onnxruntime-directml 1.20.0__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (305) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6508 -0
  4. onnxruntime/__init__.py +78 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +174 -0
  7. onnxruntime/backend/backend_rep.py +53 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  13. onnxruntime/capi/onnxruntime.dll +0 -0
  14. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  15. onnxruntime/capi/onnxruntime_inference_collection.py +1108 -0
  16. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  17. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  18. onnxruntime/capi/onnxruntime_validation.py +150 -0
  19. onnxruntime/capi/version_info.py +2 -0
  20. onnxruntime/datasets/__init__.py +17 -0
  21. onnxruntime/datasets/logreg_iris.onnx +0 -0
  22. onnxruntime/datasets/mul_1.onnx +0 -0
  23. onnxruntime/datasets/sigmoid.onnx +13 -0
  24. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  27. onnxruntime/quantization/__init__.py +16 -0
  28. onnxruntime/quantization/base_quantizer.py +532 -0
  29. onnxruntime/quantization/calibrate.py +1245 -0
  30. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  31. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  32. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  33. onnxruntime/quantization/execution_providers/qnn/preprocess.py +307 -0
  34. onnxruntime/quantization/execution_providers/qnn/quant_config.py +387 -0
  35. onnxruntime/quantization/fusions/__init__.py +3 -0
  36. onnxruntime/quantization/fusions/fusion.py +311 -0
  37. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  38. onnxruntime/quantization/fusions/fusion_layernorm.py +135 -0
  39. onnxruntime/quantization/matmul_4bits_quantizer.py +1480 -0
  40. onnxruntime/quantization/matmul_bnb4_quantizer.py +240 -0
  41. onnxruntime/quantization/onnx_model.py +580 -0
  42. onnxruntime/quantization/onnx_quantizer.py +1008 -0
  43. onnxruntime/quantization/operators/__init__.py +2 -0
  44. onnxruntime/quantization/operators/activation.py +119 -0
  45. onnxruntime/quantization/operators/argmax.py +18 -0
  46. onnxruntime/quantization/operators/attention.py +73 -0
  47. onnxruntime/quantization/operators/base_operator.py +26 -0
  48. onnxruntime/quantization/operators/binary_op.py +72 -0
  49. onnxruntime/quantization/operators/concat.py +62 -0
  50. onnxruntime/quantization/operators/conv.py +258 -0
  51. onnxruntime/quantization/operators/direct_q8.py +78 -0
  52. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  53. onnxruntime/quantization/operators/gather.py +64 -0
  54. onnxruntime/quantization/operators/gavgpool.py +62 -0
  55. onnxruntime/quantization/operators/gemm.py +166 -0
  56. onnxruntime/quantization/operators/lstm.py +117 -0
  57. onnxruntime/quantization/operators/matmul.py +231 -0
  58. onnxruntime/quantization/operators/maxpool.py +34 -0
  59. onnxruntime/quantization/operators/norm.py +40 -0
  60. onnxruntime/quantization/operators/pad.py +100 -0
  61. onnxruntime/quantization/operators/pooling.py +67 -0
  62. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  63. onnxruntime/quantization/operators/resize.py +34 -0
  64. onnxruntime/quantization/operators/softmax.py +74 -0
  65. onnxruntime/quantization/operators/split.py +63 -0
  66. onnxruntime/quantization/operators/where.py +87 -0
  67. onnxruntime/quantization/preprocess.py +141 -0
  68. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  69. onnxruntime/quantization/qdq_quantizer.py +1187 -0
  70. onnxruntime/quantization/quant_utils.py +891 -0
  71. onnxruntime/quantization/quantize.py +748 -0
  72. onnxruntime/quantization/registry.py +106 -0
  73. onnxruntime/quantization/shape_inference.py +187 -0
  74. onnxruntime/quantization/tensor_quant_overrides.py +516 -0
  75. onnxruntime/tools/__init__.py +10 -0
  76. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  77. onnxruntime/tools/convert_onnx_models_to_ort.py +377 -0
  78. onnxruntime/tools/file_utils.py +46 -0
  79. onnxruntime/tools/logger.py +11 -0
  80. onnxruntime/tools/make_dynamic_shape_fixed.py +72 -0
  81. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  82. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +33 -0
  83. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  84. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  85. onnxruntime/tools/mobile_helpers/usability_checker.py +739 -0
  86. onnxruntime/tools/offline_tuning.py +169 -0
  87. onnxruntime/tools/onnx_model_utils.py +413 -0
  88. onnxruntime/tools/onnx_randomizer.py +85 -0
  89. onnxruntime/tools/onnxruntime_test.py +164 -0
  90. onnxruntime/tools/optimize_onnx_model.py +55 -0
  91. onnxruntime/tools/ort_format_model/__init__.py +25 -0
  92. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +663 -0
  93. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  94. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  95. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  96. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  97. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  98. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  99. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  100. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  140. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  141. onnxruntime/tools/ort_format_model/types.py +84 -0
  142. onnxruntime/tools/ort_format_model/utils.py +62 -0
  143. onnxruntime/tools/pytorch_export_contrib_ops.py +108 -0
  144. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  145. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  146. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  147. onnxruntime/tools/reduced_build_config_parser.py +202 -0
  148. onnxruntime/tools/symbolic_shape_infer.py +3016 -0
  149. onnxruntime/tools/update_onnx_opset.py +31 -0
  150. onnxruntime/transformers/__init__.py +8 -0
  151. onnxruntime/transformers/affinity_helper.py +40 -0
  152. onnxruntime/transformers/benchmark.py +944 -0
  153. onnxruntime/transformers/benchmark_helper.py +646 -0
  154. onnxruntime/transformers/bert_perf_test.py +634 -0
  155. onnxruntime/transformers/bert_test_data.py +642 -0
  156. onnxruntime/transformers/compare_bert_results.py +246 -0
  157. onnxruntime/transformers/constants.py +47 -0
  158. onnxruntime/transformers/convert_generation.py +3124 -0
  159. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  160. onnxruntime/transformers/convert_to_packing_mode.py +387 -0
  161. onnxruntime/transformers/dynamo_onnx_helper.py +104 -0
  162. onnxruntime/transformers/float16.py +501 -0
  163. onnxruntime/transformers/fusion_attention.py +1235 -0
  164. onnxruntime/transformers/fusion_attention_clip.py +257 -0
  165. onnxruntime/transformers/fusion_attention_sam2.py +534 -0
  166. onnxruntime/transformers/fusion_attention_unet.py +1304 -0
  167. onnxruntime/transformers/fusion_attention_vae.py +301 -0
  168. onnxruntime/transformers/fusion_bart_attention.py +640 -0
  169. onnxruntime/transformers/fusion_base.py +137 -0
  170. onnxruntime/transformers/fusion_bias_add.py +58 -0
  171. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  172. onnxruntime/transformers/fusion_biassplitgelu.py +111 -0
  173. onnxruntime/transformers/fusion_conformer_attention.py +143 -0
  174. onnxruntime/transformers/fusion_embedlayer.py +811 -0
  175. onnxruntime/transformers/fusion_fastgelu.py +360 -0
  176. onnxruntime/transformers/fusion_gelu.py +259 -0
  177. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  178. onnxruntime/transformers/fusion_gemmfastgelu.py +122 -0
  179. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  180. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  181. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  182. onnxruntime/transformers/fusion_group_norm.py +179 -0
  183. onnxruntime/transformers/fusion_layernorm.py +465 -0
  184. onnxruntime/transformers/fusion_nhwc_conv.py +100 -0
  185. onnxruntime/transformers/fusion_options.py +340 -0
  186. onnxruntime/transformers/fusion_qordered_attention.py +421 -0
  187. onnxruntime/transformers/fusion_qordered_gelu.py +119 -0
  188. onnxruntime/transformers/fusion_qordered_layernorm.py +123 -0
  189. onnxruntime/transformers/fusion_qordered_matmul.py +217 -0
  190. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  191. onnxruntime/transformers/fusion_reshape.py +173 -0
  192. onnxruntime/transformers/fusion_rotary_attention.py +1592 -0
  193. onnxruntime/transformers/fusion_shape.py +110 -0
  194. onnxruntime/transformers/fusion_simplified_layernorm.py +159 -0
  195. onnxruntime/transformers/fusion_skip_group_norm.py +255 -0
  196. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  197. onnxruntime/transformers/fusion_transpose.py +168 -0
  198. onnxruntime/transformers/fusion_utils.py +307 -0
  199. onnxruntime/transformers/huggingface_models.py +167 -0
  200. onnxruntime/transformers/import_utils.py +20 -0
  201. onnxruntime/transformers/io_binding_helper.py +442 -0
  202. onnxruntime/transformers/large_model_exporter.py +395 -0
  203. onnxruntime/transformers/machine_info.py +221 -0
  204. onnxruntime/transformers/metrics.py +164 -0
  205. onnxruntime/transformers/models/bart/__init__.py +12 -0
  206. onnxruntime/transformers/models/bart/export.py +98 -0
  207. onnxruntime/transformers/models/bert/__init__.py +12 -0
  208. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  209. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  210. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  211. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +561 -0
  212. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1032 -0
  213. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  214. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  215. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  216. onnxruntime/transformers/models/llama/__init__.py +12 -0
  217. onnxruntime/transformers/models/llama/benchmark.py +703 -0
  218. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  219. onnxruntime/transformers/models/llama/benchmark_e2e.py +606 -0
  220. onnxruntime/transformers/models/llama/convert_to_onnx.py +1027 -0
  221. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  222. onnxruntime/transformers/models/llama/llama_inputs.py +503 -0
  223. onnxruntime/transformers/models/llama/llama_parity.py +309 -0
  224. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  225. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  226. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  227. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  228. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  229. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  230. onnxruntime/transformers/models/longformer/longformer_helper.py +77 -0
  231. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  232. onnxruntime/transformers/models/phi2/convert_to_onnx.py +576 -0
  233. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  234. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  235. onnxruntime/transformers/models/sam2/benchmark_sam2.py +625 -0
  236. onnxruntime/transformers/models/sam2/convert_to_onnx.py +260 -0
  237. onnxruntime/transformers/models/sam2/image_decoder.py +273 -0
  238. onnxruntime/transformers/models/sam2/image_encoder.py +186 -0
  239. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  240. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  241. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  242. onnxruntime/transformers/models/sam2/sam2_demo.py +322 -0
  243. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +280 -0
  244. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  245. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  246. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1429 -0
  247. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  248. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +102 -0
  249. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +268 -0
  250. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  251. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1319 -0
  252. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1181 -0
  253. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +296 -0
  254. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +388 -0
  255. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  256. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  257. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  258. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +350 -0
  259. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  260. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  261. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  262. onnxruntime/transformers/models/t5/__init__.py +12 -0
  263. onnxruntime/transformers/models/t5/convert_to_onnx.py +278 -0
  264. onnxruntime/transformers/models/t5/past_helper.py +150 -0
  265. onnxruntime/transformers/models/t5/t5_decoder.py +438 -0
  266. onnxruntime/transformers/models/t5/t5_encoder.py +171 -0
  267. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +299 -0
  268. onnxruntime/transformers/models/t5/t5_helper.py +272 -0
  269. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  270. onnxruntime/transformers/models/whisper/benchmark.py +610 -0
  271. onnxruntime/transformers/models/whisper/benchmark_all.py +528 -0
  272. onnxruntime/transformers/models/whisper/convert_to_onnx.py +536 -0
  273. onnxruntime/transformers/models/whisper/whisper_chain.py +329 -0
  274. onnxruntime/transformers/models/whisper/whisper_decoder.py +402 -0
  275. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  276. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +306 -0
  277. onnxruntime/transformers/models/whisper/whisper_helper.py +524 -0
  278. onnxruntime/transformers/models/whisper/whisper_openai_helper.py +84 -0
  279. onnxruntime/transformers/onnx_exporter.py +717 -0
  280. onnxruntime/transformers/onnx_model.py +1569 -0
  281. onnxruntime/transformers/onnx_model_bart.py +142 -0
  282. onnxruntime/transformers/onnx_model_bert.py +481 -0
  283. onnxruntime/transformers/onnx_model_bert_keras.py +475 -0
  284. onnxruntime/transformers/onnx_model_bert_tf.py +589 -0
  285. onnxruntime/transformers/onnx_model_clip.py +40 -0
  286. onnxruntime/transformers/onnx_model_conformer.py +33 -0
  287. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  288. onnxruntime/transformers/onnx_model_phi.py +930 -0
  289. onnxruntime/transformers/onnx_model_sam2.py +138 -0
  290. onnxruntime/transformers/onnx_model_t5.py +791 -0
  291. onnxruntime/transformers/onnx_model_tnlr.py +227 -0
  292. onnxruntime/transformers/onnx_model_unet.py +259 -0
  293. onnxruntime/transformers/onnx_model_vae.py +43 -0
  294. onnxruntime/transformers/onnx_utils.py +55 -0
  295. onnxruntime/transformers/optimizer.py +612 -0
  296. onnxruntime/transformers/profiler.py +725 -0
  297. onnxruntime/transformers/quantize_helper.py +76 -0
  298. onnxruntime/transformers/shape_infer_helper.py +122 -0
  299. onnxruntime/transformers/shape_optimizer.py +401 -0
  300. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  301. onnxruntime_directml-1.20.0.dist-info/METADATA +187 -0
  302. onnxruntime_directml-1.20.0.dist-info/RECORD +305 -0
  303. onnxruntime_directml-1.20.0.dist-info/WHEEL +5 -0
  304. onnxruntime_directml-1.20.0.dist-info/entry_points.txt +2 -0
  305. onnxruntime_directml-1.20.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,3016 @@
1
+ # Copyright (c) Microsoft Corporation. All rights reserved.
2
+ # Licensed under the MIT License.
3
+
4
+ # -*- coding: UTF-8 -*-
5
+ import argparse
6
+ import logging
7
+
8
+ import numpy as np
9
+ import onnx
10
+ import sympy
11
+ from onnx import helper, numpy_helper, shape_inference
12
+ from packaging import version
13
+
14
+ assert version.parse(onnx.__version__) >= version.parse("1.8.0")
15
+
16
+ logger = logging.getLogger(__name__)
17
+
18
+
19
+ def get_attribute(node, attr_name, default_value=None):
20
+ found = [attr for attr in node.attribute if attr.name == attr_name]
21
+ if found:
22
+ return helper.get_attribute_value(found[0])
23
+ return default_value
24
+
25
+
26
+ def get_dim_from_proto(dim):
27
+ return getattr(dim, dim.WhichOneof("value")) if type(dim.WhichOneof("value")) is str else None
28
+
29
+
30
+ def is_sequence(type_proto):
31
+ cls_type = type_proto.WhichOneof("value")
32
+ assert cls_type in ["tensor_type", "sequence_type"]
33
+ return cls_type == "sequence_type"
34
+
35
+
36
+ def get_shape_from_type_proto(type_proto):
37
+ assert not is_sequence(type_proto)
38
+ if type_proto.tensor_type.HasField("shape"):
39
+ return [get_dim_from_proto(d) for d in type_proto.tensor_type.shape.dim]
40
+ else:
41
+ return None # note no shape is different from shape without dim (scalar)
42
+
43
+
44
+ def get_elem_type_from_type_proto(type_proto):
45
+ if is_sequence(type_proto):
46
+ return type_proto.sequence_type.elem_type.tensor_type.elem_type
47
+ else:
48
+ return type_proto.tensor_type.elem_type
49
+
50
+
51
+ def get_shape_from_value_info(vi):
52
+ cls_type = vi.type.WhichOneof("value")
53
+ if cls_type is None:
54
+ return None
55
+ if is_sequence(vi.type):
56
+ if vi.type.sequence_type.elem_type.WhichOneof("value") == "tensor_type":
57
+ return get_shape_from_type_proto(vi.type.sequence_type.elem_type)
58
+ else:
59
+ return None
60
+ else:
61
+ return get_shape_from_type_proto(vi.type)
62
+
63
+
64
+ def make_named_value_info(name):
65
+ vi = onnx.ValueInfoProto()
66
+ vi.name = name
67
+ return vi
68
+
69
+
70
+ def get_shape_from_sympy_shape(sympy_shape):
71
+ return [None if i is None else (int(i) if is_literal(i) else str(i)) for i in sympy_shape]
72
+
73
+
74
+ def is_literal(dim):
75
+ return type(dim) in [int, np.int64, np.int32, sympy.Integer] or (hasattr(dim, "is_number") and dim.is_number)
76
+
77
+
78
+ def handle_negative_axis(axis, rank):
79
+ assert axis < rank and axis >= -rank
80
+ return axis if axis >= 0 else rank + axis
81
+
82
+
83
+ def get_opset(mp, domain=None):
84
+ domain = domain or ["", "onnx", "ai.onnx"]
85
+ if type(domain) != list: # noqa: E721
86
+ domain = [domain]
87
+ for opset in mp.opset_import:
88
+ if opset.domain in domain:
89
+ return opset.version
90
+
91
+ return None
92
+
93
+
94
+ def as_scalar(x):
95
+ if type(x) is list:
96
+ assert len(x) == 1
97
+ return x[0]
98
+ elif type(x) is np.ndarray:
99
+ return x.item()
100
+ else:
101
+ return x
102
+
103
+
104
+ def as_list(x, keep_none):
105
+ if type(x) is list:
106
+ return x
107
+ elif type(x) is np.ndarray:
108
+ return list(x)
109
+ elif keep_none and x is None:
110
+ return None
111
+ else:
112
+ return [x]
113
+
114
+
115
+ def sympy_reduce_product(x):
116
+ if type(x) is list:
117
+ value = sympy.Integer(1)
118
+ for v in x:
119
+ value = value * v
120
+ else:
121
+ value = x
122
+ return value
123
+
124
+
125
+ class SymbolicShapeInference:
126
+ def __init__(self, int_max, auto_merge, guess_output_rank, verbose, prefix=""):
127
+ self.dispatcher_ = {
128
+ "Add": self._infer_symbolic_compute_ops,
129
+ "ArrayFeatureExtractor": self._infer_ArrayFeatureExtractor,
130
+ "AveragePool": self._infer_Pool,
131
+ "BatchNormalization": self._infer_BatchNormalization,
132
+ "Cast": self._infer_Cast,
133
+ "CategoryMapper": self._infer_CategoryMapper,
134
+ "Compress": self._infer_Compress,
135
+ "Concat": self._infer_Concat,
136
+ "ConcatFromSequence": self._infer_ConcatFromSequence,
137
+ "Constant": self._infer_Constant,
138
+ "ConstantOfShape": self._infer_ConstantOfShape,
139
+ "Conv": self._infer_Conv,
140
+ "CumSum": self._pass_on_shape_and_type,
141
+ "Div": self._infer_symbolic_compute_ops,
142
+ "Einsum": self._infer_Einsum,
143
+ "Expand": self._infer_Expand,
144
+ "Equal": self._infer_symbolic_compute_ops,
145
+ "Floor": self._infer_symbolic_compute_ops,
146
+ "Gather": self._infer_Gather,
147
+ "GatherElements": self._infer_GatherElements,
148
+ "GatherND": self._infer_GatherND,
149
+ "Identity": self._pass_on_shape_and_type,
150
+ "AllReduce": self._pass_on_shape_and_type,
151
+ "If": self._infer_If,
152
+ "Loop": self._infer_Loop,
153
+ "MatMul": self._infer_MatMul,
154
+ "MatMulInteger16": self._infer_MatMulInteger,
155
+ "MaxPool": self._infer_Pool,
156
+ "Max": self._infer_symbolic_compute_ops,
157
+ "MemcpyFromHost": self._pass_on_shape_and_type,
158
+ "MemcpyToHost": self._pass_on_shape_and_type,
159
+ "Min": self._infer_symbolic_compute_ops,
160
+ "MoE": self._pass_on_shape_and_type,
161
+ "Mul": self._infer_symbolic_compute_ops,
162
+ "NonMaxSuppression": self._infer_NonMaxSuppression,
163
+ "NonZero": self._infer_NonZero,
164
+ "OneHot": self._infer_OneHot,
165
+ "Pad": self._infer_Pad,
166
+ "Range": self._infer_Range,
167
+ "Reciprocal": self._pass_on_shape_and_type,
168
+ "ReduceSum": self._infer_ReduceSum,
169
+ "ReduceProd": self._infer_ReduceProd,
170
+ "Reshape": self._infer_Reshape,
171
+ "Resize": self._infer_Resize,
172
+ "Round": self._pass_on_shape_and_type,
173
+ "Scan": self._infer_Scan,
174
+ "ScatterElements": self._infer_ScatterElements,
175
+ "SequenceAt": self._infer_SequenceAt,
176
+ "SequenceInsert": self._infer_SequenceInsert,
177
+ "Shape": self._infer_Shape,
178
+ "Size": self._infer_Size,
179
+ "Slice": self._infer_Slice,
180
+ "SoftmaxCrossEntropyLoss": self._infer_SoftmaxCrossEntropyLoss,
181
+ "SoftmaxCrossEntropyLossInternal": self._infer_SoftmaxCrossEntropyLoss,
182
+ "NegativeLogLikelihoodLossInternal": self._infer_SoftmaxCrossEntropyLoss,
183
+ "Split": self._infer_Split,
184
+ "SplitToSequence": self._infer_SplitToSequence,
185
+ "Squeeze": self._infer_Squeeze,
186
+ "Sub": self._infer_symbolic_compute_ops,
187
+ "Tile": self._infer_Tile,
188
+ "TopK": self._infer_TopK,
189
+ "Transpose": self._infer_Transpose,
190
+ "Unsqueeze": self._infer_Unsqueeze,
191
+ "Where": self._infer_symbolic_compute_ops,
192
+ "ZipMap": self._infer_ZipMap,
193
+ "Neg": self._infer_symbolic_compute_ops,
194
+ # contrib ops:
195
+ "Attention": self._infer_Attention,
196
+ "BiasAdd": self._infer_BiasAdd,
197
+ "BiasGelu": self._infer_BiasGelu,
198
+ "BiasSplitGelu": self._infer_BiasSplitGelu,
199
+ "DecoderMaskedMultiHeadAttention": self._infer_DecoderMaskedMultiHeadAttention,
200
+ "DequantizeLinear": self._infer_DequantizeLinear,
201
+ "EmbedLayerNormalization": self._infer_EmbedLayerNormalization,
202
+ "FastGelu": self._infer_FastGelu,
203
+ "GatedRelativePositionBias": self._infer_GatedRelativePositionBias,
204
+ "Gelu": self._infer_Gelu,
205
+ "GemmFastGelu": self._infer_GemmFastGelu,
206
+ "GemmFloat8": self._infer_GemmFloat8,
207
+ "GroupNorm": self._infer_GroupNorm,
208
+ "GroupQueryAttention": self._infer_GroupQueryAttention,
209
+ "LayerNormalization": self._infer_LayerNormalization,
210
+ "LongformerAttention": self._infer_LongformerAttention,
211
+ "MatMulNBits": self._infer_MatMulNBits,
212
+ "MultiHeadAttention": self._infer_MultiHeadAttention,
213
+ "NhwcConv": self._infer_NhwcConv,
214
+ "PackedAttention": self._infer_PackedAttention,
215
+ "PackedMultiHeadAttention": self._infer_PackedMultiHeadAttention,
216
+ "PagedAttention": self._infer_PagedAttention,
217
+ "PythonOp": self._infer_PythonOp,
218
+ "QuantizeLinear": self._infer_QuantizeLinear,
219
+ "QuickGelu": self._infer_FastGelu,
220
+ "RelativePositionBias": self._infer_RelativePositionBias,
221
+ "RemovePadding": self._infer_RemovePadding,
222
+ "RestorePadding": self._infer_RestorePadding,
223
+ "RotaryEmbedding": self._infer_RotaryEmbedding,
224
+ "SimplifiedLayerNormalization": self._infer_LayerNormalization,
225
+ "SkipGroupNorm": self._infer_SkipGroupNorm,
226
+ "SkipLayerNormalization": self._infer_SkipLayerNormalization,
227
+ "SkipSimplifiedLayerNormalization": self._infer_SkipLayerNormalization,
228
+ "SparseAttention": self._infer_SparseAttention,
229
+ }
230
+ self.aten_op_dispatcher_ = {
231
+ "embedding": self._infer_Gather,
232
+ "bitwise_or": self._infer_aten_bitwise_or,
233
+ "diagonal": self._infer_aten_diagonal,
234
+ "max_pool2d_with_indices": self._infer_aten_pool2d,
235
+ "max": self._infer_aten_minmax,
236
+ "min": self._infer_aten_minmax,
237
+ "multinomial": self._infer_aten_multinomial,
238
+ "unfold": self._infer_aten_unfold,
239
+ "argmax": self._infer_aten_argmax,
240
+ "avg_pool2d": self._infer_aten_pool2d,
241
+ "_adaptive_avg_pool2d": self._infer_aten_pool2d,
242
+ "numpy_T": self._infer_Transpose,
243
+ "native_group_norm": self._infer_aten_group_norm,
244
+ "upsample_nearest1d": self._infer_aten_upsample,
245
+ "upsample_nearest2d": self._infer_aten_upsample,
246
+ "upsample_nearest3d": self._infer_aten_upsample,
247
+ "upsample_bicubic2d": self._infer_aten_upsample,
248
+ }
249
+ self.run_ = True
250
+ self.suggested_merge_ = {}
251
+ self.symbolic_dims_ = {}
252
+ self.input_symbols_ = {}
253
+ self.auto_merge_ = auto_merge
254
+ self.guess_output_rank_ = guess_output_rank
255
+ self.verbose_ = verbose
256
+ self.int_max_ = int_max
257
+ self.subgraph_id_ = 0
258
+ self.prefix_ = prefix
259
+
260
+ def _add_suggested_merge(self, symbols, apply=False):
261
+ assert all([(type(s) is str and s in self.symbolic_dims_) or is_literal(s) for s in symbols])
262
+ symbols = set(symbols)
263
+ for k, v in self.suggested_merge_.items():
264
+ if k in symbols:
265
+ symbols.remove(k)
266
+ symbols.add(v)
267
+ map_to = None
268
+ # if there is literal, map to it first
269
+ for s in symbols:
270
+ if is_literal(s):
271
+ map_to = s
272
+ break
273
+ # when no literals, map to input symbolic dims, then existing symbolic dims
274
+ if map_to is None:
275
+ for s in symbols:
276
+ if s in self.input_symbols_:
277
+ map_to = s
278
+ break
279
+ if map_to is None:
280
+ for s in symbols:
281
+ if type(self.symbolic_dims_[s]) is sympy.Symbol:
282
+ map_to = s
283
+ break
284
+ # when nothing to map to, use the shorter one
285
+ if map_to is None:
286
+ if self.verbose_ > 0:
287
+ logger.warning("Potential unsafe merge between symbolic expressions: (%s)", ",".join(symbols))
288
+ symbols_list = list(symbols)
289
+ lens = [len(s) for s in symbols_list]
290
+ map_to = symbols_list[lens.index(min(lens))]
291
+ symbols.remove(map_to)
292
+
293
+ for s in symbols:
294
+ if s == map_to:
295
+ continue
296
+ if is_literal(map_to) and is_literal(s):
297
+ assert int(map_to) == int(s)
298
+ self.suggested_merge_[s] = int(map_to) if is_literal(map_to) else map_to
299
+ for k, v in self.suggested_merge_.items():
300
+ if v == s:
301
+ self.suggested_merge_[k] = map_to
302
+ if apply and self.auto_merge_:
303
+ self._apply_suggested_merge()
304
+
305
+ def _apply_suggested_merge(self, graph_input_only=False):
306
+ if not self.suggested_merge_:
307
+ return
308
+ for i in list(self.out_mp_.graph.input) + ([] if graph_input_only else list(self.out_mp_.graph.value_info)):
309
+ for d in i.type.tensor_type.shape.dim:
310
+ if d.dim_param in self.suggested_merge_:
311
+ v = self.suggested_merge_[d.dim_param]
312
+ if is_literal(v):
313
+ d.dim_value = int(v)
314
+ else:
315
+ d.dim_param = v
316
+
317
+ def _preprocess(self, in_mp):
318
+ self.out_mp_ = onnx.ModelProto()
319
+ self.out_mp_.CopyFrom(in_mp)
320
+ self.graph_inputs_ = {i.name: i for i in list(self.out_mp_.graph.input)}
321
+ self.initializers_ = {i.name: i for i in self.out_mp_.graph.initializer}
322
+ self.known_vi_ = {i.name: i for i in list(self.out_mp_.graph.input)}
323
+ self.known_vi_.update(
324
+ {
325
+ i.name: helper.make_tensor_value_info(i.name, i.data_type, list(i.dims))
326
+ for i in self.out_mp_.graph.initializer
327
+ }
328
+ )
329
+
330
+ def _merge_symbols(self, dims):
331
+ if not all([type(d) is str for d in dims]):
332
+ if self.auto_merge_:
333
+ unique_dims = list(set(dims))
334
+ is_int = [is_literal(d) for d in unique_dims]
335
+ assert sum(is_int) <= 1 # if there are more than 1 unique ints, something is wrong
336
+ if sum(is_int) == 1:
337
+ int_dim = is_int.index(1)
338
+ if self.verbose_ > 0:
339
+ logger.debug(
340
+ f"dim {unique_dims[:int_dim] + unique_dims[int_dim + 1 :]} has been merged with value {unique_dims[int_dim]}"
341
+ )
342
+ self._check_merged_dims(unique_dims, allow_broadcast=False)
343
+ return unique_dims[int_dim]
344
+ else:
345
+ if self.verbose_ > 0:
346
+ logger.debug(f"dim {unique_dims[1:]} has been merged with dim {unique_dims[0]}")
347
+ return dims[0]
348
+ else:
349
+ return None
350
+ if all([d == dims[0] for d in dims]):
351
+ return dims[0]
352
+ merged = [self.suggested_merge_.get(d, d) for d in dims]
353
+ if all([d == merged[0] for d in merged]):
354
+ assert merged[0] in self.symbolic_dims_
355
+ return merged[0]
356
+ else:
357
+ return None
358
+
359
+ # broadcast from right to left, and merge symbolic dims if needed
360
+ def _broadcast_shapes(self, shape1, shape2):
361
+ new_shape = []
362
+ rank1 = len(shape1)
363
+ rank2 = len(shape2)
364
+ new_rank = max(rank1, rank2)
365
+ for i in range(new_rank):
366
+ dim1 = shape1[rank1 - 1 - i] if i < rank1 else 1
367
+ dim2 = shape2[rank2 - 1 - i] if i < rank2 else 1
368
+ if dim1 == 1 or dim1 == dim2:
369
+ new_dim = dim2
370
+ elif dim2 == 1:
371
+ new_dim = dim1
372
+ else:
373
+ new_dim = self._merge_symbols([dim1, dim2])
374
+ if not new_dim:
375
+ # warning about unsupported broadcast when not auto merge
376
+ # note that auto merge has the risk of incorrectly merge symbols while one of them being 1
377
+ # for example, 'a' = 1, 'b' = 5 at runtime is valid broadcasting, but with auto merge 'a' == 'b'
378
+ if self.auto_merge_:
379
+ self._add_suggested_merge([dim1, dim2], apply=True)
380
+ else:
381
+ logger.warning("unsupported broadcast between " + str(dim1) + " " + str(dim2)) # noqa: G003
382
+ new_shape = [new_dim, *new_shape]
383
+ return new_shape
384
+
385
+ def _get_shape(self, node, idx):
386
+ name = node.input[idx]
387
+ if name in self.known_vi_:
388
+ vi = self.known_vi_[name]
389
+ return get_shape_from_value_info(vi)
390
+ else:
391
+ assert name in self.initializers_
392
+ return list(self.initializers_[name].dims)
393
+
394
+ def _try_get_shape(self, node, idx):
395
+ if idx > len(node.input) - 1:
396
+ return None
397
+ name = node.input[idx]
398
+ if name in self.known_vi_:
399
+ vi = self.known_vi_[name]
400
+ return get_shape_from_value_info(vi)
401
+ if name in self.initializers_:
402
+ return list(self.initializers_[name].dims)
403
+ return None
404
+
405
+ def _get_shape_rank(self, node, idx):
406
+ return len(self._get_shape(node, idx))
407
+
408
+ def _get_sympy_shape(self, node, idx):
409
+ sympy_shape = []
410
+ for d in self._get_shape(node, idx):
411
+ if type(d) is str:
412
+ sympy_shape.append(
413
+ self.symbolic_dims_[d]
414
+ if d in self.symbolic_dims_
415
+ else sympy.Symbol(d, integer=True, nonnegative=True)
416
+ )
417
+ else:
418
+ assert None is not d
419
+ sympy_shape.append(d)
420
+ return sympy_shape
421
+
422
+ def _get_value(self, node, idx):
423
+ name = node.input[idx]
424
+ assert name in self.sympy_data_ or name in self.initializers_
425
+ return self.sympy_data_[name] if name in self.sympy_data_ else numpy_helper.to_array(self.initializers_[name])
426
+
427
+ def _try_get_value(self, node, idx):
428
+ if idx >= len(node.input):
429
+ return None
430
+ name = node.input[idx]
431
+ if name in self.sympy_data_ or name in self.initializers_:
432
+ return self._get_value(node, idx)
433
+ return None
434
+
435
+ def _update_computed_dims(self, new_sympy_shape):
436
+ for i, new_dim in enumerate(new_sympy_shape):
437
+ if not is_literal(new_dim) and type(new_dim) != str: # noqa: E721
438
+ str_dim = str(new_dim)
439
+ if str_dim in self.suggested_merge_:
440
+ if is_literal(self.suggested_merge_[str_dim]):
441
+ continue # no need to create dim for literals
442
+ new_sympy_shape[i] = self.symbolic_dims_[self.suggested_merge_[str_dim]]
443
+ else:
444
+ # add new_dim if it's a computational expression
445
+ if str(new_dim) not in self.symbolic_dims_:
446
+ self.symbolic_dims_[str(new_dim)] = new_dim
447
+
448
+ def _onnx_infer_single_node(self, node):
449
+ # skip onnx shape inference for some ops, as they are handled in _infer_*
450
+ skip_infer = node.op_type in [
451
+ "If",
452
+ "Loop",
453
+ "Scan",
454
+ "SplitToSequence",
455
+ "ZipMap", # contrib ops
456
+ "Attention",
457
+ "BiasGelu",
458
+ "EmbedLayerNormalization",
459
+ "FastGelu",
460
+ "Gelu",
461
+ "GemmFastGelu",
462
+ "LayerNormalization",
463
+ "LongformerAttention",
464
+ "DequantizeLinear",
465
+ "QuantizeLinear",
466
+ "RelativePositionBias",
467
+ "RemovePadding",
468
+ "RestorePadding",
469
+ "SimplifiedLayerNormalization",
470
+ "SkipLayerNormalization",
471
+ "SkipSimplifiedLayerNormalization",
472
+ "PackedAttention",
473
+ "PagedAttention",
474
+ "PythonOp",
475
+ "MultiHeadAttention",
476
+ "GroupNorm",
477
+ "GroupQueryAttention",
478
+ "SparseAttention",
479
+ "SkipGroupNorm",
480
+ "BiasSplitGelu",
481
+ "BiasAdd",
482
+ "NhwcConv",
483
+ "QuickGelu",
484
+ "RotaryEmbedding",
485
+ ]
486
+
487
+ if not skip_infer:
488
+ # Only pass initializers that satisfy the following condition:
489
+ # (1) Operator need value of some input for shape inference.
490
+ # For example, Unsqueeze in opset 13 uses the axes input to calculate shape of output.
491
+ # (2) opset version >= 9. In older version, initializer is required in graph input by onnx spec.
492
+ # (3) The initializer is not in graph input. The means the node input is "constant" in inference.
493
+ initializers = []
494
+ if (get_opset(self.out_mp_) >= 9) and node.op_type in ["Unsqueeze"]:
495
+ initializers = [
496
+ self.initializers_[name]
497
+ for name in node.input
498
+ if (name in self.initializers_ and name not in self.graph_inputs_)
499
+ ]
500
+
501
+ if node.op_type in [
502
+ "Add",
503
+ "Sub",
504
+ "Mul",
505
+ "Div",
506
+ "MatMul",
507
+ "MatMulInteger",
508
+ "MatMulInteger16",
509
+ "Where",
510
+ "Sum",
511
+ ]:
512
+ if node.output[0] in self.known_vi_:
513
+ vi = self.known_vi_[node.output[0]]
514
+ out_rank = len(get_shape_from_type_proto(vi.type))
515
+ in_shapes = [self._get_shape(node, i) for i in range(len(node.input))]
516
+ for d in range(
517
+ out_rank - (2 if node.op_type in ["MatMul", "MatMulInteger", "MatMulInteger16"] else 0)
518
+ ):
519
+ in_dims = [s[len(s) - out_rank + d] for s in in_shapes if len(s) + d >= out_rank]
520
+ if len(in_dims) > 1:
521
+ self._check_merged_dims(in_dims, allow_broadcast=True)
522
+
523
+ # run single node inference with self.known_vi_ shapes
524
+ tmp_graph = helper.make_graph(
525
+ [node],
526
+ "tmp",
527
+ [self.known_vi_[i] for i in node.input if i],
528
+ [make_named_value_info(i) for i in node.output],
529
+ initializers,
530
+ )
531
+
532
+ self.tmp_mp_.graph.CopyFrom(tmp_graph)
533
+
534
+ self.tmp_mp_ = shape_inference.infer_shapes(self.tmp_mp_)
535
+
536
+ for i_o in range(len(node.output)):
537
+ o = node.output[i_o]
538
+ if o: # skip optional output
539
+ vi = self.out_mp_.graph.value_info.add()
540
+ if not skip_infer:
541
+ vi.CopyFrom(self.tmp_mp_.graph.output[i_o])
542
+ else:
543
+ vi.name = o
544
+ self.known_vi_[o] = vi
545
+
546
+ def _onnx_infer_subgraph(self, node, subgraph, use_node_input=True, inc_subgraph_id=True):
547
+ if self.verbose_ > 2:
548
+ logger.debug(f"Inferencing subgraph of node {node.name} with output({node.output[0]}...): {node.op_type}")
549
+ # node inputs are not passed directly to the subgraph
550
+ # it's up to the node dispatcher to prepare subgraph input
551
+ # for example, with Scan/Loop, subgraph input shape would be trimmed from node input shape
552
+ # besides, inputs in subgraph could shadow implicit inputs
553
+ subgraph_inputs = {i.name for i in list(subgraph.initializer) + list(subgraph.input)}
554
+ subgraph_implicit_input = {name for name in self.known_vi_ if name not in subgraph_inputs}
555
+ tmp_graph = helper.make_graph(
556
+ list(subgraph.node),
557
+ "tmp",
558
+ list(subgraph.input) + [self.known_vi_[i] for i in subgraph_implicit_input],
559
+ [make_named_value_info(i.name) for i in subgraph.output],
560
+ )
561
+ tmp_graph.initializer.extend([i for i in self.out_mp_.graph.initializer if i.name in subgraph_implicit_input])
562
+ tmp_graph.initializer.extend(subgraph.initializer)
563
+ self.tmp_mp_.graph.CopyFrom(tmp_graph)
564
+
565
+ symbolic_shape_inference = SymbolicShapeInference(
566
+ self.int_max_,
567
+ self.auto_merge_,
568
+ self.guess_output_rank_,
569
+ self.verbose_,
570
+ prefix=self.prefix_ + "_" + str(self.subgraph_id_),
571
+ )
572
+ if inc_subgraph_id:
573
+ self.subgraph_id_ += 1
574
+
575
+ symbolic_shape_inference._preprocess(self.tmp_mp_)
576
+ symbolic_shape_inference.suggested_merge_ = self.suggested_merge_.copy()
577
+ while symbolic_shape_inference.run_:
578
+ symbolic_shape_inference._infer_impl(self.sympy_data_.copy())
579
+ symbolic_shape_inference._update_output_from_vi()
580
+ if use_node_input:
581
+ # if subgraph uses node input, it needs to update to merged dims
582
+ subgraph.ClearField("input")
583
+ subgraph.input.extend(symbolic_shape_inference.out_mp_.graph.input[: len(node.input)])
584
+ subgraph.ClearField("output")
585
+ subgraph.output.extend(symbolic_shape_inference.out_mp_.graph.output)
586
+ subgraph.ClearField("value_info")
587
+ subgraph.value_info.extend(symbolic_shape_inference.out_mp_.graph.value_info)
588
+ subgraph.ClearField("node")
589
+ subgraph.node.extend(symbolic_shape_inference.out_mp_.graph.node)
590
+ # for new symbolic dims from subgraph output, add to main graph symbolic dims
591
+ subgraph_shapes = [get_shape_from_value_info(o) for o in symbolic_shape_inference.out_mp_.graph.output]
592
+ subgraph_new_symbolic_dims = {
593
+ d for s in subgraph_shapes if s for d in s if type(d) is str and d not in self.symbolic_dims_
594
+ }
595
+ new_dims = {}
596
+ for d in subgraph_new_symbolic_dims:
597
+ assert d in symbolic_shape_inference.symbolic_dims_
598
+ new_dims[d] = symbolic_shape_inference.symbolic_dims_[d]
599
+ self.symbolic_dims_.update(new_dims)
600
+ return symbolic_shape_inference
601
+
602
+ def _get_int_or_float_values(self, node, broadcast=False, allow_float_values=False):
603
+ def int_or_float(value, allow_float_values):
604
+ # If casting into int has precision loss: keep float output
605
+ if allow_float_values and value % 1 != 0:
606
+ return value
607
+ return int(value)
608
+
609
+ values = [self._try_get_value(node, i) for i in range(len(node.input))]
610
+ if all([v is not None for v in values]):
611
+ # some shape compute is in floating point, cast to int for sympy
612
+ for i, v in enumerate(values):
613
+ if type(v) is not np.ndarray:
614
+ continue
615
+ if len(v.shape) > 1:
616
+ new_v = None # ignore value for rank > 1
617
+ elif len(v.shape) == 0:
618
+ new_v = int_or_float(v.item(), allow_float_values)
619
+ else:
620
+ assert len(v.shape) == 1
621
+ new_v = [int_or_float(vv, allow_float_values) for vv in v]
622
+ values[i] = new_v
623
+ values_len = [len(v) if isinstance(v, list) else 0 for v in values]
624
+ max_len = max(values_len)
625
+ if max_len >= 1 and broadcast:
626
+ # broadcast
627
+ for i, v in enumerate(values):
628
+ if v is None:
629
+ continue # don't broadcast if value is unknown
630
+ if isinstance(v, list):
631
+ if len(v) < max_len:
632
+ values[i] = v * max_len
633
+ else:
634
+ assert len(v) == max_len
635
+ else:
636
+ values[i] = [v] * max_len
637
+ return values
638
+
639
+ def _compute_on_sympy_data(self, node, op_func):
640
+ assert len(node.output) == 1
641
+
642
+ # Before mul & div operations
643
+ # cast inputs into interger might lose decimal part and reduce precision
644
+ # keep them as float, finish the operation, then cast the result into integer
645
+ if node.op_type in ["Mul", "Div"]:
646
+ values = self._get_int_or_float_values(node, broadcast=True, allow_float_values=True)
647
+ else:
648
+ values = self._get_int_or_float_values(node, broadcast=True)
649
+
650
+ if all([v is not None for v in values]):
651
+ is_list = [isinstance(v, list) for v in values]
652
+ as_list = any(is_list)
653
+ if as_list:
654
+ self.sympy_data_[node.output[0]] = [op_func(vs) for vs in zip(*values)]
655
+ else:
656
+ self.sympy_data_[node.output[0]] = op_func(values)
657
+
658
+ def _pass_on_sympy_data(self, node):
659
+ assert len(node.input) == 1 or node.op_type in [
660
+ "Reshape",
661
+ "Unsqueeze",
662
+ "Squeeze",
663
+ ]
664
+ self._compute_on_sympy_data(node, lambda x: x[0])
665
+
666
+ def _pass_on_shape_and_type(self, node):
667
+ vi = self.known_vi_[node.output[0]]
668
+ vi.CopyFrom(
669
+ helper.make_tensor_value_info(
670
+ node.output[0],
671
+ get_elem_type_from_type_proto(self.known_vi_[node.input[0]].type),
672
+ self._get_shape(node, 0),
673
+ )
674
+ )
675
+
676
+ def _new_symbolic_dim(self, prefix, dim):
677
+ new_dim = f"{prefix}_d{dim}"
678
+ if new_dim in self.suggested_merge_:
679
+ v = self.suggested_merge_[new_dim]
680
+ new_symbolic_dim = sympy.Integer(int(v)) if is_literal(v) else v
681
+ else:
682
+ new_symbolic_dim = sympy.Symbol(new_dim, integer=True, nonnegative=True)
683
+ self.symbolic_dims_[new_dim] = new_symbolic_dim
684
+ return new_symbolic_dim
685
+
686
+ def _new_symbolic_dim_from_output(self, node, out_idx=0, dim=0):
687
+ return self._new_symbolic_dim(
688
+ f"{node.op_type}{self.prefix_}_{list(self.out_mp_.graph.node).index(node)}_o{out_idx}_",
689
+ dim,
690
+ )
691
+
692
+ def _new_symbolic_shape(self, rank, node, out_idx=0):
693
+ return [self._new_symbolic_dim_from_output(node, out_idx, i) for i in range(rank)]
694
+
695
+ def _compute_conv_pool_shape(self, node, channels_last=False):
696
+ sympy_shape = self._get_sympy_shape(node, 0)
697
+ if len(node.input) > 1:
698
+ W_shape = self._get_sympy_shape(node, 1) # noqa: N806
699
+ rank = len(W_shape) - 2 # number of spatial axes
700
+ kernel_shape = W_shape[-rank - 1 : -1] if channels_last else W_shape[-rank:]
701
+ sympy_shape[3 if channels_last else 1] = W_shape[0]
702
+ else:
703
+ W_shape = None # noqa: N806
704
+ kernel_shape = get_attribute(node, "kernel_shape")
705
+ rank = len(kernel_shape)
706
+
707
+ assert len(sympy_shape) == rank + 2
708
+
709
+ # only need to symbolic shape inference if input has symbolic dims in spatial axes
710
+ spatial_shape = sympy_shape[-rank - 1 : -1] if channels_last else sympy_shape[-rank:]
711
+ is_symbolic_dims = [not is_literal(i) for i in spatial_shape]
712
+
713
+ if not any(is_symbolic_dims):
714
+ shape = get_shape_from_value_info(self.known_vi_[node.output[0]])
715
+ if len(shape) > 0:
716
+ assert len(sympy_shape) == len(shape)
717
+ if channels_last:
718
+ sympy_shape[-rank - 1 : -1] = [sympy.Integer(d) for d in shape[-rank - 1 : -1]]
719
+ else:
720
+ sympy_shape[-rank:] = [sympy.Integer(d) for d in shape[-rank:]]
721
+ return sympy_shape
722
+
723
+ dilations = get_attribute(node, "dilations", [1] * rank)
724
+ strides = get_attribute(node, "strides", [1] * rank)
725
+ effective_kernel_shape = [(k - 1) * d + 1 for k, d in zip(kernel_shape, dilations)]
726
+ pads = get_attribute(node, "pads")
727
+ if pads is None:
728
+ pads = [0] * (2 * rank)
729
+ auto_pad = get_attribute(node, "auto_pad", b"NOTSET").decode("utf-8")
730
+ if auto_pad != "VALID" and auto_pad != "NOTSET":
731
+ try:
732
+ residual = [sympy.Mod(d, s) for d, s in zip(sympy_shape[-rank:], strides)]
733
+ total_pads = [
734
+ max(0, (k - s) if r == 0 else (k - r))
735
+ for k, s, r in zip(effective_kernel_shape, strides, residual)
736
+ ]
737
+ except TypeError: # sympy may throw TypeError: cannot determine truth value of Relational
738
+ total_pads = [
739
+ max(0, (k - s)) for k, s in zip(effective_kernel_shape, strides)
740
+ ] # assuming no residual if sympy throws error
741
+ elif auto_pad == "VALID":
742
+ total_pads = []
743
+ else:
744
+ total_pads = [0] * rank
745
+ else:
746
+ assert len(pads) == 2 * rank
747
+ total_pads = [p1 + p2 for p1, p2 in zip(pads[:rank], pads[rank:])]
748
+
749
+ ceil_mode = get_attribute(node, "ceil_mode", 0)
750
+ for i in range(rank):
751
+ effective_input_size = sympy_shape[-rank + i + (-1 if channels_last else 0)]
752
+ if len(total_pads) > 0:
753
+ effective_input_size = effective_input_size + total_pads[i]
754
+ if ceil_mode:
755
+ strided_kernel_positions = sympy.ceiling(
756
+ (effective_input_size - effective_kernel_shape[i]) / strides[i]
757
+ )
758
+ else:
759
+ strided_kernel_positions = (effective_input_size - effective_kernel_shape[i]) // strides[i]
760
+ sympy_shape[-rank + i + (-1 if channels_last else 0)] = strided_kernel_positions + 1
761
+ return sympy_shape
762
+
763
+ def _check_merged_dims(self, dims, allow_broadcast=True):
764
+ if allow_broadcast:
765
+ dims = [d for d in dims if not (is_literal(d) and int(d) <= 1)]
766
+ if not all([d == dims[0] for d in dims]):
767
+ self._add_suggested_merge(dims, apply=True)
768
+
769
+ def _compute_matmul_shape(self, node, output_dtype=None):
770
+ lhs_shape = self._get_shape(node, 0)
771
+ rhs_shape = self._get_shape(node, 1)
772
+ lhs_rank = len(lhs_shape)
773
+ rhs_rank = len(rhs_shape)
774
+ lhs_reduce_dim = 0
775
+ rhs_reduce_dim = 0
776
+ assert lhs_rank > 0 and rhs_rank > 0
777
+ if lhs_rank == 1 and rhs_rank == 1:
778
+ new_shape = []
779
+ elif lhs_rank == 1:
780
+ rhs_reduce_dim = -2
781
+ new_shape = rhs_shape[:rhs_reduce_dim] + [rhs_shape[-1]]
782
+ elif rhs_rank == 1:
783
+ lhs_reduce_dim = -1
784
+ new_shape = lhs_shape[:lhs_reduce_dim]
785
+ else:
786
+ lhs_reduce_dim = -1
787
+ rhs_reduce_dim = -2
788
+ new_shape = [*self._broadcast_shapes(lhs_shape[:-2], rhs_shape[:-2]), lhs_shape[-2], rhs_shape[-1]]
789
+ # merge reduce dim
790
+ self._check_merged_dims(
791
+ [lhs_shape[lhs_reduce_dim], rhs_shape[rhs_reduce_dim]],
792
+ allow_broadcast=False,
793
+ )
794
+ if output_dtype is None:
795
+ # infer output_dtype from input type when not specified
796
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
797
+ vi = self.known_vi_[node.output[0]]
798
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))
799
+
800
+ def _fuse_tensor_type(self, node, out_idx, dst_type, src_type):
801
+ """
802
+ update dst_tensor_type to be compatible with src_tensor_type when dimension mismatches
803
+ """
804
+ dst_tensor_type = (
805
+ dst_type.sequence_type.elem_type.tensor_type if is_sequence(dst_type) else dst_type.tensor_type
806
+ )
807
+ src_tensor_type = (
808
+ src_type.sequence_type.elem_type.tensor_type if is_sequence(src_type) else src_type.tensor_type
809
+ )
810
+ if dst_tensor_type.elem_type != src_tensor_type.elem_type:
811
+ node_id = node.name if node.name else node.op_type
812
+ raise ValueError(
813
+ f"For node {node_id}, dst_tensor_type.elem_type != src_tensor_type.elem_type: "
814
+ f"{onnx.onnx_pb.TensorProto.DataType.Name(dst_tensor_type.elem_type)} vs "
815
+ f"{onnx.onnx_pb.TensorProto.DataType.Name(src_tensor_type.elem_type)}"
816
+ )
817
+ if dst_tensor_type.HasField("shape"):
818
+ for di, ds in enumerate(zip(dst_tensor_type.shape.dim, src_tensor_type.shape.dim)):
819
+ if ds[0] != ds[1]:
820
+ # create a new symbolic dimension for node/out_idx/mismatch dim id in dst_tensor_type for tensor_type
821
+ # for sequence_type, clear the dimension
822
+ new_dim = onnx.TensorShapeProto.Dimension()
823
+ if not is_sequence(dst_type):
824
+ new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, out_idx, di))
825
+ dst_tensor_type.shape.dim[di].CopyFrom(new_dim)
826
+ else:
827
+ dst_tensor_type.CopyFrom(src_tensor_type)
828
+
829
+ def _infer_ArrayFeatureExtractor(self, node): # noqa: N802
830
+ data_shape = self._get_shape(node, 0)
831
+ indices_shape = self._get_shape(node, 1)
832
+ vi = self.known_vi_[node.output[0]]
833
+ vi.CopyFrom(
834
+ helper.make_tensor_value_info(
835
+ node.output[0],
836
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
837
+ data_shape[:-1] + indices_shape,
838
+ )
839
+ )
840
+
841
+ def _infer_symbolic_compute_ops(self, node):
842
+ funcs = {
843
+ "Add": lambda l: l[0] + l[1], # noqa: E741
844
+ "Div": lambda l: ( # noqa: E741
845
+ int(l[0] // l[1]) if isinstance(l[0] // l[1], float) else l[0] // l[1]
846
+ ), # integer div in sympy
847
+ "Equal": lambda l: l[0] == l[1], # noqa: E741
848
+ "Floor": lambda l: sympy.floor(l[0]), # noqa: E741
849
+ "Max": lambda l: ( # noqa: E741
850
+ l[1]
851
+ if is_literal(l[0]) and int(l[0]) < -self.int_max_
852
+ else (l[0] if is_literal(l[1]) and int(l[1]) < -self.int_max_ else sympy.Max(l[0], l[1]))
853
+ ),
854
+ "Min": lambda l: ( # noqa: E741
855
+ l[1]
856
+ if is_literal(l[0]) and int(l[0]) > self.int_max_
857
+ else (l[0] if is_literal(l[1]) and int(l[1]) > self.int_max_ else sympy.Min(l[0], l[1]))
858
+ ),
859
+ "Mul": lambda l: int(l[0] * l[1]) if isinstance(l[0] * l[1], float) else l[0] * l[1], # noqa: E741
860
+ "Sub": lambda l: l[0] - l[1], # noqa: E741
861
+ "Where": lambda l: l[1] if l[0] else l[2], # noqa: E741
862
+ "Neg": lambda l: -l[0], # noqa: E741
863
+ }
864
+ assert node.op_type in funcs
865
+ self._compute_on_sympy_data(node, funcs[node.op_type])
866
+
867
+ def _infer_Cast(self, node): # noqa: N802
868
+ self._pass_on_sympy_data(node)
869
+
870
+ def _infer_CategoryMapper(self, node): # noqa: N802
871
+ input_type = self.known_vi_[node.input[0]].type.tensor_type.elem_type
872
+ if input_type == onnx.TensorProto.STRING:
873
+ output_type = onnx.TensorProto.INT64
874
+ else:
875
+ output_type = onnx.TensorProto.STRING
876
+ vi = self.known_vi_[node.output[0]]
877
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_type, self._get_shape(node, 0)))
878
+
879
+ def _infer_Compress(self, node): # noqa: N802
880
+ input_shape = self._get_shape(node, 0)
881
+ # create a new symbolic dimension for Compress output
882
+ compress_len = str(self._new_symbolic_dim_from_output(node))
883
+ axis = get_attribute(node, "axis")
884
+ if axis is None:
885
+ # when axis is not specified, input is flattened before compress so output is 1D
886
+ output_shape = [compress_len]
887
+ else:
888
+ output_shape = input_shape
889
+ output_shape[handle_negative_axis(axis, len(input_shape))] = compress_len
890
+ vi = self.known_vi_[node.output[0]]
891
+ vi.CopyFrom(
892
+ helper.make_tensor_value_info(
893
+ node.output[0],
894
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
895
+ output_shape,
896
+ )
897
+ )
898
+
899
+ def _infer_Concat(self, node): # noqa: N802
900
+ if any([i in self.sympy_data_ or i in self.initializers_ for i in node.input]):
901
+ values = self._get_int_or_float_values(node)
902
+ if all([v is not None for v in values]):
903
+ assert get_attribute(node, "axis") == 0
904
+ self.sympy_data_[node.output[0]] = []
905
+ for i in range(len(node.input)):
906
+ value = values[i]
907
+ if isinstance(value, list):
908
+ self.sympy_data_[node.output[0]].extend(value)
909
+ else:
910
+ self.sympy_data_[node.output[0]].append(value)
911
+
912
+ sympy_shape = self._get_sympy_shape(node, 0)
913
+ axis = handle_negative_axis(get_attribute(node, "axis"), len(sympy_shape))
914
+ for i_idx in range(1, len(node.input)):
915
+ input_shape = self._get_sympy_shape(node, i_idx)
916
+ if input_shape:
917
+ sympy_shape[axis] = sympy_shape[axis] + input_shape[axis]
918
+ self._update_computed_dims(sympy_shape)
919
+ # merge symbolic dims for non-concat axes
920
+ for d in range(len(sympy_shape)):
921
+ if d == axis:
922
+ continue
923
+ dims = [self._get_shape(node, i_idx)[d] for i_idx in range(len(node.input)) if self._get_shape(node, i_idx)]
924
+ if all([d == dims[0] for d in dims]):
925
+ continue
926
+ merged = self._merge_symbols(dims)
927
+ if type(merged) is str:
928
+ sympy_shape[d] = self.symbolic_dims_[merged] if merged else None
929
+ else:
930
+ sympy_shape[d] = merged
931
+ vi = self.known_vi_[node.output[0]]
932
+ vi.CopyFrom(
933
+ helper.make_tensor_value_info(
934
+ node.output[0],
935
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
936
+ get_shape_from_sympy_shape(sympy_shape),
937
+ )
938
+ )
939
+
940
+ def _infer_ConcatFromSequence(self, node): # noqa: N802
941
+ seq_shape = self._get_shape(node, 0)
942
+ new_axis = 1 if get_attribute(node, "new_axis") else 0
943
+ axis = handle_negative_axis(get_attribute(node, "axis"), len(seq_shape) + new_axis)
944
+ concat_dim = str(self._new_symbolic_dim_from_output(node, 0, axis))
945
+ new_shape = seq_shape
946
+ if new_axis:
947
+ new_shape = seq_shape[:axis] + [concat_dim] + seq_shape[axis:]
948
+ else:
949
+ new_shape[axis] = concat_dim
950
+ vi = self.known_vi_[node.output[0]]
951
+ vi.CopyFrom(
952
+ helper.make_tensor_value_info(
953
+ node.output[0],
954
+ self.known_vi_[node.input[0]].type.sequence_type.elem_type.tensor_type.elem_type,
955
+ new_shape,
956
+ )
957
+ )
958
+
959
+ def _infer_Constant(self, node): # noqa: N802
960
+ t = get_attribute(node, "value")
961
+ self.sympy_data_[node.output[0]] = numpy_helper.to_array(t)
962
+
963
+ def _infer_ConstantOfShape(self, node): # noqa: N802
964
+ sympy_shape = self._get_int_or_float_values(node)[0]
965
+ vi = self.known_vi_[node.output[0]]
966
+ if sympy_shape is not None:
967
+ if type(sympy_shape) != list: # noqa: E721
968
+ sympy_shape = [sympy_shape]
969
+ self._update_computed_dims(sympy_shape)
970
+ # update sympy data if output type is int, and shape is known
971
+ if vi.type.tensor_type.elem_type == onnx.TensorProto.INT64 and all([is_literal(x) for x in sympy_shape]):
972
+ self.sympy_data_[node.output[0]] = np.ones(
973
+ [int(x) for x in sympy_shape], dtype=np.int64
974
+ ) * numpy_helper.to_array(get_attribute(node, "value", 0))
975
+ else:
976
+ # create new dynamic shape
977
+ # note input0 is a 1D vector of shape, the new symbolic shape has the rank of the shape vector length
978
+ sympy_shape = self._new_symbolic_shape(self._get_shape(node, 0)[0], node)
979
+
980
+ vi.CopyFrom(
981
+ helper.make_tensor_value_info(
982
+ node.output[0],
983
+ vi.type.tensor_type.elem_type,
984
+ get_shape_from_sympy_shape(sympy_shape),
985
+ )
986
+ )
987
+
988
+ def _infer_Conv(self, node): # noqa: N802
989
+ sympy_shape = self._compute_conv_pool_shape(node)
990
+ self._update_computed_dims(sympy_shape)
991
+ vi = self.known_vi_[node.output[0]]
992
+ vi.CopyFrom(
993
+ helper.make_tensor_value_info(
994
+ node.output[0],
995
+ vi.type.tensor_type.elem_type,
996
+ get_shape_from_sympy_shape(sympy_shape),
997
+ )
998
+ )
999
+
1000
+ def _infer_NhwcConv(self, node): # noqa: N802
1001
+ sympy_shape = self._compute_conv_pool_shape(node, channels_last=True)
1002
+ self._update_computed_dims(sympy_shape)
1003
+ vi = self.known_vi_[node.output[0]]
1004
+ vi.CopyFrom(
1005
+ helper.make_tensor_value_info(
1006
+ node.output[0],
1007
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1008
+ get_shape_from_sympy_shape(sympy_shape),
1009
+ )
1010
+ )
1011
+
1012
+ def _infer_DequantizeLinear(self, node): # noqa: N802
1013
+ # Get the output data type from the scale input (index 1, required).
1014
+ output_dtype = self.known_vi_[node.input[1]].type.tensor_type.elem_type
1015
+
1016
+ # Get the output shape from the first input.
1017
+ output_shape = self._get_shape(node, 0)
1018
+
1019
+ vi = self.known_vi_[node.output[0]]
1020
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
1021
+
1022
+ def _infer_QuantizeLinear(self, node): # noqa: N802
1023
+ # Get the output data type from the zero-point input (index 2, optional).
1024
+ # Otherwise, default to uint8
1025
+ output_dtype = onnx.TensorProto.UINT8
1026
+ if len(node.input) > 2 and node.input[2]:
1027
+ output_dtype = self.known_vi_[node.input[2]].type.tensor_type.elem_type
1028
+
1029
+ # Get the output shape from the first input.
1030
+ output_shape = self._get_shape(node, 0)
1031
+
1032
+ vi = self.known_vi_[node.output[0]]
1033
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
1034
+
1035
+ def _infer_Einsum(self, node): # noqa: N802
1036
+ # ref:https://github.com/onnx/onnx/blob/623dfaa0151b2e4ce49779c3ec31cbd78c592b80/onnx/defs/math/defs.cc#L3275
1037
+ equation = get_attribute(node, "equation")
1038
+ equation = equation.replace(b" ", b"")
1039
+ mid_index = equation.find(b"->")
1040
+ left_equation = equation[:mid_index] if mid_index != -1 else equation
1041
+
1042
+ num_operands = 0
1043
+ num_ellipsis = 0
1044
+ num_ellipsis_indices = 0
1045
+
1046
+ letter_to_dim = {}
1047
+
1048
+ terms = left_equation.split(b",")
1049
+ for term in terms:
1050
+ ellipsis_index = term.find(b"...")
1051
+ shape = self._get_shape(node, num_operands)
1052
+ rank = len(shape)
1053
+ if ellipsis_index != -1:
1054
+ if num_ellipsis == 0:
1055
+ num_ellipsis_indices = rank - len(term) + 3
1056
+ num_ellipsis = num_ellipsis + 1
1057
+ for i in range(1, rank + 1):
1058
+ letter = term[-i]
1059
+ if letter != 46: # letter != b'.'
1060
+ dim = shape[-i]
1061
+ if letter not in letter_to_dim:
1062
+ letter_to_dim[letter] = dim
1063
+ elif type(dim) is not sympy.Symbol:
1064
+ letter_to_dim[letter] = dim
1065
+ num_operands = num_operands + 1
1066
+
1067
+ new_sympy_shape = []
1068
+ from collections import OrderedDict
1069
+
1070
+ num_letter_occurrences = OrderedDict()
1071
+ if mid_index != -1:
1072
+ right_equation = equation[mid_index + 2 :]
1073
+ right_ellipsis_index = right_equation.find(b"...")
1074
+ if right_ellipsis_index != -1:
1075
+ for i in range(num_ellipsis_indices):
1076
+ new_sympy_shape.append(shape[i])
1077
+ for c in right_equation:
1078
+ if c != 46: # c != b'.'
1079
+ new_sympy_shape.append(letter_to_dim[c])
1080
+ else:
1081
+ for i in range(num_ellipsis_indices):
1082
+ new_sympy_shape.append(shape[i])
1083
+ for c in left_equation:
1084
+ if c != 44 and c != 46: # c != b',' and c != b'.':
1085
+ if c in num_letter_occurrences:
1086
+ num_letter_occurrences[c] = num_letter_occurrences[c] + 1
1087
+ else:
1088
+ num_letter_occurrences[c] = 1
1089
+ for key, value in num_letter_occurrences.items():
1090
+ if value == 1:
1091
+ new_sympy_shape.append(letter_to_dim[key])
1092
+
1093
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
1094
+ vi = self.known_vi_[node.output[0]]
1095
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_sympy_shape))
1096
+
1097
+ def _infer_Expand(self, node): # noqa: N802
1098
+ expand_to_shape = as_list(self._try_get_value(node, 1), keep_none=True)
1099
+ if expand_to_shape is not None:
1100
+ # new_shape's dim can come from shape value
1101
+ self._update_computed_dims(expand_to_shape)
1102
+ shape = self._get_shape(node, 0)
1103
+ new_shape = self._broadcast_shapes(shape, get_shape_from_sympy_shape(expand_to_shape))
1104
+ vi = self.known_vi_[node.output[0]]
1105
+ vi.CopyFrom(
1106
+ helper.make_tensor_value_info(
1107
+ node.output[0],
1108
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1109
+ new_shape,
1110
+ )
1111
+ )
1112
+
1113
+ def _infer_Gather(self, node): # noqa: N802
1114
+ data_shape = self._get_shape(node, 0)
1115
+ axis = handle_negative_axis(get_attribute(node, "axis", 0), len(data_shape))
1116
+ indices_shape = self._get_shape(node, 1)
1117
+ vi = self.known_vi_[node.output[0]]
1118
+ vi.CopyFrom(
1119
+ helper.make_tensor_value_info(
1120
+ node.output[0],
1121
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1122
+ data_shape[:axis] + indices_shape + data_shape[axis + 1 :],
1123
+ )
1124
+ )
1125
+ # for 1D input, do some sympy compute
1126
+ if node.input[0] in self.sympy_data_ and len(data_shape) == 1 and get_attribute(node, "axis", 0) == 0:
1127
+ idx = self._try_get_value(node, 1)
1128
+ if idx is not None:
1129
+ data = self.sympy_data_[node.input[0]]
1130
+ if type(data) is list:
1131
+ if type(idx) is np.ndarray and len(idx.shape) == 1:
1132
+ self.sympy_data_[node.output[0]] = [data[int(i)] for i in idx]
1133
+ else:
1134
+ self.sympy_data_[node.output[0]] = data[int(idx)]
1135
+ else:
1136
+ assert idx == 0 or idx == -1
1137
+ self.sympy_data_[node.output[0]] = data
1138
+
1139
+ def _infer_GatherElements(self, node): # noqa: N802
1140
+ indices_shape = self._get_shape(node, 1)
1141
+ vi = self.known_vi_[node.output[0]]
1142
+ vi.CopyFrom(
1143
+ helper.make_tensor_value_info(
1144
+ node.output[0],
1145
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1146
+ indices_shape,
1147
+ )
1148
+ )
1149
+
1150
+ def _infer_GatherND(self, node): # noqa: N802
1151
+ data_shape = self._get_shape(node, 0)
1152
+ data_rank = len(data_shape)
1153
+ indices_shape = self._get_shape(node, 1)
1154
+ len(indices_shape)
1155
+ last_index_dimension = indices_shape[-1]
1156
+ assert is_literal(last_index_dimension) and last_index_dimension <= data_rank
1157
+ new_shape = indices_shape[:-1] + data_shape[last_index_dimension:]
1158
+ vi = self.known_vi_[node.output[0]]
1159
+ vi.CopyFrom(
1160
+ helper.make_tensor_value_info(
1161
+ node.output[0],
1162
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1163
+ new_shape,
1164
+ )
1165
+ )
1166
+
1167
+ def _infer_If(self, node): # noqa: N802
1168
+ # special case for constant condition, in case there are mismatching shape from the non-executed branch
1169
+ subgraphs = [
1170
+ get_attribute(node, "then_branch"),
1171
+ get_attribute(node, "else_branch"),
1172
+ ]
1173
+ cond = self._try_get_value(node, 0)
1174
+ if cond is not None:
1175
+ if as_scalar(cond) > 0:
1176
+ subgraphs[1].CopyFrom(subgraphs[0])
1177
+ else:
1178
+ subgraphs[0].CopyFrom(subgraphs[1])
1179
+
1180
+ for i_sub, subgraph in enumerate(subgraphs):
1181
+ subgraph_infer = self._onnx_infer_subgraph(node, subgraph, use_node_input=False)
1182
+ for i_out in range(len(node.output)):
1183
+ vi = self.known_vi_[node.output[i_out]]
1184
+ if i_sub == 0:
1185
+ vi.CopyFrom(subgraph.output[i_out])
1186
+ vi.name = node.output[i_out]
1187
+ else:
1188
+ self._fuse_tensor_type(node, i_out, vi.type, subgraph.output[i_out].type)
1189
+
1190
+ # pass on sympy data from subgraph, if cond is constant
1191
+ if cond is not None and i_sub == (0 if as_scalar(cond) > 0 else 1):
1192
+ if subgraph.output[i_out].name in subgraph_infer.sympy_data_:
1193
+ self.sympy_data_[vi.name] = subgraph_infer.sympy_data_[subgraph.output[i_out].name]
1194
+
1195
+ def _infer_Loop(self, node): # noqa: N802
1196
+ subgraph = get_attribute(node, "body")
1197
+ assert len(subgraph.input) == len(node.input)
1198
+ num_loop_carried = len(node.input) - 2 # minus the length and initial loop condition
1199
+ # when sequence_type is used as loop carried input
1200
+ # needs to run subgraph infer twice if the tensor shape in sequence contains None
1201
+ for i, si in enumerate(subgraph.input):
1202
+ si_name = si.name
1203
+ si.CopyFrom(self.known_vi_[node.input[i]])
1204
+ si.name = si_name
1205
+
1206
+ self._onnx_infer_subgraph(node, subgraph)
1207
+
1208
+ # check subgraph input/output for shape changes in loop carried variables
1209
+ # for tensor_type, create new symbolic dim when changing, i.e., output = Concat(input, a)
1210
+ # for sequence_type, propagate from output to input
1211
+ need_second_infer = False
1212
+ for i_out in range(1, num_loop_carried + 1):
1213
+ so = subgraph.output[i_out]
1214
+ so_shape = get_shape_from_value_info(so)
1215
+ if is_sequence(so.type):
1216
+ if so_shape and None in so_shape:
1217
+ # copy shape from output to input
1218
+ # note that loop input is [loop_len, cond, input_0, input_1, ...]
1219
+ # while loop output is [cond, output_0, output_1, ...]
1220
+ subgraph.input[i_out + 1].type.sequence_type.elem_type.CopyFrom(so.type.sequence_type.elem_type)
1221
+ need_second_infer = True
1222
+ else:
1223
+ si = subgraph.input[i_out + 1]
1224
+ si_shape = get_shape_from_value_info(si)
1225
+ for di, dims in enumerate(zip(si_shape, so_shape)):
1226
+ if dims[0] != dims[1]:
1227
+ new_dim = onnx.TensorShapeProto.Dimension()
1228
+ new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, i_out, di))
1229
+ si.type.tensor_type.shape.dim[di].CopyFrom(new_dim)
1230
+ so.type.tensor_type.shape.dim[di].CopyFrom(new_dim)
1231
+ need_second_infer = True
1232
+
1233
+ if need_second_infer:
1234
+ if self.verbose_ > 2:
1235
+ logger.debug(
1236
+ f"Rerun Loop: {node.name}({node.output[0]}...), because of sequence in loop carried variables"
1237
+ )
1238
+ self._onnx_infer_subgraph(node, subgraph, inc_subgraph_id=False)
1239
+
1240
+ # create a new symbolic dimension for iteration dependent dimension
1241
+ loop_iter_dim = str(self._new_symbolic_dim_from_output(node))
1242
+ for i in range(len(node.output)):
1243
+ vi = self.known_vi_[node.output[i]]
1244
+ vi.CopyFrom(subgraph.output[i + 1]) # first subgraph output is condition, not in node output
1245
+ if i >= num_loop_carried:
1246
+ assert not is_sequence(vi.type) # TODO: handle loop accumulation in sequence_type
1247
+ subgraph_vi_dim = subgraph.output[i + 1].type.tensor_type.shape.dim
1248
+ vi.type.tensor_type.shape.ClearField("dim")
1249
+ vi_dim = vi.type.tensor_type.shape.dim
1250
+ vi_dim.add().dim_param = loop_iter_dim
1251
+ vi_dim.extend(list(subgraph_vi_dim))
1252
+ vi.name = node.output[i]
1253
+
1254
+ def _infer_MatMul(self, node): # noqa: N802
1255
+ self._compute_matmul_shape(node)
1256
+
1257
+ def _infer_MatMulInteger(self, node): # noqa: N802
1258
+ self._compute_matmul_shape(node, onnx.TensorProto.INT32)
1259
+
1260
+ def _infer_MatMulNBits(self, node): # noqa: N802
1261
+ lhs_shape = self._get_shape(node, 0)
1262
+ rhs_shape = [get_attribute(node, "K"), get_attribute(node, "N")]
1263
+ lhs_rank = len(lhs_shape)
1264
+ assert lhs_rank > 0
1265
+ if lhs_rank == 1:
1266
+ new_shape = rhs_shape[1:]
1267
+ else:
1268
+ new_shape = lhs_shape[:-1] + rhs_shape[1:]
1269
+ # merge reduce dim
1270
+ self._check_merged_dims(
1271
+ [lhs_shape[-1], rhs_shape[0]],
1272
+ allow_broadcast=False,
1273
+ )
1274
+ # infer output_dtype from input type when not specified
1275
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
1276
+ vi = self.known_vi_[node.output[0]]
1277
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))
1278
+
1279
+ def _infer_NonMaxSuppression(self, node): # noqa: N802
1280
+ selected = str(self._new_symbolic_dim_from_output(node))
1281
+ vi = self.known_vi_[node.output[0]]
1282
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, [selected, 3]))
1283
+
1284
+ def _infer_NonZero(self, node): # noqa: N802
1285
+ input_rank = self._get_shape_rank(node, 0)
1286
+ # create a new symbolic dimension for NonZero output
1287
+ nz_len = str(self._new_symbolic_dim_from_output(node, 0, 1))
1288
+ vi = self.known_vi_[node.output[0]]
1289
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], vi.type.tensor_type.elem_type, [input_rank, nz_len]))
1290
+
1291
+ def _infer_OneHot(self, node): # noqa: N802
1292
+ sympy_shape = self._get_sympy_shape(node, 0)
1293
+ depth = self._try_get_value(node, 1)
1294
+ axis = get_attribute(node, "axis", -1)
1295
+ axis = handle_negative_axis(axis, len(sympy_shape) + 1)
1296
+ new_shape = get_shape_from_sympy_shape(
1297
+ sympy_shape[:axis]
1298
+ + [self._new_symbolic_dim_from_output(node) if not is_literal(depth) else depth]
1299
+ + sympy_shape[axis:]
1300
+ )
1301
+ vi = self.known_vi_[node.output[0]]
1302
+ vi.CopyFrom(
1303
+ helper.make_tensor_value_info(
1304
+ node.output[0],
1305
+ self.known_vi_[node.input[2]].type.tensor_type.elem_type,
1306
+ new_shape,
1307
+ )
1308
+ )
1309
+
1310
+ def _infer_Pad(self, node): # noqa: N802
1311
+ if get_opset(self.out_mp_) <= 10:
1312
+ pads = get_attribute(node, "pads")
1313
+ else:
1314
+ pads = self._try_get_value(node, 1)
1315
+
1316
+ sympy_shape = self._get_sympy_shape(node, 0)
1317
+ rank = len(sympy_shape)
1318
+
1319
+ if pads is not None:
1320
+ assert len(pads) == 2 * rank
1321
+ new_sympy_shape = [
1322
+ d + pad_up + pad_down for d, pad_up, pad_down in zip(sympy_shape, pads[:rank], pads[rank:])
1323
+ ]
1324
+ self._update_computed_dims(new_sympy_shape)
1325
+ else:
1326
+ # dynamic pads, create new symbolic dimensions
1327
+ new_sympy_shape = self._new_symbolic_shape(rank, node)
1328
+ output_tp = self.known_vi_[node.input[0]].type.tensor_type.elem_type
1329
+
1330
+ vi = self.known_vi_[node.output[0]]
1331
+ vi.CopyFrom(
1332
+ helper.make_tensor_value_info(node.output[0], output_tp, get_shape_from_sympy_shape(new_sympy_shape))
1333
+ )
1334
+
1335
+ def _infer_Pool(self, node): # noqa: N802
1336
+ sympy_shape = self._compute_conv_pool_shape(node)
1337
+ self._update_computed_dims(sympy_shape)
1338
+ for o in node.output:
1339
+ if not o:
1340
+ continue
1341
+ vi = self.known_vi_[o]
1342
+ vi.CopyFrom(
1343
+ helper.make_tensor_value_info(
1344
+ o,
1345
+ vi.type.tensor_type.elem_type,
1346
+ get_shape_from_sympy_shape(sympy_shape),
1347
+ )
1348
+ )
1349
+
1350
+ def _infer_aten_bitwise_or(self, node):
1351
+ shape0 = self._get_shape(node, 0)
1352
+ shape1 = self._get_shape(node, 1)
1353
+ new_shape = self._broadcast_shapes(shape0, shape1)
1354
+ t0 = self.known_vi_[node.input[0]]
1355
+ vi = self.known_vi_[node.output[0]]
1356
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], t0.type.tensor_type.elem_type, new_shape))
1357
+
1358
+ def _infer_aten_diagonal(self, node):
1359
+ sympy_shape = self._get_sympy_shape(node, 0)
1360
+ rank = len(sympy_shape)
1361
+ offset = self._try_get_value(node, 1)
1362
+ dim1 = self._try_get_value(node, 2)
1363
+ dim2 = self._try_get_value(node, 3)
1364
+
1365
+ assert offset is not None and dim1 is not None and dim2 is not None
1366
+ dim1 = handle_negative_axis(dim1, rank)
1367
+ dim2 = handle_negative_axis(dim2, rank)
1368
+
1369
+ new_shape = []
1370
+ for dim, val in enumerate(sympy_shape):
1371
+ if dim not in [dim1, dim2]:
1372
+ new_shape.append(val)
1373
+
1374
+ shape1 = sympy_shape[dim1]
1375
+ shape2 = sympy_shape[dim2]
1376
+ if offset >= 0:
1377
+ diag_shape = sympy.Max(0, sympy.Min(shape1, shape2 - offset))
1378
+ else:
1379
+ diag_shape = sympy.Max(0, sympy.Min(shape1 + offset, shape2))
1380
+ new_shape.append(diag_shape)
1381
+
1382
+ if node.output[0]:
1383
+ vi = self.known_vi_[node.output[0]]
1384
+ vi.CopyFrom(
1385
+ helper.make_tensor_value_info(
1386
+ node.output[0],
1387
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1388
+ get_shape_from_sympy_shape(new_shape),
1389
+ )
1390
+ )
1391
+
1392
+ def _infer_aten_multinomial(self, node):
1393
+ sympy_shape = self._get_sympy_shape(node, 0)
1394
+ rank = len(sympy_shape)
1395
+ assert rank in [1, 2]
1396
+ num_samples = self._try_get_value(node, 1)
1397
+ di = rank - 1
1398
+ last_dim = num_samples if num_samples else str(self._new_symbolic_dim_from_output(node, 0, di))
1399
+ output_shape = sympy_shape[:-1] + [last_dim]
1400
+ vi = self.known_vi_[node.output[0]]
1401
+ vi.CopyFrom(
1402
+ helper.make_tensor_value_info(
1403
+ node.output[0],
1404
+ onnx.TensorProto.INT64,
1405
+ get_shape_from_sympy_shape(output_shape),
1406
+ )
1407
+ )
1408
+
1409
+ def _infer_aten_pool2d(self, node):
1410
+ sympy_shape = self._get_sympy_shape(node, 0)
1411
+ assert len(sympy_shape) == 4
1412
+ sympy_shape[-2:] = [self._new_symbolic_dim_from_output(node, 0, i) for i in [2, 3]]
1413
+ self._update_computed_dims(sympy_shape)
1414
+ for i, o in enumerate(node.output):
1415
+ if not o:
1416
+ continue
1417
+ vi = self.known_vi_[o]
1418
+ elem_type = onnx.TensorProto.INT64 if i == 1 else self.known_vi_[node.input[0]].type.tensor_type.elem_type
1419
+ vi.CopyFrom(helper.make_tensor_value_info(o, elem_type, get_shape_from_sympy_shape(sympy_shape)))
1420
+
1421
+ def _infer_aten_minmax(self, node):
1422
+ vi = self.known_vi_[node.output[0]]
1423
+ if len(node.input) == 1:
1424
+ vi.CopyFrom(
1425
+ helper.make_tensor_value_info(
1426
+ node.output[0], self.known_vi_[node.input[0]].type.tensor_type.elem_type, []
1427
+ )
1428
+ )
1429
+ else:
1430
+ assert len(node.input) == 3
1431
+ keepdim = self._try_get_value(node, 2)
1432
+ assert keepdim is not None # can only handle known keepdim case.
1433
+ dim = self._try_get_value(node, 1)
1434
+ if dim is None:
1435
+ rank = self._get_shape_rank(node, 0)
1436
+ output_shape = self._new_symbolic_shape(rank if keepdim else rank - 1, node)
1437
+ else:
1438
+ shape = self._get_sympy_shape(node, 0)
1439
+ dim = handle_negative_axis(dim, len(shape))
1440
+ output_shape = shape[:dim]
1441
+ if keepdim:
1442
+ output_shape += [1]
1443
+ output_shape += shape[dim + 1 :]
1444
+
1445
+ output_shape = get_shape_from_sympy_shape(output_shape)
1446
+ vi.CopyFrom(
1447
+ helper.make_tensor_value_info(
1448
+ node.output[0], self.known_vi_[node.input[0]].type.tensor_type.elem_type, output_shape
1449
+ )
1450
+ )
1451
+ vi1 = self.known_vi_[node.output[1]]
1452
+ vi1.CopyFrom(helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT64, output_shape))
1453
+
1454
+ def _infer_aten_unfold(self, node):
1455
+ sympy_shape = self._get_sympy_shape(node, 0)
1456
+ dimension = self._try_get_value(node, 1)
1457
+ size = self._try_get_value(node, 2)
1458
+ step = self._try_get_value(node, 3)
1459
+ if dimension is not None and size is not None and step is not None:
1460
+ assert dimension < len(sympy_shape)
1461
+ sympy_shape[dimension] = (sympy_shape[dimension] - size) // step + 1
1462
+ sympy_shape.append(size)
1463
+ else:
1464
+ rank = len(sympy_shape)
1465
+ sympy_shape = self._new_symbolic_shape(rank + 1, node)
1466
+ self._update_computed_dims(sympy_shape)
1467
+ if node.output[0]:
1468
+ vi = self.known_vi_[node.output[0]]
1469
+ vi.CopyFrom(
1470
+ helper.make_tensor_value_info(
1471
+ node.output[0],
1472
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1473
+ get_shape_from_sympy_shape(sympy_shape),
1474
+ )
1475
+ )
1476
+
1477
+ def _infer_aten_argmax(self, node):
1478
+ new_shape = None
1479
+ if not node.input[1]:
1480
+ # The argmax of the flattened input is returned.
1481
+ new_shape = []
1482
+ else:
1483
+ dim = self._try_get_value(node, 1)
1484
+ keepdim = self._try_get_value(node, 2)
1485
+ if keepdim is not None:
1486
+ sympy_shape = self._get_sympy_shape(node, 0)
1487
+ if dim is not None:
1488
+ dim = handle_negative_axis(dim, len(sympy_shape))
1489
+ if keepdim:
1490
+ sympy_shape[dim] = 1
1491
+ else:
1492
+ del sympy_shape[dim]
1493
+ else:
1494
+ rank = len(sympy_shape)
1495
+ sympy_shape = self._new_symbolic_shape(rank if keepdim else rank - 1, node)
1496
+ self._update_computed_dims(sympy_shape)
1497
+ new_shape = get_shape_from_sympy_shape(sympy_shape)
1498
+ if node.output[0] and new_shape is not None:
1499
+ vi = self.known_vi_[node.output[0]]
1500
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, new_shape))
1501
+
1502
+ def _infer_aten_group_norm(self, node):
1503
+ self._propagate_shape_and_type(node)
1504
+ input_shape = self._get_shape(node, 0)
1505
+ N = input_shape[0] if input_shape is not None and len(input_shape) != 0 else None # noqa: N806
1506
+ group = self._try_get_value(node, 6)
1507
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
1508
+ for i in [1, 2]:
1509
+ if node.output[i]:
1510
+ vi = self.known_vi_[node.output[i]]
1511
+ vi.CopyFrom(
1512
+ helper.make_tensor_value_info(
1513
+ node.output[i],
1514
+ output_dtype,
1515
+ [
1516
+ N if N is not None else str(self._new_symbolic_dim_from_output(node, i, 0)),
1517
+ (
1518
+ as_scalar(group)
1519
+ if group is not None
1520
+ else str(self._new_symbolic_dim_from_output(node, i, 1))
1521
+ ),
1522
+ ],
1523
+ )
1524
+ )
1525
+
1526
+ def _infer_aten_upsample(self, node):
1527
+ new_shape = None
1528
+ input_shape = self._get_shape(node, 0)
1529
+ if input_shape is not None:
1530
+ new_shape = input_shape[:2]
1531
+ output_size = self._try_get_value(node, 1)
1532
+ if output_size is not None:
1533
+ new_shape += [dim_size.item() if type(dim_size) is np.int64 else dim_size for dim_size in output_size]
1534
+ else:
1535
+ rank = len(input_shape)
1536
+ new_shape += [str(self._new_symbolic_dim_from_output(node, 0, i)) for i in range(2, rank)]
1537
+ if node.output[0] and new_shape is not None:
1538
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
1539
+ vi = self.known_vi_[node.output[0]]
1540
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))
1541
+
1542
+ def _infer_BatchNormalization(self, node): # noqa: N802
1543
+ self._propagate_shape_and_type(node)
1544
+
1545
+ # this works for opsets < 14 and 14 since we check i < len(node.output) in the loop
1546
+ for i in [1, 2, 3, 4]:
1547
+ if i < len(node.output) and node.output[i]:
1548
+ # all of these parameters have the same shape as the 1st input
1549
+ self._propagate_shape_and_type(node, input_index=1, output_index=i)
1550
+
1551
+ def _infer_Range(self, node): # noqa: N802
1552
+ vi = self.known_vi_[node.output[0]]
1553
+ input_data = self._get_int_or_float_values(node)
1554
+ if all([i is not None for i in input_data]):
1555
+ start = as_scalar(input_data[0])
1556
+ limit = as_scalar(input_data[1])
1557
+ delta = as_scalar(input_data[2])
1558
+ new_sympy_shape = [sympy.Max(sympy.ceiling((limit - start) / delta), 0)]
1559
+ else:
1560
+ new_sympy_shape = [self._new_symbolic_dim_from_output(node)]
1561
+ self._update_computed_dims(new_sympy_shape)
1562
+ vi.CopyFrom(
1563
+ helper.make_tensor_value_info(
1564
+ node.output[0],
1565
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1566
+ get_shape_from_sympy_shape(new_sympy_shape),
1567
+ )
1568
+ )
1569
+
1570
+ def _infer_ReduceSum(self, node): # noqa: N802
1571
+ keep_dims = get_attribute(node, "keepdims", 1)
1572
+ if get_opset(self.out_mp_) >= 13 and len(node.input) > 1:
1573
+ # ReduceSum changes axes to input[1] in opset 13
1574
+ axes = self._try_get_value(node, 1)
1575
+ vi = self.known_vi_[node.output[0]]
1576
+ if axes is None:
1577
+ assert keep_dims # can only handle keep_dims==True when axes is unknown, by generating new ranks
1578
+ vi.CopyFrom(
1579
+ helper.make_tensor_value_info(
1580
+ node.output[0],
1581
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1582
+ get_shape_from_sympy_shape(self._new_symbolic_shape(self._get_shape_rank(node, 0), node)),
1583
+ )
1584
+ )
1585
+ else:
1586
+ shape = self._get_shape(node, 0)
1587
+ output_shape = []
1588
+ axes = [handle_negative_axis(a, len(shape)) for a in axes]
1589
+ for i, d in enumerate(shape):
1590
+ if i in axes:
1591
+ if keep_dims:
1592
+ output_shape.append(1)
1593
+ else:
1594
+ output_shape.append(d)
1595
+ vi.CopyFrom(
1596
+ helper.make_tensor_value_info(
1597
+ node.output[0],
1598
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1599
+ output_shape,
1600
+ )
1601
+ )
1602
+
1603
+ def _infer_ReduceProd(self, node): # noqa: N802
1604
+ axes = get_attribute(node, "axes")
1605
+ keep_dims = get_attribute(node, "keepdims", 1)
1606
+ if keep_dims == 0 and axes == [0]:
1607
+ data = self._get_int_or_float_values(node)[0]
1608
+ if data is not None:
1609
+ self.sympy_data_[node.output[0]] = sympy_reduce_product(data)
1610
+
1611
+ def _infer_RelativePositionBias(self, node): # noqa: N802
1612
+ seq_len = self._try_get_value(node, 1)
1613
+ real_seq_len = self._try_get_value(node, 2)
1614
+ if seq_len is None or real_seq_len is None:
1615
+ return
1616
+ num_heads = self._get_sympy_shape(node, 0)[1]
1617
+
1618
+ new_shape = [1, num_heads, str(seq_len), str(real_seq_len)]
1619
+
1620
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
1621
+ vi = self.known_vi_[node.output[0]]
1622
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))
1623
+
1624
+ def _infer_Reshape(self, node): # noqa: N802
1625
+ shape_value = self._try_get_value(node, 1)
1626
+ vi = self.known_vi_[node.output[0]]
1627
+ if shape_value is None:
1628
+ shape_shape = self._get_shape(node, 1)
1629
+ assert len(shape_shape) == 1
1630
+ shape_rank = shape_shape[0]
1631
+ assert is_literal(shape_rank)
1632
+ vi.CopyFrom(
1633
+ helper.make_tensor_value_info(
1634
+ node.output[0],
1635
+ vi.type.tensor_type.elem_type,
1636
+ get_shape_from_sympy_shape(self._new_symbolic_shape(shape_rank, node)),
1637
+ )
1638
+ )
1639
+ else:
1640
+ input_sympy_shape = self._get_sympy_shape(node, 0)
1641
+ total = 1
1642
+ for d in input_sympy_shape:
1643
+ total = total * d
1644
+ new_sympy_shape = []
1645
+ deferred_dim_idx = -1
1646
+ non_deferred_size = 1
1647
+ for i, d in enumerate(shape_value):
1648
+ if type(d) is sympy.Symbol:
1649
+ new_sympy_shape.append(d)
1650
+ elif d == 0:
1651
+ new_sympy_shape.append(input_sympy_shape[i])
1652
+ non_deferred_size = non_deferred_size * input_sympy_shape[i]
1653
+ else:
1654
+ new_sympy_shape.append(d)
1655
+ if d == -1:
1656
+ deferred_dim_idx = i
1657
+ elif d != 0:
1658
+ non_deferred_size = non_deferred_size * d
1659
+
1660
+ assert new_sympy_shape.count(-1) < 2
1661
+ if -1 in new_sympy_shape:
1662
+ new_dim = total // non_deferred_size
1663
+ new_sympy_shape[deferred_dim_idx] = new_dim
1664
+
1665
+ self._update_computed_dims(new_sympy_shape)
1666
+ vi.CopyFrom(
1667
+ helper.make_tensor_value_info(
1668
+ node.output[0],
1669
+ vi.type.tensor_type.elem_type,
1670
+ get_shape_from_sympy_shape(new_sympy_shape),
1671
+ )
1672
+ )
1673
+
1674
+ self._pass_on_sympy_data(node)
1675
+
1676
+ def _infer_Resize(self, node): # noqa: N802
1677
+ vi = self.known_vi_[node.output[0]]
1678
+ input_sympy_shape = self._get_sympy_shape(node, 0)
1679
+ if get_opset(self.out_mp_) <= 10:
1680
+ scales = self._try_get_value(node, 1)
1681
+ if scales is not None:
1682
+ new_sympy_shape = [sympy.simplify(sympy.floor(d * s)) for d, s in zip(input_sympy_shape, scales)]
1683
+ self._update_computed_dims(new_sympy_shape)
1684
+ vi.CopyFrom(
1685
+ helper.make_tensor_value_info(
1686
+ node.output[0],
1687
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1688
+ get_shape_from_sympy_shape(new_sympy_shape),
1689
+ )
1690
+ )
1691
+ else:
1692
+ roi = self._try_get_value(node, 1)
1693
+ scales = self._try_get_value(node, 2)
1694
+ sizes = self._try_get_value(node, 3)
1695
+ if sizes is not None:
1696
+ new_sympy_shape = [sympy.simplify(sympy.floor(s)) for s in sizes]
1697
+ self._update_computed_dims(new_sympy_shape)
1698
+ elif scales is not None:
1699
+ rank = len(scales)
1700
+ if get_attribute(node, "coordinate_transformation_mode") == "tf_crop_and_resize":
1701
+ assert len(roi) == 2 * rank
1702
+ roi_start = list(roi)[:rank]
1703
+ roi_end = list(roi)[rank:]
1704
+ else:
1705
+ roi_start = [0] * rank
1706
+ roi_end = [1] * rank
1707
+ scales = list(scales)
1708
+ new_sympy_shape = [
1709
+ sympy.simplify(sympy.floor(d * (end - start) * scale))
1710
+ for d, start, end, scale in zip(input_sympy_shape, roi_start, roi_end, scales)
1711
+ ]
1712
+ self._update_computed_dims(new_sympy_shape)
1713
+ else:
1714
+ new_sympy_shape = self._new_symbolic_shape(self._get_shape_rank(node, 0), node)
1715
+
1716
+ vi.CopyFrom(
1717
+ helper.make_tensor_value_info(
1718
+ node.output[0],
1719
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1720
+ get_shape_from_sympy_shape(new_sympy_shape),
1721
+ )
1722
+ )
1723
+
1724
+ def _infer_Scan(self, node): # noqa: N802
1725
+ subgraph = get_attribute(node, "body")
1726
+ num_scan_inputs = get_attribute(node, "num_scan_inputs")
1727
+ scan_input_axes = get_attribute(node, "scan_input_axes", [0] * num_scan_inputs)
1728
+ num_scan_states = len(node.input) - num_scan_inputs
1729
+ scan_input_axes = [
1730
+ handle_negative_axis(ax, self._get_shape_rank(node, i + num_scan_states))
1731
+ for i, ax in enumerate(scan_input_axes)
1732
+ ]
1733
+ # We may have cases where the subgraph has optional inputs that appear in both subgraph's input and initializer,
1734
+ # but not in the node's input. In such cases, the input model might be invalid, but let's skip those optional inputs.
1735
+ assert len(subgraph.input) >= len(node.input)
1736
+ subgraph_inputs = subgraph.input[: len(node.input)]
1737
+ for i, si in enumerate(subgraph_inputs):
1738
+ subgraph_name = si.name
1739
+ si.CopyFrom(self.known_vi_[node.input[i]])
1740
+ if i >= num_scan_states:
1741
+ scan_input_dim = si.type.tensor_type.shape.dim
1742
+ scan_input_dim.remove(scan_input_dim[scan_input_axes[i - num_scan_states]])
1743
+ si.name = subgraph_name
1744
+ self._onnx_infer_subgraph(node, subgraph)
1745
+ num_scan_outputs = len(node.output) - num_scan_states
1746
+ scan_output_axes = get_attribute(node, "scan_output_axes", [0] * num_scan_outputs)
1747
+ scan_input_dim = get_shape_from_type_proto(self.known_vi_[node.input[-1]].type)[scan_input_axes[-1]]
1748
+ for i, o in enumerate(node.output):
1749
+ vi = self.known_vi_[o]
1750
+ if i >= num_scan_states:
1751
+ shape = get_shape_from_type_proto(subgraph.output[i].type)
1752
+ new_dim = handle_negative_axis(scan_output_axes[i - num_scan_states], len(shape) + 1)
1753
+ shape = shape[:new_dim] + [scan_input_dim] + shape[new_dim:]
1754
+ vi.CopyFrom(helper.make_tensor_value_info(o, subgraph.output[i].type.tensor_type.elem_type, shape))
1755
+ else:
1756
+ vi.CopyFrom(subgraph.output[i])
1757
+ vi.name = o
1758
+
1759
+ def _infer_ScatterElements(self, node): # noqa: N802
1760
+ data_shape = self._get_shape(node, 0)
1761
+ vi = self.known_vi_[node.output[0]]
1762
+ vi.CopyFrom(
1763
+ helper.make_tensor_value_info(
1764
+ node.output[0],
1765
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
1766
+ data_shape,
1767
+ )
1768
+ )
1769
+
1770
+ def _infer_SequenceAt(self, node): # noqa: N802
1771
+ # need to create new symbolic dimension if sequence shape has None:
1772
+ seq_shape = self._get_shape(node, 0)
1773
+ vi = self.known_vi_[node.output[0]]
1774
+ if seq_shape is not None:
1775
+ for di, d in enumerate(seq_shape):
1776
+ if d is not None:
1777
+ continue
1778
+ new_dim = onnx.TensorShapeProto.Dimension()
1779
+ new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, 0, di))
1780
+ vi.type.tensor_type.shape.dim[di].CopyFrom(new_dim)
1781
+
1782
+ def _infer_SequenceInsert(self, node): # noqa: N802
1783
+ # workaround bug in onnx's shape inference
1784
+ vi_seq = self.known_vi_[node.input[0]]
1785
+ vi_tensor = self.known_vi_[node.input[1]]
1786
+ vi_out_seq = self.known_vi_[node.output[0]]
1787
+ vi_out_seq.CopyFrom(vi_seq)
1788
+ vi_out_seq.name = node.output[0]
1789
+ self._fuse_tensor_type(node, 0, vi_out_seq.type, vi_tensor.type)
1790
+
1791
+ def _infer_Shape(self, node): # noqa: N802
1792
+ self.sympy_data_[node.output[0]] = self._get_sympy_shape(node, 0)
1793
+
1794
+ def _infer_Size(self, node): # noqa: N802
1795
+ sympy_shape = self._get_sympy_shape(node, 0)
1796
+ self.sympy_data_[node.output[0]] = sympy_reduce_product(sympy_shape)
1797
+ self.known_vi_[node.output[0]].CopyFrom(
1798
+ helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, [])
1799
+ )
1800
+
1801
+ def _infer_Slice(self, node): # noqa: N802
1802
+ # SymPy fails to prove that `x_0 + ... + x_n >= 0` if one of `x_i` is a `sympy.Min(a, b)`,
1803
+ # even when the relation holds for both `a` and `b`.
1804
+ #
1805
+ # When given `expr` of form `min(a, b) + ...`, this function returns `[a + ..., b + ...]`,
1806
+ # so that we can prove inequalities for both expressions separately.
1807
+ #
1808
+ # If the number of `min(...)` subexpressions is not exactly one, this function just returns `[expr]`.
1809
+ def flatten_min(expr):
1810
+ assert isinstance(expr, sympy.Add), f"Expected a sum of two arguments, got {expr}"
1811
+ min_positions = [idx for idx in range(len(expr.args)) if isinstance(expr.args[idx], sympy.Min)]
1812
+ if len(min_positions) == 1:
1813
+ min_pos = min_positions[0]
1814
+
1815
+ def replace_min_with_arg(arg_idx):
1816
+ replaced = list(expr.args)
1817
+ assert isinstance(
1818
+ replaced[min_pos], sympy.Min
1819
+ ), f"Expected a sympy.Min() at position {min_pos}, got {replaced[min_pos]}"
1820
+ assert (
1821
+ len(replaced[min_pos].args) == 2
1822
+ ), f"Expected a sympy.Min() with exactly 2 arguments, got {replaced[min_pos]}"
1823
+ replaced[min_pos] = replaced[min_pos].args[arg_idx]
1824
+ return sympy.Add(*replaced)
1825
+
1826
+ return [
1827
+ replace_min_with_arg(0),
1828
+ replace_min_with_arg(1),
1829
+ ]
1830
+ return [expr]
1831
+
1832
+ def less_equal(x, y):
1833
+ try:
1834
+ return bool(x <= y)
1835
+ except TypeError:
1836
+ pass
1837
+ try:
1838
+ return bool(y >= x)
1839
+ except TypeError:
1840
+ pass
1841
+ try:
1842
+ return bool(-x >= -y)
1843
+ except TypeError:
1844
+ pass
1845
+ try:
1846
+ return bool(-y <= -x)
1847
+ except TypeError:
1848
+ pass
1849
+ try:
1850
+ return bool(y - x >= 0)
1851
+ except TypeError:
1852
+ # the last attempt; this may raise TypeError
1853
+ return all(bool(d >= 0) for d in flatten_min(y - x))
1854
+
1855
+ def handle_negative_index(index, bound):
1856
+ """normalizes a negative index to be in [0, bound)"""
1857
+ try:
1858
+ if not less_equal(0, index):
1859
+ if is_literal(index) and index <= -self.int_max_:
1860
+ # this case is handled separately
1861
+ return index
1862
+ return bound + index
1863
+ except TypeError:
1864
+ logger.warning(f"Cannot determine if {index} < 0")
1865
+ return index
1866
+
1867
+ if get_opset(self.out_mp_) <= 9:
1868
+ axes = get_attribute(node, "axes")
1869
+ starts = get_attribute(node, "starts")
1870
+ ends = get_attribute(node, "ends")
1871
+ if not axes:
1872
+ axes = list(range(len(starts)))
1873
+ steps = [1] * len(axes)
1874
+ else:
1875
+ starts = as_list(self._try_get_value(node, 1), keep_none=True)
1876
+ ends = as_list(self._try_get_value(node, 2), keep_none=True)
1877
+ axes = self._try_get_value(node, 3)
1878
+ steps = self._try_get_value(node, 4)
1879
+ if axes is None and not (starts is None and ends is None):
1880
+ axes = list(range(len(starts if starts is not None else ends)))
1881
+ if steps is None and not (starts is None and ends is None):
1882
+ steps = [1] * len(starts if starts is not None else ends)
1883
+ axes = as_list(axes, keep_none=True)
1884
+ steps = as_list(steps, keep_none=True)
1885
+
1886
+ new_sympy_shape = self._get_sympy_shape(node, 0)
1887
+ if starts is None or ends is None:
1888
+ if axes is None:
1889
+ for i in range(len(new_sympy_shape)):
1890
+ new_sympy_shape[i] = self._new_symbolic_dim_from_output(node, 0, i)
1891
+ else:
1892
+ new_sympy_shape = get_shape_from_sympy_shape(new_sympy_shape)
1893
+ for i in axes:
1894
+ new_sympy_shape[i] = self._new_symbolic_dim_from_output(node, 0, i)
1895
+ else:
1896
+ for i, s, e, t in zip(axes, starts, ends, steps):
1897
+ e = handle_negative_index(e, new_sympy_shape[i]) # noqa: PLW2901
1898
+ if is_literal(e):
1899
+ if e >= self.int_max_:
1900
+ e = new_sympy_shape[i] # noqa: PLW2901
1901
+ elif e <= -self.int_max_:
1902
+ e = 0 if s > 0 else -1 # noqa: PLW2901
1903
+ elif is_literal(new_sympy_shape[i]):
1904
+ if e < 0:
1905
+ e = max(0, e + new_sympy_shape[i]) # noqa: PLW2901
1906
+ e = min(e, new_sympy_shape[i]) # noqa: PLW2901
1907
+ else:
1908
+ if e > 0:
1909
+ e = ( # noqa: PLW2901
1910
+ sympy.Min(e, new_sympy_shape[i]) if e > 1 else e
1911
+ ) # special case for slicing first to make computation easier
1912
+ else:
1913
+ if is_literal(new_sympy_shape[i]):
1914
+ e = sympy.Min(e, new_sympy_shape[i]) # noqa: PLW2901
1915
+ else:
1916
+ try:
1917
+ if not less_equal(e, new_sympy_shape[i]):
1918
+ e = new_sympy_shape[i] # noqa: PLW2901
1919
+ except Exception:
1920
+ logger.warning(f"Unable to determine if {e} <= {new_sympy_shape[i]}, treat as equal")
1921
+ e = new_sympy_shape[i] # noqa: PLW2901
1922
+
1923
+ s = handle_negative_index(s, new_sympy_shape[i]) # noqa: PLW2901
1924
+ if is_literal(new_sympy_shape[i]) and is_literal(s):
1925
+ s = max(0, min(s, new_sympy_shape[i])) # noqa: PLW2901
1926
+
1927
+ new_sympy_shape[i] = sympy.simplify((e - s + t + (-1 if t > 0 else 1)) // t)
1928
+
1929
+ self._update_computed_dims(new_sympy_shape)
1930
+
1931
+ vi = self.known_vi_[node.output[0]]
1932
+ vi.CopyFrom(
1933
+ helper.make_tensor_value_info(
1934
+ node.output[0],
1935
+ vi.type.tensor_type.elem_type,
1936
+ get_shape_from_sympy_shape(new_sympy_shape),
1937
+ )
1938
+ )
1939
+
1940
+ # handle sympy_data if needed, for slice in shape computation
1941
+ if (
1942
+ node.input[0] in self.sympy_data_
1943
+ and axes == [0]
1944
+ and starts is not None
1945
+ and len(starts) == 1
1946
+ and ends is not None
1947
+ and len(ends) == 1
1948
+ and steps is not None
1949
+ and len(steps) == 1
1950
+ ):
1951
+ input_sympy_data = self.sympy_data_[node.input[0]]
1952
+ if type(input_sympy_data) is list or (
1953
+ type(input_sympy_data) is np.array and len(input_sympy_data.shape) == 1
1954
+ ):
1955
+ self.sympy_data_[node.output[0]] = input_sympy_data[starts[0] : ends[0] : steps[0]]
1956
+
1957
+ def _infer_SoftmaxCrossEntropyLoss(self, node): # noqa: N802
1958
+ vi = self.known_vi_[node.output[0]]
1959
+ elem_type = self.known_vi_[node.input[0]].type.tensor_type.elem_type
1960
+
1961
+ # If output type is explicit specified in attribute, we use it as output tensor type.
1962
+ specified_output_type = get_attribute(node, "output_type", None)
1963
+ if specified_output_type is not None:
1964
+ elem_type = specified_output_type
1965
+
1966
+ vi.type.tensor_type.elem_type = elem_type
1967
+ vi.type.tensor_type.shape.CopyFrom(onnx.TensorShapeProto())
1968
+
1969
+ if len(node.output) > 1:
1970
+ data_shape = self._get_shape(node, 0)
1971
+ vi = self.known_vi_[node.output[1]]
1972
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, elem_type, data_shape))
1973
+
1974
+ def _infer_Split_Common(self, node, make_value_info_func): # noqa: N802
1975
+ input_sympy_shape = self._get_sympy_shape(node, 0)
1976
+ axis = handle_negative_axis(get_attribute(node, "axis", 0), len(input_sympy_shape))
1977
+ op_set = get_opset(self.out_mp_)
1978
+
1979
+ # Depending on op-version 'split' are provided as attribute or via 2nd input
1980
+ if op_set < 13:
1981
+ split = get_attribute(node, "split")
1982
+ assert self._try_get_value(node, 1) is None
1983
+ else:
1984
+ split = self._try_get_value(node, 1)
1985
+ assert get_attribute(node, "split") is None
1986
+
1987
+ if split is None:
1988
+ num_outputs = len(node.output)
1989
+ split = [input_sympy_shape[axis] / sympy.Integer(num_outputs)] * num_outputs
1990
+ self._update_computed_dims(split)
1991
+ else:
1992
+ split = [sympy.Integer(s) for s in split]
1993
+
1994
+ for i_o in range(len(split)):
1995
+ vi = self.known_vi_[node.output[i_o]]
1996
+ vi.CopyFrom(
1997
+ make_value_info_func(
1998
+ node.output[i_o],
1999
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
2000
+ get_shape_from_sympy_shape(input_sympy_shape[:axis] + [split[i_o]] + input_sympy_shape[axis + 1 :]),
2001
+ )
2002
+ )
2003
+ self.known_vi_[vi.name] = vi
2004
+
2005
+ def _infer_Split(self, node): # noqa: N802
2006
+ self._infer_Split_Common(node, helper.make_tensor_value_info)
2007
+
2008
+ def _infer_SplitToSequence(self, node): # noqa: N802
2009
+ self._infer_Split_Common(node, helper.make_sequence_value_info)
2010
+
2011
+ def _infer_Squeeze(self, node): # noqa: N802
2012
+ input_shape = self._get_shape(node, 0)
2013
+ op_set = get_opset(self.out_mp_)
2014
+
2015
+ # Depending on op-version 'axes' are provided as attribute or via 2nd input
2016
+ if op_set < 13:
2017
+ axes = get_attribute(node, "axes")
2018
+ assert self._try_get_value(node, 1) is None
2019
+ else:
2020
+ axes = self._try_get_value(node, 1)
2021
+ assert get_attribute(node, "axes") is None
2022
+
2023
+ if axes is None:
2024
+ # No axes have been provided (neither via attribute nor via input).
2025
+ # In this case the 'Shape' op should remove all axis with dimension 1.
2026
+ # For symbolic dimensions we guess they are !=1.
2027
+ output_shape = [s for s in input_shape if s != 1]
2028
+ if self.verbose_ > 0:
2029
+ symbolic_dimensions = [s for s in input_shape if type(s) != int] # noqa: E721
2030
+ if len(symbolic_dimensions) > 0:
2031
+ logger.debug(
2032
+ f"Symbolic dimensions in input shape of op: '{node.op_type}' node: '{node.name}'. "
2033
+ f"Assuming the following dimensions are never equal to 1: {symbolic_dimensions}"
2034
+ )
2035
+ else:
2036
+ axes = [handle_negative_axis(a, len(input_shape)) for a in axes]
2037
+ output_shape = []
2038
+ for i in range(len(input_shape)):
2039
+ if i not in axes:
2040
+ output_shape.append(input_shape[i])
2041
+ else:
2042
+ assert input_shape[i] == 1 or type(input_shape[i]) != int # noqa: E721
2043
+ if self.verbose_ > 0 and type(input_shape[i]) != int: # noqa: E721
2044
+ logger.debug(
2045
+ f"Symbolic dimensions in input shape of op: '{node.op_type}' node: '{node.name}'. "
2046
+ f"Assuming the dimension '{input_shape[i]}' at index {i} of the input to be equal to 1."
2047
+ )
2048
+
2049
+ vi = self.known_vi_[node.output[0]]
2050
+ vi.CopyFrom(
2051
+ helper.make_tensor_value_info(
2052
+ node.output[0],
2053
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
2054
+ output_shape,
2055
+ )
2056
+ )
2057
+ self._pass_on_sympy_data(node)
2058
+
2059
+ def _infer_Tile(self, node): # noqa: N802
2060
+ repeats_value = self._try_get_value(node, 1)
2061
+ new_sympy_shape = []
2062
+ if repeats_value is not None:
2063
+ input_sympy_shape = self._get_sympy_shape(node, 0)
2064
+ for i, d in enumerate(input_sympy_shape):
2065
+ new_dim = d * repeats_value[i]
2066
+ new_sympy_shape.append(new_dim)
2067
+ self._update_computed_dims(new_sympy_shape)
2068
+ else:
2069
+ new_sympy_shape = self._new_symbolic_shape(self._get_shape_rank(node, 0), node)
2070
+ vi = self.known_vi_[node.output[0]]
2071
+ vi.CopyFrom(
2072
+ helper.make_tensor_value_info(
2073
+ node.output[0],
2074
+ vi.type.tensor_type.elem_type,
2075
+ get_shape_from_sympy_shape(new_sympy_shape),
2076
+ )
2077
+ )
2078
+
2079
+ def _infer_TopK(self, node): # noqa: N802
2080
+ rank = self._get_shape_rank(node, 0)
2081
+ axis = handle_negative_axis(get_attribute(node, "axis", -1), rank)
2082
+ new_shape = self._get_shape(node, 0)
2083
+
2084
+ if get_opset(self.out_mp_) <= 9:
2085
+ k = get_attribute(node, "k")
2086
+ else:
2087
+ k = self._get_int_or_float_values(node)[1]
2088
+
2089
+ if k is None:
2090
+ k = self._new_symbolic_dim_from_output(node)
2091
+ else:
2092
+ k = as_scalar(k)
2093
+
2094
+ if type(k) in [int, str]:
2095
+ new_shape[axis] = k
2096
+ else:
2097
+ new_sympy_shape = self._get_sympy_shape(node, 0)
2098
+ new_sympy_shape[axis] = k
2099
+ self._update_computed_dims(
2100
+ new_sympy_shape
2101
+ ) # note that TopK dim could be computed in sympy_data, so need to update computed_dims when it enters shape
2102
+ new_shape = get_shape_from_sympy_shape(new_sympy_shape)
2103
+
2104
+ for i_o in range(len(node.output)):
2105
+ vi = self.known_vi_[node.output[i_o]]
2106
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[i_o], vi.type.tensor_type.elem_type, new_shape))
2107
+
2108
+ def _infer_Transpose(self, node): # noqa: N802
2109
+ if node.input[0] in self.sympy_data_:
2110
+ data_shape = self._get_shape(node, 0)
2111
+ perm = get_attribute(node, "perm", reversed(list(range(len(data_shape)))))
2112
+ input_data = self.sympy_data_[node.input[0]]
2113
+ self.sympy_data_[node.output[0]] = (
2114
+ np.transpose(np.array(input_data).reshape(*data_shape), axes=tuple(perm)).flatten().tolist()
2115
+ )
2116
+
2117
+ def _infer_Unsqueeze(self, node): # noqa: N802
2118
+ input_shape = self._get_shape(node, 0)
2119
+ op_set = get_opset(self.out_mp_)
2120
+
2121
+ # Depending on op-version 'axes' are provided as attribute or via 2nd input
2122
+ if op_set < 13:
2123
+ axes = get_attribute(node, "axes")
2124
+ assert self._try_get_value(node, 1) is None
2125
+ else:
2126
+ axes = self._try_get_value(node, 1)
2127
+ assert get_attribute(node, "axes") is None
2128
+
2129
+ output_rank = len(input_shape) + len(axes)
2130
+ axes = [handle_negative_axis(a, output_rank) for a in axes]
2131
+
2132
+ input_axis = 0
2133
+ output_shape = []
2134
+ for i in range(output_rank):
2135
+ if i in axes:
2136
+ output_shape.append(1)
2137
+ else:
2138
+ output_shape.append(input_shape[input_axis])
2139
+ input_axis += 1
2140
+
2141
+ vi = self.known_vi_[node.output[0]]
2142
+ vi.CopyFrom(
2143
+ helper.make_tensor_value_info(
2144
+ node.output[0],
2145
+ self.known_vi_[node.input[0]].type.tensor_type.elem_type,
2146
+ output_shape,
2147
+ )
2148
+ )
2149
+
2150
+ self._pass_on_sympy_data(node)
2151
+
2152
+ def _infer_ZipMap(self, node): # noqa: N802
2153
+ map_key_type = None
2154
+ if get_attribute(node, "classlabels_int64s") is not None:
2155
+ map_key_type = onnx.TensorProto.INT64
2156
+ elif get_attribute(node, "classlabels_strings") is not None:
2157
+ map_key_type = onnx.TensorProto.STRING
2158
+
2159
+ assert map_key_type is not None
2160
+ new_vi = onnx.ValueInfoProto()
2161
+ new_vi.name = node.output[0]
2162
+ new_vi.type.sequence_type.elem_type.map_type.value_type.tensor_type.elem_type = onnx.TensorProto.FLOAT
2163
+ new_vi.type.sequence_type.elem_type.map_type.key_type = map_key_type
2164
+ vi = self.known_vi_[node.output[0]]
2165
+ vi.CopyFrom(new_vi)
2166
+
2167
+ def _infer_Attention(self, node): # noqa: N802
2168
+ shape = self._get_shape(node, 0)
2169
+ shape_weights = self._get_shape(node, 1)
2170
+ shape_bias = self._try_get_shape(node, 2)
2171
+ if shape_bias is not None:
2172
+ assert len(shape_bias) == 1
2173
+ tripled_hidden_size = shape_bias[0] if shape_bias is not None else shape_weights[1]
2174
+ if shape and len(shape) == 3:
2175
+ qkv_hidden_sizes_attr = get_attribute(node, "qkv_hidden_sizes")
2176
+ if qkv_hidden_sizes_attr is not None:
2177
+ assert len(qkv_hidden_sizes_attr) == 3
2178
+ shape[2] = int(qkv_hidden_sizes_attr[2])
2179
+ elif isinstance(tripled_hidden_size, int):
2180
+ shape[2] = int(tripled_hidden_size / 3)
2181
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2182
+ vi = self.known_vi_[node.output[0]]
2183
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, shape))
2184
+
2185
+ if len(node.output) > 1:
2186
+ # input shape: (batch_size, sequence_length, hidden_size)
2187
+ # past shape: (2, batch_size, num_heads, past_sequence_length, head_size)
2188
+ # mask shape: (batch_size, total_sequence_length) or (batch_size, sequence_length, total_sequence_length) or (batch_size, 1, max_seq_len, max_seq_len)
2189
+ # present shape: (2, batch_size, num_heads, total_sequence_length, head_size), where total_sequence_length=sequence_length+past_sequence_length
2190
+ input_shape = self._get_shape(node, 0)
2191
+ past_shape = self._get_shape(node, 4) if len(node.input) > 4 and node.input[4] else []
2192
+ mask_shape = self._get_shape(node, 3) if len(node.input) > 3 and node.input[3] else []
2193
+
2194
+ if past_shape and len(past_shape) == 5:
2195
+ if mask_shape and len(mask_shape) in [2, 3]:
2196
+ past_shape[3] = mask_shape[-1]
2197
+ elif input_shape and len(input_shape) == 3:
2198
+ if isinstance(input_shape[1], int) and isinstance(past_shape[3], int):
2199
+ past_shape[3] = input_shape[1] + past_shape[3]
2200
+ else:
2201
+ past_shape[3] = f"{past_shape[3]}+{input_shape[1]}"
2202
+ vi = self.known_vi_[node.output[1]]
2203
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
2204
+ # No past input but present output still exists
2205
+ else:
2206
+ num_heads = get_attribute(node, "num_heads")
2207
+ head_size = input_shape[2] // num_heads
2208
+ present_shape = [2, input_shape[0], num_heads, input_shape[1], head_size]
2209
+ vi = self.known_vi_[node.output[1]]
2210
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))
2211
+
2212
+ def _infer_GatedRelativePositionBias(self, node): # noqa: N802
2213
+ # When padding is removed:
2214
+ # query_layer: (token_count, num_heads x head_size)
2215
+ # token_offset: (batch_size, seq_len)
2216
+ # Otherwise:
2217
+ # query_layer: (batch_size, seq_len, num_heads x head_size)
2218
+ # token_offset: None
2219
+ # Output shape: (batch_size, num_heads, seq_len, seq_len)
2220
+ num_heads = get_attribute(node, "num_heads")
2221
+
2222
+ token_offset_shape = self._try_get_shape(node, 6)
2223
+ if token_offset_shape is not None:
2224
+ output_shape = [token_offset_shape[0], num_heads, token_offset_shape[1], token_offset_shape[1]]
2225
+ else:
2226
+ query_layer_shape = self._get_shape(node, 0)
2227
+ assert query_layer_shape is not None and len(query_layer_shape) == 3
2228
+ output_shape = [query_layer_shape[0], num_heads, query_layer_shape[1], query_layer_shape[1]]
2229
+
2230
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2231
+ vi = self.known_vi_[node.output[0]]
2232
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
2233
+
2234
+ def _infer_PackedAttention(self, node): # noqa: N802
2235
+ shape = self._get_shape(node, 0)
2236
+ shape_weights = self._get_shape(node, 1)
2237
+ shape_bias = self._try_get_shape(node, 2)
2238
+ if shape_bias is not None:
2239
+ assert len(shape_bias) == 1
2240
+ tripled_hidden_size = shape_bias[0] if shape_bias is not None else shape_weights[1]
2241
+ if shape and len(shape) == 2:
2242
+ qkv_hidden_sizes_attr = get_attribute(node, "qkv_hidden_sizes")
2243
+ if qkv_hidden_sizes_attr is not None:
2244
+ assert len(qkv_hidden_sizes_attr) == 3
2245
+ shape[1] = int(qkv_hidden_sizes_attr[2])
2246
+ elif isinstance(tripled_hidden_size, int):
2247
+ shape[1] = int(tripled_hidden_size / 3)
2248
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2249
+ vi = self.known_vi_[node.output[0]]
2250
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, shape))
2251
+
2252
+ def _infer_PackedMultiHeadAttention(self, node): # noqa: N802
2253
+ shape_value = self._try_get_shape(node, 2)
2254
+ if shape_value is not None and len(shape_value) == 2:
2255
+ output_shape = shape_value
2256
+ else:
2257
+ shape_query = self._get_shape(node, 0)
2258
+ assert shape_query is not None and len(shape_query) == 4
2259
+ output_shape = [shape_query[0], shape_query[1] * shape_query[3]]
2260
+
2261
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2262
+ vi = self.known_vi_[node.output[0]]
2263
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
2264
+
2265
+ def _infer_RemovePadding(self, node): # noqa: N802
2266
+ shape = self._get_shape(node, 0)
2267
+ if shape and len(shape) == 3:
2268
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2269
+ vi = self.known_vi_[node.output[0]]
2270
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, ["token_count", shape[2]]))
2271
+
2272
+ vi_token_offset = self.known_vi_[node.output[1]]
2273
+ vi_token_offset.CopyFrom(
2274
+ helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT32, [shape[0], shape[1]])
2275
+ )
2276
+
2277
+ vi_cumulated_seq_len = self.known_vi_[node.output[2]]
2278
+ vi_cumulated_seq_len.CopyFrom(
2279
+ helper.make_tensor_value_info(node.output[2], onnx.TensorProto.INT32, ["batch_size + 1"])
2280
+ )
2281
+
2282
+ vi_max_seq_len = self.known_vi_[node.output[3]]
2283
+ vi_max_seq_len.CopyFrom(helper.make_tensor_value_info(node.output[3], onnx.TensorProto.INT32, [1]))
2284
+
2285
+ def _infer_RestorePadding(self, node): # noqa: N802
2286
+ shape_input = self._get_shape(node, 0)
2287
+ shape_token_offset = self._get_shape(node, 1)
2288
+ if shape_input and len(shape_input) == 2 and shape_token_offset and len(shape_token_offset) == 2:
2289
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2290
+ vi = self.known_vi_[node.output[0]]
2291
+
2292
+ output_shape = [shape_token_offset[0], shape_token_offset[1], shape_input[1]]
2293
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
2294
+
2295
+ def _infer_BiasGelu(self, node): # noqa: N802
2296
+ self._propagate_shape_and_type(node)
2297
+
2298
+ def _infer_MultiHeadAttention(self, node): # noqa: N802
2299
+ # Output 0 has shape (batch_size, sequence_length, v_hidden_size)
2300
+ # Q, K and V without packing:
2301
+ # Input 0 (query) has shape (batch_size, sequence_length, hidden_size)
2302
+ # Input 1 (key) has shape (batch_size, kv_sequence_length, hidden_size) or (batch_size, num_heads, kv_sequence_length, head_size)
2303
+ # Input 2 (value) has shape (batch_size, kv_sequence_length, v_hidden_size) or (batch_size, num_heads, kv_sequence_length, head_size)
2304
+ # Packed KV:
2305
+ # Input 0 (query) has shape (batch_size, sequence_length, hidden_size)
2306
+ # Input 1 (batch_size, kv_sequence_length, num_heads, 2, head_size)
2307
+ # Input 2 nullptr
2308
+ # Packed QKV:
2309
+ # Input 0 (batch_size, sequence_length, num_heads, 3, head_size)
2310
+ # Input 1 nullptr
2311
+ # Input 2 nullptr
2312
+
2313
+ query_shape = self._get_shape(node, 0)
2314
+ total_sequence_length = None
2315
+ output_dtype = None
2316
+ if query_shape is not None:
2317
+ if len(query_shape) == 3:
2318
+ key_shape = self._try_get_shape(node, 1)
2319
+ # By default, hidden size is same for Q/K/V. Only need check v_hidden_size when value is provided.
2320
+ output_shape = query_shape
2321
+ if key_shape is not None and len(key_shape) == 3:
2322
+ value_shape = self._try_get_shape(node, 2)
2323
+ if value_shape is not None and len(value_shape) == 3:
2324
+ output_shape[2] = value_shape[2]
2325
+ total_sequence_length = key_shape[1]
2326
+
2327
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2328
+ vi = self.known_vi_[node.output[0]]
2329
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
2330
+
2331
+ elif len(query_shape) == 5:
2332
+ if isinstance(query_shape[2], int) and isinstance(query_shape[4], int):
2333
+ output_shape = [query_shape[0], query_shape[1], query_shape[2] * query_shape[4]]
2334
+ else:
2335
+ output_shape = [query_shape[0], query_shape[1], f"{query_shape[2]}*{query_shape[4]}"]
2336
+
2337
+ total_sequence_length = query_shape[1]
2338
+
2339
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2340
+ vi = self.known_vi_[node.output[0]]
2341
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
2342
+
2343
+ if len(node.output) > 1:
2344
+ batch_size = query_shape[0]
2345
+ num_heads = get_attribute(node, "num_heads")
2346
+
2347
+ head_size = None
2348
+ if len(query_shape) == 3:
2349
+ head_size = (
2350
+ int(query_shape[2] / num_heads)
2351
+ if isinstance(query_shape[2], int)
2352
+ else f"{query_shape[2]}/{num_heads}"
2353
+ )
2354
+ else:
2355
+ head_size = query_shape[4]
2356
+
2357
+ past_shape = self._try_get_shape(node, 6)
2358
+
2359
+ if past_shape is not None:
2360
+ if isinstance(past_shape[2], int) and isinstance(total_sequence_length, int):
2361
+ total_sequence_length = past_shape[2] + total_sequence_length
2362
+ else:
2363
+ total_sequence_length = f"{past_shape[2]}+{total_sequence_length}"
2364
+
2365
+ present_shape = [batch_size, num_heads, total_sequence_length, head_size]
2366
+
2367
+ assert output_dtype is not None
2368
+ if len(node.output) > 2 and node.output[1] and node.output[2]:
2369
+ vi = self.known_vi_[node.output[1]]
2370
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))
2371
+ vi = self.known_vi_[node.output[2]]
2372
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))
2373
+
2374
+ def _infer_DecoderMaskedMultiHeadAttention(self, node): # noqa: N802
2375
+ # Output 0 has shape (batch_size, 1, v_hidden_size)
2376
+ # Q, K and V without packing:
2377
+ # Input 0 (query) has shape (batch_size, 1, hidden_size)
2378
+ # Input 5 (past_key) if exists has shape (batch_size, num_heads, max_sequence_length, head_size)
2379
+
2380
+ query_shape = self._get_shape(node, 0)
2381
+ if query_shape is not None:
2382
+ output_shape = query_shape
2383
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2384
+ assert output_dtype is not None
2385
+ vi = self.known_vi_[node.output[0]]
2386
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
2387
+
2388
+ if len(node.output) > 2 and node.output[1] and node.output[2]:
2389
+ past_shape = self._try_get_shape(node, 5)
2390
+ if past_shape is not None:
2391
+ vi = self.known_vi_[node.output[1]]
2392
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
2393
+ vi = self.known_vi_[node.output[2]]
2394
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
2395
+
2396
+ def _infer_FastGelu(self, node): # noqa: N802
2397
+ self._propagate_shape_and_type(node)
2398
+
2399
+ def _infer_Gelu(self, node): # noqa: N802
2400
+ self._propagate_shape_and_type(node)
2401
+
2402
+ def _infer_QuickGelu(self, node): # noqa: N802
2403
+ self._propagate_shape_and_type(node)
2404
+
2405
+ def _infer_GemmFastGelu(self, node): # noqa: N802
2406
+ self._compute_matmul_shape(node)
2407
+
2408
+ def _infer_GemmFloat8(self, node): # noqa: N802
2409
+ self._compute_matmul_shape(node)
2410
+
2411
+ def _infer_LayerNormalization(self, node): # noqa: N802
2412
+ self._propagate_shape_and_type(node)
2413
+ if len(node.output) > 1:
2414
+ axis = get_attribute(node, "axis")
2415
+ if axis is None:
2416
+ axis = -1
2417
+ x_shape = self._get_shape(node, 0)
2418
+ if x_shape is not None:
2419
+ rank = len(x_shape)
2420
+ axis = handle_negative_axis(axis, rank)
2421
+ mean_shape = x_shape[:axis] + [1 for _ in range(rank - axis)]
2422
+ mean_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2423
+ if mean_dtype == onnx.TensorProto.FLOAT16 or mean_dtype == onnx.TensorProto.BFLOAT16:
2424
+ mean_dtype = onnx.TensorProto.FLOAT
2425
+ vi = self.known_vi_[node.output[1]]
2426
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[1], mean_dtype, mean_shape))
2427
+ if len(node.output) > 2:
2428
+ vi = self.known_vi_[node.output[2]]
2429
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[2], mean_dtype, mean_shape))
2430
+
2431
+ def _infer_LongformerAttention(self, node): # noqa: N802
2432
+ self._propagate_shape_and_type(node)
2433
+
2434
+ def _infer_EmbedLayerNormalization(self, node): # noqa: N802
2435
+ input_ids_shape = self._get_shape(node, 0)
2436
+ word_embedding_shape = self._get_shape(node, 2)
2437
+ assert len(input_ids_shape) == 2 and len(word_embedding_shape) == 2
2438
+ output_shape = [*input_ids_shape, word_embedding_shape[1]]
2439
+
2440
+ word_embedding_dtype = self.known_vi_[node.input[2]].type.tensor_type.elem_type
2441
+ vi = self.known_vi_[node.output[0]]
2442
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], word_embedding_dtype, output_shape))
2443
+
2444
+ if len(node.output) > 1 and node.output[1]:
2445
+ mask_index_shape = [input_ids_shape[0]]
2446
+ vi = self.known_vi_[node.output[1]]
2447
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT32, mask_index_shape))
2448
+
2449
+ if len(node.output) > 2:
2450
+ # Optional output of add before layer normalization is done
2451
+ # shape is same as the output
2452
+ vi = self.known_vi_[node.output[2]]
2453
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[2], word_embedding_dtype, output_shape))
2454
+
2455
+ def _infer_SkipLayerNormalization(self, node): # noqa: N802
2456
+ self._propagate_shape_and_type(node)
2457
+
2458
+ # If the SkipLayerNormalization node contains the optional
2459
+ # output for inference, infer the shape and type for it too
2460
+ if len(node.output) > 3:
2461
+ self._propagate_shape_and_type(node, 0, 3)
2462
+
2463
+ def _infer_GroupNorm(self, node): # noqa: N802
2464
+ self._propagate_shape_and_type(node)
2465
+
2466
+ def _infer_PagedAttention(self, node): # noqa: N802
2467
+ self._propagate_shape_and_type(node)
2468
+
2469
+ def _infer_GroupQueryAttention(self, node): # noqa: N802
2470
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2471
+
2472
+ past_shape = self._try_get_shape(node, 3)
2473
+ if past_shape is not None:
2474
+ # When past and present has the maximum sequence length, we can propagate the shape from past to present.
2475
+ # Note that GQA also supports different sequence lengths for past and present, but it is rarely used.
2476
+ vi = self.known_vi_[node.output[1]]
2477
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
2478
+ vi = self.known_vi_[node.output[2]]
2479
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
2480
+
2481
+ if node.input[1] != "" and node.input[2] != "":
2482
+ self._propagate_shape_and_type(node, 0, 0)
2483
+ else:
2484
+ # combined qkv: (batch_size, sequence_length, num_heads * head_size + 2 * kv_num_heads * head_size)
2485
+ assert node.input[1] == "" and node.input[2] == ""
2486
+ num_heads = get_attribute(node, "num_heads")
2487
+ kv_num_heads = get_attribute(node, "kv_num_heads")
2488
+ query_shape = self._get_shape(node, 0)
2489
+ if query_shape is not None:
2490
+ hidden_size = query_shape[2]
2491
+ if isinstance(hidden_size, int):
2492
+ head_size = int(hidden_size / (num_heads + 2 * kv_num_heads))
2493
+ query_shape[2] = num_heads * head_size
2494
+ vi = self.known_vi_[node.output[0]]
2495
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, query_shape))
2496
+
2497
+ def _infer_SparseAttention(self, node): # noqa: N802
2498
+ self._infer_GroupQueryAttention(node)
2499
+
2500
+ def _infer_SkipGroupNorm(self, node): # noqa: N802
2501
+ self._propagate_shape_and_type(node, 0, 0)
2502
+ if len(node.output) > 1:
2503
+ self._propagate_shape_and_type(node, 0, 1)
2504
+
2505
+ def _infer_BiasSplitGelu(self, node): # noqa: N802
2506
+ input_shape = self._get_shape(node, 0)
2507
+ bias_shape = self._get_shape(node, 1)
2508
+ if input_shape and bias_shape and isinstance(bias_shape[0], int):
2509
+ output_shape = input_shape
2510
+ output_shape[2] = int(bias_shape[0] / 2)
2511
+ vi = self.known_vi_[node.output[0]]
2512
+ output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2513
+ vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, output_shape))
2514
+
2515
+ def _infer_BiasAdd(self, node): # noqa: N802
2516
+ self._propagate_shape_and_type(node)
2517
+
2518
+ def _infer_RotaryEmbedding(self, node): # noqa: N802
2519
+ if len(node.output) == 1:
2520
+ self._propagate_shape_and_type(node)
2521
+ elif len(node.output) == 2:
2522
+ # Extraneous constant nodes outputted by RotaryEmbedding function made with `export_modules_as_functions`
2523
+ self._propagate_shape_and_type(node, input_index=1, output_index=0)
2524
+ self._propagate_shape_and_type(node, input_index=0, output_index=1) # true output
2525
+ elif len(node.output) == 3:
2526
+ # Extraneous constant nodes outputted by RotaryEmbedding function made with `export_modules_as_functions`
2527
+ self._propagate_shape_and_type(node, input_index=1, output_index=0)
2528
+ self._propagate_shape_and_type(node, input_index=1, output_index=1)
2529
+ self._propagate_shape_and_type(node, input_index=0, output_index=2) # true output
2530
+
2531
+ def _infer_PythonOp(self, node): # noqa: N802
2532
+ output_tensor_types = get_attribute(node, "output_tensor_types")
2533
+ assert output_tensor_types, f"PythonOp '{node.name}' has no output_tensor_types attribute."
2534
+ output_tensor_ranks = get_attribute(node, "output_tensor_ranks")
2535
+ assert output_tensor_ranks, f"PythonOp '{node.name}' has no output_tensor_ranks attribute."
2536
+
2537
+ from onnxruntime.capi._pybind_state import get_shape_inference_function
2538
+
2539
+ func_name = get_attribute(node, "func_name").decode()
2540
+ shape_inferer = get_shape_inference_function(func_name)
2541
+
2542
+ # Set the context output separately.
2543
+ # The first output is torch.autograd.Function''s context.
2544
+ vi = self.known_vi_[node.output[0]]
2545
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, []))
2546
+
2547
+ if shape_inferer is not None:
2548
+ input_shapes = []
2549
+ input_dtypes = []
2550
+ for input_index in range(len(node.input)):
2551
+ shape = self._get_shape(node, input_index)
2552
+ input_shapes.append(shape)
2553
+ input_dtype = self.known_vi_[node.input[input_index]].type.tensor_type.elem_type
2554
+ input_dtypes.append(input_dtype)
2555
+ output_shapes, output_dtypes = shape_inferer(node, input_shapes, input_dtypes)
2556
+ assert len(output_shapes) == len(output_dtypes) == (len(node.output) - 1), (
2557
+ f"PythonOp '{func_name}' returned {len(output_shapes)} shapes and {len(output_dtypes)} dtypes, "
2558
+ f"but expected {len(node.output) - 1} outputs."
2559
+ )
2560
+ for i in range(len(node.output) - 1):
2561
+ output_index = i + 1
2562
+ vi = self.known_vi_[node.output[output_index]]
2563
+ vi.CopyFrom(
2564
+ helper.make_tensor_value_info(node.output[output_index], output_dtypes[i], output_shapes[i])
2565
+ )
2566
+ else:
2567
+ # General shape inference for PythonOp.
2568
+ # Outputs after torch.autograd.Function's context are tensors.
2569
+ # We assume their ranks are fixed for different model inputs.
2570
+ for i in range(len(node.output) - 1):
2571
+ # Process the i-th tensor outputs.
2572
+ vi = self.known_vi_[node.output[i + 1]]
2573
+ sympy_shape = self._new_symbolic_shape(output_tensor_ranks[i], node)
2574
+ shape = get_shape_from_sympy_shape(sympy_shape)
2575
+ value_info = helper.make_tensor_value_info(node.output[i + 1], output_tensor_types[i], shape)
2576
+ vi.CopyFrom(value_info)
2577
+
2578
+ def _propagate_shape_and_type(self, node, input_index=0, output_index=0):
2579
+ shape = self._get_shape(node, input_index)
2580
+ output_dtype = self.known_vi_[node.input[input_index]].type.tensor_type.elem_type
2581
+ vi = self.known_vi_[node.output[output_index]]
2582
+ vi.CopyFrom(helper.make_tensor_value_info(node.output[output_index], output_dtype, shape))
2583
+
2584
+ def _is_none_dim(self, dim_value):
2585
+ if type(dim_value) != str: # noqa: E721
2586
+ return False
2587
+ if "unk__" not in dim_value:
2588
+ return False
2589
+ if dim_value in self.symbolic_dims_:
2590
+ return False
2591
+ return True
2592
+
2593
+ def _is_shape_contains_none_dim(self, out_shape):
2594
+ for out in out_shape:
2595
+ if self._is_none_dim(out):
2596
+ return out
2597
+ return None
2598
+
2599
+ def _infer_impl(self, start_sympy_data=None):
2600
+ self.sympy_data_ = start_sympy_data or {}
2601
+ self.out_mp_.graph.ClearField("value_info")
2602
+ self._apply_suggested_merge(graph_input_only=True)
2603
+ self.input_symbols_ = set()
2604
+ for i in self.out_mp_.graph.input:
2605
+ input_shape = get_shape_from_value_info(i)
2606
+ if input_shape is None:
2607
+ continue
2608
+
2609
+ if is_sequence(i.type):
2610
+ input_dims = i.type.sequence_type.elem_type.tensor_type.shape.dim
2611
+ else:
2612
+ input_dims = i.type.tensor_type.shape.dim
2613
+
2614
+ for i_dim, dim in enumerate(input_shape):
2615
+ if dim is None:
2616
+ # some models use None for symbolic dim in input, replace it with a string
2617
+ input_dims[i_dim].dim_param = str(self._new_symbolic_dim(i.name, i_dim))
2618
+
2619
+ self.input_symbols_.update([d for d in input_shape if type(d) is str])
2620
+
2621
+ for s in self.input_symbols_:
2622
+ if s in self.suggested_merge_:
2623
+ s_merge = self.suggested_merge_[s]
2624
+ assert s_merge in self.symbolic_dims_
2625
+ self.symbolic_dims_[s] = self.symbolic_dims_[s_merge]
2626
+ else:
2627
+ # Since inputs are not produced by other ops, we can assume positivity
2628
+ self.symbolic_dims_[s] = sympy.Symbol(s, integer=True, positive=True)
2629
+ # create a temporary ModelProto for single node inference
2630
+ # note that we remove initializer to have faster inference
2631
+ # for tensor ops like Reshape/Tile/Expand that read initializer, we need to do sympy computation based inference anyways
2632
+ self.tmp_mp_ = onnx.ModelProto()
2633
+ self.tmp_mp_.CopyFrom(self.out_mp_)
2634
+ self.tmp_mp_.graph.ClearField("initializer")
2635
+
2636
+ # compute prerequesite for node for topological sort
2637
+ # node with subgraphs may have dependency on implicit inputs, which will affect topological sort
2638
+ prereq_for_node = {} # map from node to all its inputs, including implicit ones in subgraph
2639
+
2640
+ def get_prereq(node):
2641
+ names = {i for i in node.input if i}
2642
+ subgraphs = []
2643
+ if node.op_type == "If":
2644
+ subgraphs = [
2645
+ get_attribute(node, "then_branch"),
2646
+ get_attribute(node, "else_branch"),
2647
+ ]
2648
+ elif node.op_type in ["Loop", "Scan"]:
2649
+ subgraphs = [get_attribute(node, "body")]
2650
+ for g in subgraphs:
2651
+ g_outputs_and_initializers = {i.name for i in g.initializer}
2652
+ g_prereq = set()
2653
+ for n in g.node:
2654
+ g_outputs_and_initializers.update(n.output)
2655
+ for n in g.node:
2656
+ g_prereq.update([i for i in get_prereq(n) if i not in g_outputs_and_initializers])
2657
+ names.update(g_prereq)
2658
+ # remove subgraph inputs from g_prereq since those are local-only
2659
+ for i in g.input:
2660
+ if i.name in names:
2661
+ names.remove(i.name)
2662
+ return names
2663
+
2664
+ for n in self.tmp_mp_.graph.node:
2665
+ prereq_for_node[n.output[0]] = get_prereq(n)
2666
+
2667
+ # topological sort nodes, note there might be dead nodes so we check if all graph outputs are reached to terminate
2668
+ sorted_nodes = []
2669
+ sorted_known_vi = {i.name for i in list(self.out_mp_.graph.input) + list(self.out_mp_.graph.initializer)}
2670
+ if any([o.name in sorted_known_vi for o in self.out_mp_.graph.output]):
2671
+ # Loop/Scan will have some graph output in graph inputs, so don't do topological sort
2672
+ sorted_nodes = self.out_mp_.graph.node
2673
+ else:
2674
+ while not all([o.name in sorted_known_vi for o in self.out_mp_.graph.output]):
2675
+ old_sorted_nodes_len = len(sorted_nodes)
2676
+ for node in self.out_mp_.graph.node:
2677
+ if (node.output[0] not in sorted_known_vi) and all(
2678
+ [i in sorted_known_vi for i in prereq_for_node[node.output[0]] if i]
2679
+ ):
2680
+ sorted_known_vi.update(node.output)
2681
+ sorted_nodes.append(node)
2682
+ if old_sorted_nodes_len == len(sorted_nodes) and not all(
2683
+ [o.name in sorted_known_vi for o in self.out_mp_.graph.output]
2684
+ ):
2685
+ raise Exception("Invalid model with cyclic graph")
2686
+
2687
+ for node in sorted_nodes:
2688
+ assert all([i in self.known_vi_ for i in node.input if i])
2689
+ self._onnx_infer_single_node(node)
2690
+ known_aten_op = False
2691
+ if node.op_type in self.dispatcher_:
2692
+ self.dispatcher_[node.op_type](node)
2693
+ elif node.op_type in ["ConvTranspose"]:
2694
+ # onnx shape inference ops like ConvTranspose may have empty shape for symbolic input
2695
+ # before adding symbolic compute for them
2696
+ # mark the output type as UNDEFINED to allow guessing of rank
2697
+ vi = self.known_vi_[node.output[0]]
2698
+ if len(vi.type.tensor_type.shape.dim) == 0:
2699
+ vi.type.tensor_type.elem_type = onnx.TensorProto.UNDEFINED
2700
+ elif node.op_type == "ATen" and node.domain == "org.pytorch.aten":
2701
+ for attr in node.attribute:
2702
+ # TODO: Is overload_name needed?
2703
+ if attr.name == "operator":
2704
+ aten_op_name = attr.s.decode("utf-8") if isinstance(attr.s, bytes) else attr.s
2705
+ if aten_op_name in self.aten_op_dispatcher_:
2706
+ known_aten_op = True
2707
+ self.aten_op_dispatcher_[aten_op_name](node)
2708
+ break
2709
+
2710
+ if self.verbose_ > 2:
2711
+ logger.debug(node.op_type + ": " + node.name) # noqa: G003
2712
+ for i, name in enumerate(node.input):
2713
+ logger.debug(" Input %s: %s %s", i, name, "initializer" if name in self.initializers_ else "")
2714
+
2715
+ # onnx automatically merge dims with value, i.e. Mul(['aaa', 'bbb'], [1000, 1]) -> [1000, 'bbb']
2716
+ # symbolic shape inference needs to apply merge of 'aaa' -> 1000 in this case
2717
+ if node.op_type in [
2718
+ "Add",
2719
+ "Sub",
2720
+ "Mul",
2721
+ "Div",
2722
+ "MatMul",
2723
+ "MatMulInteger",
2724
+ "MatMulInteger16",
2725
+ "Where",
2726
+ "Sum",
2727
+ ]:
2728
+ vi = self.known_vi_[node.output[0]]
2729
+ out_rank = len(get_shape_from_type_proto(vi.type))
2730
+ in_shapes = [self._get_shape(node, i) for i in range(len(node.input))]
2731
+ for d in range(out_rank - (2 if node.op_type in ["MatMul", "MatMulInteger", "MatMulInteger16"] else 0)):
2732
+ in_dims = [s[len(s) - out_rank + d] for s in in_shapes if len(s) + d >= out_rank]
2733
+ if len(in_dims) > 1:
2734
+ self._check_merged_dims(in_dims, allow_broadcast=True)
2735
+
2736
+ for i_o in range(len(node.output)):
2737
+ # Special cases:
2738
+ # 1) We do not care about the training related outputs of SkipLayerNormalization
2739
+ # 2) We do not care about the extraneous constant outputs in RotaryEmbedding because
2740
+ # the RotaryEmbedding op created during export can be replaced by the RotaryEmbedding
2741
+ # contrib op
2742
+ if (
2743
+ node.op_type == "SkipLayerNormalization" or node.op_type == "SkipSimplifiedLayerNormalization"
2744
+ ) and i_o in [1, 2]:
2745
+ continue
2746
+ if node.op_type == "RotaryEmbedding" and len(node.output) > 1:
2747
+ # Skip symbolic shape inference for RotaryEmbedding functions that have extraneous outputs
2748
+ # generated by `export_modules_as_functions`
2749
+ continue
2750
+
2751
+ vi = self.known_vi_[node.output[i_o]]
2752
+ out_type = vi.type
2753
+ out_type_kind = out_type.WhichOneof("value")
2754
+
2755
+ # do not process shape for non-tensors
2756
+ if out_type_kind not in ["tensor_type", "sparse_tensor_type", None]:
2757
+ if self.verbose_ > 2:
2758
+ if out_type_kind == "sequence_type":
2759
+ seq_cls_type = out_type.sequence_type.elem_type.WhichOneof("value")
2760
+ if seq_cls_type == "tensor_type":
2761
+ logger.debug(
2762
+ " {}: sequence of {} {}".format( # noqa: G001
2763
+ node.output[i_o],
2764
+ str(get_shape_from_value_info(vi)),
2765
+ onnx.TensorProto.DataType.Name(
2766
+ vi.type.sequence_type.elem_type.tensor_type.elem_type
2767
+ ),
2768
+ )
2769
+ )
2770
+ else:
2771
+ logger.debug(f" {node.output[i_o]}: sequence of {seq_cls_type}")
2772
+ else:
2773
+ logger.debug(f" {node.output[i_o]}: {out_type_kind}")
2774
+ continue
2775
+
2776
+ out_shape = get_shape_from_value_info(vi)
2777
+ out_type_undefined = out_type.tensor_type.elem_type == onnx.TensorProto.UNDEFINED
2778
+ if self.verbose_ > 2:
2779
+ logger.debug(
2780
+ f" {node.output[i_o]}: {out_shape!s} {onnx.TensorProto.DataType.Name(vi.type.tensor_type.elem_type)}"
2781
+ )
2782
+ if node.output[i_o] in self.sympy_data_:
2783
+ logger.debug(" Sympy Data: " + str(self.sympy_data_[node.output[i_o]])) # noqa: G003
2784
+
2785
+ # onnx >= 1.11.0, use unk__#index instead of None when the shape dim is uncertain
2786
+ if (
2787
+ out_shape is not None and (None in out_shape or self._is_shape_contains_none_dim(out_shape))
2788
+ ) or out_type_undefined:
2789
+ if self.auto_merge_:
2790
+ if node.op_type in [
2791
+ "Add",
2792
+ "Sub",
2793
+ "Mul",
2794
+ "Div",
2795
+ "MatMul",
2796
+ "MatMulInteger",
2797
+ "MatMulInteger16",
2798
+ "Concat",
2799
+ "Where",
2800
+ "Sum",
2801
+ "Equal",
2802
+ "Less",
2803
+ "Greater",
2804
+ "LessOrEqual",
2805
+ "GreaterOrEqual",
2806
+ "Min",
2807
+ "Max",
2808
+ ]:
2809
+ shapes = [self._get_shape(node, i) for i in range(len(node.input))]
2810
+ if node.op_type in [
2811
+ "MatMul",
2812
+ "MatMulInteger",
2813
+ "MatMulInteger16",
2814
+ ]:
2815
+ if None in out_shape or self._is_shape_contains_none_dim(out_shape):
2816
+ if None in out_shape:
2817
+ idx = out_shape.index(None)
2818
+ else:
2819
+ idx = out_shape.index(self._is_shape_contains_none_dim(out_shape))
2820
+ dim_idx = [len(s) - len(out_shape) + idx for s in shapes]
2821
+ # only support auto merge for MatMul for dim < rank-2 when rank > 2
2822
+ assert len(shapes[0]) > 2 and dim_idx[0] < len(shapes[0]) - 2
2823
+ assert len(shapes[1]) > 2 and dim_idx[1] < len(shapes[1]) - 2
2824
+ elif node.op_type == "Expand":
2825
+ # auto merge for cases like Expand([min(batch, 1), min(seq, 512)], [batch, seq])
2826
+ shapes = [
2827
+ self._get_shape(node, 0),
2828
+ self._get_value(node, 1),
2829
+ ]
2830
+ else:
2831
+ shapes = []
2832
+
2833
+ if shapes:
2834
+ for idx in range(len(out_shape)):
2835
+ if out_shape[idx] is not None and not self._is_none_dim(out_shape[idx]):
2836
+ continue
2837
+ # note that the broadcasting rule aligns from right to left
2838
+ # if a tensor has a lower rank (dim_idx[idx] < 0), it would automatically broadcast and need no merge
2839
+ dim_idx = [len(s) - len(out_shape) + idx for s in shapes]
2840
+ if len(dim_idx) > 0:
2841
+ self._add_suggested_merge(
2842
+ [
2843
+ s[i] if is_literal(s[i]) else str(s[i])
2844
+ for s, i in zip(shapes, dim_idx)
2845
+ if i >= 0
2846
+ ]
2847
+ )
2848
+ self.run_ = True
2849
+ else:
2850
+ self.run_ = False
2851
+ else:
2852
+ self.run_ = False
2853
+
2854
+ # create new dynamic dims for ops not handled by symbolic shape inference
2855
+ if self.run_ is False and node.op_type not in self.dispatcher_ and not known_aten_op:
2856
+ is_unknown_op = out_type_undefined and (out_shape is None or len(out_shape) == 0)
2857
+ if is_unknown_op:
2858
+ # unknown op to ONNX, maybe from higher opset or other domain
2859
+ # only guess the output rank from input 0 when using guess_output_rank option
2860
+ out_rank = self._get_shape_rank(node, 0) if self.guess_output_rank_ else -1
2861
+ else:
2862
+ # valid ONNX op, but not handled by symbolic shape inference, just assign dynamic shape
2863
+ out_rank = len(out_shape)
2864
+
2865
+ if out_rank >= 0:
2866
+ new_shape = self._new_symbolic_shape(out_rank, node, i_o)
2867
+ if out_type_undefined:
2868
+ # guess output data type from input vi if not defined
2869
+ out_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
2870
+ else:
2871
+ # otherwise, use original data type
2872
+ out_dtype = vi.type.tensor_type.elem_type
2873
+ vi.CopyFrom(
2874
+ helper.make_tensor_value_info(
2875
+ vi.name,
2876
+ out_dtype,
2877
+ get_shape_from_sympy_shape(new_shape),
2878
+ )
2879
+ )
2880
+
2881
+ if self.verbose_ > 0:
2882
+ if is_unknown_op:
2883
+ logger.debug(
2884
+ f"Possible unknown op: {node.op_type} node: {node.name}, guessing {vi.name} shape"
2885
+ )
2886
+ if self.verbose_ > 2:
2887
+ logger.debug(f" {node.output[i_o]}: {new_shape!s} {vi.type.tensor_type.elem_type}")
2888
+
2889
+ self.run_ = True
2890
+ continue # continue the inference after guess, no need to stop as no merge is needed
2891
+
2892
+ if self.verbose_ > 0 or not self.auto_merge_ or out_type_undefined:
2893
+ logger.debug("Stopping at incomplete shape inference at %s: %s", node.op_type, node.name)
2894
+ logger.debug("node inputs:")
2895
+ for i in node.input:
2896
+ if i in self.known_vi_:
2897
+ logger.debug(self.known_vi_[i])
2898
+ else:
2899
+ logger.debug(f"not in known_vi_ for {i}")
2900
+ logger.debug("node outputs:")
2901
+ for o in node.output:
2902
+ if o in self.known_vi_:
2903
+ logger.debug(self.known_vi_[o])
2904
+ else:
2905
+ logger.debug(f"not in known_vi_ for {o}")
2906
+ if self.auto_merge_ and not out_type_undefined:
2907
+ logger.debug("Merging: " + str(self.suggested_merge_)) # noqa: G003
2908
+ return False
2909
+
2910
+ self.run_ = False
2911
+ return True
2912
+
2913
+ def _update_output_from_vi(self):
2914
+ for output in self.out_mp_.graph.output:
2915
+ if output.name in self.known_vi_:
2916
+ output.CopyFrom(self.known_vi_[output.name])
2917
+
2918
+ @staticmethod
2919
+ def infer_shapes(in_mp, int_max=2**31 - 1, auto_merge=False, guess_output_rank=False, verbose=0):
2920
+ onnx_opset = get_opset(in_mp)
2921
+ if (not onnx_opset) or onnx_opset < 7:
2922
+ logger.warning("Only support models of onnx opset 7 and above.")
2923
+ return None
2924
+ symbolic_shape_inference = SymbolicShapeInference(int_max, auto_merge, guess_output_rank, verbose)
2925
+ all_shapes_inferred = False
2926
+ symbolic_shape_inference._preprocess(in_mp)
2927
+ while symbolic_shape_inference.run_:
2928
+ all_shapes_inferred = symbolic_shape_inference._infer_impl()
2929
+ symbolic_shape_inference._update_output_from_vi()
2930
+ if not all_shapes_inferred:
2931
+ onnx.save_model(symbolic_shape_inference.out_mp_, "sym_shape_infer_temp.onnx", save_as_external_data=True)
2932
+ raise Exception("Incomplete symbolic shape inference")
2933
+ return symbolic_shape_inference.out_mp_
2934
+
2935
+
2936
+ def parse_arguments():
2937
+ parser = argparse.ArgumentParser()
2938
+ parser.add_argument("--input", required=True, help="The input model file")
2939
+ parser.add_argument("--output", help="The output model file")
2940
+ parser.add_argument(
2941
+ "--auto_merge",
2942
+ help="Automatically merge symbolic dims when confliction happens",
2943
+ action="store_true",
2944
+ default=False,
2945
+ )
2946
+ parser.add_argument(
2947
+ "--int_max",
2948
+ help="maximum value for integer to be treated as boundless for ops like slice",
2949
+ type=int,
2950
+ default=2**31 - 1,
2951
+ )
2952
+ parser.add_argument(
2953
+ "--guess_output_rank",
2954
+ help="guess output rank to be the same as input 0 for unknown ops",
2955
+ action="store_true",
2956
+ default=False,
2957
+ )
2958
+ parser.add_argument(
2959
+ "--verbose",
2960
+ help="Prints detailed logs of inference, 0: turn off, 1: warnings, 3: detailed",
2961
+ type=int,
2962
+ default=0,
2963
+ )
2964
+ parser.add_argument(
2965
+ "--save_as_external_data",
2966
+ help="Saving an ONNX model to external data",
2967
+ action="store_true",
2968
+ default=False,
2969
+ )
2970
+ parser.add_argument(
2971
+ "--all_tensors_to_one_file",
2972
+ help="Saving all the external data to one file",
2973
+ action="store_true",
2974
+ default=False,
2975
+ )
2976
+ parser.add_argument(
2977
+ "--external_data_location",
2978
+ help="The file location to save the external file",
2979
+ default="./",
2980
+ )
2981
+ parser.add_argument(
2982
+ "--external_data_size_threshold",
2983
+ help="The size threshold for external data",
2984
+ type=int,
2985
+ default=1024,
2986
+ )
2987
+ return parser.parse_args()
2988
+
2989
+
2990
+ if __name__ == "__main__":
2991
+ args = parse_arguments()
2992
+ logger.info("input model: " + args.input) # noqa: G003
2993
+ if args.output:
2994
+ logger.info("output model " + args.output) # noqa: G003
2995
+ logger.info("Doing symbolic shape inference...")
2996
+ out_mp = SymbolicShapeInference.infer_shapes(
2997
+ onnx.load(args.input),
2998
+ args.int_max,
2999
+ args.auto_merge,
3000
+ args.guess_output_rank,
3001
+ args.verbose,
3002
+ )
3003
+ if args.output and out_mp:
3004
+ if args.save_as_external_data:
3005
+ onnx.save_model(
3006
+ out_mp,
3007
+ args.output,
3008
+ save_as_external_data=True,
3009
+ all_tensors_to_one_file=args.all_tensors_to_one_file,
3010
+ location=args.external_data_location,
3011
+ size_threshold=args.external_data_size_threshold,
3012
+ convert_attribute=False,
3013
+ )
3014
+ else:
3015
+ onnx.save(out_mp, args.output)
3016
+ logger.info("Done!")