onnxruntime-directml 1.20.0__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6508 -0
- onnxruntime/__init__.py +78 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +174 -0
- onnxruntime/backend/backend_rep.py +53 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1108 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +150 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +17 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +16 -0
- onnxruntime/quantization/base_quantizer.py +532 -0
- onnxruntime/quantization/calibrate.py +1245 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +307 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +387 -0
- onnxruntime/quantization/fusions/__init__.py +3 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +135 -0
- onnxruntime/quantization/matmul_4bits_quantizer.py +1480 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +240 -0
- onnxruntime/quantization/onnx_model.py +580 -0
- onnxruntime/quantization/onnx_quantizer.py +1008 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +258 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +166 -0
- onnxruntime/quantization/operators/lstm.py +117 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +100 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1187 -0
- onnxruntime/quantization/quant_utils.py +891 -0
- onnxruntime/quantization/quantize.py +748 -0
- onnxruntime/quantization/registry.py +106 -0
- onnxruntime/quantization/shape_inference.py +187 -0
- onnxruntime/quantization/tensor_quant_overrides.py +516 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +377 -0
- onnxruntime/tools/file_utils.py +46 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +72 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +33 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +739 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +413 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +55 -0
- onnxruntime/tools/ort_format_model/__init__.py +25 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +663 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +84 -0
- onnxruntime/tools/ort_format_model/utils.py +62 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +108 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/reduced_build_config_parser.py +202 -0
- onnxruntime/tools/symbolic_shape_infer.py +3016 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +944 -0
- onnxruntime/transformers/benchmark_helper.py +646 -0
- onnxruntime/transformers/bert_perf_test.py +634 -0
- onnxruntime/transformers/bert_test_data.py +642 -0
- onnxruntime/transformers/compare_bert_results.py +246 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3124 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +387 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +104 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1235 -0
- onnxruntime/transformers/fusion_attention_clip.py +257 -0
- onnxruntime/transformers/fusion_attention_sam2.py +534 -0
- onnxruntime/transformers/fusion_attention_unet.py +1304 -0
- onnxruntime/transformers/fusion_attention_vae.py +301 -0
- onnxruntime/transformers/fusion_bart_attention.py +640 -0
- onnxruntime/transformers/fusion_base.py +137 -0
- onnxruntime/transformers/fusion_bias_add.py +58 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +111 -0
- onnxruntime/transformers/fusion_conformer_attention.py +143 -0
- onnxruntime/transformers/fusion_embedlayer.py +811 -0
- onnxruntime/transformers/fusion_fastgelu.py +360 -0
- onnxruntime/transformers/fusion_gelu.py +259 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +122 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +179 -0
- onnxruntime/transformers/fusion_layernorm.py +465 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +100 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +421 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +119 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +123 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +217 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1592 -0
- onnxruntime/transformers/fusion_shape.py +110 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +159 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +255 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +168 -0
- onnxruntime/transformers/fusion_utils.py +307 -0
- onnxruntime/transformers/huggingface_models.py +167 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +442 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +221 -0
- onnxruntime/transformers/metrics.py +164 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +561 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1032 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +703 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +606 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1027 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +503 -0
- onnxruntime/transformers/models/llama/llama_parity.py +309 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +77 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +576 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +625 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +260 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +273 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +186 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +322 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +280 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1429 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +102 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +268 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1319 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1181 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +296 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +388 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +350 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +278 -0
- onnxruntime/transformers/models/t5/past_helper.py +150 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +438 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +171 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +299 -0
- onnxruntime/transformers/models/t5/t5_helper.py +272 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +610 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +528 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +536 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +329 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +402 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +306 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +524 -0
- onnxruntime/transformers/models/whisper/whisper_openai_helper.py +84 -0
- onnxruntime/transformers/onnx_exporter.py +717 -0
- onnxruntime/transformers/onnx_model.py +1569 -0
- onnxruntime/transformers/onnx_model_bart.py +142 -0
- onnxruntime/transformers/onnx_model_bert.py +481 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +475 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +589 -0
- onnxruntime/transformers/onnx_model_clip.py +40 -0
- onnxruntime/transformers/onnx_model_conformer.py +33 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_phi.py +930 -0
- onnxruntime/transformers/onnx_model_sam2.py +138 -0
- onnxruntime/transformers/onnx_model_t5.py +791 -0
- onnxruntime/transformers/onnx_model_tnlr.py +227 -0
- onnxruntime/transformers/onnx_model_unet.py +259 -0
- onnxruntime/transformers/onnx_model_vae.py +43 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +612 -0
- onnxruntime/transformers/profiler.py +725 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +122 -0
- onnxruntime/transformers/shape_optimizer.py +401 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.20.0.dist-info/METADATA +187 -0
- onnxruntime_directml-1.20.0.dist-info/RECORD +305 -0
- onnxruntime_directml-1.20.0.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.20.0.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.20.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,528 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License. See License.txt in the project root for
|
|
4
|
+
# license information.
|
|
5
|
+
# --------------------------------------------------------------------------
|
|
6
|
+
|
|
7
|
+
import argparse
|
|
8
|
+
import datetime
|
|
9
|
+
import json
|
|
10
|
+
import logging
|
|
11
|
+
import os
|
|
12
|
+
import subprocess
|
|
13
|
+
|
|
14
|
+
import librosa
|
|
15
|
+
import torch
|
|
16
|
+
from benchmark_helper import setup_logger
|
|
17
|
+
from metrics import BenchmarkRecord
|
|
18
|
+
from transformers import WhisperConfig, WhisperProcessor
|
|
19
|
+
|
|
20
|
+
logger = logging.getLogger(__name__)
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def get_args():
|
|
24
|
+
parser = argparse.ArgumentParser()
|
|
25
|
+
|
|
26
|
+
parser.add_argument(
|
|
27
|
+
"-a",
|
|
28
|
+
"--audio-path",
|
|
29
|
+
type=str,
|
|
30
|
+
required=True,
|
|
31
|
+
help="Path to folder of audio files for E2E evaluation",
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
parser.add_argument(
|
|
35
|
+
"-l",
|
|
36
|
+
"--language",
|
|
37
|
+
default=None,
|
|
38
|
+
help="Language of audio file",
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
parser.add_argument(
|
|
42
|
+
"-t",
|
|
43
|
+
"--task",
|
|
44
|
+
default=None,
|
|
45
|
+
choices=["transcribe", "translate"],
|
|
46
|
+
help="Task to complete",
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
parser.add_argument(
|
|
50
|
+
"-w",
|
|
51
|
+
"--warmup-runs",
|
|
52
|
+
type=int,
|
|
53
|
+
default=5,
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
parser.add_argument(
|
|
57
|
+
"-n",
|
|
58
|
+
"--num-runs",
|
|
59
|
+
type=int,
|
|
60
|
+
default=10,
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
parser.add_argument(
|
|
64
|
+
"--hf-pt-eager",
|
|
65
|
+
default=False,
|
|
66
|
+
action="store_true",
|
|
67
|
+
help="Benchmark in PyTorch without `torch.compile`",
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
parser.add_argument(
|
|
71
|
+
"--hf-pt-compile",
|
|
72
|
+
default=False,
|
|
73
|
+
action="store_true",
|
|
74
|
+
help="Benchmark in PyTorch with `torch.compile`",
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
parser.add_argument(
|
|
78
|
+
"--hf-ort-dir-path",
|
|
79
|
+
type=str,
|
|
80
|
+
help="Path to folder containing ONNX models for Optimum + ORT benchmarking",
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
parser.add_argument(
|
|
84
|
+
"--ort-model-path",
|
|
85
|
+
type=str,
|
|
86
|
+
help="Path to ONNX model for ORT benchmarking",
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
parser.add_argument(
|
|
90
|
+
"--model-name",
|
|
91
|
+
type=str,
|
|
92
|
+
required=True,
|
|
93
|
+
help="Model name in Hugging Face (e.g. openai/whisper-large-v2)",
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
parser.add_argument(
|
|
97
|
+
"--precision",
|
|
98
|
+
type=str,
|
|
99
|
+
required=True,
|
|
100
|
+
choices=["int8", "fp16", "fp32"],
|
|
101
|
+
help="Precision to run model",
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
parser.add_argument(
|
|
105
|
+
"--device",
|
|
106
|
+
type=str,
|
|
107
|
+
required=True,
|
|
108
|
+
choices=["cpu", "cuda", "rocm"],
|
|
109
|
+
help="Device to benchmark models",
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
parser.add_argument(
|
|
113
|
+
"--device-id",
|
|
114
|
+
type=int,
|
|
115
|
+
default=0,
|
|
116
|
+
help="GPU device ID",
|
|
117
|
+
)
|
|
118
|
+
|
|
119
|
+
parser.add_argument(
|
|
120
|
+
"--verbose",
|
|
121
|
+
default=False,
|
|
122
|
+
action="store_true",
|
|
123
|
+
help="Print detailed logs",
|
|
124
|
+
)
|
|
125
|
+
|
|
126
|
+
parser.add_argument(
|
|
127
|
+
"--timeout",
|
|
128
|
+
type=int,
|
|
129
|
+
default=5,
|
|
130
|
+
help="Number of mins to attempt the benchmark before moving on",
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
parser.add_argument(
|
|
134
|
+
"--log-folder",
|
|
135
|
+
type=str,
|
|
136
|
+
default=None,
|
|
137
|
+
help="Path to folder to save logs and results",
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
parser.add_argument("--tune", default=False, action="store_true")
|
|
141
|
+
|
|
142
|
+
args = parser.parse_args()
|
|
143
|
+
|
|
144
|
+
setattr(args, "model_size", args.model_name.split("/")[-1].replace(".", "-")) # noqa: B010
|
|
145
|
+
log_folder_name = f"./{args.model_size}-{args.precision}"
|
|
146
|
+
if not args.log_folder:
|
|
147
|
+
args.log_folder = log_folder_name
|
|
148
|
+
os.makedirs(args.log_folder, exist_ok=True)
|
|
149
|
+
|
|
150
|
+
# Convert timeout value to secs
|
|
151
|
+
args.timeout *= 60
|
|
152
|
+
|
|
153
|
+
return args
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def process_log_file(device_id, log_file, base_results):
|
|
157
|
+
entries = []
|
|
158
|
+
|
|
159
|
+
# Detect steps in speech pipeline
|
|
160
|
+
step = None
|
|
161
|
+
load_audio_pattern = "Load audio: "
|
|
162
|
+
feat_ext_pattern = "Feature extraction: "
|
|
163
|
+
pytorch_pattern = "Evaluating PyTorch..."
|
|
164
|
+
onnxruntime_pattern = "Evaluating ONNX Runtime..."
|
|
165
|
+
|
|
166
|
+
load_audio_latency_s, load_audio_throughput_s = None, None
|
|
167
|
+
feat_ext_latency_s, feat_ext_throughput_s = None, None
|
|
168
|
+
token_length, latency_s, per_token_latency_s, per_token_latency_ms = None, None, None, None
|
|
169
|
+
throughput, memory = None, None
|
|
170
|
+
|
|
171
|
+
# Detect metrics
|
|
172
|
+
latency_pattern = "Latency: "
|
|
173
|
+
throughput_pattern = "Throughput: "
|
|
174
|
+
token_length_pattern = "Generated token length: "
|
|
175
|
+
memory_pattern = "peak="
|
|
176
|
+
|
|
177
|
+
with open(log_file) as f:
|
|
178
|
+
for input_line in f:
|
|
179
|
+
line = input_line.replace("\n", "")
|
|
180
|
+
|
|
181
|
+
# Get step in speech recognition pipeline
|
|
182
|
+
if load_audio_pattern in line:
|
|
183
|
+
step = "load-audio"
|
|
184
|
+
elif feat_ext_pattern in line:
|
|
185
|
+
step = "feature-extraction"
|
|
186
|
+
elif pytorch_pattern in line or onnxruntime_pattern in line:
|
|
187
|
+
step = "process"
|
|
188
|
+
|
|
189
|
+
# Check metrics
|
|
190
|
+
if latency_pattern in line:
|
|
191
|
+
latency_s = float(line[len(latency_pattern) : line.rfind(" ")])
|
|
192
|
+
elif throughput_pattern in line:
|
|
193
|
+
throughput = float(line[len(throughput_pattern) : line.rfind(" ")])
|
|
194
|
+
if step == "load-audio":
|
|
195
|
+
load_audio_latency_s, load_audio_throughput_s = latency_s, throughput
|
|
196
|
+
step = None
|
|
197
|
+
if step == "feature-extraction":
|
|
198
|
+
feat_ext_latency_s, feat_ext_throughput_s = latency_s, throughput
|
|
199
|
+
step = None
|
|
200
|
+
elif token_length_pattern in line:
|
|
201
|
+
token_length = int(line[len(token_length_pattern) : line.rfind(" ")])
|
|
202
|
+
per_token_latency_s = latency_s / token_length
|
|
203
|
+
per_token_latency_ms = per_token_latency_s * 1000
|
|
204
|
+
elif memory_pattern in line:
|
|
205
|
+
if "CPU" in line:
|
|
206
|
+
# Example format for log entry:
|
|
207
|
+
# CPU memory usage: before=1000.0 MB, peak=2000.0 MB
|
|
208
|
+
memory = float(line[line.rfind("=") + 1 : line.rfind(" MB")]) / 1000
|
|
209
|
+
else:
|
|
210
|
+
# Example format for log entry:
|
|
211
|
+
# GPU memory usage: before=[{'device_id': 0, 'name': 'Tesla V100-PCIE-16GB', 'max_used_MB': 1638.875}, {'device_id': 1, 'name': 'Tesla V100-PCIE-16GB', 'max_used_MB': 236.875}, peak=[{'device_id': 0, 'name': 'Tesla V100-PCIE-16GB', 'max_used_MB': 1780.875}, {'device_id': 1, 'name': 'Tesla V100-PCIE-16GB', 'max_used_MB': 236.875}]
|
|
212
|
+
peak = line[line.find(memory_pattern) + len(memory_pattern) :].replace("'", '"')
|
|
213
|
+
usage = json.loads(peak)[device_id]["max_used_MB"]
|
|
214
|
+
memory = float(usage) / 1000
|
|
215
|
+
|
|
216
|
+
# Calculate real-time factor (RTF):
|
|
217
|
+
# RTF = total latency / audio duration
|
|
218
|
+
total_latency = (
|
|
219
|
+
(load_audio_latency_s if load_audio_latency_s else 0)
|
|
220
|
+
+ (feat_ext_latency_s if feat_ext_latency_s else 0)
|
|
221
|
+
+ (latency_s if latency_s else 0)
|
|
222
|
+
)
|
|
223
|
+
audio_duration = base_results[-1]
|
|
224
|
+
rtf = (total_latency / audio_duration) if audio_duration else -1
|
|
225
|
+
logger.info(f"Total latency: {total_latency} s")
|
|
226
|
+
logger.info(f"Audio duration: {audio_duration} s")
|
|
227
|
+
logger.info(f"Real-time factor: {rtf}")
|
|
228
|
+
|
|
229
|
+
# Append log entry to list of entries
|
|
230
|
+
entry = base_results + [ # noqa: RUF005
|
|
231
|
+
token_length,
|
|
232
|
+
load_audio_latency_s,
|
|
233
|
+
load_audio_throughput_s,
|
|
234
|
+
feat_ext_latency_s if feat_ext_latency_s else -1,
|
|
235
|
+
feat_ext_throughput_s if feat_ext_throughput_s else -1,
|
|
236
|
+
latency_s,
|
|
237
|
+
per_token_latency_ms,
|
|
238
|
+
throughput,
|
|
239
|
+
memory,
|
|
240
|
+
rtf,
|
|
241
|
+
]
|
|
242
|
+
entries.append(entry)
|
|
243
|
+
|
|
244
|
+
return entries
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
def save_results(results, filename):
|
|
248
|
+
import pandas as pd
|
|
249
|
+
|
|
250
|
+
df = pd.DataFrame(
|
|
251
|
+
results,
|
|
252
|
+
columns=[
|
|
253
|
+
"Warmup Runs",
|
|
254
|
+
"Measured Runs",
|
|
255
|
+
"Model Name",
|
|
256
|
+
"Engine",
|
|
257
|
+
"Precision",
|
|
258
|
+
"Device",
|
|
259
|
+
"Audio File",
|
|
260
|
+
"Duration (s)",
|
|
261
|
+
"Token Length",
|
|
262
|
+
"Load Audio Latency (s)",
|
|
263
|
+
"Load Audio Throughput (qps)",
|
|
264
|
+
"Feature Extractor Latency (s)",
|
|
265
|
+
"Feature Extractor Throughput (qps)",
|
|
266
|
+
"Latency (s)",
|
|
267
|
+
"Per Token Latency (ms/token)",
|
|
268
|
+
"Throughput (qps)",
|
|
269
|
+
"Memory (GB)",
|
|
270
|
+
"Real Time Factor (RTF)",
|
|
271
|
+
],
|
|
272
|
+
)
|
|
273
|
+
|
|
274
|
+
# Set column types
|
|
275
|
+
df["Warmup Runs"] = df["Warmup Runs"].astype("int")
|
|
276
|
+
df["Measured Runs"] = df["Measured Runs"].astype("int")
|
|
277
|
+
df["Duration (s)"] = df["Duration (s)"].astype("float")
|
|
278
|
+
df["Token Length"] = df["Token Length"].astype("int")
|
|
279
|
+
df["Load Audio Latency (s)"] = df["Load Audio Latency (s)"].astype("float")
|
|
280
|
+
df["Load Audio Throughput (qps)"] = df["Load Audio Throughput (qps)"].astype("float")
|
|
281
|
+
df["Feature Extractor Latency (s)"] = df["Feature Extractor Latency (s)"].astype("float")
|
|
282
|
+
df["Feature Extractor Throughput (qps)"] = df["Feature Extractor Throughput (qps)"].astype("float")
|
|
283
|
+
df["Latency (s)"] = df["Latency (s)"].astype("float")
|
|
284
|
+
df["Per Token Latency (ms/token)"] = df["Per Token Latency (ms/token)"].astype("float")
|
|
285
|
+
df["Throughput (qps)"] = df["Throughput (qps)"].astype("float")
|
|
286
|
+
df["Memory (GB)"] = df["Memory (GB)"].astype("float")
|
|
287
|
+
df["Real Time Factor (RTF)"] = df["Real Time Factor (RTF)"].astype("float")
|
|
288
|
+
|
|
289
|
+
# get package name and version
|
|
290
|
+
import pkg_resources
|
|
291
|
+
|
|
292
|
+
installed_packages = pkg_resources.working_set
|
|
293
|
+
installed_packages_list = sorted(
|
|
294
|
+
[f"{i.key}=={i.version}" for i in installed_packages if i.key in ["onnxruntime", "onnxruntime-gpu"]]
|
|
295
|
+
)
|
|
296
|
+
ort_pkg_name = ""
|
|
297
|
+
ort_pkg_version = ""
|
|
298
|
+
if installed_packages_list:
|
|
299
|
+
ort_pkg_name = installed_packages_list[0].split("==")[0]
|
|
300
|
+
ort_pkg_version = installed_packages_list[0].split("==")[1]
|
|
301
|
+
|
|
302
|
+
# Save results to csv with standard format
|
|
303
|
+
records = []
|
|
304
|
+
for _, row in df.iterrows():
|
|
305
|
+
if row["Engine"] == "onnxruntime":
|
|
306
|
+
record = BenchmarkRecord(
|
|
307
|
+
row["Model Name"], row["Precision"], row["Engine"], row["Device"], ort_pkg_name, ort_pkg_version
|
|
308
|
+
)
|
|
309
|
+
else:
|
|
310
|
+
record = BenchmarkRecord(
|
|
311
|
+
row["Model Name"], row["Precision"], row["Engine"], row["Device"], torch.__name__, torch.__version__
|
|
312
|
+
)
|
|
313
|
+
record.config.customized["audio_file"] = row["Audio File"]
|
|
314
|
+
record.config.warmup_runs = row["Warmup Runs"]
|
|
315
|
+
record.config.measured_runs = row["Measured Runs"]
|
|
316
|
+
|
|
317
|
+
record.metrics.customized["duration"] = row["Duration (s)"]
|
|
318
|
+
record.metrics.customized["token_length"] = row["Token Length"]
|
|
319
|
+
record.metrics.customized["load_audio_latency"] = row["Load Audio Latency (s)"]
|
|
320
|
+
record.metrics.customized["load_audio_throughput"] = row["Load Audio Throughput (qps)"]
|
|
321
|
+
record.metrics.customized["feature_extractor_latency_s"] = row["Feature Extractor Latency (s)"]
|
|
322
|
+
record.metrics.customized["feature_extractor_throughput_qps"] = row["Feature Extractor Throughput (qps)"]
|
|
323
|
+
record.metrics.customized["per_token_latency_ms"] = row["Per Token Latency (ms/token)"]
|
|
324
|
+
record.metrics.customized["rtf"] = row["Real Time Factor (RTF)"]
|
|
325
|
+
|
|
326
|
+
record.metrics.latency_ms_mean = row["Latency (s)"] * 1000
|
|
327
|
+
record.metrics.throughput_qps = row["Throughput (qps)"]
|
|
328
|
+
record.metrics.max_memory_usage_GB = row["Memory (GB)"]
|
|
329
|
+
|
|
330
|
+
records.append(record)
|
|
331
|
+
|
|
332
|
+
BenchmarkRecord.save_as_csv(filename, records)
|
|
333
|
+
BenchmarkRecord.save_as_json(filename.replace(".csv", ".json"), records)
|
|
334
|
+
logger.info(f"Results saved in {filename}!")
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
def benchmark(args, benchmark_cmd, engine, audio_file, duration):
|
|
338
|
+
log_filename = f"{engine}_{datetime.datetime.now():%Y-%m-%d_%H:%M:%S}.log"
|
|
339
|
+
log_path = os.path.join(args.log_folder, log_filename)
|
|
340
|
+
with open(log_path, "w") as log_file:
|
|
341
|
+
process = subprocess.Popen(benchmark_cmd, stdout=log_file, stderr=log_file)
|
|
342
|
+
try:
|
|
343
|
+
process.wait(args.timeout)
|
|
344
|
+
except subprocess.TimeoutExpired:
|
|
345
|
+
process.kill()
|
|
346
|
+
|
|
347
|
+
# Create entries for csv
|
|
348
|
+
logger.info("Gathering data from log files...")
|
|
349
|
+
base_results = [
|
|
350
|
+
args.warmup_runs,
|
|
351
|
+
args.num_runs,
|
|
352
|
+
args.model_name,
|
|
353
|
+
engine,
|
|
354
|
+
args.precision,
|
|
355
|
+
args.device,
|
|
356
|
+
audio_file,
|
|
357
|
+
duration,
|
|
358
|
+
]
|
|
359
|
+
results = process_log_file(args.device_id, log_path, base_results)
|
|
360
|
+
|
|
361
|
+
return results
|
|
362
|
+
|
|
363
|
+
|
|
364
|
+
def main():
|
|
365
|
+
args = get_args()
|
|
366
|
+
setup_logger(args.verbose)
|
|
367
|
+
logger.info(args.__dict__)
|
|
368
|
+
torch.backends.cudnn.benchmark = True
|
|
369
|
+
|
|
370
|
+
config = WhisperConfig.from_pretrained(args.model_name)
|
|
371
|
+
processor = WhisperProcessor.from_pretrained(args.model_name)
|
|
372
|
+
|
|
373
|
+
# Calculate forced decoder input ids
|
|
374
|
+
hf_forced_decoder_ids = processor.get_decoder_prompt_ids(language=args.language, task=args.task)
|
|
375
|
+
ort_forced_decoder_ids = [config.decoder_start_token_id] + list( # noqa: RUF005
|
|
376
|
+
map(lambda token_id: token_id[1], hf_forced_decoder_ids)
|
|
377
|
+
)
|
|
378
|
+
hf_decoder_input_ids_cmd = (
|
|
379
|
+
["--decoder-input-ids", str(hf_forced_decoder_ids)] if args.language and args.task else []
|
|
380
|
+
)
|
|
381
|
+
ort_decoder_input_ids_cmd = (
|
|
382
|
+
["--decoder-input-ids", str(ort_forced_decoder_ids)] if args.language and args.task else []
|
|
383
|
+
)
|
|
384
|
+
ort_tune_cmd = ["--tune"] if args.tune else []
|
|
385
|
+
|
|
386
|
+
all_results = []
|
|
387
|
+
for audio_file in os.listdir(args.audio_path):
|
|
388
|
+
audio_path = os.path.join(args.audio_path, audio_file)
|
|
389
|
+
try:
|
|
390
|
+
duration = librosa.get_duration(path=audio_path)
|
|
391
|
+
except Exception as e:
|
|
392
|
+
duration = -1
|
|
393
|
+
logger.warning(f"An error occurred while trying to calculate the audio duration: {e}", exc_info=True)
|
|
394
|
+
logger.warning(
|
|
395
|
+
f"If you get an error that says:\n\tsoundfile.LibsndfileError: Error opening '{audio_file}': File contains data in an unknown format.\nyou may not have installed `ffmpeg` in addition to installing `librosa`."
|
|
396
|
+
)
|
|
397
|
+
logger.info(f"Testing {audio_path}...")
|
|
398
|
+
|
|
399
|
+
# Benchmark PyTorch without torch.compile
|
|
400
|
+
if args.hf_pt_eager:
|
|
401
|
+
benchmark_cmd = [ # noqa: RUF005
|
|
402
|
+
"python",
|
|
403
|
+
"-m",
|
|
404
|
+
"models.whisper.benchmark",
|
|
405
|
+
"--audio-path",
|
|
406
|
+
audio_path,
|
|
407
|
+
"--benchmark-type",
|
|
408
|
+
"hf-pt-eager",
|
|
409
|
+
"--model-name",
|
|
410
|
+
args.model_name,
|
|
411
|
+
"--precision",
|
|
412
|
+
args.precision,
|
|
413
|
+
"--device",
|
|
414
|
+
args.device,
|
|
415
|
+
"--device-id",
|
|
416
|
+
str(args.device_id),
|
|
417
|
+
"--warmup-runs",
|
|
418
|
+
str(args.warmup_runs),
|
|
419
|
+
"--num-runs",
|
|
420
|
+
str(args.num_runs),
|
|
421
|
+
"--log-folder",
|
|
422
|
+
args.log_folder,
|
|
423
|
+
] + hf_decoder_input_ids_cmd
|
|
424
|
+
logger.info("Benchmark PyTorch without torch.compile")
|
|
425
|
+
results = benchmark(args, benchmark_cmd, "pytorch-eager", audio_file, duration)
|
|
426
|
+
all_results.extend(results)
|
|
427
|
+
|
|
428
|
+
# Benchmark PyTorch with torch.compile
|
|
429
|
+
if args.hf_pt_compile:
|
|
430
|
+
benchmark_cmd = [ # noqa: RUF005
|
|
431
|
+
"python",
|
|
432
|
+
"-m",
|
|
433
|
+
"models.whisper.benchmark",
|
|
434
|
+
"--audio-path",
|
|
435
|
+
audio_path,
|
|
436
|
+
"--benchmark-type",
|
|
437
|
+
"hf-pt-compile",
|
|
438
|
+
"--model-name",
|
|
439
|
+
args.model_name,
|
|
440
|
+
"--precision",
|
|
441
|
+
args.precision,
|
|
442
|
+
"--device",
|
|
443
|
+
args.device,
|
|
444
|
+
"--device-id",
|
|
445
|
+
str(args.device_id),
|
|
446
|
+
"--warmup-runs",
|
|
447
|
+
str(args.warmup_runs),
|
|
448
|
+
"--num-runs",
|
|
449
|
+
str(args.num_runs),
|
|
450
|
+
"--log-folder",
|
|
451
|
+
args.log_folder,
|
|
452
|
+
] + hf_decoder_input_ids_cmd
|
|
453
|
+
logger.info("Benchmark PyTorch with torch.compile")
|
|
454
|
+
results = benchmark(args, benchmark_cmd, "pytorch-compile", audio_file, duration)
|
|
455
|
+
all_results.extend(results)
|
|
456
|
+
|
|
457
|
+
# Benchmark Optimum + ONNX Runtime
|
|
458
|
+
if args.hf_ort_dir_path:
|
|
459
|
+
benchmark_cmd = [ # noqa: RUF005
|
|
460
|
+
"python",
|
|
461
|
+
"-m",
|
|
462
|
+
"models.whisper.benchmark",
|
|
463
|
+
"--audio-path",
|
|
464
|
+
audio_path,
|
|
465
|
+
"--benchmark-type",
|
|
466
|
+
"hf-ort",
|
|
467
|
+
"--hf-ort-dir-path",
|
|
468
|
+
args.hf_ort_dir_path,
|
|
469
|
+
"--model-name",
|
|
470
|
+
args.model_name,
|
|
471
|
+
"--precision",
|
|
472
|
+
args.precision,
|
|
473
|
+
"--device",
|
|
474
|
+
args.device,
|
|
475
|
+
"--device-id",
|
|
476
|
+
str(args.device_id),
|
|
477
|
+
"--warmup-runs",
|
|
478
|
+
str(args.warmup_runs),
|
|
479
|
+
"--num-runs",
|
|
480
|
+
str(args.num_runs),
|
|
481
|
+
"--log-folder",
|
|
482
|
+
args.log_folder,
|
|
483
|
+
] + hf_decoder_input_ids_cmd
|
|
484
|
+
logger.info("Benchmark Optimum + ONNX Runtime")
|
|
485
|
+
results = benchmark(args, benchmark_cmd, "optimum-ort", audio_file, duration)
|
|
486
|
+
all_results.extend(results)
|
|
487
|
+
|
|
488
|
+
# Benchmark ONNX Runtime
|
|
489
|
+
if args.ort_model_path:
|
|
490
|
+
benchmark_cmd = (
|
|
491
|
+
[ # noqa: RUF005
|
|
492
|
+
"python",
|
|
493
|
+
"-m",
|
|
494
|
+
"models.whisper.benchmark",
|
|
495
|
+
"--audio-path",
|
|
496
|
+
audio_path,
|
|
497
|
+
"--benchmark-type",
|
|
498
|
+
"ort",
|
|
499
|
+
"--ort-model-path",
|
|
500
|
+
args.ort_model_path,
|
|
501
|
+
"--model-name",
|
|
502
|
+
args.model_name,
|
|
503
|
+
"--precision",
|
|
504
|
+
args.precision,
|
|
505
|
+
"--device",
|
|
506
|
+
args.device,
|
|
507
|
+
"--device-id",
|
|
508
|
+
str(args.device_id),
|
|
509
|
+
"--warmup-runs",
|
|
510
|
+
str(args.warmup_runs),
|
|
511
|
+
"--num-runs",
|
|
512
|
+
str(args.num_runs),
|
|
513
|
+
"--log-folder",
|
|
514
|
+
args.log_folder,
|
|
515
|
+
]
|
|
516
|
+
+ ort_decoder_input_ids_cmd
|
|
517
|
+
+ ort_tune_cmd
|
|
518
|
+
)
|
|
519
|
+
logger.info("Benchmark ONNX Runtime")
|
|
520
|
+
results = benchmark(args, benchmark_cmd, "onnxruntime", audio_file, duration)
|
|
521
|
+
all_results.extend(results)
|
|
522
|
+
|
|
523
|
+
csv_file = f"{args.model_size}-{args.precision}_{datetime.datetime.now():%Y-%m-%d_%H:%M:%S}.csv"
|
|
524
|
+
save_results(all_results, os.path.join(args.log_folder, csv_file))
|
|
525
|
+
|
|
526
|
+
|
|
527
|
+
if __name__ == "__main__":
|
|
528
|
+
main()
|