/file_utils.py +46 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +72 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +33 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +739 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +413 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +55 -0
- onnxruntime/tools/ort_format_model/__init__.py +25 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +663 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +84 -0
- onnxruntime/tools/ort_format_model/utils.py +62 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +108 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/reduced_build_config_parser.py +202 -0
- onnxruntime/tools/symbolic_shape_infer.py +3016 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +944 -0
- onnxruntime/transformers/benchmark_helper.py +646 -0
- onnxruntime/transformers/bert_perf_test.py +634 -0
- onnxruntime/transformers/bert_test_data.py +642 -0
- onnxruntime/transformers/compare_bert_results.py +246 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3124 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +387 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +104 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1235 -0
- onnxruntime/transformers/fusion_attention_clip.py +257 -0
- onnxruntime/transformers/fusion_attention_sam2.py +534 -0
- onnxruntime/transformers/fusion_attention_unet.py +1304 -0
- onnxruntime/transformers/fusion_attention_vae.py +301 -0
- onnxruntime/transformers/fusion_bart_attention.py +640 -0
- onnxruntime/transformers/fusion_base.py +137 -0
- onnxruntime/transformers/fusion_bias_add.py +58 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +111 -0
- onnxruntime/transformers/fusion_conformer_attention.py +143 -0
- onnxruntime/transformers/fusion_embedlayer.py +811 -0
- onnxruntime/transformers/fusion_fastgelu.py +360 -0
- onnxruntime/transformers/fusion_gelu.py +259 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +122 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +179 -0
- onnxruntime/transformers/fusion_layernorm.py +465 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +100 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +421 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +119 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +123 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +217 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1592 -0
- onnxruntime/transformers/fusion_shape.py +110 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +159 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +255 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +168 -0
- onnxruntime/transformers/fusion_utils.py +307 -0
- onnxruntime/transformers/huggingface_models.py +167 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +442 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +221 -0
- onnxruntime/transformers/metrics.py +164 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +561 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1032 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +703 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +606 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1027 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +503 -0
- onnxruntime/transformers/models/llama/llama_parity.py +309 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +77 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +576 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +625 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +260 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +273 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +186 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +322 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +280 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1429 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +102 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +268 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1319 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1181 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +296 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +388 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +350 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +278 -0
- onnxruntime/transformers/models/t5/past_helper.py +150 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +438 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +171 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +299 -0
- onnxruntime/transformers/models/t5/t5_helper.py +272 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +610 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +528 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +536 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +329 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +402 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +306 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +524 -0
- onnxruntime/transformers/models/whisper/whisper_openai_helper.py +84 -0
- onnxruntime/transformers/onnx_exporter.py +717 -0
- onnxruntime/transformers/onnx_model.py +1569 -0
- onnxruntime/transformers/onnx_model_bart.py +142 -0
- onnxruntime/transformers/onnx_model_bert.py +481 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +475 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +589 -0
- onnxruntime/transformers/onnx_model_clip.py +40 -0
- onnxruntime/transformers/onnx_model_conformer.py +33 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_phi.py +930 -0
- onnxruntime/transformers/onnx_model_sam2.py +138 -0
- onnxruntime/transformers/onnx_model_t5.py +791 -0
- onnxruntime/transformers/onnx_model_tnlr.py +227 -0
- onnxruntime/transformers/onnx_model_unet.py +259 -0
- onnxruntime/transformers/onnx_model_vae.py +43 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +612 -0
- onnxruntime/transformers/profiler.py +725 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +122 -0
- onnxruntime/transformers/shape_optimizer.py +401 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.20.0.dist-info/METADATA +187 -0
- onnxruntime_directml-1.20.0.dist-info/RECORD +305 -0
- onnxruntime_directml-1.20.0.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.20.0.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.20.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,414 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
from transformers import AutoTokenizer
|
|
9
|
+
|
|
10
|
+
import onnxruntime as ort
|
|
11
|
+
|
|
12
|
+
pt_to_np = {
|
|
13
|
+
"torch.int32": np.int32,
|
|
14
|
+
"torch.int64": np.int64,
|
|
15
|
+
"torch.float32": np.float32,
|
|
16
|
+
"torch.float16": np.float16,
|
|
17
|
+
}
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def cuda_memcpy(dst, src):
|
|
21
|
+
from cuda import cudart
|
|
22
|
+
|
|
23
|
+
cudart.cudaMemcpy(
|
|
24
|
+
dst.data_ptr(),
|
|
25
|
+
src.data_ptr(),
|
|
26
|
+
src.element_size() * src.nelement(),
|
|
27
|
+
cudart.cudaMemcpyKind.cudaMemcpyDeviceToDevice,
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class ORTGenerator:
|
|
32
|
+
def __init__(self, decoder_path):
|
|
33
|
+
self.onnx_decoder_path = decoder_path
|
|
34
|
+
self.num_heads = 32
|
|
35
|
+
self.head_size = 80
|
|
36
|
+
self.num_layers = 32
|
|
37
|
+
self.max_sequence_length = 2048
|
|
38
|
+
self.device_id = 0
|
|
39
|
+
self.use_cuda_graph = False
|
|
40
|
+
self.use_traced_inputs = False
|
|
41
|
+
self.static_inputs_map = {}
|
|
42
|
+
|
|
43
|
+
def append_static_inputs(self, batch_size):
|
|
44
|
+
# Only use this function with GQA and with use_cuda_graph=True
|
|
45
|
+
if batch_size in self.static_inputs_map:
|
|
46
|
+
return
|
|
47
|
+
|
|
48
|
+
cpu_device = torch.device("cpu")
|
|
49
|
+
cuda_device = torch.device("cuda", self.device_id)
|
|
50
|
+
|
|
51
|
+
static_io = {}
|
|
52
|
+
static_io["input_ids"] = torch.zeros((batch_size, 1), dtype=torch.int32, device=cuda_device)
|
|
53
|
+
static_io["step"] = torch.tensor([0], dtype=torch.int64, device=cuda_device)
|
|
54
|
+
static_io["seqlens_k"] = torch.tensor(batch_size * [0], dtype=torch.int32, device=cuda_device)
|
|
55
|
+
static_io["total_sequence_length"] = torch.tensor([0], dtype=torch.int32, device=cpu_device)
|
|
56
|
+
|
|
57
|
+
cache_shape = (batch_size, self.num_heads, self.max_sequence_length, self.head_size)
|
|
58
|
+
for i in range(self.num_layers):
|
|
59
|
+
cache = torch.zeros(cache_shape, device=cuda_device, dtype=torch.float16)
|
|
60
|
+
static_io.update({f"past_key_{i}": cache.contiguous(), f"past_value_{i}": cache.clone().contiguous()})
|
|
61
|
+
|
|
62
|
+
static_io["logits"] = torch.zeros((batch_size, 1, 51200), dtype=torch.float16, device=cuda_device)
|
|
63
|
+
|
|
64
|
+
self.static_inputs_map[batch_size] = static_io
|
|
65
|
+
|
|
66
|
+
def get_initial_inputs_and_outputs(self, encodings_dict):
|
|
67
|
+
self.torch_dtype = torch.float16 if self.use_fp16 else torch.float32
|
|
68
|
+
|
|
69
|
+
input_ids = torch.tensor(encodings_dict["input_ids"], device=self.device, dtype=torch.int32)
|
|
70
|
+
attention_mask = torch.tensor(encodings_dict["attention_mask"], device=self.device, dtype=torch.int32)
|
|
71
|
+
|
|
72
|
+
batch_size, sequence_length = input_ids.shape
|
|
73
|
+
|
|
74
|
+
self.use_traced_inputs = (
|
|
75
|
+
self.use_cuda_graph
|
|
76
|
+
and (batch_size in self.static_inputs_map)
|
|
77
|
+
and self.use_buffer_share
|
|
78
|
+
and not self.packed_kv
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
step = (
|
|
82
|
+
torch.tensor([0], device=self.device, dtype=torch.int64)
|
|
83
|
+
if not self.use_traced_inputs
|
|
84
|
+
else self.static_inputs_map[batch_size]["step"]
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
seqlens_k = (
|
|
88
|
+
torch.tensor(batch_size * [0], device=self.device, dtype=torch.int32)
|
|
89
|
+
if not self.use_traced_inputs
|
|
90
|
+
else self.static_inputs_map[batch_size]["seqlens_k"]
|
|
91
|
+
)
|
|
92
|
+
cuda_memcpy(seqlens_k, attention_mask.sum(1).sub(1).to(torch.int32))
|
|
93
|
+
|
|
94
|
+
total_seq_length = (
|
|
95
|
+
torch.tensor([0], device=torch.device("cpu"), dtype=torch.int32)
|
|
96
|
+
if not self.use_traced_inputs
|
|
97
|
+
else self.static_inputs_map[batch_size]["total_sequence_length"]
|
|
98
|
+
)
|
|
99
|
+
total_seq_length[0] = sequence_length
|
|
100
|
+
|
|
101
|
+
inputs = {
|
|
102
|
+
"input_ids": input_ids.contiguous(),
|
|
103
|
+
"attention_mask": attention_mask.contiguous(),
|
|
104
|
+
}
|
|
105
|
+
|
|
106
|
+
if self.use_step:
|
|
107
|
+
inputs["step"] = step.contiguous()
|
|
108
|
+
|
|
109
|
+
if self.use_cuda_graph:
|
|
110
|
+
inputs["seqlens_k"] = seqlens_k.contiguous()
|
|
111
|
+
inputs["total_sequence_length"] = total_seq_length.contiguous()
|
|
112
|
+
del inputs["attention_mask"]
|
|
113
|
+
|
|
114
|
+
past_seq_length = self.max_sequence_length if self.use_buffer_share else 0
|
|
115
|
+
past_shape = (
|
|
116
|
+
(2, batch_size, self.num_heads, past_seq_length, self.head_size)
|
|
117
|
+
if self.packed_kv
|
|
118
|
+
else (batch_size, self.num_heads, past_seq_length, self.head_size)
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
if not self.use_traced_inputs:
|
|
122
|
+
for i in range(self.num_layers):
|
|
123
|
+
past = torch.zeros(past_shape, device=self.device, dtype=self.torch_dtype)
|
|
124
|
+
(
|
|
125
|
+
inputs.update({f"past_key_{i}": past.contiguous(), f"past_value_{i}": past.clone().contiguous()})
|
|
126
|
+
if not self.packed_kv
|
|
127
|
+
else inputs.update({f"past_{i}": past.contiguous()})
|
|
128
|
+
)
|
|
129
|
+
else:
|
|
130
|
+
for i in range(self.num_layers):
|
|
131
|
+
inputs.update(
|
|
132
|
+
{
|
|
133
|
+
f"past_key_{i}": self.static_inputs_map[batch_size][f"past_key_{i}"].contiguous(),
|
|
134
|
+
f"past_value_{i}": self.static_inputs_map[batch_size][f"past_value_{i}"].contiguous(),
|
|
135
|
+
}
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
logits = torch.zeros(batch_size, sequence_length, 51200, device=self.device, dtype=self.torch_dtype)
|
|
139
|
+
outputs = {"logits": logits.contiguous()}
|
|
140
|
+
|
|
141
|
+
if not self.use_buffer_share:
|
|
142
|
+
present_shape = (
|
|
143
|
+
(2, batch_size, self.num_heads, sequence_length, self.head_size)
|
|
144
|
+
if self.packed_kv
|
|
145
|
+
else (batch_size, self.num_heads, sequence_length, self.head_size)
|
|
146
|
+
)
|
|
147
|
+
for i in range(self.num_layers):
|
|
148
|
+
present = torch.zeros(present_shape, device=self.device, dtype=self.torch_dtype)
|
|
149
|
+
(
|
|
150
|
+
outputs.update(
|
|
151
|
+
{f"present_key_{i}": present.contiguous(), f"present_value_{i}": present.contiguous()}
|
|
152
|
+
)
|
|
153
|
+
if not self.packed_kv
|
|
154
|
+
else outputs.update({f"present_{i}": present.contiguous()})
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
return inputs, outputs
|
|
158
|
+
|
|
159
|
+
def apply_io_binding(self, model: ort.InferenceSession, inputs: dict, outputs: dict):
|
|
160
|
+
io_binding = model.io_binding()
|
|
161
|
+
device = None
|
|
162
|
+
|
|
163
|
+
for k, v in inputs.items():
|
|
164
|
+
io_binding.bind_input(
|
|
165
|
+
name=k,
|
|
166
|
+
device_type=v.device.type,
|
|
167
|
+
device_id=0 if v.device.type == "cpu" else v.device.index,
|
|
168
|
+
element_type=pt_to_np[repr(v.dtype)],
|
|
169
|
+
shape=tuple(v.shape),
|
|
170
|
+
buffer_ptr=v.data_ptr(),
|
|
171
|
+
)
|
|
172
|
+
device = v.device
|
|
173
|
+
|
|
174
|
+
for output in model.get_outputs():
|
|
175
|
+
name = output.name
|
|
176
|
+
if self.use_buffer_share and "present" in name:
|
|
177
|
+
v = inputs[name.replace("present", "past")]
|
|
178
|
+
io_binding.bind_output(
|
|
179
|
+
name=name,
|
|
180
|
+
device_type=v.device.type,
|
|
181
|
+
device_id=v.device.index,
|
|
182
|
+
element_type=(np.float16 if self.use_fp16 else np.float32),
|
|
183
|
+
shape=tuple(v.shape),
|
|
184
|
+
buffer_ptr=v.data_ptr(),
|
|
185
|
+
)
|
|
186
|
+
else:
|
|
187
|
+
v = outputs[name]
|
|
188
|
+
io_binding.bind_output(
|
|
189
|
+
name=name,
|
|
190
|
+
device_type=device.type,
|
|
191
|
+
device_id=0 if device.type == "cpu" else device.index,
|
|
192
|
+
element_type=(np.float16 if self.use_fp16 else np.float32),
|
|
193
|
+
shape=tuple(v.shape),
|
|
194
|
+
buffer_ptr=v.data_ptr(),
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
return io_binding
|
|
198
|
+
|
|
199
|
+
def create_session(
|
|
200
|
+
self, device_id, use_fp16=True, use_buffer_share=True, packed_kv=False, use_step=False, use_cuda_graph=False
|
|
201
|
+
):
|
|
202
|
+
self.device_id = device_id
|
|
203
|
+
sess_options = ort.SessionOptions()
|
|
204
|
+
sess_options.log_verbosity_level = 4
|
|
205
|
+
sess_options.log_severity_level = 4
|
|
206
|
+
self.use_cuda_graph = use_cuda_graph
|
|
207
|
+
ep = (
|
|
208
|
+
("CUDAExecutionProvider", {"device_id": self.device_id, "enable_cuda_graph": self.use_cuda_graph})
|
|
209
|
+
if self.device_id >= 0
|
|
210
|
+
else "CPUExecutionProvider"
|
|
211
|
+
)
|
|
212
|
+
self.sess = ort.InferenceSession(self.onnx_decoder_path, sess_options=sess_options, providers=[ep])
|
|
213
|
+
self.ro = ort.RunOptions()
|
|
214
|
+
|
|
215
|
+
self.device = torch.device("cuda", self.device_id) if torch.cuda.is_available() else torch.device("cpu")
|
|
216
|
+
self.use_fp16 = use_fp16
|
|
217
|
+
self.use_buffer_share = use_buffer_share
|
|
218
|
+
self.packed_kv = packed_kv
|
|
219
|
+
self.use_step = use_step
|
|
220
|
+
|
|
221
|
+
self.tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
|
222
|
+
self.tokenizer.pad_token = "[PAD]"
|
|
223
|
+
|
|
224
|
+
def generate_impl(self, encodings_dict, max_length, cuda_graph_annotation, benchmark=False):
|
|
225
|
+
inputs, outputs = self.get_initial_inputs_and_outputs(encodings_dict)
|
|
226
|
+
|
|
227
|
+
all_token_ids = inputs["input_ids"].clone()
|
|
228
|
+
batch_size, sequence_length = all_token_ids.shape
|
|
229
|
+
|
|
230
|
+
current_length = sequence_length
|
|
231
|
+
has_eos = torch.zeros(batch_size, device=self.device, dtype=torch.bool)
|
|
232
|
+
|
|
233
|
+
if benchmark:
|
|
234
|
+
import time
|
|
235
|
+
|
|
236
|
+
latency = []
|
|
237
|
+
|
|
238
|
+
prompt_run = True
|
|
239
|
+
while current_length < max_length:
|
|
240
|
+
io_binding = self.apply_io_binding(self.sess, inputs, outputs)
|
|
241
|
+
|
|
242
|
+
if benchmark:
|
|
243
|
+
start = time.time()
|
|
244
|
+
|
|
245
|
+
io_binding.synchronize_inputs()
|
|
246
|
+
if prompt_run:
|
|
247
|
+
if self.use_cuda_graph:
|
|
248
|
+
# Disable CUDA graph for the prompt run
|
|
249
|
+
self.ro.add_run_config_entry("gpu_graph_id", "-1")
|
|
250
|
+
self.sess.run_with_iobinding(io_binding, self.ro)
|
|
251
|
+
if self.use_cuda_graph:
|
|
252
|
+
# Enable CUDA graph for the decoding run
|
|
253
|
+
self.ro.add_run_config_entry(
|
|
254
|
+
"gpu_graph_id", str(cuda_graph_annotation) if self.use_traced_inputs else "-1"
|
|
255
|
+
)
|
|
256
|
+
prompt_run = False
|
|
257
|
+
else:
|
|
258
|
+
self.sess.run_with_iobinding(io_binding, self.ro)
|
|
259
|
+
io_binding.synchronize_outputs()
|
|
260
|
+
|
|
261
|
+
if benchmark:
|
|
262
|
+
end = time.time()
|
|
263
|
+
latency.append(end - start)
|
|
264
|
+
|
|
265
|
+
# Sample with argmax (greedy search)
|
|
266
|
+
next_token_logits = outputs["logits"][:, -1, :]
|
|
267
|
+
next_tokens = torch.argmax(next_token_logits, dim=-1)
|
|
268
|
+
|
|
269
|
+
# Check if we previously reached EOS token id or if generated token id is EOS token id
|
|
270
|
+
has_eos = has_eos | next_tokens == self.tokenizer.eos_token_id
|
|
271
|
+
|
|
272
|
+
# Determine which new tokens to add to list of all token ids
|
|
273
|
+
# Add EOS token ids for batch entries that ended early (ragged batching scenario where some batch entries ended early and some haven't)
|
|
274
|
+
tokens_to_add = next_tokens.masked_fill(has_eos, self.tokenizer.eos_token_id).reshape([batch_size, 1])
|
|
275
|
+
all_token_ids = torch.cat([all_token_ids, tokens_to_add], dim=-1)
|
|
276
|
+
|
|
277
|
+
# Return early if all batch entries have reached EOS token id
|
|
278
|
+
if torch.all(has_eos):
|
|
279
|
+
break
|
|
280
|
+
|
|
281
|
+
# Update inputs for next inference run
|
|
282
|
+
current_length += 1
|
|
283
|
+
|
|
284
|
+
inputs["input_ids"] = tokens_to_add.to(torch.int32)
|
|
285
|
+
if self.use_traced_inputs:
|
|
286
|
+
cuda_memcpy(self.static_inputs_map[batch_size]["input_ids"], inputs["input_ids"])
|
|
287
|
+
inputs["input_ids"] = self.static_inputs_map[batch_size]["input_ids"]
|
|
288
|
+
|
|
289
|
+
if self.use_step:
|
|
290
|
+
inputs["step"] = torch.tensor([current_length - 1], device=self.device, dtype=torch.int64)
|
|
291
|
+
if self.use_traced_inputs:
|
|
292
|
+
cuda_memcpy(self.static_inputs_map[batch_size]["step"], inputs["step"])
|
|
293
|
+
inputs["step"] = self.static_inputs_map[batch_size]["step"]
|
|
294
|
+
|
|
295
|
+
if self.use_cuda_graph:
|
|
296
|
+
previous_seqlens_k = inputs["seqlens_k"]
|
|
297
|
+
inputs["seqlens_k"] = (previous_seqlens_k + (~has_eos).reshape(batch_size, 1)).to(torch.int32)
|
|
298
|
+
inputs["total_sequence_length"][0] = current_length
|
|
299
|
+
if self.use_traced_inputs:
|
|
300
|
+
cuda_memcpy(self.static_inputs_map[batch_size]["seqlens_k"], inputs["seqlens_k"])
|
|
301
|
+
inputs["seqlens_k"] = self.static_inputs_map[batch_size]["seqlens_k"]
|
|
302
|
+
self.static_inputs_map[batch_size]["total_sequence_length"][0] = inputs["total_sequence_length"][0]
|
|
303
|
+
inputs["total_sequence_length"] = self.static_inputs_map[batch_size]["total_sequence_length"]
|
|
304
|
+
else:
|
|
305
|
+
inputs["attention_mask"] = torch.cat(
|
|
306
|
+
[inputs["attention_mask"], (~has_eos).reshape(batch_size, 1)], 1
|
|
307
|
+
).to(torch.int32)
|
|
308
|
+
|
|
309
|
+
# Set logits to zeros for next inference run and re-use memory buffer
|
|
310
|
+
if outputs["logits"].shape[1] != 1:
|
|
311
|
+
outputs["logits"] = outputs["logits"][:, :1, :].contiguous()
|
|
312
|
+
if self.use_traced_inputs:
|
|
313
|
+
outputs["logits"] = self.static_inputs_map[batch_size]["logits"]
|
|
314
|
+
outputs["logits"].zero_()
|
|
315
|
+
|
|
316
|
+
if not self.use_buffer_share:
|
|
317
|
+
for i in range(self.num_layers):
|
|
318
|
+
if not self.packed_kv:
|
|
319
|
+
inputs[f"past_key_{i}"] = outputs[f"present_key_{i}"]
|
|
320
|
+
inputs[f"past_value_{i}"] = outputs[f"present_value_{i}"]
|
|
321
|
+
else:
|
|
322
|
+
inputs[f"past_{i}"] = outputs[f"present_{i}"]
|
|
323
|
+
|
|
324
|
+
new_sequence_length = inputs["attention_mask"].shape[1]
|
|
325
|
+
present_shape = (
|
|
326
|
+
(2, batch_size, self.num_heads, new_sequence_length, self.head_size)
|
|
327
|
+
if self.packed_kv
|
|
328
|
+
else (batch_size, self.num_heads, new_sequence_length, self.head_size)
|
|
329
|
+
)
|
|
330
|
+
for i in range(self.num_layers):
|
|
331
|
+
present = torch.zeros(present_shape, device=self.device, dtype=self.torch_dtype)
|
|
332
|
+
(
|
|
333
|
+
outputs.update(
|
|
334
|
+
{
|
|
335
|
+
f"present_key_{i}": present.contiguous(),
|
|
336
|
+
f"present_value_{i}": present.clone().contiguous(),
|
|
337
|
+
}
|
|
338
|
+
)
|
|
339
|
+
if not self.packed_kv
|
|
340
|
+
else outputs.update({f"present_{i}": present.contiguous()})
|
|
341
|
+
)
|
|
342
|
+
|
|
343
|
+
if benchmark:
|
|
344
|
+
print(
|
|
345
|
+
f"Batch size: {batch_size}, Sequence length: {sequence_length}, Token num: {max_length - sequence_length}"
|
|
346
|
+
)
|
|
347
|
+
print(f"Prompt letency: {1000 * latency[0]}ms, Token latency: {1000 * np.mean(latency[1:])}ms")
|
|
348
|
+
return
|
|
349
|
+
|
|
350
|
+
texts = self.tokenizer.batch_decode(all_token_ids, skip_special_tokens=True)
|
|
351
|
+
return texts
|
|
352
|
+
|
|
353
|
+
def generate(self, prompt, max_length, cuda_graph_annotation):
|
|
354
|
+
encodings_dict = self.tokenizer.batch_encode_plus(prompt, padding=True)
|
|
355
|
+
|
|
356
|
+
return self.generate_impl(encodings_dict, max_length, cuda_graph_annotation)
|
|
357
|
+
|
|
358
|
+
def generate_benchmark(self, prompt_shape, token_num, cuda_graph_annotation):
|
|
359
|
+
batch_size, sequence_length = prompt_shape
|
|
360
|
+
max_length = sequence_length + token_num
|
|
361
|
+
|
|
362
|
+
encodings_dict = {}
|
|
363
|
+
encodings_dict["input_ids"] = torch.randint(0, 50264, (batch_size, sequence_length), dtype=torch.int32).tolist()
|
|
364
|
+
encodings_dict["attention_mask"] = torch.ones((batch_size, sequence_length), dtype=torch.int32).tolist()
|
|
365
|
+
|
|
366
|
+
# Warm up run
|
|
367
|
+
self.generate_impl(encodings_dict, max_length, cuda_graph_annotation, benchmark=False)
|
|
368
|
+
|
|
369
|
+
# Benchmark run
|
|
370
|
+
self.generate_impl(encodings_dict, max_length, cuda_graph_annotation, benchmark=True)
|
|
371
|
+
|
|
372
|
+
|
|
373
|
+
def run_phi2(
|
|
374
|
+
onnx_model_path,
|
|
375
|
+
use_buffer_share,
|
|
376
|
+
device_id,
|
|
377
|
+
packed_kv=False,
|
|
378
|
+
use_fp16=True,
|
|
379
|
+
use_step=False,
|
|
380
|
+
use_cuda_graph=False,
|
|
381
|
+
run_benchmark=False,
|
|
382
|
+
):
|
|
383
|
+
generator = ORTGenerator(onnx_model_path)
|
|
384
|
+
generator.create_session(device_id, use_fp16, use_buffer_share, packed_kv, use_step, use_cuda_graph)
|
|
385
|
+
|
|
386
|
+
def simple_run(prompt):
|
|
387
|
+
example_batch_size = len(prompt)
|
|
388
|
+
if use_cuda_graph:
|
|
389
|
+
generator.append_static_inputs(batch_size=example_batch_size)
|
|
390
|
+
texts = generator.generate(prompt, max_length=210, cuda_graph_annotation=example_batch_size)
|
|
391
|
+
|
|
392
|
+
for i in range(len(texts)):
|
|
393
|
+
print("Prompt: ", prompt[i])
|
|
394
|
+
print("Texts: ", texts[i])
|
|
395
|
+
|
|
396
|
+
prompt = [
|
|
397
|
+
'''```python
|
|
398
|
+
def print_prime(n):
|
|
399
|
+
"""
|
|
400
|
+
Print all primes between 1 and n
|
|
401
|
+
"""'''
|
|
402
|
+
]
|
|
403
|
+
|
|
404
|
+
if not run_benchmark:
|
|
405
|
+
simple_run(prompt)
|
|
406
|
+
|
|
407
|
+
# Run simple benchmark. Time the decoder only.
|
|
408
|
+
if run_benchmark:
|
|
409
|
+
token_num = 32
|
|
410
|
+
for batch_size in [1, 2, 4, 8]:
|
|
411
|
+
generator.append_static_inputs(batch_size)
|
|
412
|
+
for sequence_length in [16, 512]:
|
|
413
|
+
prompt_shape = (batch_size, sequence_length)
|
|
414
|
+
generator.generate_benchmark(prompt_shape, token_num, cuda_graph_annotation=batch_size)
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
import os.path
|
|
6
|
+
import sys
|
|
7
|
+
|
|
8
|
+
sys.path.append(os.path.dirname(__file__))
|
|
9
|
+
|
|
10
|
+
transformers_dir = os.path.normpath(os.path.join(os.path.dirname(__file__), "..", ".."))
|
|
11
|
+
if transformers_dir not in sys.path:
|
|
12
|
+
sys.path.append(transformers_dir)
|