onnxruntime-directml 1.20.0__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (305) hide show
  1. onnxruntime/LICENSE +21 -0
  2. onnxruntime/Privacy.md +21 -0
  3. onnxruntime/ThirdPartyNotices.txt +6508 -0
  4. onnxruntime/__init__.py +78 -0
  5. onnxruntime/backend/__init__.py +6 -0
  6. onnxruntime/backend/backend.py +174 -0
  7. onnxruntime/backend/backend_rep.py +53 -0
  8. onnxruntime/capi/DirectML.dll +0 -0
  9. onnxruntime/capi/__init__.py +4 -0
  10. onnxruntime/capi/_ld_preload.py +7 -0
  11. onnxruntime/capi/_pybind_state.py +33 -0
  12. onnxruntime/capi/convert_npz_to_onnx_adapter.py +48 -0
  13. onnxruntime/capi/onnxruntime.dll +0 -0
  14. onnxruntime/capi/onnxruntime_collect_build_info.py +47 -0
  15. onnxruntime/capi/onnxruntime_inference_collection.py +1108 -0
  16. onnxruntime/capi/onnxruntime_providers_shared.dll +0 -0
  17. onnxruntime/capi/onnxruntime_pybind11_state.pyd +0 -0
  18. onnxruntime/capi/onnxruntime_validation.py +150 -0
  19. onnxruntime/capi/version_info.py +2 -0
  20. onnxruntime/datasets/__init__.py +17 -0
  21. onnxruntime/datasets/logreg_iris.onnx +0 -0
  22. onnxruntime/datasets/mul_1.onnx +0 -0
  23. onnxruntime/datasets/sigmoid.onnx +13 -0
  24. onnxruntime/quantization/CalTableFlatBuffers/KeyValue.py +78 -0
  25. onnxruntime/quantization/CalTableFlatBuffers/TrtTable.py +90 -0
  26. onnxruntime/quantization/CalTableFlatBuffers/__init__.py +0 -0
  27. onnxruntime/quantization/__init__.py +16 -0
  28. onnxruntime/quantization/base_quantizer.py +532 -0
  29. onnxruntime/quantization/calibrate.py +1245 -0
  30. onnxruntime/quantization/execution_providers/qnn/__init__.py +2 -0
  31. onnxruntime/quantization/execution_providers/qnn/fusion_lpnorm.py +132 -0
  32. onnxruntime/quantization/execution_providers/qnn/mixed_precision_overrides_utils.py +413 -0
  33. onnxruntime/quantization/execution_providers/qnn/preprocess.py +307 -0
  34. onnxruntime/quantization/execution_providers/qnn/quant_config.py +387 -0
  35. onnxruntime/quantization/fusions/__init__.py +3 -0
  36. onnxruntime/quantization/fusions/fusion.py +311 -0
  37. onnxruntime/quantization/fusions/fusion_gelu.py +272 -0
  38. onnxruntime/quantization/fusions/fusion_layernorm.py +135 -0
  39. onnxruntime/quantization/matmul_4bits_quantizer.py +1480 -0
  40. onnxruntime/quantization/matmul_bnb4_quantizer.py +240 -0
  41. onnxruntime/quantization/onnx_model.py +580 -0
  42. onnxruntime/quantization/onnx_quantizer.py +1008 -0
  43. onnxruntime/quantization/operators/__init__.py +2 -0
  44. onnxruntime/quantization/operators/activation.py +119 -0
  45. onnxruntime/quantization/operators/argmax.py +18 -0
  46. onnxruntime/quantization/operators/attention.py +73 -0
  47. onnxruntime/quantization/operators/base_operator.py +26 -0
  48. onnxruntime/quantization/operators/binary_op.py +72 -0
  49. onnxruntime/quantization/operators/concat.py +62 -0
  50. onnxruntime/quantization/operators/conv.py +258 -0
  51. onnxruntime/quantization/operators/direct_q8.py +78 -0
  52. onnxruntime/quantization/operators/embed_layernorm.py +121 -0
  53. onnxruntime/quantization/operators/gather.py +64 -0
  54. onnxruntime/quantization/operators/gavgpool.py +62 -0
  55. onnxruntime/quantization/operators/gemm.py +166 -0
  56. onnxruntime/quantization/operators/lstm.py +117 -0
  57. onnxruntime/quantization/operators/matmul.py +231 -0
  58. onnxruntime/quantization/operators/maxpool.py +34 -0
  59. onnxruntime/quantization/operators/norm.py +40 -0
  60. onnxruntime/quantization/operators/pad.py +100 -0
  61. onnxruntime/quantization/operators/pooling.py +67 -0
  62. onnxruntime/quantization/operators/qdq_base_operator.py +22 -0
  63. onnxruntime/quantization/operators/resize.py +34 -0
  64. onnxruntime/quantization/operators/softmax.py +74 -0
  65. onnxruntime/quantization/operators/split.py +63 -0
  66. onnxruntime/quantization/operators/where.py +87 -0
  67. onnxruntime/quantization/preprocess.py +141 -0
  68. onnxruntime/quantization/qdq_loss_debug.py +389 -0
  69. onnxruntime/quantization/qdq_quantizer.py +1187 -0
  70. onnxruntime/quantization/quant_utils.py +891 -0
  71. onnxruntime/quantization/quantize.py +748 -0
  72. onnxruntime/quantization/registry.py +106 -0
  73. onnxruntime/quantization/shape_inference.py +187 -0
  74. onnxruntime/quantization/tensor_quant_overrides.py +516 -0
  75. onnxruntime/tools/__init__.py +10 -0
  76. onnxruntime/tools/check_onnx_model_mobile_usability.py +47 -0
  77. onnxruntime/tools/convert_onnx_models_to_ort.py +377 -0
  78. onnxruntime/tools/file_utils.py +46 -0
  79. onnxruntime/tools/logger.py +11 -0
  80. onnxruntime/tools/make_dynamic_shape_fixed.py +72 -0
  81. onnxruntime/tools/mobile_helpers/__init__.py +0 -0
  82. onnxruntime/tools/mobile_helpers/coreml_supported_mlprogram_ops.md +33 -0
  83. onnxruntime/tools/mobile_helpers/coreml_supported_neuralnetwork_ops.md +43 -0
  84. onnxruntime/tools/mobile_helpers/nnapi_supported_ops.md +58 -0
  85. onnxruntime/tools/mobile_helpers/usability_checker.py +739 -0
  86. onnxruntime/tools/offline_tuning.py +169 -0
  87. onnxruntime/tools/onnx_model_utils.py +413 -0
  88. onnxruntime/tools/onnx_randomizer.py +85 -0
  89. onnxruntime/tools/onnxruntime_test.py +164 -0
  90. onnxruntime/tools/optimize_onnx_model.py +55 -0
  91. onnxruntime/tools/ort_format_model/__init__.py +25 -0
  92. onnxruntime/tools/ort_format_model/operator_type_usage_processors.py +663 -0
  93. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/__init__.py +0 -0
  94. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgType.py +7 -0
  95. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ArgTypeAndIndex.py +67 -0
  96. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Attribute.py +337 -0
  97. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/AttributeType.py +18 -0
  98. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Checkpoint.py +125 -0
  99. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedKernelCreateInfos.py +120 -0
  100. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedNodeIndexAndKernelDefHash.py +68 -0
  101. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSessionState.py +96 -0
  102. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DeprecatedSubGraphSessionState.py +72 -0
  103. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Dimension.py +71 -0
  104. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValue.py +80 -0
  105. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/DimensionValueType.py +8 -0
  106. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/EdgeEnd.py +32 -0
  107. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/FloatProperty.py +67 -0
  108. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Graph.py +320 -0
  109. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/InferenceSession.py +88 -0
  110. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/IntProperty.py +67 -0
  111. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrArgsEntry.py +91 -0
  112. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/KernelTypeStrResolver.py +78 -0
  113. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/MapType.py +71 -0
  114. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Model.py +223 -0
  115. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ModuleState.py +141 -0
  116. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Node.py +317 -0
  117. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeEdge.py +126 -0
  118. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodeType.py +7 -0
  119. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/NodesToOptimizeIndices.py +160 -0
  120. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OpIdKernelTypeStrArgsEntry.py +91 -0
  121. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OperatorSetId.py +67 -0
  122. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/OptimizerGroup.py +117 -0
  123. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ParameterOptimizerState.py +91 -0
  124. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/PropertyBag.py +152 -0
  125. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecord.py +105 -0
  126. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizationRecordContainerEntry.py +91 -0
  127. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/RuntimeOptimizations.py +79 -0
  128. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SequenceType.py +58 -0
  129. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Shape.py +78 -0
  130. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/SparseTensor.py +114 -0
  131. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringProperty.py +67 -0
  132. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/StringStringEntry.py +67 -0
  133. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/Tensor.py +203 -0
  134. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorDataType.py +26 -0
  135. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TensorTypeAndShape.py +71 -0
  136. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfo.py +83 -0
  137. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/TypeInfoValue.py +9 -0
  138. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/ValueInfo.py +84 -0
  139. onnxruntime/tools/ort_format_model/ort_flatbuffers_py/fbs/__init__.py +6 -0
  140. onnxruntime/tools/ort_format_model/ort_model_processor.py +86 -0
  141. onnxruntime/tools/ort_format_model/types.py +84 -0
  142. onnxruntime/tools/ort_format_model/utils.py +62 -0
  143. onnxruntime/tools/pytorch_export_contrib_ops.py +108 -0
  144. onnxruntime/tools/pytorch_export_helpers.py +131 -0
  145. onnxruntime/tools/qdq_helpers/__init__.py +0 -0
  146. onnxruntime/tools/qdq_helpers/optimize_qdq_model.py +37 -0
  147. onnxruntime/tools/reduced_build_config_parser.py +202 -0
  148. onnxruntime/tools/symbolic_shape_infer.py +3016 -0
  149. onnxruntime/tools/update_onnx_opset.py +31 -0
  150. onnxruntime/transformers/__init__.py +8 -0
  151. onnxruntime/transformers/affinity_helper.py +40 -0
  152. onnxruntime/transformers/benchmark.py +944 -0
  153. onnxruntime/transformers/benchmark_helper.py +646 -0
  154. onnxruntime/transformers/bert_perf_test.py +634 -0
  155. onnxruntime/transformers/bert_test_data.py +642 -0
  156. onnxruntime/transformers/compare_bert_results.py +246 -0
  157. onnxruntime/transformers/constants.py +47 -0
  158. onnxruntime/transformers/convert_generation.py +3124 -0
  159. onnxruntime/transformers/convert_tf_models_to_pytorch.py +205 -0
  160. onnxruntime/transformers/convert_to_packing_mode.py +387 -0
  161. onnxruntime/transformers/dynamo_onnx_helper.py +104 -0
  162. onnxruntime/transformers/float16.py +501 -0
  163. onnxruntime/transformers/fusion_attention.py +1235 -0
  164. onnxruntime/transformers/fusion_attention_clip.py +257 -0
  165. onnxruntime/transformers/fusion_attention_sam2.py +534 -0
  166. onnxruntime/transformers/fusion_attention_unet.py +1304 -0
  167. onnxruntime/transformers/fusion_attention_vae.py +301 -0
  168. onnxruntime/transformers/fusion_bart_attention.py +640 -0
  169. onnxruntime/transformers/fusion_base.py +137 -0
  170. onnxruntime/transformers/fusion_bias_add.py +58 -0
  171. onnxruntime/transformers/fusion_biasgelu.py +66 -0
  172. onnxruntime/transformers/fusion_biassplitgelu.py +111 -0
  173. onnxruntime/transformers/fusion_conformer_attention.py +143 -0
  174. onnxruntime/transformers/fusion_embedlayer.py +811 -0
  175. onnxruntime/transformers/fusion_fastgelu.py +360 -0
  176. onnxruntime/transformers/fusion_gelu.py +259 -0
  177. onnxruntime/transformers/fusion_gelu_approximation.py +25 -0
  178. onnxruntime/transformers/fusion_gemmfastgelu.py +122 -0
  179. onnxruntime/transformers/fusion_gpt_attention.py +546 -0
  180. onnxruntime/transformers/fusion_gpt_attention_megatron.py +355 -0
  181. onnxruntime/transformers/fusion_gpt_attention_no_past.py +260 -0
  182. onnxruntime/transformers/fusion_group_norm.py +179 -0
  183. onnxruntime/transformers/fusion_layernorm.py +465 -0
  184. onnxruntime/transformers/fusion_nhwc_conv.py +100 -0
  185. onnxruntime/transformers/fusion_options.py +340 -0
  186. onnxruntime/transformers/fusion_qordered_attention.py +421 -0
  187. onnxruntime/transformers/fusion_qordered_gelu.py +119 -0
  188. onnxruntime/transformers/fusion_qordered_layernorm.py +123 -0
  189. onnxruntime/transformers/fusion_qordered_matmul.py +217 -0
  190. onnxruntime/transformers/fusion_quickgelu.py +74 -0
  191. onnxruntime/transformers/fusion_reshape.py +173 -0
  192. onnxruntime/transformers/fusion_rotary_attention.py +1592 -0
  193. onnxruntime/transformers/fusion_shape.py +110 -0
  194. onnxruntime/transformers/fusion_simplified_layernorm.py +159 -0
  195. onnxruntime/transformers/fusion_skip_group_norm.py +255 -0
  196. onnxruntime/transformers/fusion_skiplayernorm.py +209 -0
  197. onnxruntime/transformers/fusion_transpose.py +168 -0
  198. onnxruntime/transformers/fusion_utils.py +307 -0
  199. onnxruntime/transformers/huggingface_models.py +167 -0
  200. onnxruntime/transformers/import_utils.py +20 -0
  201. onnxruntime/transformers/io_binding_helper.py +442 -0
  202. onnxruntime/transformers/large_model_exporter.py +395 -0
  203. onnxruntime/transformers/machine_info.py +221 -0
  204. onnxruntime/transformers/metrics.py +164 -0
  205. onnxruntime/transformers/models/bart/__init__.py +12 -0
  206. onnxruntime/transformers/models/bart/export.py +98 -0
  207. onnxruntime/transformers/models/bert/__init__.py +12 -0
  208. onnxruntime/transformers/models/bert/eval_squad.py +329 -0
  209. onnxruntime/transformers/models/gpt2/__init__.py +12 -0
  210. onnxruntime/transformers/models/gpt2/benchmark_gpt2.py +413 -0
  211. onnxruntime/transformers/models/gpt2/convert_to_onnx.py +561 -0
  212. onnxruntime/transformers/models/gpt2/gpt2_helper.py +1032 -0
  213. onnxruntime/transformers/models/gpt2/gpt2_parity.py +513 -0
  214. onnxruntime/transformers/models/gpt2/gpt2_tester.py +501 -0
  215. onnxruntime/transformers/models/gpt2/parity_check_helper.py +146 -0
  216. onnxruntime/transformers/models/llama/__init__.py +12 -0
  217. onnxruntime/transformers/models/llama/benchmark.py +703 -0
  218. onnxruntime/transformers/models/llama/benchmark_all.py +488 -0
  219. onnxruntime/transformers/models/llama/benchmark_e2e.py +606 -0
  220. onnxruntime/transformers/models/llama/convert_to_onnx.py +1027 -0
  221. onnxruntime/transformers/models/llama/dist_settings.py +57 -0
  222. onnxruntime/transformers/models/llama/llama_inputs.py +503 -0
  223. onnxruntime/transformers/models/llama/llama_parity.py +309 -0
  224. onnxruntime/transformers/models/llama/llama_torch.py +47 -0
  225. onnxruntime/transformers/models/llama/quant_kv_dataloader.py +108 -0
  226. onnxruntime/transformers/models/longformer/__init__.py +12 -0
  227. onnxruntime/transformers/models/longformer/benchmark_longformer.py +821 -0
  228. onnxruntime/transformers/models/longformer/convert_to_onnx.py +413 -0
  229. onnxruntime/transformers/models/longformer/generate_test_data.py +347 -0
  230. onnxruntime/transformers/models/longformer/longformer_helper.py +77 -0
  231. onnxruntime/transformers/models/phi2/__init__.py +12 -0
  232. onnxruntime/transformers/models/phi2/convert_to_onnx.py +576 -0
  233. onnxruntime/transformers/models/phi2/inference_example.py +414 -0
  234. onnxruntime/transformers/models/sam2/__init__.py +12 -0
  235. onnxruntime/transformers/models/sam2/benchmark_sam2.py +625 -0
  236. onnxruntime/transformers/models/sam2/convert_to_onnx.py +260 -0
  237. onnxruntime/transformers/models/sam2/image_decoder.py +273 -0
  238. onnxruntime/transformers/models/sam2/image_encoder.py +186 -0
  239. onnxruntime/transformers/models/sam2/mask_decoder.py +208 -0
  240. onnxruntime/transformers/models/sam2/nvtx_helper.py +33 -0
  241. onnxruntime/transformers/models/sam2/prompt_encoder.py +189 -0
  242. onnxruntime/transformers/models/sam2/sam2_demo.py +322 -0
  243. onnxruntime/transformers/models/sam2/sam2_image_onnx_predictor.py +280 -0
  244. onnxruntime/transformers/models/sam2/sam2_utils.py +147 -0
  245. onnxruntime/transformers/models/stable_diffusion/__init__.py +12 -0
  246. onnxruntime/transformers/models/stable_diffusion/benchmark.py +1429 -0
  247. onnxruntime/transformers/models/stable_diffusion/benchmark_controlnet.py +426 -0
  248. onnxruntime/transformers/models/stable_diffusion/demo_txt2img.py +102 -0
  249. onnxruntime/transformers/models/stable_diffusion/demo_txt2img_xl.py +268 -0
  250. onnxruntime/transformers/models/stable_diffusion/demo_utils.py +778 -0
  251. onnxruntime/transformers/models/stable_diffusion/diffusion_models.py +1319 -0
  252. onnxruntime/transformers/models/stable_diffusion/diffusion_schedulers.py +1181 -0
  253. onnxruntime/transformers/models/stable_diffusion/engine_builder.py +296 -0
  254. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_cuda.py +388 -0
  255. onnxruntime/transformers/models/stable_diffusion/engine_builder_ort_trt.py +288 -0
  256. onnxruntime/transformers/models/stable_diffusion/engine_builder_tensorrt.py +395 -0
  257. onnxruntime/transformers/models/stable_diffusion/engine_builder_torch.py +108 -0
  258. onnxruntime/transformers/models/stable_diffusion/optimize_pipeline.py +350 -0
  259. onnxruntime/transformers/models/stable_diffusion/ort_optimizer.py +136 -0
  260. onnxruntime/transformers/models/stable_diffusion/pipeline_stable_diffusion.py +831 -0
  261. onnxruntime/transformers/models/stable_diffusion/trt_utilities.py +12 -0
  262. onnxruntime/transformers/models/t5/__init__.py +12 -0
  263. onnxruntime/transformers/models/t5/convert_to_onnx.py +278 -0
  264. onnxruntime/transformers/models/t5/past_helper.py +150 -0
  265. onnxruntime/transformers/models/t5/t5_decoder.py +438 -0
  266. onnxruntime/transformers/models/t5/t5_encoder.py +171 -0
  267. onnxruntime/transformers/models/t5/t5_encoder_decoder_init.py +299 -0
  268. onnxruntime/transformers/models/t5/t5_helper.py +272 -0
  269. onnxruntime/transformers/models/whisper/__init__.py +12 -0
  270. onnxruntime/transformers/models/whisper/benchmark.py +610 -0
  271. onnxruntime/transformers/models/whisper/benchmark_all.py +528 -0
  272. onnxruntime/transformers/models/whisper/convert_to_onnx.py +536 -0
  273. onnxruntime/transformers/models/whisper/whisper_chain.py +329 -0
  274. onnxruntime/transformers/models/whisper/whisper_decoder.py +402 -0
  275. onnxruntime/transformers/models/whisper/whisper_encoder.py +164 -0
  276. onnxruntime/transformers/models/whisper/whisper_encoder_decoder_init.py +306 -0
  277. onnxruntime/transformers/models/whisper/whisper_helper.py +524 -0
  278. onnxruntime/transformers/models/whisper/whisper_openai_helper.py +84 -0
  279. onnxruntime/transformers/onnx_exporter.py +717 -0
  280. onnxruntime/transformers/onnx_model.py +1569 -0
  281. onnxruntime/transformers/onnx_model_bart.py +142 -0
  282. onnxruntime/transformers/onnx_model_bert.py +481 -0
  283. onnxruntime/transformers/onnx_model_bert_keras.py +475 -0
  284. onnxruntime/transformers/onnx_model_bert_tf.py +589 -0
  285. onnxruntime/transformers/onnx_model_clip.py +40 -0
  286. onnxruntime/transformers/onnx_model_conformer.py +33 -0
  287. onnxruntime/transformers/onnx_model_gpt2.py +101 -0
  288. onnxruntime/transformers/onnx_model_phi.py +930 -0
  289. onnxruntime/transformers/onnx_model_sam2.py +138 -0
  290. onnxruntime/transformers/onnx_model_t5.py +791 -0
  291. onnxruntime/transformers/onnx_model_tnlr.py +227 -0
  292. onnxruntime/transformers/onnx_model_unet.py +259 -0
  293. onnxruntime/transformers/onnx_model_vae.py +43 -0
  294. onnxruntime/transformers/onnx_utils.py +55 -0
  295. onnxruntime/transformers/optimizer.py +612 -0
  296. onnxruntime/transformers/profiler.py +725 -0
  297. onnxruntime/transformers/quantize_helper.py +76 -0
  298. onnxruntime/transformers/shape_infer_helper.py +122 -0
  299. onnxruntime/transformers/shape_optimizer.py +401 -0
  300. onnxruntime/transformers/torch_onnx_export_helper.py +74 -0
  301. onnxruntime_directml-1.20.0.dist-info/METADATA +187 -0
  302. onnxruntime_directml-1.20.0.dist-info/RECORD +305 -0
  303. onnxruntime_directml-1.20.0.dist-info/WHEEL +5 -0
  304. onnxruntime_directml-1.20.0.dist-info/entry_points.txt +2 -0
  305. onnxruntime_directml-1.20.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,576 @@
1
+ # -------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft Corporation. All rights reserved.
3
+ # Licensed under the MIT License.
4
+ # --------------------------------------------------------------------------
5
+ from __future__ import annotations
6
+
7
+ import argparse
8
+ import logging
9
+ import os
10
+ from pathlib import Path
11
+
12
+ import onnx
13
+ import torch
14
+ from benchmark_helper import Precision
15
+ from fusion_options import AttentionOpType
16
+ from onnx_model import OnnxModel
17
+ from transformers import AutoConfig, AutoModelForCausalLM
18
+
19
+ from onnxruntime.quantization.matmul_4bits_quantizer import MatMul4BitsQuantizer
20
+
21
+
22
+ class ConvertPhi2ToONNX:
23
+ def __init__(
24
+ self,
25
+ device: torch.device,
26
+ model_class: str = "microsoft/phi-2",
27
+ cache_dir: str = "./cache",
28
+ ):
29
+ self.model_class = model_class
30
+ self.device = device
31
+ self.cache_dir = cache_dir
32
+ self.phi_config = AutoConfig.from_pretrained(self.model_class, trust_remote_code=True, cache_dir=self.cache_dir)
33
+ self.phi_model = None
34
+ self.batch_size = 2
35
+ self.sequence_length = 8
36
+ self.attn_op_type = None
37
+ self.precision = None
38
+ self.block_size = 16
39
+ self.accuracy_level = None
40
+
41
+ def set_quantization_params(self, block_size: int, accuracy_level: int | None):
42
+ self.block_size = block_size
43
+ self.accuracy_level = accuracy_level
44
+
45
+ def init_attn_type_and_precision(self, attn_op_type: AttentionOpType, precision: Precision):
46
+ self.attn_op_type = attn_op_type
47
+ self.precision = precision
48
+
49
+ def erase_onnx_model(self, onnx_path: str) -> None:
50
+ assert onnx_path.endswith(".onnx")
51
+ if not os.path.exists(onnx_path):
52
+ return
53
+
54
+ model = onnx.load_model(onnx_path, load_external_data=False)
55
+ onnx_data_path = None
56
+ for initializer in model.graph.initializer:
57
+ if initializer.data_location == 1 and initializer.external_data[0].key == "location":
58
+ onnx_data_path = "./" + initializer.external_data[0].value
59
+ break
60
+ logging.info(f"Erasing {onnx_path}...")
61
+ os.remove(onnx_path)
62
+ if onnx_data_path is not None:
63
+ onnx_data_path = os.path.join(Path(onnx_path).parent, onnx_data_path)
64
+ logging.info(f"Erasing {onnx_data_path}...")
65
+ os.remove(onnx_data_path)
66
+
67
+ def get_phi2_torch_model(self):
68
+ logging.info("Loading phi2 torch model...")
69
+ if self.phi_model is not None:
70
+ return
71
+ self.phi_model = AutoModelForCausalLM.from_pretrained(
72
+ self.model_class, trust_remote_code=True, cache_dir=self.cache_dir
73
+ )
74
+ self.phi_model.eval()
75
+ self.phi_model.to(self.device)
76
+
77
+ def get_phi2_torch_inputs(self, batch_size: int, sequence_length: int):
78
+ input_ids = torch.randint(
79
+ low=0,
80
+ high=self.phi_config.vocab_size,
81
+ size=(batch_size, sequence_length),
82
+ dtype=torch.int64,
83
+ device=self.device,
84
+ )
85
+ self.get_phi2_torch_model()
86
+ torch_inputs = self.phi_model.prepare_inputs_for_generation(
87
+ input_ids, past_key_values=self.phi_model(input_ids, use_cache=True)["past_key_values"]
88
+ )
89
+ return torch_inputs["input_ids"], torch_inputs["attention_mask"], torch_inputs["past_key_values"]
90
+
91
+ def dynamo_export(self, onnx_path: str):
92
+ input_ids, attention_mask, past_key_values = self.get_phi2_torch_inputs(self.batch_size, self.sequence_length)
93
+ self.phi_model(input_ids, attention_mask=attention_mask, past_key_values=past_key_values)
94
+
95
+ from torch._dynamo import config
96
+
97
+ config.capture_scalar_outputs = True
98
+
99
+ logging.info("Exporting Phi2 torch model to ONNX...")
100
+ torch.onnx.dynamo_export(
101
+ self.phi_model,
102
+ input_ids,
103
+ attention_mask=attention_mask,
104
+ past_key_values=past_key_values,
105
+ export_options=torch.onnx.ExportOptions(dynamic_shapes=True),
106
+ ).save(onnx_path)
107
+ onnx.checker.check_model(onnx_path)
108
+ onnx.shape_inference.infer_shapes_path(onnx_path)
109
+
110
+ def optimize_phi2_onnx(self, onnx_path: str, onnx_path_opt: str):
111
+ from fusion_options import FusionOptions
112
+ from optimizer import optimize_model
113
+
114
+ optimization_options = FusionOptions("phi")
115
+ optimization_options.set_attention_op_type(self.attn_op_type)
116
+ optimizer = optimize_model(
117
+ onnx_path,
118
+ model_type="phi",
119
+ num_heads=self.phi_config.num_attention_heads,
120
+ hidden_size=self.phi_config.hidden_size,
121
+ opt_level=0,
122
+ optimization_options=optimization_options,
123
+ only_onnxruntime=False,
124
+ )
125
+
126
+ fused_op_count = optimizer.get_fused_operator_statistics()
127
+ if optimizer.is_fully_optimized(fused_op_count):
128
+ logging.info("Model is fully optimized.")
129
+ else:
130
+ logging.info("Model is not fully optimized.")
131
+
132
+ if self.precision == Precision.FLOAT32:
133
+ optimizer.save_model_to_file(onnx_path_opt, use_external_data_format=True)
134
+ return
135
+
136
+ if (
137
+ self.precision == Precision.FLOAT16 or self.precision == Precision.INT4
138
+ ) and self.attn_op_type != AttentionOpType.MultiHeadAttention:
139
+ # We keep last three layers of Attention as float32 or bfloat16 to avoid overflow.
140
+ node_block_list = (
141
+ [
142
+ "Attention_29",
143
+ "Attention_30",
144
+ "Attention_31",
145
+ ]
146
+ if self.attn_op_type != AttentionOpType.PagedAttention
147
+ else []
148
+ ) # TODO: temp setting for paged attention
149
+ logging.info("Converting onnx model to float16/bfloat16...")
150
+ optimizer.convert_float_to_float16(
151
+ keep_io_types=False,
152
+ node_block_list=node_block_list,
153
+ use_symbolic_shape_infer=True,
154
+ use_bfloat16_as_blocked_nodes_dtype=self.attn_op_type == AttentionOpType.GroupQueryAttention,
155
+ )
156
+ logging.info("Converting onnx model to float16/bfloat16 done.")
157
+
158
+ if self.precision == Precision.FLOAT16:
159
+ optimizer.save_model_to_file(onnx_path_opt, use_external_data_format=True)
160
+ return
161
+ else:
162
+ assert self.precision == Precision.INT4
163
+ quant = MatMul4BitsQuantizer(
164
+ model=optimizer.model,
165
+ block_size=self.block_size,
166
+ is_symmetric=True,
167
+ accuracy_level=self.accuracy_level,
168
+ )
169
+ quant.process()
170
+ quant.model.save_model_to_file(onnx_path_opt, use_external_data_format=True)
171
+
172
+ # This function currently only works for phi2 model
173
+ def convert_to_use_cuda_graph(self, in_onnx_path: str, out_onnx_path: str):
174
+ onnx_model = OnnxModel(onnx.load(in_onnx_path, load_external_data=True))
175
+
176
+ from onnx import TensorProto, helper
177
+
178
+ graph = onnx_model.graph()
179
+ new_inputs = []
180
+ for vi in graph.input:
181
+ if "attention_mask" in vi.name:
182
+ vi_seqlen_k = helper.make_tensor_value_info(
183
+ "seqlens_k",
184
+ elem_type=TensorProto.INT32,
185
+ shape=["batch_size"],
186
+ )
187
+ vi_total_seq_len = helper.make_tensor_value_info(
188
+ "total_sequence_length",
189
+ elem_type=TensorProto.INT32,
190
+ shape=[1],
191
+ )
192
+ new_inputs.extend([vi_seqlen_k, vi_total_seq_len])
193
+ else:
194
+ new_inputs.append(vi)
195
+
196
+ graph.ClearField("input")
197
+ graph.input.extend(new_inputs)
198
+
199
+ gqas = onnx_model.get_nodes_by_op_type("GroupQueryAttention")
200
+ gqa = gqas[0]
201
+ seqlens_path = onnx_model.match_parent_path(
202
+ gqa,
203
+ ["Cast", "Sub", "ReduceSum", "Cast"],
204
+ [5, 0, 0, 0],
205
+ )
206
+ if seqlens_path is None:
207
+ raise RuntimeError("Failed to find seqlens path for GroupQueryAttention node.")
208
+ total_seq_len_path = onnx_model.match_parent_path(
209
+ gqa,
210
+ ["Cast", "Gather", "Shape"],
211
+ [6, 0, 0],
212
+ )
213
+ if total_seq_len_path is None:
214
+ raise RuntimeError("Failed to find total_seq_len path for GroupQueryAttention node.")
215
+ onnx_model.remove_nodes(seqlens_path)
216
+ onnx_model.remove_nodes(total_seq_len_path)
217
+
218
+ for gqa in gqas:
219
+ gqa.input[5] = "seqlens_k"
220
+ gqa.input[6] = "total_sequence_length"
221
+
222
+ onnx_model.save(onnx_model.model, out_onnx_path, save_as_external_data=True)
223
+
224
+
225
+ def parse_arguments():
226
+ parser = argparse.ArgumentParser()
227
+
228
+ parser.add_argument(
229
+ "--fp32_cpu",
230
+ required=False,
231
+ action="store_true",
232
+ help="Generate fp32 ONNX model for CPU",
233
+ )
234
+
235
+ parser.add_argument(
236
+ "--int4_cpu",
237
+ required=False,
238
+ action="store_true",
239
+ help="Generate int4 ONNX model for CPU",
240
+ )
241
+
242
+ parser.add_argument(
243
+ "--fp32_gpu",
244
+ required=False,
245
+ action="store_true",
246
+ help="Generate fp32 ONNX model for Nvidia GPUs",
247
+ )
248
+
249
+ parser.add_argument(
250
+ "--fp16_gpu",
251
+ required=False,
252
+ action="store_true",
253
+ help="Generate fp16 ONNX model for Nvidia GPUs",
254
+ )
255
+
256
+ parser.add_argument(
257
+ "--int4_gpu",
258
+ required=False,
259
+ action="store_true",
260
+ help="Generate int4 ONNX model for Nvidia GPUs",
261
+ )
262
+
263
+ parser.add_argument(
264
+ "--fp16_gpu_sm8x",
265
+ required=False,
266
+ action="store_true",
267
+ help="Generate fp16 ONNX model for Nvidia GPUs with CUDA architecture SM=80~89",
268
+ )
269
+
270
+ parser.add_argument(
271
+ "--int4_gpu_sm8x",
272
+ required=False,
273
+ action="store_true",
274
+ help="Generate int4 ONNX model for Nvidia GPUs with CUDA architecture SM=80~89",
275
+ )
276
+
277
+ parser.add_argument(
278
+ "--fp16_vllm",
279
+ required=False,
280
+ action="store_true",
281
+ help="Generate fp16 ONNX model for ORT VLLM",
282
+ )
283
+
284
+ parser.add_argument(
285
+ "--int4_vllm",
286
+ required=False,
287
+ action="store_true",
288
+ help="Generate int4 ONNX model for ORT VLLM",
289
+ )
290
+
291
+ parser.add_argument(
292
+ "--use_cuda_graph",
293
+ required=False,
294
+ action="store_true",
295
+ help="Use CUDA Graph in decoding process",
296
+ )
297
+
298
+ parser.add_argument(
299
+ "--overwrite",
300
+ required=False,
301
+ action="store_true",
302
+ help="Overwrite existing ONNX models",
303
+ )
304
+
305
+ parser.add_argument(
306
+ "--cache_dir",
307
+ required=False,
308
+ type=str,
309
+ default="./cache",
310
+ help="The cache directory for the pytorch model",
311
+ )
312
+
313
+ parser.add_argument(
314
+ "--device_id",
315
+ required=False,
316
+ type=int,
317
+ default=0,
318
+ help="The device id for the pytorch model",
319
+ )
320
+
321
+ parser.add_argument(
322
+ "--run_example",
323
+ required=False,
324
+ action="store_true",
325
+ help="Run ORT inference example",
326
+ )
327
+
328
+ parser.add_argument(
329
+ "--run_benchmark",
330
+ required=False,
331
+ action="store_true",
332
+ help="Run ORT benchmark",
333
+ )
334
+
335
+ parser.add_argument(
336
+ "--skip_export",
337
+ required=False,
338
+ action="store_true",
339
+ help="Skip exporting ONNX model",
340
+ )
341
+
342
+ parser.add_argument(
343
+ "--output_dir",
344
+ type=str,
345
+ help="The output directory for the ONNX models",
346
+ default="phi2_onnx_models",
347
+ )
348
+
349
+ parser.add_argument(
350
+ "--block_size",
351
+ required=False,
352
+ default=16,
353
+ type=int,
354
+ help="Block size to quantize with. See https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/quantization/matmul_4bits_quantizer.py for details.",
355
+ )
356
+
357
+ parser.add_argument(
358
+ "--int4_accuracy_level",
359
+ required=False,
360
+ type=int,
361
+ help="Accuracy level of the 4-bit quantized MatMul computation. "
362
+ "Refer to the MatMulNBits contrib op's 'accuracy_level' attribute for details "
363
+ "(https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#commicrosoftmatmulnbits).",
364
+ )
365
+
366
+ args = parser.parse_args()
367
+ return args
368
+
369
+
370
+ def main():
371
+ args = parse_arguments()
372
+
373
+ device = torch.device("cuda", args.device_id) if torch.cuda.is_available() else torch.device("cpu")
374
+
375
+ converter = ConvertPhi2ToONNX(device, cache_dir=args.cache_dir)
376
+ converter.set_quantization_params(args.block_size, args.int4_accuracy_level)
377
+
378
+ output_dir = args.output_dir
379
+
380
+ if not os.path.exists(output_dir):
381
+ os.makedirs(output_dir)
382
+
383
+ original_onnx_path = os.path.join(output_dir, "phi2_original.onnx")
384
+
385
+ if not args.skip_export:
386
+ if not os.path.exists(original_onnx_path) or args.overwrite:
387
+ converter.dynamo_export(original_onnx_path)
388
+
389
+ model_type_to_args = {
390
+ "fp32_cpu": (
391
+ AttentionOpType.MultiHeadAttention,
392
+ Precision.FLOAT32,
393
+ os.path.join(output_dir, "phi2_decoder_fp32_cpu.onnx"),
394
+ ),
395
+ "int4_cpu": (
396
+ AttentionOpType.MultiHeadAttention,
397
+ Precision.INT4,
398
+ os.path.join(output_dir, "phi2_decoder_int4_cpu.onnx"),
399
+ ),
400
+ "fp32_gpu": (
401
+ AttentionOpType.Attention,
402
+ Precision.FLOAT32,
403
+ os.path.join(output_dir, "phi2_decoder_fp32_gpu.onnx"),
404
+ ),
405
+ "fp16_gpu": (
406
+ AttentionOpType.Attention,
407
+ Precision.FLOAT16,
408
+ os.path.join(output_dir, "phi2_decoder_fp16_gpu.onnx"),
409
+ ),
410
+ "int4_gpu": (AttentionOpType.Attention, Precision.INT4, os.path.join(output_dir, "phi2_decoder_int4_gpu.onnx")),
411
+ "fp16_gpu_sm8x": (
412
+ AttentionOpType.GroupQueryAttention,
413
+ Precision.FLOAT16,
414
+ os.path.join(output_dir, "phi2_decoder_fp16_gpu_sm8x.onnx"),
415
+ ),
416
+ "int4_gpu_sm8x": (
417
+ AttentionOpType.GroupQueryAttention,
418
+ Precision.INT4,
419
+ os.path.join(output_dir, "phi2_decoder_int4_gpu_sm8x.onnx"),
420
+ ),
421
+ "fp16_vllm": (
422
+ AttentionOpType.PagedAttention,
423
+ Precision.FLOAT16,
424
+ os.path.join(output_dir, "phi2_decoder_fp16_vllm.onnx"),
425
+ ),
426
+ "int4_vllm": (
427
+ AttentionOpType.PagedAttention,
428
+ Precision.INT4,
429
+ os.path.join(output_dir, "phi2_decoder_int4_vllm.onnx"),
430
+ ),
431
+ }
432
+
433
+ if not args.skip_export:
434
+ from multiprocessing import Process
435
+
436
+ def run_optimize_phi2_onnx(
437
+ converter: ConvertPhi2ToONNX,
438
+ original_onnx_path: str,
439
+ attention_type: AttentionOpType,
440
+ precision: Precision,
441
+ optimized_onnx_path: str,
442
+ ):
443
+ converter.init_attn_type_and_precision(attention_type, precision)
444
+ converter.optimize_phi2_onnx(original_onnx_path, optimized_onnx_path)
445
+ if args.use_cuda_graph:
446
+ assert args.fp16_gpu_sm8x or args.int4_gpu_sm8x
447
+ converter.convert_to_use_cuda_graph(optimized_onnx_path, optimized_onnx_path)
448
+
449
+ processes = []
450
+ if args.fp32_cpu:
451
+ processes.append(
452
+ Process(
453
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["fp32_cpu"])
454
+ )
455
+ )
456
+
457
+ if args.int4_cpu:
458
+ processes.append(
459
+ Process(
460
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["int4_cpu"])
461
+ )
462
+ )
463
+
464
+ if args.fp32_gpu:
465
+ processes.append(
466
+ Process(
467
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["fp32_gpu"])
468
+ )
469
+ )
470
+
471
+ if args.fp16_gpu:
472
+ processes.append(
473
+ Process(
474
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["fp16_gpu"])
475
+ )
476
+ )
477
+
478
+ if args.int4_gpu:
479
+ processes.append(
480
+ Process(
481
+ target=run_optimize_phi2_onnx, args=(converter, original_onnx_path, *model_type_to_args["int4_gpu"])
482
+ )
483
+ )
484
+
485
+ if args.fp16_gpu_sm8x:
486
+ processes.append(
487
+ Process(
488
+ target=run_optimize_phi2_onnx,
489
+ args=(converter, original_onnx_path, *model_type_to_args["fp16_gpu_sm8x"]),
490
+ )
491
+ )
492
+
493
+ if args.int4_gpu_sm8x:
494
+ processes.append(
495
+ Process(
496
+ target=run_optimize_phi2_onnx,
497
+ args=(converter, original_onnx_path, *model_type_to_args["int4_gpu_sm8x"]),
498
+ )
499
+ )
500
+
501
+ if args.fp16_vllm:
502
+ processes.append(
503
+ Process(
504
+ target=run_optimize_phi2_onnx,
505
+ args=(converter, original_onnx_path, *model_type_to_args["fp16_vllm"]),
506
+ )
507
+ )
508
+
509
+ if args.int4_vllm:
510
+ processes.append(
511
+ Process(
512
+ target=run_optimize_phi2_onnx,
513
+ args=(converter, original_onnx_path, *model_type_to_args["int4_vllm"]),
514
+ )
515
+ )
516
+
517
+ [p.start() for p in processes]
518
+ [p.join() for p in processes]
519
+
520
+ if args.run_example or args.run_benchmark:
521
+ from inference_example import run_phi2
522
+
523
+ if args.fp16_gpu_sm8x:
524
+ logging.info("Running fp16_gpu_sm8x example...")
525
+ run_phi2(
526
+ onnx_model_path=model_type_to_args["fp16_gpu_sm8x"][2],
527
+ use_buffer_share=True,
528
+ device_id=args.device_id,
529
+ use_step=True,
530
+ use_cuda_graph=args.use_cuda_graph,
531
+ run_benchmark=args.run_benchmark,
532
+ )
533
+ if args.int4_gpu_sm8x:
534
+ logging.info("Running int4_gpu_sm8x example...")
535
+ run_phi2(
536
+ onnx_model_path=model_type_to_args["int4_gpu_sm8x"][2],
537
+ use_buffer_share=True,
538
+ device_id=args.device_id,
539
+ use_step=True,
540
+ use_cuda_graph=args.use_cuda_graph,
541
+ run_benchmark=args.run_benchmark,
542
+ )
543
+ if args.fp32_gpu:
544
+ logging.info("Running fp32_gpu example...")
545
+ run_phi2(
546
+ onnx_model_path=model_type_to_args["fp32_gpu"][2],
547
+ use_buffer_share=False,
548
+ device_id=args.device_id,
549
+ packed_kv=True,
550
+ use_fp16=False,
551
+ run_benchmark=args.run_benchmark,
552
+ )
553
+ if args.fp16_gpu:
554
+ logging.info("Running fp16_gpu example...")
555
+ run_phi2(
556
+ onnx_model_path=model_type_to_args["fp16_gpu"][2],
557
+ use_buffer_share=False,
558
+ device_id=args.device_id,
559
+ packed_kv=True,
560
+ run_benchmark=args.run_benchmark,
561
+ )
562
+ if args.int4_gpu:
563
+ logging.info("Running int4_gpu example...")
564
+ run_phi2(
565
+ onnx_model_path=model_type_to_args["int4_gpu"][2],
566
+ use_buffer_share=False,
567
+ device_id=args.device_id,
568
+ packed_kv=True,
569
+ run_benchmark=args.run_benchmark,
570
+ )
571
+ if args.fp32_cpu or args.int4_cpu or args.fp16_vllm or args.int4_vllm:
572
+ raise NotImplementedError("CPU/vllm inference example is not implemented yet.")
573
+
574
+
575
+ if __name__ == "__main__":
576
+ main()