onnxruntime-directml 1.20.0__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- onnxruntime/LICENSE +21 -0
- onnxruntime/Privacy.md +21 -0
- onnxruntime/ThirdPartyNotices.txt +6508 -0
- onnxruntime/__init__.py +78 -0
- onnxruntime/backend/__init__.py +6 -0
- onnxruntime/backend/backend.py +174 -0
- onnxruntime/backend/backend_rep.py +53 -0
- onnxruntime/capi/DirectML.dll +0 -0
- onnxruntime/capi/__init__.py +4 -0
- onnxruntime/capi/_ld_preload.py +7 -0
- onnxruntime/capi/_pybind_state.py +33 -0
- onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
- onnxruntime/capi/onnxruntime.dll +0 -0
- onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
- onnxruntime/capi/onnxruntime_inference_collection.py +1108 -0
- onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
- onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
- onnxruntime/capi/onnxruntime_validation.py +150 -0
- onnxruntime/capi/version_info.py +2 -0
- onnxruntime/datasets/__init__.py +17 -0
- onnxruntime/datasets/logreg_iris.onnx +0 -0
- onnxruntime/datasets/mul_1.onnx +0 -0
- onnxruntime/datasets/sigmoid.onnx +13 -0
- onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
- onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
- onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
- onnxruntime/quantization/__init__.py +16 -0
- onnxruntime/quantization/base_quantizer.py +532 -0
- onnxruntime/quantization/calibrate.py +1245 -0
- onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
- onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
- onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
- onnxruntime/quantization/execution_providers/qnn/preprocess.py +307 -0
- onnxruntime/quantization/execution_providers/qnn/quant_config.py +387 -0
- onnxruntime/quantization/fusions/__init__.py +3 -0
- onnxruntime/quantization/fusions/fusion.py +311 -0
- onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
- onnxruntime/quantization/fusions/fusion_layernorm.py +135 -0
- onnxruntime/quantization/matmul_4bits_quantizer.py +1480 -0
- onnxruntime/quantization/matmul_bnb4_quantizer.py +240 -0
- onnxruntime/quantization/onnx_model.py +580 -0
- onnxruntime/quantization/onnx_quantizer.py +1008 -0
- onnxruntime/quantization/operators/__init__.py +2 -0
- onnxruntime/quantization/operators/activation.py +119 -0
- onnxruntime/quantization/operators/argmax.py +18 -0
- onnxruntime/quantization/operators/attention.py +73 -0
- onnxruntime/quantization/operators/base_operator.py +26 -0
- onnxruntime/quantization/operators/binary_op.py +72 -0
- onnxruntime/quantization/operators/concat.py +62 -0
- onnxruntime/quantization/operators/conv.py +258 -0
- onnxruntime/quantization/operators/direct_q8.py +78 -0
- onnxruntime/quantization/operators/embed_layernorm.py +121 -0
- onnxruntime/quantization/operators/gather.py +64 -0
- onnxruntime/quantization/operators/gavgpool.py +62 -0
- onnxruntime/quantization/operators/gemm.py +166 -0
- onnxruntime/quantization/operators/lstm.py +117 -0
- onnxruntime/quantization/operators/matmul.py +231 -0
- onnxruntime/quantization/operators/maxpool.py +34 -0
- onnxruntime/quantization/operators/norm.py +40 -0
- onnxruntime/quantization/operators/pad.py +100 -0
- onnxruntime/quantization/operators/pooling.py +67 -0
- onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
- onnxruntime/quantization/operators/resize.py +34 -0
- onnxruntime/quantization/operators/softmax.py +74 -0
- onnxruntime/quantization/operators/split.py +63 -0
- onnxruntime/quantization/operators/where.py +87 -0
- onnxruntime/quantization/preprocess.py +141 -0
- onnxruntime/quantization/qdq_loss_debug.py +389 -0
- onnxruntime/quantization/qdq_quantizer.py +1187 -0
- onnxruntime/quantization/quant_utils.py +891 -0
- onnxruntime/quantization/quantize.py +748 -0
- onnxruntime/quantization/registry.py +106 -0
- onnxruntime/quantization/shape_inference.py +187 -0
- onnxruntime/quantization/tensor_quant_overrides.py +516 -0
- onnxruntime/tools/__init__.py +10 -0
- onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
- onnxruntime/tools/convert_onnx_models_to_ort.py +377 -0
- onnxruntime/tools/file_utils.py +46 -0
- onnxruntime/tools/logger.py +11 -0
- onnxruntime/tools/make_dynamic_shape_fixed.py +72 -0
- onnxruntime/tools/mobile_helpers/__init__.py +0 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +33 -0
- onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
- onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
- onnxruntime/tools/mobile_helpers/usability_checker.py +739 -0
- onnxruntime/tools/offline_tuning.py +169 -0
- onnxruntime/tools/onnx_model_utils.py +413 -0
- onnxruntime/tools/onnx_randomizer.py +85 -0
- onnxruntime/tools/onnxruntime_test.py +164 -0
- onnxruntime/tools/optimize_onnx_model.py +55 -0
- onnxruntime/tools/ort_format_model/__init__.py +25 -0
- onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +663 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
- onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
- onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
- onnxruntime/tools/ort_format_model/types.py +84 -0
- onnxruntime/tools/ort_format_model/utils.py +62 -0
- onnxruntime/tools/pytorch_export_contrib_ops.py +108 -0
- onnxruntime/tools/pytorch_export_helpers.py +131 -0
- onnxruntime/tools/qdq_helpers/__init__.py +0 -0
- onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
- onnxruntime/tools/reduced_build_config_parser.py +202 -0
- onnxruntime/tools/symbolic_shape_infer.py +3016 -0
- onnxruntime/tools/update_onnx_opset.py +31 -0
- onnxruntime/transformers/__init__.py +8 -0
- onnxruntime/transformers/affinity_helper.py +40 -0
- onnxruntime/transformers/benchmark.py +944 -0
- onnxruntime/transformers/benchmark_helper.py +646 -0
- onnxruntime/transformers/bert_perf_test.py +634 -0
- onnxruntime/transformers/bert_test_data.py +642 -0
- onnxruntime/transformers/compare_bert_results.py +246 -0
- onnxruntime/transformers/constants.py +47 -0
- onnxruntime/transformers/convert_generation.py +3124 -0
- onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
- onnxruntime/transformers/convert_to_packing_mode.py +387 -0
- onnxruntime/transformers/dynamo_onnx_helper.py +104 -0
- onnxruntime/transformers/float16.py +501 -0
- onnxruntime/transformers/fusion_attention.py +1235 -0
- onnxruntime/transformers/fusion_attention_clip.py +257 -0
- onnxruntime/transformers/fusion_attention_sam2.py +534 -0
- onnxruntime/transformers/fusion_attention_unet.py +1304 -0
- onnxruntime/transformers/fusion_attention_vae.py +301 -0
- onnxruntime/transformers/fusion_bart_attention.py +640 -0
- onnxruntime/transformers/fusion_base.py +137 -0
- onnxruntime/transformers/fusion_bias_add.py +58 -0
- onnxruntime/transformers/fusion_biasgelu.py +66 -0
- onnxruntime/transformers/fusion_biassplitgelu.py +111 -0
- onnxruntime/transformers/fusion_conformer_attention.py +143 -0
- onnxruntime/transformers/fusion_embedlayer.py +811 -0
- onnxruntime/transformers/fusion_fastgelu.py +360 -0
- onnxruntime/transformers/fusion_gelu.py +259 -0
- onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
- onnxruntime/transformers/fusion_gemmfastgelu.py +122 -0
- onnxruntime/transformers/fusion_gpt_attention.py +546 -0
- onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
- onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
- onnxruntime/transformers/fusion_group_norm.py +179 -0
- onnxruntime/transformers/fusion_layernorm.py +465 -0
- onnxruntime/transformers/fusion_nhwc_conv.py +100 -0
- onnxruntime/transformers/fusion_options.py +340 -0
- onnxruntime/transformers/fusion_qordered_attention.py +421 -0
- onnxruntime/transformers/fusion_qordered_gelu.py +119 -0
- onnxruntime/transformers/fusion_qordered_layernorm.py +123 -0
- onnxruntime/transformers/fusion_qordered_matmul.py +217 -0
- onnxruntime/transformers/fusion_quickgelu.py +74 -0
- onnxruntime/transformers/fusion_reshape.py +173 -0
- onnxruntime/transformers/fusion_rotary_attention.py +1592 -0
- onnxruntime/transformers/fusion_shape.py +110 -0
- onnxruntime/transformers/fusion_simplified_layernorm.py +159 -0
- onnxruntime/transformers/fusion_skip_group_norm.py +255 -0
- onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
- onnxruntime/transformers/fusion_transpose.py +168 -0
- onnxruntime/transformers/fusion_utils.py +307 -0
- onnxruntime/transformers/huggingface_models.py +167 -0
- onnxruntime/transformers/import_utils.py +20 -0
- onnxruntime/transformers/io_binding_helper.py +442 -0
- onnxruntime/transformers/large_model_exporter.py +395 -0
- onnxruntime/transformers/machine_info.py +221 -0
- onnxruntime/transformers/metrics.py +164 -0
- onnxruntime/transformers/models/bart/__init__.py +12 -0
- onnxruntime/transformers/models/bart/export.py +98 -0
- onnxruntime/transformers/models/bert/__init__.py +12 -0
- onnxruntime/transformers/models/bert/eval_squad.py +329 -0
- onnxruntime/transformers/models/gpt2/__init__.py +12 -0
- onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
- onnxruntime/transformers/models/gpt2/convert_to_onnx.py +561 -0
- onnxruntime/transformers/models/gpt2/gpt2_helper.py +1032 -0
- onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
- onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
- onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
- onnxruntime/transformers/models/llama/__init__.py +12 -0
- onnxruntime/transformers/models/llama/benchmark.py +703 -0
- onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
- onnxruntime/transformers/models/llama/benchmark_e2e.py +606 -0
- onnxruntime/transformers/models/llama/convert_to_onnx.py +1027 -0
- onnxruntime/transformers/models/llama/dist_settings.py +57 -0
- onnxruntime/transformers/models/llama/llama_inputs.py +503 -0
- onnxruntime/transformers/models/llama/llama_parity.py +309 -0
- onnxruntime/transformers/models/llama/llama_torch.py +47 -0
- onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
- onnxruntime/transformers/models/longformer/__init__.py +12 -0
- onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
- onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
- onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
- onnxruntime/transformers/models/longformer/longformer_helper.py +77 -0
- onnxruntime/transformers/models/phi2/__init__.py +12 -0
- onnxruntime/transformers/models/phi2/convert_to_onnx.py +576 -0
- onnxruntime/transformers/models/phi2/inference_example.py +414 -0
- onnxruntime/transformers/models/sam2/__init__.py +12 -0
- onnxruntime/transformers/models/sam2/benchmark_sam2.py +625 -0
- onnxruntime/transformers/models/sam2/convert_to_onnx.py +260 -0
- onnxruntime/transformers/models/sam2/image_decoder.py +273 -0
- onnxruntime/transformers/models/sam2/image_encoder.py +186 -0
- onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
- onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
- onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
- onnxruntime/transformers/models/sam2/sam2_demo.py +322 -0
- onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +280 -0
- onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
- onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark.py +1429 -0
- onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +102 -0
- onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +268 -0
- onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1319 -0
- onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1181 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder.py +296 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +388 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
- onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
- onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +350 -0
- onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
- onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
- onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
- onnxruntime/transformers/models/t5/__init__.py +12 -0
- onnxruntime/transformers/models/t5/convert_to_onnx.py +278 -0
- onnxruntime/transformers/models/t5/past_helper.py +150 -0
- onnxruntime/transformers/models/t5/t5_decoder.py +438 -0
- onnxruntime/transformers/models/t5/t5_encoder.py +171 -0
- onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +299 -0
- onnxruntime/transformers/models/t5/t5_helper.py +272 -0
- onnxruntime/transformers/models/whisper/__init__.py +12 -0
- onnxruntime/transformers/models/whisper/benchmark.py +610 -0
- onnxruntime/transformers/models/whisper/benchmark_all.py +528 -0
- onnxruntime/transformers/models/whisper/convert_to_onnx.py +536 -0
- onnxruntime/transformers/models/whisper/whisper_chain.py +329 -0
- onnxruntime/transformers/models/whisper/whisper_decoder.py +402 -0
- onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
- onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +306 -0
- onnxruntime/transformers/models/whisper/whisper_helper.py +524 -0
- onnxruntime/transformers/models/whisper/whisper_openai_helper.py +84 -0
- onnxruntime/transformers/onnx_exporter.py +717 -0
- onnxruntime/transformers/onnx_model.py +1569 -0
- onnxruntime/transformers/onnx_model_bart.py +142 -0
- onnxruntime/transformers/onnx_model_bert.py +481 -0
- onnxruntime/transformers/onnx_model_bert_keras.py +475 -0
- onnxruntime/transformers/onnx_model_bert_tf.py +589 -0
- onnxruntime/transformers/onnx_model_clip.py +40 -0
- onnxruntime/transformers/onnx_model_conformer.py +33 -0
- onnxruntime/transformers/onnx_model_gpt2.py +101 -0
- onnxruntime/transformers/onnx_model_phi.py +930 -0
- onnxruntime/transformers/onnx_model_sam2.py +138 -0
- onnxruntime/transformers/onnx_model_t5.py +791 -0
- onnxruntime/transformers/onnx_model_tnlr.py +227 -0
- onnxruntime/transformers/onnx_model_unet.py +259 -0
- onnxruntime/transformers/onnx_model_vae.py +43 -0
- onnxruntime/transformers/onnx_utils.py +55 -0
- onnxruntime/transformers/optimizer.py +612 -0
- onnxruntime/transformers/profiler.py +725 -0
- onnxruntime/transformers/quantize_helper.py +76 -0
- onnxruntime/transformers/shape_infer_helper.py +122 -0
- onnxruntime/transformers/shape_optimizer.py +401 -0
- onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
- onnxruntime_directml-1.20.0.dist-info/METADATA +187 -0
- onnxruntime_directml-1.20.0.dist-info/RECORD +305 -0
- onnxruntime_directml-1.20.0.dist-info/WHEEL +5 -0
- onnxruntime_directml-1.20.0.dist-info/entry_points.txt +2 -0
- onnxruntime_directml-1.20.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,634 @@
|
|
|
1
|
+
# -------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
3
|
+
# Licensed under the MIT License.
|
|
4
|
+
# --------------------------------------------------------------------------
|
|
5
|
+
|
|
6
|
+
# This tool measures the inference performance of onnxruntime on BERT-like model with inputs like input_ids,
|
|
7
|
+
# token_type_ids (optional), and attention_mask (optional).
|
|
8
|
+
#
|
|
9
|
+
# If the model does not have exactly three inputs like above, you might need specify names of inputs with
|
|
10
|
+
# --input_ids_name, --segment_ids_name and --input_mask_name
|
|
11
|
+
|
|
12
|
+
# Example command to run test on batch_size 1 and 2 for a model on GPU:
|
|
13
|
+
# python bert_perf_test.py --model bert.onnx --batch_size 1 2 --sequence_length 128 --use_gpu --samples 1000 --test_times 1
|
|
14
|
+
|
|
15
|
+
import argparse
|
|
16
|
+
import csv
|
|
17
|
+
import json
|
|
18
|
+
import multiprocessing
|
|
19
|
+
import os
|
|
20
|
+
import random
|
|
21
|
+
import statistics
|
|
22
|
+
import timeit
|
|
23
|
+
from dataclasses import dataclass
|
|
24
|
+
from datetime import datetime
|
|
25
|
+
from pathlib import Path
|
|
26
|
+
from typing import Optional
|
|
27
|
+
|
|
28
|
+
import numpy as np
|
|
29
|
+
import psutil
|
|
30
|
+
import torch
|
|
31
|
+
from bert_test_data import generate_test_data, get_bert_inputs
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@dataclass
|
|
35
|
+
class TestSetting:
|
|
36
|
+
batch_size: int
|
|
37
|
+
sequence_length: int
|
|
38
|
+
test_cases: int
|
|
39
|
+
test_times: int
|
|
40
|
+
use_gpu: bool
|
|
41
|
+
use_io_binding: bool
|
|
42
|
+
provider: str
|
|
43
|
+
intra_op_num_threads: int
|
|
44
|
+
seed: int
|
|
45
|
+
verbose: bool
|
|
46
|
+
log_severity: int
|
|
47
|
+
average_sequence_length: int
|
|
48
|
+
random_sequence_length: bool
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@dataclass
|
|
52
|
+
class ModelSetting:
|
|
53
|
+
model_path: str
|
|
54
|
+
input_ids_name: str
|
|
55
|
+
segment_ids_name: str
|
|
56
|
+
input_mask_name: str
|
|
57
|
+
opt_level: int
|
|
58
|
+
input_tuning_results: Optional[str]
|
|
59
|
+
output_tuning_results: Optional[str]
|
|
60
|
+
mask_type: int
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def create_session(
|
|
64
|
+
model_path,
|
|
65
|
+
use_gpu,
|
|
66
|
+
provider,
|
|
67
|
+
intra_op_num_threads,
|
|
68
|
+
graph_optimization_level=None,
|
|
69
|
+
log_severity=2,
|
|
70
|
+
tuning_results_path=None,
|
|
71
|
+
):
|
|
72
|
+
import onnxruntime
|
|
73
|
+
|
|
74
|
+
onnxruntime.set_default_logger_severity(log_severity)
|
|
75
|
+
|
|
76
|
+
if use_gpu and ("CUDAExecutionProvider" not in onnxruntime.get_available_providers()):
|
|
77
|
+
print(
|
|
78
|
+
"Warning: Please install onnxruntime-gpu package instead of onnxruntime, and use a machine with GPU for testing gpu performance."
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
if use_gpu:
|
|
82
|
+
if provider == "dml":
|
|
83
|
+
execution_providers = ["DmlExecutionProvider", "CPUExecutionProvider"]
|
|
84
|
+
elif provider == "rocm":
|
|
85
|
+
execution_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"]
|
|
86
|
+
elif provider == "migraphx":
|
|
87
|
+
execution_providers = [
|
|
88
|
+
"MIGraphXExecutionProvider",
|
|
89
|
+
"ROCMExecutionProvider",
|
|
90
|
+
"CPUExecutionProvider",
|
|
91
|
+
]
|
|
92
|
+
elif provider == "cuda":
|
|
93
|
+
execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
|
94
|
+
elif provider == "tensorrt":
|
|
95
|
+
execution_providers = [
|
|
96
|
+
"TensorrtExecutionProvider",
|
|
97
|
+
"CUDAExecutionProvider",
|
|
98
|
+
"CPUExecutionProvider",
|
|
99
|
+
]
|
|
100
|
+
else:
|
|
101
|
+
execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
|
102
|
+
else:
|
|
103
|
+
execution_providers = ["CPUExecutionProvider"]
|
|
104
|
+
|
|
105
|
+
sess_options = onnxruntime.SessionOptions()
|
|
106
|
+
sess_options.log_severity_level = log_severity
|
|
107
|
+
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
|
|
108
|
+
|
|
109
|
+
if graph_optimization_level is None:
|
|
110
|
+
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
111
|
+
elif graph_optimization_level == 0:
|
|
112
|
+
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
|
|
113
|
+
elif graph_optimization_level == 1:
|
|
114
|
+
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC
|
|
115
|
+
elif graph_optimization_level == 2:
|
|
116
|
+
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
|
|
117
|
+
elif graph_optimization_level == 99:
|
|
118
|
+
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
119
|
+
else:
|
|
120
|
+
sess_options.graph_optimization_level = graph_optimization_level
|
|
121
|
+
|
|
122
|
+
if intra_op_num_threads is not None:
|
|
123
|
+
sess_options.intra_op_num_threads = intra_op_num_threads
|
|
124
|
+
|
|
125
|
+
session = onnxruntime.InferenceSession(model_path, sess_options, providers=execution_providers)
|
|
126
|
+
|
|
127
|
+
if use_gpu:
|
|
128
|
+
if provider == "dml":
|
|
129
|
+
assert "DmlExecutionProvider" in session.get_providers()
|
|
130
|
+
elif provider == "rocm":
|
|
131
|
+
assert "ROCMExecutionProvider" in session.get_providers()
|
|
132
|
+
elif provider == "migraphx":
|
|
133
|
+
assert "MIGraphXExecutionProvider" in session.get_providers()
|
|
134
|
+
assert "ROCMExecutionProvider" in session.get_providers()
|
|
135
|
+
elif provider == "cuda":
|
|
136
|
+
assert "CUDAExecutionProvider" in session.get_providers()
|
|
137
|
+
elif provider == "tensorrt":
|
|
138
|
+
assert "TensorrtExecutionProvider" in session.get_providers()
|
|
139
|
+
assert "CUDAExecutionProvider" in session.get_providers()
|
|
140
|
+
else:
|
|
141
|
+
assert "CUDAExecutionProvider" in session.get_providers()
|
|
142
|
+
else:
|
|
143
|
+
assert "CPUExecutionProvider" in session.get_providers()
|
|
144
|
+
|
|
145
|
+
if tuning_results_path is not None:
|
|
146
|
+
with open(tuning_results_path) as f:
|
|
147
|
+
session.set_tuning_results(json.load(f))
|
|
148
|
+
|
|
149
|
+
return session
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def numpy_type(torch_type):
|
|
153
|
+
type_map = {
|
|
154
|
+
torch.float32: np.float32,
|
|
155
|
+
torch.float16: np.float16,
|
|
156
|
+
torch.int32: np.int32,
|
|
157
|
+
torch.int64: np.longlong,
|
|
158
|
+
}
|
|
159
|
+
return type_map[torch_type]
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def create_input_output_tensors(inputs, outputs, device):
|
|
163
|
+
input_tensors = {name: torch.from_numpy(array).to(device) for name, array in inputs.items()}
|
|
164
|
+
output_tensors = {name: torch.from_numpy(array).to(device) for name, array in outputs.items()}
|
|
165
|
+
return input_tensors, output_tensors
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
def create_io_binding(sess, input_tensors, output_tensors):
|
|
169
|
+
io_binding = sess.io_binding()
|
|
170
|
+
for name, tensor in input_tensors.items():
|
|
171
|
+
io_binding.bind_input(
|
|
172
|
+
name,
|
|
173
|
+
tensor.device.type,
|
|
174
|
+
0,
|
|
175
|
+
numpy_type(tensor.dtype),
|
|
176
|
+
tensor.shape,
|
|
177
|
+
tensor.data_ptr(),
|
|
178
|
+
)
|
|
179
|
+
for name, tensor in output_tensors.items():
|
|
180
|
+
io_binding.bind_output(
|
|
181
|
+
name,
|
|
182
|
+
tensor.device.type,
|
|
183
|
+
0,
|
|
184
|
+
numpy_type(tensor.dtype),
|
|
185
|
+
tensor.shape,
|
|
186
|
+
tensor.data_ptr(),
|
|
187
|
+
)
|
|
188
|
+
return io_binding
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def onnxruntime_inference_with_io_binding(session, all_inputs, output_names, test_setting):
|
|
192
|
+
results = []
|
|
193
|
+
latency_list = []
|
|
194
|
+
device = "cuda" if test_setting.use_gpu else "cpu"
|
|
195
|
+
for _test_case_id, inputs in enumerate(all_inputs):
|
|
196
|
+
result = session.run(output_names, inputs)
|
|
197
|
+
results.append(result)
|
|
198
|
+
outputs = {}
|
|
199
|
+
for i in range(len(output_names)):
|
|
200
|
+
outputs[output_names[i]] = result[i]
|
|
201
|
+
|
|
202
|
+
input_tensors, output_tensors = create_input_output_tensors(inputs, outputs, device)
|
|
203
|
+
io_binding = create_io_binding(session, input_tensors, output_tensors)
|
|
204
|
+
|
|
205
|
+
# warm up once
|
|
206
|
+
session.run_with_iobinding(io_binding)
|
|
207
|
+
|
|
208
|
+
start_time = timeit.default_timer()
|
|
209
|
+
session.run_with_iobinding(io_binding)
|
|
210
|
+
latency = timeit.default_timer() - start_time
|
|
211
|
+
latency_list.append(latency)
|
|
212
|
+
|
|
213
|
+
return results, latency_list
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def onnxruntime_inference(session, all_inputs, output_names):
|
|
217
|
+
if len(all_inputs) > 0:
|
|
218
|
+
# Use a random input as warm up.
|
|
219
|
+
session.run(output_names, random.choice(all_inputs))
|
|
220
|
+
|
|
221
|
+
results = []
|
|
222
|
+
latency_list = []
|
|
223
|
+
for _test_case_id, inputs in enumerate(all_inputs):
|
|
224
|
+
start_time = timeit.default_timer()
|
|
225
|
+
result = session.run(output_names, inputs)
|
|
226
|
+
latency = timeit.default_timer() - start_time
|
|
227
|
+
results.append(result)
|
|
228
|
+
latency_list.append(latency)
|
|
229
|
+
return results, latency_list
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
def to_string(model_path, session, test_setting):
|
|
233
|
+
sess_options = session.get_session_options()
|
|
234
|
+
option = f"model={os.path.basename(model_path)},"
|
|
235
|
+
option += f"graph_optimization_level={sess_options.graph_optimization_level},intra_op_num_threads={sess_options.intra_op_num_threads},".replace(
|
|
236
|
+
"GraphOptimizationLevel.ORT_", ""
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
option += f"batch_size={test_setting.batch_size},sequence_length={test_setting.sequence_length},"
|
|
240
|
+
option += f"test_cases={test_setting.test_cases},test_times={test_setting.test_times},"
|
|
241
|
+
option += f"use_gpu={test_setting.use_gpu},use_io_binding={test_setting.use_io_binding},"
|
|
242
|
+
option += f"average_sequence_length={test_setting.average_sequence_length},"
|
|
243
|
+
option += f"random_sequence_length={test_setting.random_sequence_length}"
|
|
244
|
+
return option
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
def run_one_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads):
|
|
248
|
+
session = create_session(
|
|
249
|
+
model_setting.model_path,
|
|
250
|
+
test_setting.use_gpu,
|
|
251
|
+
test_setting.provider,
|
|
252
|
+
intra_op_num_threads,
|
|
253
|
+
model_setting.opt_level,
|
|
254
|
+
log_severity=test_setting.log_severity,
|
|
255
|
+
tuning_results_path=model_setting.input_tuning_results,
|
|
256
|
+
)
|
|
257
|
+
output_names = [output.name for output in session.get_outputs()]
|
|
258
|
+
|
|
259
|
+
key = to_string(model_setting.model_path, session, test_setting)
|
|
260
|
+
if key in perf_results:
|
|
261
|
+
print("skip duplicated test:", key)
|
|
262
|
+
return
|
|
263
|
+
|
|
264
|
+
print("Running test:", key)
|
|
265
|
+
|
|
266
|
+
all_latency_list = []
|
|
267
|
+
if test_setting.use_io_binding:
|
|
268
|
+
for _i in range(test_setting.test_times):
|
|
269
|
+
results, latency_list = onnxruntime_inference_with_io_binding(
|
|
270
|
+
session, all_inputs, output_names, test_setting
|
|
271
|
+
)
|
|
272
|
+
all_latency_list.extend(latency_list)
|
|
273
|
+
else:
|
|
274
|
+
for _i in range(test_setting.test_times):
|
|
275
|
+
results, latency_list = onnxruntime_inference(session, all_inputs, output_names)
|
|
276
|
+
all_latency_list.extend(latency_list)
|
|
277
|
+
|
|
278
|
+
# latency in milliseconds
|
|
279
|
+
latency_ms = np.array(all_latency_list) * 1000
|
|
280
|
+
|
|
281
|
+
average_latency = statistics.mean(latency_ms)
|
|
282
|
+
latency_50 = np.percentile(latency_ms, 50)
|
|
283
|
+
latency_75 = np.percentile(latency_ms, 75)
|
|
284
|
+
latency_90 = np.percentile(latency_ms, 90)
|
|
285
|
+
latency_95 = np.percentile(latency_ms, 95)
|
|
286
|
+
latency_99 = np.percentile(latency_ms, 99)
|
|
287
|
+
throughput = test_setting.batch_size * (1000.0 / average_latency)
|
|
288
|
+
|
|
289
|
+
perf_results[key] = (
|
|
290
|
+
average_latency,
|
|
291
|
+
latency_50,
|
|
292
|
+
latency_75,
|
|
293
|
+
latency_90,
|
|
294
|
+
latency_95,
|
|
295
|
+
latency_99,
|
|
296
|
+
throughput,
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
print(
|
|
300
|
+
"Average latency = {} ms, Throughput = {} QPS".format(format(average_latency, ".2f"), format(throughput, ".2f"))
|
|
301
|
+
)
|
|
302
|
+
|
|
303
|
+
if model_setting.output_tuning_results:
|
|
304
|
+
output_path = os.path.abspath(model_setting.output_tuning_results)
|
|
305
|
+
if os.path.exists(output_path):
|
|
306
|
+
old_output_path = output_path
|
|
307
|
+
output_path = f"""{output_path.rsplit(".json", 1)[0]}.{datetime.now().timestamp()}.json"""
|
|
308
|
+
print("WARNING:", old_output_path, "exists, will write to", output_path, "instead.")
|
|
309
|
+
|
|
310
|
+
trs = session.get_tuning_results()
|
|
311
|
+
with open(output_path, "w") as f:
|
|
312
|
+
json.dump(trs, f)
|
|
313
|
+
print("Tuning results is saved to", output_path)
|
|
314
|
+
|
|
315
|
+
|
|
316
|
+
def launch_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads):
|
|
317
|
+
process = multiprocessing.Process(
|
|
318
|
+
target=run_one_test,
|
|
319
|
+
args=(
|
|
320
|
+
model_setting,
|
|
321
|
+
test_setting,
|
|
322
|
+
perf_results,
|
|
323
|
+
all_inputs,
|
|
324
|
+
intra_op_num_threads,
|
|
325
|
+
),
|
|
326
|
+
)
|
|
327
|
+
process.start()
|
|
328
|
+
process.join()
|
|
329
|
+
|
|
330
|
+
|
|
331
|
+
def run_perf_tests(model_setting, test_setting, perf_results, all_inputs):
|
|
332
|
+
if test_setting.intra_op_num_threads is not None:
|
|
333
|
+
launch_test(
|
|
334
|
+
model_setting,
|
|
335
|
+
test_setting,
|
|
336
|
+
perf_results,
|
|
337
|
+
all_inputs,
|
|
338
|
+
test_setting.intra_op_num_threads,
|
|
339
|
+
)
|
|
340
|
+
return
|
|
341
|
+
|
|
342
|
+
cpu_count = psutil.cpu_count(logical=False)
|
|
343
|
+
logical_cores = psutil.cpu_count(logical=True)
|
|
344
|
+
|
|
345
|
+
candidate_threads = list({logical_cores, cpu_count})
|
|
346
|
+
for i in range(1, min(16, logical_cores)):
|
|
347
|
+
if i not in candidate_threads:
|
|
348
|
+
candidate_threads.append(i)
|
|
349
|
+
candidate_threads.sort(reverse=True)
|
|
350
|
+
|
|
351
|
+
for intra_op_num_threads in candidate_threads:
|
|
352
|
+
launch_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads)
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+
def run_performance(model_setting, test_setting, perf_results):
|
|
356
|
+
input_ids, segment_ids, input_mask = get_bert_inputs(
|
|
357
|
+
model_setting.model_path,
|
|
358
|
+
model_setting.input_ids_name,
|
|
359
|
+
model_setting.segment_ids_name,
|
|
360
|
+
model_setting.input_mask_name,
|
|
361
|
+
)
|
|
362
|
+
|
|
363
|
+
# Do not generate random mask for performance test.
|
|
364
|
+
print(
|
|
365
|
+
f"Generating {test_setting.test_cases} samples for batch_size={test_setting.batch_size} sequence_length={test_setting.sequence_length}"
|
|
366
|
+
)
|
|
367
|
+
all_inputs = generate_test_data(
|
|
368
|
+
test_setting.batch_size,
|
|
369
|
+
test_setting.sequence_length,
|
|
370
|
+
test_setting.test_cases,
|
|
371
|
+
test_setting.seed,
|
|
372
|
+
test_setting.verbose,
|
|
373
|
+
input_ids,
|
|
374
|
+
segment_ids,
|
|
375
|
+
input_mask,
|
|
376
|
+
test_setting.average_sequence_length,
|
|
377
|
+
test_setting.random_sequence_length,
|
|
378
|
+
mask_type=model_setting.mask_type,
|
|
379
|
+
)
|
|
380
|
+
|
|
381
|
+
run_perf_tests(model_setting, test_setting, perf_results, all_inputs)
|
|
382
|
+
|
|
383
|
+
|
|
384
|
+
def parse_arguments():
|
|
385
|
+
parser = argparse.ArgumentParser()
|
|
386
|
+
parser.add_argument("--model", required=True, type=str, help="bert onnx model path")
|
|
387
|
+
|
|
388
|
+
parser.add_argument(
|
|
389
|
+
"-b",
|
|
390
|
+
"--batch_size",
|
|
391
|
+
required=True,
|
|
392
|
+
type=int,
|
|
393
|
+
nargs="+",
|
|
394
|
+
help="batch size of input. Allow one or multiple values in the range of [1, 128].",
|
|
395
|
+
)
|
|
396
|
+
|
|
397
|
+
parser.add_argument(
|
|
398
|
+
"-s",
|
|
399
|
+
"--sequence_length",
|
|
400
|
+
required=True,
|
|
401
|
+
type=int,
|
|
402
|
+
help="maximum sequence length of input",
|
|
403
|
+
)
|
|
404
|
+
|
|
405
|
+
parser.add_argument(
|
|
406
|
+
"--samples",
|
|
407
|
+
required=False,
|
|
408
|
+
type=int,
|
|
409
|
+
default=10,
|
|
410
|
+
help="number of samples to be generated",
|
|
411
|
+
)
|
|
412
|
+
|
|
413
|
+
parser.add_argument(
|
|
414
|
+
"-t",
|
|
415
|
+
"--test_times",
|
|
416
|
+
required=False,
|
|
417
|
+
type=int,
|
|
418
|
+
default=0,
|
|
419
|
+
help="number of times to run per sample. By default, the value is 1000 / samples",
|
|
420
|
+
)
|
|
421
|
+
|
|
422
|
+
parser.add_argument(
|
|
423
|
+
"--opt_level",
|
|
424
|
+
required=False,
|
|
425
|
+
type=int,
|
|
426
|
+
choices=[0, 1, 2, 99],
|
|
427
|
+
default=99,
|
|
428
|
+
help="onnxruntime optimization level: 0 - disable all, 1 - basic, 2 - extended, 99 - enable all.",
|
|
429
|
+
)
|
|
430
|
+
|
|
431
|
+
parser.add_argument(
|
|
432
|
+
"--seed",
|
|
433
|
+
required=False,
|
|
434
|
+
type=int,
|
|
435
|
+
default=3,
|
|
436
|
+
help="random seed. Use the same seed to make sure test data is same in multiple tests.",
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
parser.add_argument(
|
|
440
|
+
"--verbose",
|
|
441
|
+
required=False,
|
|
442
|
+
action="store_true",
|
|
443
|
+
help="print verbose information",
|
|
444
|
+
)
|
|
445
|
+
parser.set_defaults(verbose=False)
|
|
446
|
+
|
|
447
|
+
parser.add_argument(
|
|
448
|
+
"--log_severity",
|
|
449
|
+
required=False,
|
|
450
|
+
type=int,
|
|
451
|
+
default=2,
|
|
452
|
+
choices=[0, 1, 2, 3, 4],
|
|
453
|
+
help="0:Verbose, 1:Info, 2:Warning, 3:Error, 4:Fatal",
|
|
454
|
+
)
|
|
455
|
+
|
|
456
|
+
parser.add_argument("--use_gpu", required=False, action="store_true", help="use GPU")
|
|
457
|
+
parser.set_defaults(use_gpu=False)
|
|
458
|
+
|
|
459
|
+
parser.add_argument("--use_io_binding", required=False, action="store_true", help="use io_binding")
|
|
460
|
+
parser.set_defaults(use_io_binding=False)
|
|
461
|
+
|
|
462
|
+
parser.add_argument(
|
|
463
|
+
"--provider",
|
|
464
|
+
required=False,
|
|
465
|
+
type=str,
|
|
466
|
+
default=None,
|
|
467
|
+
help="Execution provider to use",
|
|
468
|
+
)
|
|
469
|
+
|
|
470
|
+
parser.add_argument(
|
|
471
|
+
"-n",
|
|
472
|
+
"--intra_op_num_threads",
|
|
473
|
+
required=False,
|
|
474
|
+
type=int,
|
|
475
|
+
default=None,
|
|
476
|
+
help=">=0, set intra_op_num_threads",
|
|
477
|
+
)
|
|
478
|
+
|
|
479
|
+
parser.add_argument(
|
|
480
|
+
"--input_ids_name",
|
|
481
|
+
required=False,
|
|
482
|
+
type=str,
|
|
483
|
+
default=None,
|
|
484
|
+
help="input name for input ids",
|
|
485
|
+
)
|
|
486
|
+
|
|
487
|
+
parser.add_argument(
|
|
488
|
+
"--segment_ids_name",
|
|
489
|
+
required=False,
|
|
490
|
+
type=str,
|
|
491
|
+
default=None,
|
|
492
|
+
help="input name for segment ids",
|
|
493
|
+
)
|
|
494
|
+
|
|
495
|
+
parser.add_argument(
|
|
496
|
+
"--input_mask_name",
|
|
497
|
+
required=False,
|
|
498
|
+
type=str,
|
|
499
|
+
default=None,
|
|
500
|
+
help="input name for attention mask",
|
|
501
|
+
)
|
|
502
|
+
|
|
503
|
+
parser.add_argument(
|
|
504
|
+
"--input_tuning_results",
|
|
505
|
+
default=None,
|
|
506
|
+
type=str,
|
|
507
|
+
help="tuning results (json) to be loaded before benchmark",
|
|
508
|
+
)
|
|
509
|
+
|
|
510
|
+
parser.add_argument(
|
|
511
|
+
"--output_tuning_results",
|
|
512
|
+
default=None,
|
|
513
|
+
type=str,
|
|
514
|
+
help="tuning results (json) to be saved after benchmark",
|
|
515
|
+
)
|
|
516
|
+
|
|
517
|
+
parser.add_argument(
|
|
518
|
+
"-a",
|
|
519
|
+
"--average_sequence_length",
|
|
520
|
+
default=-1,
|
|
521
|
+
type=int,
|
|
522
|
+
help="average sequence length excluding padding",
|
|
523
|
+
)
|
|
524
|
+
|
|
525
|
+
parser.add_argument(
|
|
526
|
+
"-r",
|
|
527
|
+
"--random_sequence_length",
|
|
528
|
+
required=False,
|
|
529
|
+
action="store_true",
|
|
530
|
+
help="use uniform random instead of fixed sequence length",
|
|
531
|
+
)
|
|
532
|
+
parser.set_defaults(random_sequence_length=False)
|
|
533
|
+
|
|
534
|
+
parser.add_argument(
|
|
535
|
+
"--mask_type",
|
|
536
|
+
required=False,
|
|
537
|
+
type=int,
|
|
538
|
+
default=2,
|
|
539
|
+
help="mask type: (1: mask index or sequence length, 2: raw 2D mask, 3: key len, cumulated lengths of query and key)",
|
|
540
|
+
)
|
|
541
|
+
|
|
542
|
+
args = parser.parse_args()
|
|
543
|
+
return args
|
|
544
|
+
|
|
545
|
+
|
|
546
|
+
def main():
|
|
547
|
+
args = parse_arguments()
|
|
548
|
+
|
|
549
|
+
if args.test_times == 0:
|
|
550
|
+
args.test_times = max(1, int(1000 / args.samples))
|
|
551
|
+
|
|
552
|
+
if args.average_sequence_length <= 0:
|
|
553
|
+
args.average_sequence_length = args.sequence_length
|
|
554
|
+
|
|
555
|
+
manager = multiprocessing.Manager()
|
|
556
|
+
perf_results = manager.dict()
|
|
557
|
+
|
|
558
|
+
batch_size_set = set(args.batch_size)
|
|
559
|
+
if not (min(batch_size_set) >= 1 and max(batch_size_set) <= 128):
|
|
560
|
+
raise Exception("batch_size not in range [1, 128]")
|
|
561
|
+
|
|
562
|
+
model_setting = ModelSetting(
|
|
563
|
+
args.model,
|
|
564
|
+
args.input_ids_name,
|
|
565
|
+
args.segment_ids_name,
|
|
566
|
+
args.input_mask_name,
|
|
567
|
+
args.opt_level,
|
|
568
|
+
args.input_tuning_results,
|
|
569
|
+
args.output_tuning_results,
|
|
570
|
+
args.mask_type,
|
|
571
|
+
)
|
|
572
|
+
|
|
573
|
+
for batch_size in batch_size_set:
|
|
574
|
+
test_setting = TestSetting(
|
|
575
|
+
batch_size,
|
|
576
|
+
args.sequence_length,
|
|
577
|
+
args.samples,
|
|
578
|
+
args.test_times,
|
|
579
|
+
args.use_gpu,
|
|
580
|
+
args.use_io_binding,
|
|
581
|
+
args.provider,
|
|
582
|
+
args.intra_op_num_threads,
|
|
583
|
+
args.seed,
|
|
584
|
+
args.verbose,
|
|
585
|
+
args.log_severity,
|
|
586
|
+
args.average_sequence_length,
|
|
587
|
+
args.random_sequence_length,
|
|
588
|
+
)
|
|
589
|
+
|
|
590
|
+
print("test setting", test_setting)
|
|
591
|
+
run_performance(model_setting, test_setting, perf_results)
|
|
592
|
+
|
|
593
|
+
# Sort the results so that the first one has smallest latency.
|
|
594
|
+
sorted_results = sorted(perf_results.items(), reverse=False, key=lambda x: x[1])
|
|
595
|
+
|
|
596
|
+
summary_file = os.path.join(
|
|
597
|
+
Path(args.model).parent,
|
|
598
|
+
"perf_results_{}_B{}_S{}_{}.txt".format(
|
|
599
|
+
"GPU" if args.use_gpu else "CPU",
|
|
600
|
+
"-".join([str(x) for x in sorted(list(batch_size_set))]),
|
|
601
|
+
args.sequence_length,
|
|
602
|
+
datetime.now().strftime("%Y%m%d-%H%M%S"),
|
|
603
|
+
),
|
|
604
|
+
)
|
|
605
|
+
with open(summary_file, "w+", newline="") as tsv_file:
|
|
606
|
+
tsv_writer = csv.writer(tsv_file, delimiter="\t", lineterminator="\n")
|
|
607
|
+
headers = None
|
|
608
|
+
for key, perf_result in sorted_results:
|
|
609
|
+
params = key.split(",")
|
|
610
|
+
if headers is None:
|
|
611
|
+
headers = [
|
|
612
|
+
"Latency(ms)",
|
|
613
|
+
"Latency_P50",
|
|
614
|
+
"Latency_P75",
|
|
615
|
+
"Latency_P90",
|
|
616
|
+
"Latency_P95",
|
|
617
|
+
"Latency_P99",
|
|
618
|
+
"Throughput(QPS)",
|
|
619
|
+
]
|
|
620
|
+
headers.extend([x.split("=")[0] for x in params])
|
|
621
|
+
tsv_writer.writerow(headers)
|
|
622
|
+
|
|
623
|
+
values = [format(x, ".2f") for x in perf_result]
|
|
624
|
+
values.extend([x.split("=")[1] for x in params])
|
|
625
|
+
tsv_writer.writerow(values)
|
|
626
|
+
|
|
627
|
+
print("Test summary is saved to", summary_file)
|
|
628
|
+
|
|
629
|
+
|
|
630
|
+
if __name__ == "__main__":
|
|
631
|
+
# work around for AnaConda Jupyter. See https://stackoverflow.com/questions/45720153/python-multiprocessing-error-attributeerror-module-main-has-no-attribute
|
|
632
|
+
__spec__ = None
|
|
633
|
+
|
|
634
|
+
main()
|