onnxruntime-directml 1.20.0__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (305) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6508 -0
  4. onnxruntime/__init__.py +78 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +174 -0
  7. onnxruntime/backend/backend_rep.py +53 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  13. onnxruntime/capi/onnxruntime.dll +0 -0
  14. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  15. onnxruntime/capi/onnxruntime_inference_collection.py +1108 -0
  16. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  17. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  18. onnxruntime/capi/onnxruntime_validation.py +150 -0
  19. onnxruntime/capi/version_info.py +2 -0
  20. onnxruntime/datasets/__init__.py +17 -0
  21. onnxruntime/datasets/logreg_iris.onnx +0 -0
  22. onnxruntime/datasets/mul_1.onnx +0 -0
  23. onnxruntime/datasets/sigmoid.onnx +13 -0
  24. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  27. onnxruntime/quantization/__init__.py +16 -0
  28. onnxruntime/quantization/base_quantizer.py +532 -0
  29. onnxruntime/quantization/calibrate.py +1245 -0
  30. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  31. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  32. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  33. onnxruntime/quantization/execution_providers/qnn/preprocess.py +307 -0
  34. onnxruntime/quantization/execution_providers/qnn/quant_config.py +387 -0
  35. onnxruntime/quantization/fusions/__init__.py +3 -0
  36. onnxruntime/quantization/fusions/fusion.py +311 -0
  37. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  38. onnxruntime/quantization/fusions/fusion_layernorm.py +135 -0
  39. onnxruntime/quantization/matmul_4bits_quantizer.py +1480 -0
  40. onnxruntime/quantization/matmul_bnb4_quantizer.py +240 -0
  41. onnxruntime/quantization/onnx_model.py +580 -0
  42. onnxruntime/quantization/onnx_quantizer.py +1008 -0
  43. onnxruntime/quantization/operators/__init__.py +2 -0
  44. onnxruntime/quantization/operators/activation.py +119 -0
  45. onnxruntime/quantization/operators/argmax.py +18 -0
  46. onnxruntime/quantization/operators/attention.py +73 -0
  47. onnxruntime/quantization/operators/base_operator.py +26 -0
  48. onnxruntime/quantization/operators/binary_op.py +72 -0
  49. onnxruntime/quantization/operators/concat.py +62 -0
  50. onnxruntime/quantization/operators/conv.py +258 -0
  51. onnxruntime/quantization/operators/direct_q8.py +78 -0
  52. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  53. onnxruntime/quantization/operators/gather.py +64 -0
  54. onnxruntime/quantization/operators/gavgpool.py +62 -0
  55. onnxruntime/quantization/operators/gemm.py +166 -0
  56. onnxruntime/quantization/operators/lstm.py +117 -0
  57. onnxruntime/quantization/operators/matmul.py +231 -0
  58. onnxruntime/quantization/operators/maxpool.py +34 -0
  59. onnxruntime/quantization/operators/norm.py +40 -0
  60. onnxruntime/quantization/operators/pad.py +100 -0
  61. onnxruntime/quantization/operators/pooling.py +67 -0
  62. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  63. onnxruntime/quantization/operators/resize.py +34 -0
  64. onnxruntime/quantization/operators/softmax.py +74 -0
  65. onnxruntime/quantization/operators/split.py +63 -0
  66. onnxruntime/quantization/operators/where.py +87 -0
  67. onnxruntime/quantization/preprocess.py +141 -0
  68. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  69. onnxruntime/quantization/qdq_quantizer.py +1187 -0
  70. onnxruntime/quantization/quant_utils.py +891 -0
  71. onnxruntime/quantization/quantize.py +748 -0
  72. onnxruntime/quantization/registry.py +106 -0
  73. onnxruntime/quantization/shape_inference.py +187 -0
  74. onnxruntime/quantization/tensor_quant_overrides.py +516 -0
  75. onnxruntime/tools/__init__.py +10 -0
  76. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  77. onnxruntime/tools/convert_onnx_models_to_ort.py +377 -0
  78. onnxruntime/tools/file_utils.py +46 -0
  79. onnxruntime/tools/logger.py +11 -0
  80. onnxruntime/tools/make_dynamic_shape_fixed.py +72 -0
  81. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  82. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +33 -0
  83. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  84. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  85. onnxruntime/tools/mobile_helpers/usability_checker.py +739 -0
  86. onnxruntime/tools/offline_tuning.py +169 -0
  87. onnxruntime/tools/onnx_model_utils.py +413 -0
  88. onnxruntime/tools/onnx_randomizer.py +85 -0
  89. onnxruntime/tools/onnxruntime_test.py +164 -0
  90. onnxruntime/tools/optimize_onnx_model.py +55 -0
  91. onnxruntime/tools/ort_format_model/__init__.py +25 -0
  92. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +663 -0
  93. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  94. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  95. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  96. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  97. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  98. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  99. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  100. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  140. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  141. onnxruntime/tools/ort_format_model/types.py +84 -0
  142. onnxruntime/tools/ort_format_model/utils.py +62 -0
  143. onnxruntime/tools/pytorch_export_contrib_ops.py +108 -0
  144. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  145. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  146. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  147. onnxruntime/tools/reduced_build_config_parser.py +202 -0
  148. onnxruntime/tools/symbolic_shape_infer.py +3016 -0
  149. onnxruntime/tools/update_onnx_opset.py +31 -0
  150. onnxruntime/transformers/__init__.py +8 -0
  151. onnxruntime/transformers/affinity_helper.py +40 -0
  152. onnxruntime/transformers/benchmark.py +944 -0
  153. onnxruntime/transformers/benchmark_helper.py +646 -0
  154. onnxruntime/transformers/bert_perf_test.py +634 -0
  155. onnxruntime/transformers/bert_test_data.py +642 -0
  156. onnxruntime/transformers/compare_bert_results.py +246 -0
  157. onnxruntime/transformers/constants.py +47 -0
  158. onnxruntime/transformers/convert_generation.py +3124 -0
  159. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  160. onnxruntime/transformers/convert_to_packing_mode.py +387 -0
  161. onnxruntime/transformers/dynamo_onnx_helper.py +104 -0
  162. onnxruntime/transformers/float16.py +501 -0
  163. onnxruntime/transformers/fusion_attention.py +1235 -0
  164. onnxruntime/transformers/fusion_attention_clip.py +257 -0
  165. onnxruntime/transformers/fusion_attention_sam2.py +534 -0
  166. onnxruntime/transformers/fusion_attention_unet.py +1304 -0
  167. onnxruntime/transformers/fusion_attention_vae.py +301 -0
  168. onnxruntime/transformers/fusion_bart_attention.py +640 -0
  169. onnxruntime/transformers/fusion_base.py +137 -0
  170. onnxruntime/transformers/fusion_bias_add.py +58 -0
  171. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  172. onnxruntime/transformers/fusion_biassplitgelu.py +111 -0
  173. onnxruntime/transformers/fusion_conformer_attention.py +143 -0
  174. onnxruntime/transformers/fusion_embedlayer.py +811 -0
  175. onnxruntime/transformers/fusion_fastgelu.py +360 -0
  176. onnxruntime/transformers/fusion_gelu.py +259 -0
  177. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  178. onnxruntime/transformers/fusion_gemmfastgelu.py +122 -0
  179. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  180. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  181. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  182. onnxruntime/transformers/fusion_group_norm.py +179 -0
  183. onnxruntime/transformers/fusion_layernorm.py +465 -0
  184. onnxruntime/transformers/fusion_nhwc_conv.py +100 -0
  185. onnxruntime/transformers/fusion_options.py +340 -0
  186. onnxruntime/transformers/fusion_qordered_attention.py +421 -0
  187. onnxruntime/transformers/fusion_qordered_gelu.py +119 -0
  188. onnxruntime/transformers/fusion_qordered_layernorm.py +123 -0
  189. onnxruntime/transformers/fusion_qordered_matmul.py +217 -0
  190. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  191. onnxruntime/transformers/fusion_reshape.py +173 -0
  192. onnxruntime/transformers/fusion_rotary_attention.py +1592 -0
  193. onnxruntime/transformers/fusion_shape.py +110 -0
  194. onnxruntime/transformers/fusion_simplified_layernorm.py +159 -0
  195. onnxruntime/transformers/fusion_skip_group_norm.py +255 -0
  196. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  197. onnxruntime/transformers/fusion_transpose.py +168 -0
  198. onnxruntime/transformers/fusion_utils.py +307 -0
  199. onnxruntime/transformers/huggingface_models.py +167 -0
  200. onnxruntime/transformers/import_utils.py +20 -0
  201. onnxruntime/transformers/io_binding_helper.py +442 -0
  202. onnxruntime/transformers/large_model_exporter.py +395 -0
  203. onnxruntime/transformers/machine_info.py +221 -0
  204. onnxruntime/transformers/metrics.py +164 -0
  205. onnxruntime/transformers/models/bart/__init__.py +12 -0
  206. onnxruntime/transformers/models/bart/export.py +98 -0
  207. onnxruntime/transformers/models/bert/__init__.py +12 -0
  208. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  209. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  210. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  211. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +561 -0
  212. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1032 -0
  213. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  214. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  215. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  216. onnxruntime/transformers/models/llama/__init__.py +12 -0
  217. onnxruntime/transformers/models/llama/benchmark.py +703 -0
  218. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  219. onnxruntime/transformers/models/llama/benchmark_e2e.py +606 -0
  220. onnxruntime/transformers/models/llama/convert_to_onnx.py +1027 -0
  221. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  222. onnxruntime/transformers/models/llama/llama_inputs.py +503 -0
  223. onnxruntime/transformers/models/llama/llama_parity.py +309 -0
  224. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  225. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  226. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  227. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  228. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  229. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  230. onnxruntime/transformers/models/longformer/longformer_helper.py +77 -0
  231. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  232. onnxruntime/transformers/models/phi2/convert_to_onnx.py +576 -0
  233. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  234. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  235. onnxruntime/transformers/models/sam2/benchmark_sam2.py +625 -0
  236. onnxruntime/transformers/models/sam2/convert_to_onnx.py +260 -0
  237. onnxruntime/transformers/models/sam2/image_decoder.py +273 -0
  238. onnxruntime/transformers/models/sam2/image_encoder.py +186 -0
  239. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  240. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  241. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  242. onnxruntime/transformers/models/sam2/sam2_demo.py +322 -0
  243. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +280 -0
  244. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  245. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  246. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1429 -0
  247. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  248. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +102 -0
  249. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +268 -0
  250. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  251. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1319 -0
  252. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1181 -0
  253. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +296 -0
  254. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +388 -0
  255. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  256. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  257. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  258. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +350 -0
  259. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  260. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  261. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  262. onnxruntime/transformers/models/t5/__init__.py +12 -0
  263. onnxruntime/transformers/models/t5/convert_to_onnx.py +278 -0
  264. onnxruntime/transformers/models/t5/past_helper.py +150 -0
  265. onnxruntime/transformers/models/t5/t5_decoder.py +438 -0
  266. onnxruntime/transformers/models/t5/t5_encoder.py +171 -0
  267. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +299 -0
  268. onnxruntime/transformers/models/t5/t5_helper.py +272 -0
  269. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  270. onnxruntime/transformers/models/whisper/benchmark.py +610 -0
  271. onnxruntime/transformers/models/whisper/benchmark_all.py +528 -0
  272. onnxruntime/transformers/models/whisper/convert_to_onnx.py +536 -0
  273. onnxruntime/transformers/models/whisper/whisper_chain.py +329 -0
  274. onnxruntime/transformers/models/whisper/whisper_decoder.py +402 -0
  275. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  276. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +306 -0
  277. onnxruntime/transformers/models/whisper/whisper_helper.py +524 -0
  278. onnxruntime/transformers/models/whisper/whisper_openai_helper.py +84 -0
  279. onnxruntime/transformers/onnx_exporter.py +717 -0
  280. onnxruntime/transformers/onnx_model.py +1569 -0
  281. onnxruntime/transformers/onnx_model_bart.py +142 -0
  282. onnxruntime/transformers/onnx_model_bert.py +481 -0
  283. onnxruntime/transformers/onnx_model_bert_keras.py +475 -0
  284. onnxruntime/transformers/onnx_model_bert_tf.py +589 -0
  285. onnxruntime/transformers/onnx_model_clip.py +40 -0
  286. onnxruntime/transformers/onnx_model_conformer.py +33 -0
  287. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  288. onnxruntime/transformers/onnx_model_phi.py +930 -0
  289. onnxruntime/transformers/onnx_model_sam2.py +138 -0
  290. onnxruntime/transformers/onnx_model_t5.py +791 -0
  291. onnxruntime/transformers/onnx_model_tnlr.py +227 -0
  292. onnxruntime/transformers/onnx_model_unet.py +259 -0
  293. onnxruntime/transformers/onnx_model_vae.py +43 -0
  294. onnxruntime/transformers/onnx_utils.py +55 -0
  295. onnxruntime/transformers/optimizer.py +612 -0
  296. onnxruntime/transformers/profiler.py +725 -0
  297. onnxruntime/transformers/quantize_helper.py +76 -0
  298. onnxruntime/transformers/shape_infer_helper.py +122 -0
  299. onnxruntime/transformers/shape_optimizer.py +401 -0
  300. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  301. onnxruntime_directml-1.20.0.dist-info/METADATA +187 -0
  302. onnxruntime_directml-1.20.0.dist-info/RECORD +305 -0
  303. onnxruntime_directml-1.20.0.dist-info/WHEEL +5 -0
  304. onnxruntime_directml-1.20.0.dist-info/entry_points.txt +2 -0
  305. onnxruntime_directml-1.20.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,606 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License. See License.txt in the project root for
4
+ # license information.
5
+ # --------------------------------------------------------------------------
6
+
7
+ # This is an end-to-end benchmarking script for the Hugging Face LLaMA-2 model.
8
+ #
9
+ # Prerequisites:
10
+ # 1) Install `huggingface-cli`:
11
+ #
12
+ # $ pip install huggingface_hub
13
+ #
14
+ # 2) Authenticate with Hugging Face's CLI:
15
+ #
16
+ # $ huggingface-cli login
17
+ #
18
+ # 3) Accept Meta's license in Hugging Face to access the models at https://huggingface.co/meta-llama/
19
+ #
20
+ # 4) Install the latest ONNX Runtime version
21
+ #
22
+ # $ pip install onnxruntime-gpu
23
+ #
24
+ # 5) Install flash attention v2
25
+ #
26
+ # $ pip install flash-attn --no-build-isolation
27
+ #
28
+ # 6) Install bitsandbytes
29
+ #
30
+ # $ pip install bitsandbytes
31
+
32
+ from __future__ import annotations
33
+
34
+ import argparse
35
+ import datetime
36
+ import gc
37
+ import itertools
38
+ import json
39
+ import logging
40
+ import os
41
+ import textwrap
42
+ import time
43
+
44
+ import numpy as np
45
+ import pandas as pd
46
+ import torch
47
+ from benchmark_helper import setup_logger
48
+ from llama_inputs import add_io_bindings_as_tensors, get_initial_inputs_and_outputs
49
+ from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
50
+
51
+ import onnxruntime as ort
52
+
53
+ logger = logging.getLogger(__name__)
54
+
55
+
56
+ def get_model(args: argparse.Namespace):
57
+ if args.benchmark_type in {"pt-eager", "pt-compile"}:
58
+ model = None
59
+ if args.onnx_precision == "int4" and args.device == "cuda":
60
+ bnb_config = BitsAndBytesConfig(
61
+ load_in_4bit=True,
62
+ bnb_4bit_use_double_quant=True,
63
+ bnb_4bit_quant_type="nf4",
64
+ bnb_4bit_compute_dtype=torch.float16,
65
+ )
66
+
67
+ model = AutoModelForCausalLM.from_pretrained(
68
+ args.hf_dir_path if args.hf_dir_path != "" else args.model_name,
69
+ cache_dir=args.cache_dir,
70
+ torch_dtype=args.torch_dtype,
71
+ use_auth_token=args.auth,
72
+ trust_remote_code=args.trust,
73
+ use_cache=True,
74
+ attn_implementation="flash_attention_2",
75
+ quantization_config=bnb_config,
76
+ max_memory={args.device_id: "80GB"},
77
+ )
78
+ else:
79
+ try:
80
+ model = AutoModelForCausalLM.from_pretrained(
81
+ args.hf_dir_path if args.hf_dir_path != "" else args.model_name,
82
+ cache_dir=args.cache_dir,
83
+ torch_dtype=args.torch_dtype,
84
+ use_auth_token=args.auth,
85
+ trust_remote_code=args.trust,
86
+ use_cache=True,
87
+ attn_implementation=("flash_attention_2" if args.device == "cuda" else "sdpa"),
88
+ ).to(args.target_device)
89
+ except Exception as e:
90
+ # When flash_attention or sdpa doesn't support a model, it throws an exception.
91
+ # Rather than stopping a process, run as eager mode.
92
+ print("Try to load a model using eager mode: ", e)
93
+ model = AutoModelForCausalLM.from_pretrained(
94
+ args.hf_dir_path if args.hf_dir_path != "" else args.model_name,
95
+ cache_dir=args.cache_dir,
96
+ torch_dtype=args.torch_dtype,
97
+ use_auth_token=args.auth,
98
+ trust_remote_code=args.trust,
99
+ use_cache=True,
100
+ attn_implementation="eager",
101
+ ).to(args.target_device)
102
+
103
+ model.eval()
104
+
105
+ if args.benchmark_type == "pt-compile":
106
+ model = torch.compile(model)
107
+
108
+ else:
109
+ sess_options = ort.SessionOptions()
110
+ ep = (
111
+ ("CUDAExecutionProvider", {"device_id": args.device_id})
112
+ if args.device == "cuda"
113
+ else "CPUExecutionProvider"
114
+ )
115
+ model = ort.InferenceSession(args.onnx_model_path, sess_options=sess_options, providers=[ep])
116
+
117
+ return model
118
+
119
+
120
+ def run_inference(args, model, runs, inputs, outputs):
121
+ if args.benchmark_type == "pt-compile":
122
+ with torch.no_grad():
123
+ outputs = model(**inputs)
124
+
125
+ # Synchronize inputs
126
+ io_binding = None
127
+ if args.benchmark_type in {"pt-eager", "pt-compile"}:
128
+ if args.device != "cpu":
129
+ torch.cuda.synchronize(args.target_device)
130
+ else:
131
+ io_binding = add_io_bindings_as_tensors(model, inputs, outputs, args.use_fp16, args.use_buffer_share)
132
+ io_binding.synchronize_inputs()
133
+
134
+ # Run inference
135
+ start = time.perf_counter()
136
+ for _ in range(runs):
137
+ if args.benchmark_type in {"pt-eager", "pt-compile"}:
138
+ with torch.no_grad():
139
+ outputs = model(**inputs)
140
+ if args.device != "cpu":
141
+ torch.cuda.synchronize(args.target_device)
142
+ else:
143
+ model.run_with_iobinding(io_binding)
144
+ io_binding.synchronize_outputs()
145
+
146
+ end = time.perf_counter()
147
+ avg = (end - start) / runs
148
+ return avg, outputs
149
+
150
+
151
+ def prepare_model_for_inference(args, model, config, tokenizer, prompt_length, prompt):
152
+ clear_cache()
153
+ inputs, outputs = get_initial_inputs_and_outputs(
154
+ config, tokenizer, prompt_length, prompt, args.target_device, args.use_fp16, args.use_buffer_share, args.engine
155
+ )
156
+ _, outputs = run_inference(args, model, args.warmup_runs, inputs, outputs)
157
+ return inputs, outputs
158
+
159
+
160
+ def clear_cache():
161
+ gc.collect()
162
+ torch.cuda.empty_cache()
163
+
164
+
165
+ def save_results(results, filename, gen_length):
166
+ df = pd.DataFrame(
167
+ results,
168
+ columns=[
169
+ "Batch Size",
170
+ "Prompt Length",
171
+ "Prompt Processing Latency (ms)",
172
+ "Prompt Processing Throughput (tps)",
173
+ "Sampling Latency (ms)",
174
+ "Sampling Throughput (tps)",
175
+ "First Token Generated Latency (ms)",
176
+ "First Token Generated Throughput (tps)",
177
+ f"Average Latency of First {gen_length // 2} Tokens Generated (ms)",
178
+ f"Average Throughput of First {gen_length // 2} Tokens Generated (tps)",
179
+ f"Average Latency of First {gen_length} Tokens Generated (ms)",
180
+ f"Average Throughput of First {gen_length} Tokens Generated (tps)",
181
+ "Wall-Clock Latency (s)",
182
+ "Wall-Clock Throughput (tps)",
183
+ ],
184
+ )
185
+
186
+ df.to_csv(filename, index=False)
187
+ logger.info(f"Results saved in {filename}!")
188
+
189
+
190
+ def get_args():
191
+ parser = argparse.ArgumentParser()
192
+
193
+ parser.add_argument(
194
+ "-bt",
195
+ "--benchmark-type",
196
+ type=str,
197
+ required=True,
198
+ choices=["pt-eager", "pt-compile", "ort"],
199
+ )
200
+
201
+ parser.add_argument(
202
+ "-m",
203
+ "--model-name",
204
+ type=str,
205
+ required=False,
206
+ help="Hugging Face name of model (e.g. 'meta-llama/Llama-2-7b-hf')",
207
+ )
208
+
209
+ parser.add_argument(
210
+ "-a",
211
+ "--auth",
212
+ default=False,
213
+ action="store_true",
214
+ help="Use Hugging Face authentication token to access model",
215
+ )
216
+
217
+ parser.add_argument(
218
+ "-t",
219
+ "--trust",
220
+ default=False,
221
+ action="store_true",
222
+ help="Whether or not to allow for custom models defined on the Hugging Face Hub in their own modeling files",
223
+ )
224
+
225
+ parser.add_argument(
226
+ "-c",
227
+ "--cache-dir",
228
+ type=str,
229
+ default=os.path.join(".", "model_cache"),
230
+ help="Path to directory containing all Hugging Face files (e.g. config, tokenizer, PyTorch model). Use when loading model as `AutoModel.from_pretrained(model_name, cache_dir=cache_dir)`.",
231
+ )
232
+
233
+ parser.add_argument(
234
+ "--hf-dir-path",
235
+ type=str,
236
+ default="",
237
+ help="Path to directory containing all Hugging Face files (e.g. config, tokenizer, PyTorch model). Use when loading model as `AutoModel.from_pretrained(folder_path)`.",
238
+ )
239
+
240
+ parser.add_argument(
241
+ "-o",
242
+ "--onnx-model-path",
243
+ required=False,
244
+ help="Path to ONNX model",
245
+ )
246
+
247
+ parser.add_argument(
248
+ "-f",
249
+ "--prompts-file",
250
+ required=True,
251
+ default=os.path.join(".", "models", "llama", "prompts.json"),
252
+ help="JSON file containing entries in the format 'prompt length: prompt' where prompt length = tokenized length of prompt",
253
+ )
254
+
255
+ parser.add_argument(
256
+ "--use_buffer_share",
257
+ default=False,
258
+ action="store_true",
259
+ help="Use when GroupQueryAttention (GQA) is in ONNX model",
260
+ )
261
+
262
+ parser.add_argument(
263
+ "--anomaly-filtering",
264
+ default=False,
265
+ action="store_true",
266
+ help="Use this flag to filter anomaly accelerator times for tokens generated. \
267
+ This may give more accurate latency and throughput metrics for tokens generated. \
268
+ Wall-clock metrics are still reported with anomaly times though.",
269
+ ),
270
+
271
+ parser.add_argument(
272
+ "-b",
273
+ "--batch-sizes",
274
+ default="1 2",
275
+ )
276
+
277
+ parser.add_argument(
278
+ "-s",
279
+ "--prompt-lengths",
280
+ default="16 64 256 1024",
281
+ )
282
+
283
+ parser.add_argument(
284
+ "-p",
285
+ "--precision",
286
+ required=True,
287
+ type=str,
288
+ default="fp32",
289
+ choices=["int4", "int8", "fp16", "fp32"],
290
+ help="Precision for model. For ONNX models, the model's precision should be set before running this script.",
291
+ )
292
+
293
+ parser.add_argument(
294
+ "-g",
295
+ "--generation-length",
296
+ type=int,
297
+ default=256,
298
+ help="Number of new tokens to generate",
299
+ )
300
+
301
+ parser.add_argument(
302
+ "-d",
303
+ "--device",
304
+ type=str,
305
+ default="cuda" if torch.cuda.is_available() else "cpu",
306
+ choices=["cpu", "cuda"],
307
+ )
308
+
309
+ parser.add_argument("-id", "--device-id", type=int, default=0)
310
+ parser.add_argument("-w", "--warmup-runs", type=int, default=5)
311
+ parser.add_argument("-n", "--num-runs", type=int, default=100)
312
+ parser.add_argument("--seed", type=int, default=2)
313
+
314
+ args = parser.parse_args()
315
+
316
+ # Set seed properties
317
+ np.random.seed(args.seed)
318
+ torch.manual_seed(args.seed)
319
+
320
+ # Set runtime properties
321
+ if "ort" in args.benchmark_type:
322
+ setattr(args, "execution_provider", f"{args.device.upper()}ExecutionProvider") # noqa: B010
323
+ if args.execution_provider == "CUDAExecutionProvider":
324
+ args.execution_provider = (args.execution_provider, {"device_id": args.device_id})
325
+
326
+ # Check that paths have been specified for any benchmarking with ORT
327
+ if args.benchmark_type == "ort":
328
+ assert args.onnx_model_path, "Please specify a path to `--onnx-model-path`"
329
+
330
+ args.batch_sizes = args.batch_sizes.split(" ")
331
+ args.prompt_lengths = args.prompt_lengths.split(" ")
332
+
333
+ # Use FP32 precision for FP32, INT8, INT4 CPU models, use FP16 precision for FP16 and INT4 GPU models
334
+ setattr(args, "onnx_precision", args.precision) # noqa: B010
335
+ args.precision = (
336
+ "fp32" if args.precision in {"int8", "fp32"} or (args.precision == "int4" and args.device == "cpu") else "fp16"
337
+ )
338
+
339
+ target_device = f"cuda:{args.device_id}" if args.device != "cpu" else args.device
340
+ torch_dtype = torch.float16 if args.precision == "fp16" else torch.float32
341
+ engine = "ort" if args.benchmark_type == "ort" else "pt"
342
+ setattr(args, "target_device", target_device) # noqa: B010
343
+ setattr(args, "torch_dtype", torch_dtype) # noqa: B010
344
+ setattr(args, "engine", engine) # noqa: B010
345
+ setattr(args, "use_fp16", args.precision == "fp16") # noqa: B010
346
+
347
+ args.use_buffer_share = args.use_buffer_share and engine == "ort"
348
+
349
+ return args
350
+
351
+
352
+ def main():
353
+ args = get_args()
354
+ setup_logger(False)
355
+ logger.info(args.__dict__)
356
+
357
+ # Get prompts and prompt sizes
358
+ size_to_prompt = None
359
+ with open(args.prompts_file) as f:
360
+ size_to_prompt = json.load(f, object_hook=lambda d: {int(k): v for k, v in d.items()})
361
+
362
+ # Get config, tokenizer, and model
363
+ config = AutoConfig.from_pretrained(
364
+ args.hf_dir_path if args.hf_dir_path != "" else args.model_name,
365
+ cache_dir=args.cache_dir,
366
+ use_auth_token=args.auth,
367
+ trust_remote_code=args.trust,
368
+ )
369
+ tokenizer = AutoTokenizer.from_pretrained(
370
+ args.hf_dir_path if args.hf_dir_path != "" else args.model_name,
371
+ cache_dir=args.cache_dir,
372
+ use_auth_token=args.auth,
373
+ trust_remote_code=args.trust,
374
+ )
375
+ model = get_model(args)
376
+
377
+ all_csv_metrics = []
378
+ for batch_size, prompt_length in itertools.product(args.batch_sizes, args.prompt_lengths):
379
+ batch_size, prompt_length = int(batch_size), int(prompt_length) # noqa: PLW2901
380
+ logger.info(f"Running batch size = {batch_size}, prompt length = {prompt_length}")
381
+ clear_cache()
382
+ max_length = prompt_length + args.generation_length
383
+
384
+ if prompt_length not in size_to_prompt:
385
+ raise NotImplementedError(
386
+ textwrap.dedent(
387
+ f"""
388
+ A prompt of size {prompt_length} was not found in '{args.prompts_file}'. There are a couple of solutions to fix this.
389
+ 1) You can change one of the keys in '{args.prompts_file}' to be {prompt_length}.
390
+ If {prompt_length} < actual prompt's length, the benchmark E2E tool will repeat the first word in the prompt until {prompt_length} = actual prompt's length.
391
+ If {prompt_length} > actual prompt's length, the benchmark E2E tool will automatically trim the actual prompt's length so that {prompt_length} = actual prompt's length.
392
+ 2) You can add a new key-value entry in '{args.prompts_file}' of the form '{prompt_length}': 'your prompt goes here'.
393
+ """
394
+ )
395
+ )
396
+ prompt = [size_to_prompt[prompt_length]] * batch_size
397
+ csv_metrics = [batch_size, prompt_length]
398
+
399
+ try:
400
+ # Measure prompt processing
401
+ logger.info("Measuring prompt processing...")
402
+ inputs, outputs = prepare_model_for_inference(args, model, config, tokenizer, prompt_length, prompt)
403
+ accelerator_prompt_latency_s, outputs = run_inference(args, model, args.num_runs, inputs, outputs)
404
+
405
+ # Calculate prompt metrics
406
+ accelerator_prompt_latency_ms = accelerator_prompt_latency_s * 1000
407
+ accelerator_prompt_thrpt = batch_size * (prompt_length / accelerator_prompt_latency_s)
408
+ logger.info(f"Average Latency of Prompt Processing: {accelerator_prompt_latency_ms} ms")
409
+ logger.info(
410
+ f"Average Throughput of Prompt Processing: {batch_size * (prompt_length / accelerator_prompt_latency_s)} tps"
411
+ )
412
+ csv_metrics.extend([accelerator_prompt_latency_ms, accelerator_prompt_thrpt])
413
+
414
+ # Measure token generation
415
+ logger.info("Measuring token generation...")
416
+ clear_cache()
417
+ inputs, outputs = prepare_model_for_inference(args, model, config, tokenizer, prompt_length, prompt)
418
+
419
+ all_token_ids = inputs["input_ids"].clone()
420
+ current_length = all_token_ids.shape[-1]
421
+ num_heads = config.num_key_value_heads
422
+ head_size = (
423
+ config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
424
+ )
425
+
426
+ has_eos = torch.zeros(batch_size, device=args.target_device, dtype=torch.bool)
427
+
428
+ # 0th entry will have prompt accelerator time, 1st entry onwards will have token generation accelerator time
429
+ accelerator_times = []
430
+ sampling_times = [] # cost to sample after each model run
431
+
432
+ wall_clock_start_time = time.perf_counter()
433
+ while current_length <= max_length:
434
+ # Run inference
435
+ accelerator_time_latency_s, outputs = run_inference(args, model, 1, inputs, outputs)
436
+ accelerator_times.append(accelerator_time_latency_s)
437
+
438
+ # Sample with argmax (greedy search)
439
+ sampling_start_time = time.perf_counter()
440
+ if outputs["logits"].shape[1] > 1:
441
+ prompt_end_indices = inputs["attention_mask"].sum(1) - 1
442
+ idxs = (
443
+ prompt_end_indices.unsqueeze(dim=1)
444
+ .repeat(1, config.vocab_size)
445
+ .view(batch_size, 1, config.vocab_size)
446
+ )
447
+ next_token_logits = torch.gather(outputs["logits"], 1, idxs).squeeze()
448
+ else:
449
+ next_token_logits = outputs["logits"][:, -1, :]
450
+ next_tokens = torch.argmax(next_token_logits, dim=-1)
451
+
452
+ # Check if we previously reached EOS token id or if generated token id is EOS token id
453
+ has_eos = has_eos | next_tokens == tokenizer.eos_token_id
454
+
455
+ # Determine which new tokens to add to list of all token ids
456
+ # Add EOS token ids for batch entries that ended early (ragged batching scenario where some batch entries ended early and some haven't)
457
+ tokens_to_add = next_tokens.masked_fill(has_eos, tokenizer.eos_token_id).reshape([batch_size, 1])
458
+ sampling_end_time = time.perf_counter()
459
+ sampling_times.append(sampling_end_time - sampling_start_time)
460
+
461
+ all_token_ids = torch.cat([all_token_ids, tokens_to_add], dim=-1)
462
+ current_length += 1
463
+
464
+ # Update inputs for next inference run
465
+ inputs["input_ids"] = tokens_to_add
466
+ inputs["attention_mask"] = torch.cat(
467
+ [inputs["attention_mask"], (~has_eos).to(torch.int64).reshape(batch_size, 1)], 1
468
+ )
469
+ if "position_ids" in inputs:
470
+ inputs["position_ids"] = torch.max(inputs["position_ids"], dim=1)[0].reshape(batch_size, 1) + 1
471
+
472
+ # Set logits to zeros for next inference run and re-use memory buffer
473
+ if outputs["logits"].shape[1] != 1:
474
+ outputs["logits"] = outputs["logits"][:, :1, :].contiguous()
475
+ outputs["logits"].zero_()
476
+
477
+ # Update KV caches for next inference run
478
+ if args.engine == "pt":
479
+ # Update KV caches for PyTorch
480
+ inputs["past_key_values"] = outputs["past_key_values"]
481
+ elif not args.use_buffer_share:
482
+ # Update KV caches for ONNX Runtime if buffer sharing is not used
483
+ for i in range(config.num_hidden_layers):
484
+ inputs[f"past_key_values.{i}.key"] = outputs[f"present.{i}.key"]
485
+ inputs[f"past_key_values.{i}.value"] = outputs[f"present.{i}.value"]
486
+
487
+ new_sequence_length = inputs["attention_mask"].shape[1]
488
+ for i in range(config.num_hidden_layers):
489
+ present_key = torch.zeros(
490
+ batch_size,
491
+ num_heads,
492
+ new_sequence_length,
493
+ head_size,
494
+ device=args.target_device,
495
+ dtype=args.torch_dtype,
496
+ )
497
+ present_value = torch.zeros(
498
+ batch_size,
499
+ num_heads,
500
+ new_sequence_length,
501
+ head_size,
502
+ device=args.target_device,
503
+ dtype=args.torch_dtype,
504
+ )
505
+ outputs.update(
506
+ {
507
+ f"present.{i}.key": present_key.contiguous(),
508
+ f"present.{i}.value": present_value.contiguous(),
509
+ }
510
+ )
511
+
512
+ wall_clock_end_time = time.perf_counter()
513
+
514
+ # Filter out any anomaly accelerator times (e.g. for `torch.compile`)
515
+ accelerator_times.pop(0) # Remove prompt processing time
516
+ if args.anomaly_filtering:
517
+ anomaly_threshold_factor = 10
518
+ min_time_s = min(accelerator_times)
519
+ orig_size = len(accelerator_times)
520
+ accelerator_times = list(
521
+ filter(lambda acc_time: acc_time < anomaly_threshold_factor * min_time_s, accelerator_times)
522
+ )
523
+ new_size = len(accelerator_times)
524
+ logger.info(
525
+ f"Filtered out {orig_size - new_size} anomaly accelerator times that are {anomaly_threshold_factor}x greater than {min_time_s * 1000} ms..."
526
+ )
527
+
528
+ #######################################################
529
+ # Calculate sampling and first token generated metrics
530
+ #######################################################
531
+
532
+ # Calculate sampling metrics
533
+ avg_sampling_latency_s = sum(sampling_times) / len(sampling_times)
534
+ avg_sampling_latency_ms = avg_sampling_latency_s * 1000
535
+ avg_sampling_thrpt = batch_size * (1 / avg_sampling_latency_s)
536
+ logger.info(f"Average Latency of Sampling: {avg_sampling_latency_ms} ms")
537
+ logger.info(f"Average Throughput of Sampling: {avg_sampling_thrpt} tps")
538
+
539
+ # Calculate first token generated metrics
540
+ first_token_latency_s = accelerator_times[0]
541
+ first_token_latency_ms = first_token_latency_s * 1000
542
+ first_token_thrpt = batch_size * (1 / first_token_latency_s)
543
+ logger.info(f"Latency of First Token Generated: {first_token_latency_ms} ms")
544
+ logger.info(f"Throughput of First Token Generated: {first_token_thrpt} tps")
545
+
546
+ ####################################################
547
+ # Calculate first `halfway` token generated metrics
548
+ ####################################################
549
+
550
+ halfway = args.generation_length // 2
551
+ halfway_token_latency_s = sum(accelerator_times[:halfway]) / len(accelerator_times[:halfway])
552
+ halfway_token_latency_ms = halfway_token_latency_s * 1000
553
+ halfway_token_thrpt = batch_size * (1 / halfway_token_latency_s)
554
+ logger.info(f"Average Latency of First {halfway} Tokens Generated: {halfway_token_latency_ms} ms")
555
+ logger.info(f"Average Throughput of First {halfway} Tokens Generated: {halfway_token_thrpt} tps")
556
+
557
+ #########################################
558
+ # Calculate all tokens generated metrics
559
+ #########################################
560
+
561
+ all_token_latency_s = sum(accelerator_times) / len(accelerator_times)
562
+ all_token_latency_ms = all_token_latency_s * 1000
563
+ all_token_thrpt = batch_size * (1 / all_token_latency_s)
564
+ logger.info(
565
+ f"Average Latency of First {args.generation_length} Tokens Generated: {all_token_latency_ms} ms"
566
+ )
567
+ logger.info(f"Average Throughput of First {args.generation_length} Tokens Generated: {all_token_thrpt} tps")
568
+
569
+ ###############################
570
+ # Calculate wall clock metrics
571
+ ###############################
572
+
573
+ wall_clock_latency_s = wall_clock_end_time - wall_clock_start_time
574
+ wall_clock_thrpt = batch_size * ((prompt_length + args.generation_length) / wall_clock_latency_s)
575
+ logger.info(f"Wall-Clock Latency: {wall_clock_latency_s} s")
576
+ logger.info(
577
+ f"Wall-Clock Throughput: {batch_size * ((prompt_length + args.generation_length) / wall_clock_latency_s)} tps"
578
+ )
579
+
580
+ # Add metrics to CSV
581
+ logger.info("Adding results to CSV")
582
+ csv_metrics.extend(
583
+ [
584
+ avg_sampling_latency_ms,
585
+ avg_sampling_thrpt,
586
+ first_token_latency_ms,
587
+ first_token_thrpt,
588
+ halfway_token_latency_ms,
589
+ halfway_token_thrpt,
590
+ all_token_latency_ms,
591
+ all_token_thrpt,
592
+ wall_clock_latency_s,
593
+ wall_clock_thrpt,
594
+ ]
595
+ )
596
+ all_csv_metrics.append(csv_metrics)
597
+
598
+ except Exception as e:
599
+ logger.info(f"Could not benchmark at batch size = {batch_size}, prompt length = {prompt_length} - {e}")
600
+
601
+ filename = f"benchmark_{args.engine}_e2e_{datetime.datetime.now():%Y-%m-%d_%H:%M:%S}.csv"
602
+ save_results(all_csv_metrics, filename, args.generation_length)
603
+
604
+
605
+ if __name__ == "__main__":
606
+ main()