onnxruntime-directml 1.20.0__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6508 -0
- onnxruntime/__init__.py +78 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +174 -0
- onnxruntime/backend/backend_rep.py +53 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1108 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +150 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +17 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +16 -0
- onnxruntime/quantization/base_quantizer.py +532 -0
- onnxruntime/quantization/calibrate.py +1245 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +307 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +387 -0
- onnxruntime/quantization/fusions/__init__.py +3 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +135 -0
- onnxruntime/quantization/matmul_4bits_quantizer.py +1480 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +240 -0
- onnxruntime/quantization/onnx_model.py +580 -0
- onnxruntime/quantization/onnx_quantizer.py +1008 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +258 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +166 -0
- onnxruntime/quantization/operators/lstm.py +117 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +100 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1187 -0
- onnxruntime/quantization/quant_utils.py +891 -0
- onnxruntime/quantization/quantize.py +748 -0
- onnxruntime/quantization/registry.py +106 -0
- onnxruntime/quantization/shape_inference.py +187 -0
- onnxruntime/quantization/tensor_quant_overrides.py +516 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +377 -0
- onnxruntime/tools/file_utils.py +46 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +72 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +33 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +739 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +413 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +55 -0
- onnxruntime/tools/ort_format_model/__init__.py +25 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +663 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +84 -0
- onnxruntime/tools/ort_format_model/utils.py +62 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +108 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/reduced_build_config_parser.py +202 -0
- onnxruntime/tools/symbolic_shape_infer.py +3016 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +944 -0
- onnxruntime/transformers/benchmark_helper.py +646 -0
- onnxruntime/transformers/bert_perf_test.py +634 -0
- onnxruntime/transformers/bert_test_data.py +642 -0
- onnxruntime/transformers/compare_bert_results.py +246 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3124 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +387 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +104 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1235 -0
- onnxruntime/transformers/fusion_attention_clip.py +257 -0
- onnxruntime/transformers/fusion_attention_sam2.py +534 -0
- onnxruntime/transformers/fusion_attention_unet.py +1304 -0
- onnxruntime/transformers/fusion_attention_vae.py +301 -0
- onnxruntime/transformers/fusion_bart_attention.py +640 -0
- onnxruntime/transformers/fusion_base.py +137 -0
- onnxruntime/transformers/fusion_bias_add.py +58 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +111 -0
- onnxruntime/transformers/fusion_conformer_attention.py +143 -0
- onnxruntime/transformers/fusion_embedlayer.py +811 -0
- onnxruntime/transformers/fusion_fastgelu.py +360 -0
- onnxruntime/transformers/fusion_gelu.py +259 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +122 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +179 -0
- onnxruntime/transformers/fusion_layernorm.py +465 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +100 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +421 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +119 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +123 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +217 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1592 -0
- onnxruntime/transformers/fusion_shape.py +110 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +159 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +255 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +168 -0
- onnxruntime/transformers/fusion_utils.py +307 -0
- onnxruntime/transformers/huggingface_models.py +167 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +442 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +221 -0
- onnxruntime/transformers/metrics.py +164 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +561 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1032 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +703 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +606 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1027 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +503 -0
- onnxruntime/transformers/models/llama/llama_parity.py +309 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +77 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +576 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +625 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +260 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +273 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +186 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +322 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +280 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1429 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +102 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +268 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1319 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1181 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +296 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +388 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +350 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +278 -0
- onnxruntime/transformers/models/t5/past_helper.py +150 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +438 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +171 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +299 -0
- onnxruntime/transformers/models/t5/t5_helper.py +272 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +610 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +528 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +536 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +329 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +402 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +306 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +524 -0
- onnxruntime/transformers/models/whisper/whisper_openai_helper.py +84 -0
- onnxruntime/transformers/onnx_exporter.py +717 -0
- onnxruntime/transformers/onnx_model.py +1569 -0
- onnxruntime/transformers/onnx_model_bart.py +142 -0
- onnxruntime/transformers/onnx_model_bert.py +481 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +475 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +589 -0
- onnxruntime/transformers/onnx_model_clip.py +40 -0
- onnxruntime/transformers/onnx_model_conformer.py +33 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_phi.py +930 -0
- onnxruntime/transformers/onnx_model_sam2.py +138 -0
- onnxruntime/transformers/onnx_model_t5.py +791 -0
- onnxruntime/transformers/onnx_model_tnlr.py +227 -0
- onnxruntime/transformers/onnx_model_unet.py +259 -0
- onnxruntime/transformers/onnx_model_vae.py +43 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +612 -0
- onnxruntime/transformers/profiler.py +725 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +122 -0
- onnxruntime/transformers/shape_optimizer.py +401 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.20.0.dist-info/METADATA +187 -0
- onnxruntime_directml-1.20.0.dist-info/RECORD +305 -0
- onnxruntime_directml-1.20.0.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.20.0.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.20.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,179 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
from logging import getLogger
|
|
6
|
+
from typing import Dict
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
from fusion_base import Fusion
|
|
10
|
+
from onnx import TensorProto, helper
|
|
11
|
+
from onnx_model import OnnxModel
|
|
12
|
+
|
|
13
|
+
logger = getLogger(__name__)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class FusionGroupNorm(Fusion):
|
|
17
|
+
def __init__(self, model: OnnxModel, channels_last=True):
|
|
18
|
+
super().__init__(model, "GroupNorm", "Add")
|
|
19
|
+
self.channels_last = channels_last
|
|
20
|
+
|
|
21
|
+
def fuse(self, add_node, input_name_to_nodes: Dict, output_name_to_node: Dict):
|
|
22
|
+
"""
|
|
23
|
+
Fuse Group Normalization subgraph into one node GroupNorm.
|
|
24
|
+
The following is the pattern with swish activation:
|
|
25
|
+
+----------------Shape-------------------------------+
|
|
26
|
+
| |
|
|
27
|
+
| (0, 32, -1) v (512x1x1) (512x1x1) (optional)
|
|
28
|
+
[Root] --> Reshape -------> InstanceNormalization --> Reshape ---> Mul --> Add --> Mul--> [output]
|
|
29
|
+
Bx512xHxW (scale=ones(32), B=zeros(32)) | ^ Bx512xHxW
|
|
30
|
+
| |
|
|
31
|
+
+--->Sigmoid (optional)
|
|
32
|
+
The Mul and Sigmoid before output is for Swish activation. They are optional.
|
|
33
|
+
"""
|
|
34
|
+
nodes = self.model.match_parent_path(
|
|
35
|
+
add_node, ["Mul", "Reshape", "InstanceNormalization", "Reshape"], [0, 0, 0, 0], output_name_to_node
|
|
36
|
+
)
|
|
37
|
+
if nodes is None:
|
|
38
|
+
return
|
|
39
|
+
|
|
40
|
+
weight_mul, reshape_4d, instance_norm, reshape_3d = nodes
|
|
41
|
+
root = reshape_3d.input[0]
|
|
42
|
+
|
|
43
|
+
parents = self.model.match_parent_path(reshape_4d, ["Shape"], [1], output_name_to_node)
|
|
44
|
+
if parents is None:
|
|
45
|
+
return
|
|
46
|
+
if parents[0].input[0] != root:
|
|
47
|
+
return
|
|
48
|
+
shape_node = parents[0]
|
|
49
|
+
|
|
50
|
+
# Check whether it has swish activation.
|
|
51
|
+
swish_mul = self.model.find_first_child_by_type(add_node, "Mul")
|
|
52
|
+
swish_sigmoid = None
|
|
53
|
+
if swish_mul is not None:
|
|
54
|
+
sigmoid_path = self.model.match_parent_path(swish_mul, ["Sigmoid"], [None], output_name_to_node)
|
|
55
|
+
if sigmoid_path is not None:
|
|
56
|
+
swish_sigmoid = sigmoid_path[0]
|
|
57
|
+
|
|
58
|
+
weight_input = weight_mul.input[1 - self.model.input_index(reshape_4d.output[0], weight_mul)]
|
|
59
|
+
if not self.model.is_constant_with_specified_dimension(weight_input, 3, "group norm weight"):
|
|
60
|
+
return
|
|
61
|
+
|
|
62
|
+
bias_input = add_node.input[1 - self.model.input_index(weight_mul.output[0], add_node)]
|
|
63
|
+
if not self.model.is_constant_with_specified_dimension(bias_input, 3, "layernorm bias"):
|
|
64
|
+
return
|
|
65
|
+
|
|
66
|
+
weight = self.model.get_constant_value(weight_input)
|
|
67
|
+
if weight is None:
|
|
68
|
+
return
|
|
69
|
+
|
|
70
|
+
if not (len(weight.shape) == 3 and weight.shape[1] == 1 and weight.shape[2] == 1):
|
|
71
|
+
return
|
|
72
|
+
|
|
73
|
+
bias = self.model.get_constant_value(bias_input)
|
|
74
|
+
if bias is None:
|
|
75
|
+
return
|
|
76
|
+
if not (len(bias.shape) == 3 and bias.shape[1] == 1 and bias.shape[2] == 1):
|
|
77
|
+
return
|
|
78
|
+
|
|
79
|
+
weight_elements = int(np.prod(weight.shape))
|
|
80
|
+
bias_elements = int(np.prod(bias.shape))
|
|
81
|
+
if weight_elements != bias_elements:
|
|
82
|
+
return
|
|
83
|
+
|
|
84
|
+
instance_norm_scale = self.model.get_constant_value(instance_norm.input[1])
|
|
85
|
+
if instance_norm_scale is None or len(instance_norm_scale.shape) != 1:
|
|
86
|
+
return
|
|
87
|
+
|
|
88
|
+
instance_norm_bias = self.model.get_constant_value(instance_norm.input[2])
|
|
89
|
+
if instance_norm_bias is None or instance_norm_scale.shape != instance_norm_scale.shape:
|
|
90
|
+
return
|
|
91
|
+
|
|
92
|
+
if not np.allclose(np.ones_like(instance_norm_scale), instance_norm_scale):
|
|
93
|
+
return
|
|
94
|
+
if not np.allclose(np.zeros_like(instance_norm_bias), instance_norm_bias):
|
|
95
|
+
return
|
|
96
|
+
|
|
97
|
+
group_norm_name = self.model.create_node_name("GroupNorm", name_prefix="GroupNorm")
|
|
98
|
+
|
|
99
|
+
self.add_initializer(
|
|
100
|
+
name=group_norm_name + "_gamma",
|
|
101
|
+
data_type=TensorProto.FLOAT,
|
|
102
|
+
dims=[weight_elements],
|
|
103
|
+
vals=weight,
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
self.add_initializer(
|
|
107
|
+
name=group_norm_name + "_beta",
|
|
108
|
+
data_type=TensorProto.FLOAT,
|
|
109
|
+
dims=[bias_elements],
|
|
110
|
+
vals=bias,
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
last_node = add_node
|
|
114
|
+
subgraph_nodes = [add_node, weight_mul, reshape_4d, instance_norm, reshape_3d, shape_node]
|
|
115
|
+
has_swish_activation = swish_mul and swish_sigmoid
|
|
116
|
+
if swish_mul and swish_sigmoid:
|
|
117
|
+
subgraph_nodes.extend([swish_mul, swish_sigmoid])
|
|
118
|
+
last_node = swish_mul
|
|
119
|
+
|
|
120
|
+
if not self.model.is_safe_to_fuse_nodes(
|
|
121
|
+
subgraph_nodes,
|
|
122
|
+
last_node.output,
|
|
123
|
+
input_name_to_nodes,
|
|
124
|
+
output_name_to_node,
|
|
125
|
+
):
|
|
126
|
+
self.nodes_to_remove.extend([last_node])
|
|
127
|
+
else:
|
|
128
|
+
self.nodes_to_remove.extend(subgraph_nodes)
|
|
129
|
+
|
|
130
|
+
# instance_norm_scale might from Constant node. Use prune graph to clear it.
|
|
131
|
+
self.prune_graph = True
|
|
132
|
+
|
|
133
|
+
input_name = root
|
|
134
|
+
output_name = last_node.output[0]
|
|
135
|
+
|
|
136
|
+
group_norm_input_name = input_name + "_NHWC" if self.channels_last else input_name
|
|
137
|
+
group_norm_output_name = output_name + "_NHWC" if self.channels_last else output_name
|
|
138
|
+
|
|
139
|
+
# NCHW to NHWC
|
|
140
|
+
if self.channels_last:
|
|
141
|
+
transpose_input = helper.make_node(
|
|
142
|
+
"Transpose",
|
|
143
|
+
[input_name],
|
|
144
|
+
[group_norm_input_name],
|
|
145
|
+
name=self.model.create_node_name("Transpose", name_prefix="Transpose_NCHW_to_NHWC"),
|
|
146
|
+
perm=[0, 2, 3, 1],
|
|
147
|
+
)
|
|
148
|
+
self.nodes_to_add.append(transpose_input)
|
|
149
|
+
self.node_name_to_graph_name[transpose_input.name] = self.this_graph_name
|
|
150
|
+
|
|
151
|
+
new_node = helper.make_node(
|
|
152
|
+
"GroupNorm",
|
|
153
|
+
inputs=[group_norm_input_name, group_norm_name + "_gamma", group_norm_name + "_beta"],
|
|
154
|
+
outputs=[group_norm_output_name],
|
|
155
|
+
name=group_norm_name,
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
new_node.attribute.extend(instance_norm.attribute)
|
|
159
|
+
new_node.attribute.extend([helper.make_attribute("groups", 32)])
|
|
160
|
+
new_node.attribute.extend([helper.make_attribute("activation", 1 if has_swish_activation else 0)])
|
|
161
|
+
|
|
162
|
+
if not self.channels_last:
|
|
163
|
+
new_node.attribute.extend([helper.make_attribute("channels_last", 0)])
|
|
164
|
+
|
|
165
|
+
new_node.domain = "com.microsoft"
|
|
166
|
+
self.nodes_to_add.append(new_node)
|
|
167
|
+
self.node_name_to_graph_name[new_node.name] = self.this_graph_name
|
|
168
|
+
|
|
169
|
+
# NHWC to NCHW
|
|
170
|
+
if self.channels_last:
|
|
171
|
+
transpose_output = helper.make_node(
|
|
172
|
+
"Transpose",
|
|
173
|
+
[group_norm_output_name],
|
|
174
|
+
[output_name],
|
|
175
|
+
name=self.model.create_node_name("Transpose", name_prefix="Transpose_NHWC_to_NCHW"),
|
|
176
|
+
perm=[0, 3, 1, 2],
|
|
177
|
+
)
|
|
178
|
+
self.nodes_to_add.append(transpose_output)
|
|
179
|
+
self.node_name_to_graph_name[transpose_output.name] = self.this_graph_name
|
|
@@ -0,0 +1,465 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
from logging import getLogger
|
|
6
|
+
from typing import Dict, List
|
|
7
|
+
|
|
8
|
+
from fusion_base import Fusion
|
|
9
|
+
from onnx import TensorProto, helper
|
|
10
|
+
from onnx_model import OnnxModel
|
|
11
|
+
|
|
12
|
+
logger = getLogger(__name__)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class FusionLayerNormalization(Fusion):
|
|
16
|
+
def __init__(self, model: OnnxModel):
|
|
17
|
+
super().__init__(model, "LayerNormalization", "ReduceMean")
|
|
18
|
+
|
|
19
|
+
def fuse(self, node, input_name_to_nodes: Dict, output_name_to_node: Dict):
|
|
20
|
+
"""
|
|
21
|
+
Fuse Layer Normalization subgraph into one node LayerNormalization:
|
|
22
|
+
+----------------------+
|
|
23
|
+
| |
|
|
24
|
+
| v
|
|
25
|
+
[Root] --> ReduceMean --> Sub --> Pow --> ReduceMean --> Add --> Sqrt --> Div --> Mul --> Add
|
|
26
|
+
(axis=2 or -1) | (Y=2) (axis=2 or -1) (E-6 or E-12 or 0) ^
|
|
27
|
+
| |
|
|
28
|
+
+-----------------------------------------------+
|
|
29
|
+
|
|
30
|
+
It also handles cases of duplicated sub nodes exported from older version of PyTorch:
|
|
31
|
+
+----------------------+
|
|
32
|
+
| v
|
|
33
|
+
| +-------> Sub-----------------------------------------------+
|
|
34
|
+
| | |
|
|
35
|
+
| | v
|
|
36
|
+
[Root] --> ReduceMean --> Sub --> Pow --> ReduceMean --> Add --> Sqrt --> Div --> Mul --> Add
|
|
37
|
+
| ^
|
|
38
|
+
| |
|
|
39
|
+
+----------------------+
|
|
40
|
+
"""
|
|
41
|
+
subgraph_nodes = []
|
|
42
|
+
children = self.model.get_children(node, input_name_to_nodes)
|
|
43
|
+
if len(children) == 0 or len(children) > 2:
|
|
44
|
+
return
|
|
45
|
+
|
|
46
|
+
root_input = node.input[0]
|
|
47
|
+
|
|
48
|
+
if children[0].op_type != "Sub" or children[0].input[0] != root_input:
|
|
49
|
+
return
|
|
50
|
+
|
|
51
|
+
if len(children) == 2:
|
|
52
|
+
if children[1].op_type != "Sub" or children[1].input[0] != root_input:
|
|
53
|
+
return
|
|
54
|
+
|
|
55
|
+
div_node = None
|
|
56
|
+
for child in children:
|
|
57
|
+
# Check if Sub --> Div exists
|
|
58
|
+
div_node_1 = self.model.find_first_child_by_type(child, "Div", input_name_to_nodes, recursive=False)
|
|
59
|
+
|
|
60
|
+
# Check if Sub --> Cast --> Div
|
|
61
|
+
div_node_2 = self.model.match_child_path(child, ["Cast", "Div"], exclude=[])
|
|
62
|
+
|
|
63
|
+
if div_node_1 is not None:
|
|
64
|
+
div_node = div_node_1
|
|
65
|
+
elif div_node_2 is not None:
|
|
66
|
+
div_node = div_node_2[-1]
|
|
67
|
+
if div_node is None:
|
|
68
|
+
return
|
|
69
|
+
|
|
70
|
+
path_id, parent_nodes, _ = self.model.match_parent_paths(
|
|
71
|
+
div_node,
|
|
72
|
+
[
|
|
73
|
+
(["Sqrt", "Add", "ReduceMean", "Pow", "Sub"], [1, 0, 0, 0, 0]),
|
|
74
|
+
(["Sqrt", "Add", "ReduceMean", "Pow", "Cast", "Sub"], [1, 0, 0, 0, 0, 0]),
|
|
75
|
+
],
|
|
76
|
+
output_name_to_node,
|
|
77
|
+
)
|
|
78
|
+
if path_id < 0:
|
|
79
|
+
return
|
|
80
|
+
|
|
81
|
+
sub_node = parent_nodes[-1]
|
|
82
|
+
if sub_node not in children:
|
|
83
|
+
return
|
|
84
|
+
|
|
85
|
+
second_add_node = parent_nodes[1]
|
|
86
|
+
i, add_weight = self.model.get_constant_input(second_add_node)
|
|
87
|
+
if add_weight is None or add_weight <= 0 or add_weight > 1.0e-4:
|
|
88
|
+
logger.debug(f"skip SkipLayerNormalization fusion since epsilon value is not expected: {add_weight}")
|
|
89
|
+
return
|
|
90
|
+
|
|
91
|
+
pow_node = parent_nodes[3]
|
|
92
|
+
if self.model.find_constant_input(pow_node, 2.0) != 1:
|
|
93
|
+
return
|
|
94
|
+
|
|
95
|
+
temp_node = input_name_to_nodes[div_node.output[0]][0]
|
|
96
|
+
if temp_node.op_type == "Cast":
|
|
97
|
+
# Div --> Cast --> Mul
|
|
98
|
+
subgraph_nodes.append(temp_node) # add Cast node to list of subgraph nodes
|
|
99
|
+
mul_node = input_name_to_nodes[temp_node.output[0]][0]
|
|
100
|
+
else:
|
|
101
|
+
# Div --> Mul
|
|
102
|
+
mul_node = temp_node
|
|
103
|
+
if mul_node.op_type != "Mul":
|
|
104
|
+
return
|
|
105
|
+
|
|
106
|
+
last_add_node = input_name_to_nodes[mul_node.output[0]][0]
|
|
107
|
+
if last_add_node.op_type != "Add":
|
|
108
|
+
return
|
|
109
|
+
|
|
110
|
+
subgraph_nodes.append(node)
|
|
111
|
+
subgraph_nodes.extend(children)
|
|
112
|
+
subgraph_nodes.extend(parent_nodes[:-1])
|
|
113
|
+
|
|
114
|
+
subgraph_nodes.extend([last_add_node, mul_node, div_node])
|
|
115
|
+
if not self.model.is_safe_to_fuse_nodes(
|
|
116
|
+
subgraph_nodes,
|
|
117
|
+
last_add_node.output,
|
|
118
|
+
input_name_to_nodes,
|
|
119
|
+
output_name_to_node,
|
|
120
|
+
):
|
|
121
|
+
logger.debug("It is not safe to fuse LayerNormalization node. Skip")
|
|
122
|
+
return
|
|
123
|
+
|
|
124
|
+
node_before_weight = div_node if temp_node.op_type != "Cast" else temp_node
|
|
125
|
+
weight_input = mul_node.input[1 - self.model.input_index(node_before_weight.output[0], mul_node)]
|
|
126
|
+
if not self.model.is_constant_with_specified_dimension(weight_input, 1, "layernorm weight"):
|
|
127
|
+
return
|
|
128
|
+
|
|
129
|
+
bias_input = last_add_node.input[1 - self.model.input_index(mul_node.output[0], last_add_node)]
|
|
130
|
+
if not self.model.is_constant_with_specified_dimension(bias_input, 1, "layernorm bias"):
|
|
131
|
+
return
|
|
132
|
+
|
|
133
|
+
self.nodes_to_remove.extend(subgraph_nodes)
|
|
134
|
+
|
|
135
|
+
normalize_node = helper.make_node(
|
|
136
|
+
"LayerNormalization",
|
|
137
|
+
inputs=[node.input[0], weight_input, bias_input],
|
|
138
|
+
outputs=[last_add_node.output[0]],
|
|
139
|
+
name=self.model.create_node_name("LayerNormalization", name_prefix="LayerNorm"),
|
|
140
|
+
)
|
|
141
|
+
normalize_node.attribute.extend([helper.make_attribute("epsilon", float(add_weight))])
|
|
142
|
+
self.nodes_to_add.append(normalize_node)
|
|
143
|
+
self.node_name_to_graph_name[normalize_node.name] = self.this_graph_name
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
class FusionLayerNormalizationNCHW(Fusion):
|
|
147
|
+
def __init__(self, model: OnnxModel):
|
|
148
|
+
super().__init__(model, "LayerNormalization", "ReduceMean")
|
|
149
|
+
|
|
150
|
+
def get_weight_or_bias(self, output_name, description):
|
|
151
|
+
value = self.model.get_constant_value(output_name)
|
|
152
|
+
if value is None:
|
|
153
|
+
logger.debug(f"{description} {output_name} is not initializer.")
|
|
154
|
+
return None
|
|
155
|
+
|
|
156
|
+
if len(value.shape) != 3 or value.shape[1] != 1 or value.shape[2] != 1:
|
|
157
|
+
logger.debug(f"{description} {output_name} shall have 3 dimensions Cx1x1. Got shape {value.shape}")
|
|
158
|
+
return None
|
|
159
|
+
|
|
160
|
+
return value.reshape([value.shape[0]])
|
|
161
|
+
|
|
162
|
+
def create_transpose_node(self, input_name: str, perm: List[int], output_name=None):
|
|
163
|
+
"""Append a Transpose node after an input"""
|
|
164
|
+
node_name = self.model.create_node_name("Transpose")
|
|
165
|
+
|
|
166
|
+
if output_name is None:
|
|
167
|
+
output_name = node_name + "_out" + "-" + input_name
|
|
168
|
+
|
|
169
|
+
transpose_node = helper.make_node("Transpose", inputs=[input_name], outputs=[output_name], name=node_name)
|
|
170
|
+
transpose_node.attribute.extend([helper.make_attribute("perm", perm)])
|
|
171
|
+
|
|
172
|
+
return transpose_node
|
|
173
|
+
|
|
174
|
+
def fuse(self, node, input_name_to_nodes: Dict, output_name_to_node: Dict):
|
|
175
|
+
"""
|
|
176
|
+
Fuse Layer Normalization subgraph into one node LayerNormalization:
|
|
177
|
+
+----------------------+
|
|
178
|
+
| NxCxHxW |
|
|
179
|
+
| v (Cx1x1) (Cx1x1)
|
|
180
|
+
[Root] --> ReduceMean --> Sub --> Pow --> ReduceMean --> Add --> Sqrt --> Div --> Mul --> Add -->
|
|
181
|
+
(axes=1) | (Y=2) (axes=1) (E-6) ^
|
|
182
|
+
| |
|
|
183
|
+
+-----------------------------------------------+
|
|
184
|
+
|
|
185
|
+
Fused subgraph:
|
|
186
|
+
(0,2,3,1) (0,3,1,2)
|
|
187
|
+
[Root] --> Transpose --> LayerNormalization --> Transpose -->
|
|
188
|
+
"""
|
|
189
|
+
axes = OnnxModel.get_node_attribute(node, "axes")
|
|
190
|
+
if (not isinstance(axes, list)) or axes != [1]:
|
|
191
|
+
return
|
|
192
|
+
|
|
193
|
+
subgraph_nodes = []
|
|
194
|
+
children = self.model.get_children(node, input_name_to_nodes)
|
|
195
|
+
if len(children) != 1:
|
|
196
|
+
return
|
|
197
|
+
|
|
198
|
+
root_input = node.input[0]
|
|
199
|
+
|
|
200
|
+
if children[0].op_type != "Sub" or children[0].input[0] != root_input:
|
|
201
|
+
return
|
|
202
|
+
sub = children[0]
|
|
203
|
+
|
|
204
|
+
div_node = self.model.find_first_child_by_type(sub, "Div", input_name_to_nodes, recursive=False)
|
|
205
|
+
if div_node is None:
|
|
206
|
+
return
|
|
207
|
+
|
|
208
|
+
parent_nodes = self.model.match_parent_path(
|
|
209
|
+
div_node,
|
|
210
|
+
["Sqrt", "Add", "ReduceMean", "Pow", "Sub"],
|
|
211
|
+
[1, 0, 0, 0, 0],
|
|
212
|
+
output_name_to_node,
|
|
213
|
+
)
|
|
214
|
+
if parent_nodes is None:
|
|
215
|
+
return
|
|
216
|
+
|
|
217
|
+
_sqrt_node, second_add_node, reduce_mean_node, pow_node, sub_node = parent_nodes
|
|
218
|
+
if sub != sub_node:
|
|
219
|
+
return
|
|
220
|
+
|
|
221
|
+
i, add_weight = self.model.get_constant_input(second_add_node)
|
|
222
|
+
if add_weight is None or add_weight <= 0 or add_weight > 1.0e-4:
|
|
223
|
+
logger.debug(f"skip SkipLayerNormalization fusion since epsilon value is not expected: {add_weight}")
|
|
224
|
+
return
|
|
225
|
+
|
|
226
|
+
axes = OnnxModel.get_node_attribute(reduce_mean_node, "axes")
|
|
227
|
+
assert isinstance(axes, list)
|
|
228
|
+
if axes != [1]:
|
|
229
|
+
return
|
|
230
|
+
|
|
231
|
+
if self.model.find_constant_input(pow_node, 2.0) != 1:
|
|
232
|
+
return
|
|
233
|
+
|
|
234
|
+
temp_node = input_name_to_nodes[div_node.output[0]][0]
|
|
235
|
+
mul_node = temp_node
|
|
236
|
+
if mul_node.op_type != "Mul":
|
|
237
|
+
return
|
|
238
|
+
|
|
239
|
+
last_add_node = input_name_to_nodes[mul_node.output[0]][0]
|
|
240
|
+
if last_add_node.op_type != "Add":
|
|
241
|
+
return
|
|
242
|
+
|
|
243
|
+
subgraph_nodes.append(node)
|
|
244
|
+
subgraph_nodes.extend(parent_nodes)
|
|
245
|
+
subgraph_nodes.extend([last_add_node, mul_node, div_node])
|
|
246
|
+
|
|
247
|
+
if not self.model.is_safe_to_fuse_nodes(
|
|
248
|
+
subgraph_nodes,
|
|
249
|
+
last_add_node.output,
|
|
250
|
+
input_name_to_nodes,
|
|
251
|
+
output_name_to_node,
|
|
252
|
+
):
|
|
253
|
+
logger.debug("It is not safe to fuse LayerNormalization node. Skip")
|
|
254
|
+
return
|
|
255
|
+
|
|
256
|
+
node_before_weight = div_node if temp_node.op_type != "Cast" else temp_node
|
|
257
|
+
weight_input = mul_node.input[1 - self.model.input_index(node_before_weight.output[0], mul_node)]
|
|
258
|
+
weight = self.get_weight_or_bias(weight_input, "layernorm weight")
|
|
259
|
+
if weight is None:
|
|
260
|
+
return
|
|
261
|
+
|
|
262
|
+
bias_input = last_add_node.input[1 - self.model.input_index(mul_node.output[0], last_add_node)]
|
|
263
|
+
bias = self.get_weight_or_bias(bias_input, "layernorm bias")
|
|
264
|
+
if bias is None:
|
|
265
|
+
return
|
|
266
|
+
|
|
267
|
+
weight_nhwc = helper.make_tensor(weight_input + "_NHWC", TensorProto.FLOAT, weight.shape, weight)
|
|
268
|
+
|
|
269
|
+
bias_nhwc = helper.make_tensor(bias_input + "_NHWC", TensorProto.FLOAT, weight.shape, weight)
|
|
270
|
+
self.model.add_initializer(weight_nhwc, self.this_graph_name)
|
|
271
|
+
self.model.add_initializer(bias_nhwc, self.this_graph_name)
|
|
272
|
+
|
|
273
|
+
self.nodes_to_remove.extend(subgraph_nodes)
|
|
274
|
+
|
|
275
|
+
transpose_input = self.create_transpose_node(node.input[0], [0, 2, 3, 1])
|
|
276
|
+
|
|
277
|
+
layernorm_node_name = self.model.create_node_name("LayerNormalization", name_prefix="LayerNorm")
|
|
278
|
+
|
|
279
|
+
transpose_output = self.create_transpose_node(
|
|
280
|
+
layernorm_node_name + "_out_nhwc", [0, 3, 1, 2], last_add_node.output[0]
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
normalize_node = helper.make_node(
|
|
284
|
+
"LayerNormalization",
|
|
285
|
+
inputs=[transpose_input.output[0], weight_input + "_NHWC", bias_input + "_NHWC"],
|
|
286
|
+
outputs=[layernorm_node_name + "_out_nhwc"],
|
|
287
|
+
name=layernorm_node_name,
|
|
288
|
+
)
|
|
289
|
+
normalize_node.attribute.extend([helper.make_attribute("epsilon", float(add_weight))])
|
|
290
|
+
|
|
291
|
+
self.nodes_to_add.append(transpose_input)
|
|
292
|
+
self.nodes_to_add.append(normalize_node)
|
|
293
|
+
self.nodes_to_add.append(transpose_output)
|
|
294
|
+
self.node_name_to_graph_name[transpose_input.name] = self.this_graph_name
|
|
295
|
+
self.node_name_to_graph_name[normalize_node.name] = self.this_graph_name
|
|
296
|
+
self.node_name_to_graph_name[transpose_output.name] = self.this_graph_name
|
|
297
|
+
|
|
298
|
+
counter_name = "LayerNormalization(NHWC)"
|
|
299
|
+
self.increase_counter(counter_name)
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
class FusionLayerNormalizationTF(Fusion):
|
|
303
|
+
def __init__(self, model: OnnxModel):
|
|
304
|
+
super().__init__(model, "LayerNormalization", "Add", "TF")
|
|
305
|
+
|
|
306
|
+
def fuse(self, node, input_name_to_nodes: Dict, output_name_to_node: Dict):
|
|
307
|
+
"""
|
|
308
|
+
Layer Norm from Tensorflow model(using keras2onnx or tf2onnx):
|
|
309
|
+
+------------------------------------+
|
|
310
|
+
| |
|
|
311
|
+
| |
|
|
312
|
+
(Cast_1) |
|
|
313
|
+
| |
|
|
314
|
+
| v (B) (B) (A)
|
|
315
|
+
Add --> (Cast_1) --> ReduceMean --> Sub --> Mul --> ReduceMean --> (Cast_3) --> Add --> Sqrt --> Reciprocol --> Mul --> Mul --> Sub --> Add
|
|
316
|
+
| | | ^ ^
|
|
317
|
+
| | | | |
|
|
318
|
+
| +--------------------------------------------------(Cast_2)-------------------------------|-------+ |
|
|
319
|
+
| v |
|
|
320
|
+
+---------------------------------------------------------------------------------------------------------------> Mul--------------------+
|
|
321
|
+
"""
|
|
322
|
+
return_indice = []
|
|
323
|
+
_, parent_nodes, return_indice = self.model.match_parent_paths(
|
|
324
|
+
node,
|
|
325
|
+
[
|
|
326
|
+
(
|
|
327
|
+
[
|
|
328
|
+
"Sub",
|
|
329
|
+
"Mul",
|
|
330
|
+
"Mul",
|
|
331
|
+
"Reciprocal",
|
|
332
|
+
"Sqrt",
|
|
333
|
+
"Add",
|
|
334
|
+
"ReduceMean",
|
|
335
|
+
"Mul",
|
|
336
|
+
"Sub",
|
|
337
|
+
"ReduceMean",
|
|
338
|
+
],
|
|
339
|
+
[1, 1, None, 0, 0, 0, None, 0, 0, None],
|
|
340
|
+
),
|
|
341
|
+
(
|
|
342
|
+
[
|
|
343
|
+
"Sub",
|
|
344
|
+
"Mul",
|
|
345
|
+
"Mul",
|
|
346
|
+
"Reciprocal",
|
|
347
|
+
"Sqrt",
|
|
348
|
+
"Add",
|
|
349
|
+
"Cast",
|
|
350
|
+
"ReduceMean",
|
|
351
|
+
"Mul",
|
|
352
|
+
"Sub",
|
|
353
|
+
"ReduceMean",
|
|
354
|
+
],
|
|
355
|
+
[1, 1, None, 0, 0, 0, 0, None, 0, 0, None],
|
|
356
|
+
),
|
|
357
|
+
],
|
|
358
|
+
output_name_to_node,
|
|
359
|
+
)
|
|
360
|
+
|
|
361
|
+
if parent_nodes is None:
|
|
362
|
+
return
|
|
363
|
+
|
|
364
|
+
assert len(return_indice) == 3
|
|
365
|
+
if not (return_indice[0] in [0, 1] and return_indice[1] in [0, 1] and return_indice[2] in [0, 1]):
|
|
366
|
+
logger.debug("return indice is exepected in [0, 1], but got {return_indice}")
|
|
367
|
+
return
|
|
368
|
+
|
|
369
|
+
(
|
|
370
|
+
sub_node_0,
|
|
371
|
+
mul_node_0,
|
|
372
|
+
mul_node_1,
|
|
373
|
+
reciprocol_node,
|
|
374
|
+
sqrt_node,
|
|
375
|
+
add_node_0,
|
|
376
|
+
) = parent_nodes[:6]
|
|
377
|
+
reduce_mean_node_0, mul_node_2, sub_node_1, reduce_mean_node_1 = parent_nodes[-4:]
|
|
378
|
+
|
|
379
|
+
cast_node_3 = None
|
|
380
|
+
if len(parent_nodes) == 11:
|
|
381
|
+
cast_node_3 = parent_nodes[6]
|
|
382
|
+
assert cast_node_3.op_type == "Cast"
|
|
383
|
+
|
|
384
|
+
mul_node_3 = self.model.match_parent(node, "Mul", 0, output_name_to_node)
|
|
385
|
+
if mul_node_3 is None:
|
|
386
|
+
logger.debug("mul_node_3 not found")
|
|
387
|
+
return
|
|
388
|
+
|
|
389
|
+
node_before_reduce = self.model.get_parent(reduce_mean_node_1, 0, output_name_to_node)
|
|
390
|
+
root_node = (
|
|
391
|
+
node_before_reduce
|
|
392
|
+
if cast_node_3 is None
|
|
393
|
+
else self.model.get_parent(node_before_reduce, 0, output_name_to_node)
|
|
394
|
+
)
|
|
395
|
+
if root_node is None:
|
|
396
|
+
logger.debug("root node is none")
|
|
397
|
+
return
|
|
398
|
+
|
|
399
|
+
i, epsilon = self.model.get_constant_input(add_node_0)
|
|
400
|
+
if epsilon is None or epsilon <= 0 or (epsilon > 1.0e-5 and cast_node_3 is None):
|
|
401
|
+
logger.debug("epsilon is not matched")
|
|
402
|
+
return
|
|
403
|
+
|
|
404
|
+
if cast_node_3 is None and (
|
|
405
|
+
reduce_mean_node_1.input[0] not in mul_node_3.input or reduce_mean_node_1.input[0] not in sub_node_1.input
|
|
406
|
+
):
|
|
407
|
+
logger.debug("reduce_mean_node_1 and mul_node_3 shall link from root node")
|
|
408
|
+
return
|
|
409
|
+
|
|
410
|
+
if cast_node_3 is not None and (
|
|
411
|
+
node_before_reduce.input[0] not in mul_node_3.input or reduce_mean_node_1.input[0] not in sub_node_1.input
|
|
412
|
+
):
|
|
413
|
+
logger.debug("reduce_mean_node_1 and mul_node_3 shall link from root node")
|
|
414
|
+
return
|
|
415
|
+
|
|
416
|
+
if mul_node_2.input[0] != mul_node_2.input[1]:
|
|
417
|
+
logger.debug("mul_node_2 shall have two same inputs")
|
|
418
|
+
return
|
|
419
|
+
|
|
420
|
+
subgraph_nodes = [
|
|
421
|
+
node,
|
|
422
|
+
sub_node_0,
|
|
423
|
+
mul_node_0,
|
|
424
|
+
mul_node_1,
|
|
425
|
+
reciprocol_node,
|
|
426
|
+
sqrt_node,
|
|
427
|
+
add_node_0,
|
|
428
|
+
reduce_mean_node_0,
|
|
429
|
+
mul_node_2,
|
|
430
|
+
sub_node_1,
|
|
431
|
+
reduce_mean_node_1,
|
|
432
|
+
mul_node_3,
|
|
433
|
+
]
|
|
434
|
+
|
|
435
|
+
if cast_node_3 is not None:
|
|
436
|
+
cast_node_2 = self.model.match_parent(mul_node_0, "Cast", 0, output_name_to_node)
|
|
437
|
+
if cast_node_2 is None:
|
|
438
|
+
logger.debug("cast_node_2 not found")
|
|
439
|
+
return
|
|
440
|
+
subgraph_nodes.extend([node_before_reduce, cast_node_2, cast_node_3])
|
|
441
|
+
|
|
442
|
+
if not self.model.is_safe_to_fuse_nodes(
|
|
443
|
+
subgraph_nodes,
|
|
444
|
+
node.output,
|
|
445
|
+
self.model.input_name_to_nodes(),
|
|
446
|
+
self.model.output_name_to_node(),
|
|
447
|
+
):
|
|
448
|
+
logger.debug("not safe to fuse layer normalization")
|
|
449
|
+
return
|
|
450
|
+
|
|
451
|
+
self.nodes_to_remove.extend(subgraph_nodes)
|
|
452
|
+
|
|
453
|
+
weight_input = mul_node_1.input[1]
|
|
454
|
+
bias_input = sub_node_0.input[0]
|
|
455
|
+
|
|
456
|
+
# TODO: add epsilon attribute
|
|
457
|
+
fused_node = helper.make_node(
|
|
458
|
+
"LayerNormalization",
|
|
459
|
+
inputs=[mul_node_3.input[0], weight_input, bias_input],
|
|
460
|
+
outputs=[node.output[0]],
|
|
461
|
+
name=self.model.create_node_name("LayerNormalization", name_prefix="LayerNorm"),
|
|
462
|
+
)
|
|
463
|
+
fused_node.attribute.extend([helper.make_attribute("epsilon", float(epsilon))])
|
|
464
|
+
self.nodes_to_add.append(fused_node)
|
|
465
|
+
self.node_name_to_graph_name[fused_node.name] = self.this_graph_name
|